Electronically and Geometrically Modified Single‐Atom Fe Sites by Adjacent Fe Nanoparticles for Enhanced Oxygen Reduction
Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe–N–C materials. In this work, th...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 5; pp. e2107291 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202107291 |
Cover
Loading…
Abstract | Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe–N–C materials. In this work, the electronic and geometric structures of the isolated Fe–N–C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC‐supported Fe single‐atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe–N–C sites. Meanwhile, strong interaction between isolated Fe–N–C sites and adjacent Fe NPs can change the geometric structure of isolated Fe–N–C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe–N–C sites by the co‐existence of Fe NPs narrows the energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure–activity relationship, but also sheds light on designing efficient Fe–N–C catalysts.
The correlations between electronic and geometric structures of isolated Fe–N–C sites and their oxygen reduction reaction (ORR) performance are investigated by varying the secondary heat‐treatment of a NC‐supported Fe single‐atom catalyst. The adjacent Fe nanoparticles can regulate the electronic and geometric structure of isolated Fe–N–C sites, reducing energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance. |
---|---|
AbstractList | Fe-N-C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe-N-C materials. In this work, the electronic and geometric structures of the isolated Fe-N-C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC-supported Fe single-atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe-N-C sites. Meanwhile, strong interaction between isolated Fe-N-C sites and adjacent Fe NPs can change the geometric structure of isolated Fe-N-C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe-N-C sites by the co-existence of Fe NPs narrows the energy barriers of the rate-limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure-activity relationship, but also sheds light on designing efficient Fe-N-C catalysts.Fe-N-C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe-N-C materials. In this work, the electronic and geometric structures of the isolated Fe-N-C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC-supported Fe single-atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe-N-C sites. Meanwhile, strong interaction between isolated Fe-N-C sites and adjacent Fe NPs can change the geometric structure of isolated Fe-N-C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe-N-C sites by the co-existence of Fe NPs narrows the energy barriers of the rate-limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure-activity relationship, but also sheds light on designing efficient Fe-N-C catalysts. Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe–N–C materials. In this work, the electronic and geometric structures of the isolated Fe–N–C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC‐supported Fe single‐atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe–N–C sites. Meanwhile, strong interaction between isolated Fe–N–C sites and adjacent Fe NPs can change the geometric structure of isolated Fe–N–C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe–N–C sites by the co‐existence of Fe NPs narrows the energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure–activity relationship, but also sheds light on designing efficient Fe–N–C catalysts. Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe–N–C materials. In this work, the electronic and geometric structures of the isolated Fe–N–C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC‐supported Fe single‐atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe–N–C sites. Meanwhile, strong interaction between isolated Fe–N–C sites and adjacent Fe NPs can change the geometric structure of isolated Fe–N–C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe–N–C sites by the co‐existence of Fe NPs narrows the energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure–activity relationship, but also sheds light on designing efficient Fe–N–C catalysts. The correlations between electronic and geometric structures of isolated Fe–N–C sites and their oxygen reduction reaction (ORR) performance are investigated by varying the secondary heat‐treatment of a NC‐supported Fe single‐atom catalyst. The adjacent Fe nanoparticles can regulate the electronic and geometric structure of isolated Fe–N–C sites, reducing energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance. |
Author | Cai, Jinmeng Zhao, Shu‐Na Zang, Shuang‐Quan Li, Jun‐Kang Wang, Rui |
Author_xml | – sequence: 1 givenname: Shu‐Na surname: Zhao fullname: Zhao, Shu‐Na organization: Zhengzhou University – sequence: 2 givenname: Jun‐Kang surname: Li fullname: Li, Jun‐Kang organization: Zhengzhou University – sequence: 3 givenname: Rui surname: Wang fullname: Wang, Rui organization: Zhengzhou University – sequence: 4 givenname: Jinmeng surname: Cai fullname: Cai, Jinmeng organization: Zhengzhou University – sequence: 5 givenname: Shuang‐Quan orcidid: 0000-0002-6728-0559 surname: Zang fullname: Zang, Shuang‐Quan email: zangsqzg@zzu.edu.cn organization: Zhengzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34796559$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFLUsUiQ2bDP5JPPYyaqcFqaUSdG957JvikWMPjiOI2PQR-ow8CYlmClIlxMrS8XeO7r3nBB2FGACh1wQvCcb0vbadXlJMCV5RSZ6hBakpKSss6yO0wJLVpeSVOEYnfb_FGEuO-Qt0zKqV5HUtF-jn2oPJKQZntPdjoYMtLiF2kNNBuY7WtQ5s8cWFOw-_7h-aHLviAiYhQ19sxqKxW20g5Fn8pEPc6ZSd8dNnG1OxDl91MFPAzY_xDkLxGexgsovhJXreat_Dq8N7im4v1rdnH8qrm8uPZ81VadiKkZK1rN3QVdu2jOmNqCvApOUAEgQhwlSrimsruGVgGbHYVNYKygkTQAmXnJ2id_vYXYrfBuiz6lxvwHsdIA69orWURDDBqgl9-wTdxiGFaThFOa2EFKyeA98cqGHTgVW75DqdRvV41Qmo9oBJse8TtMq4rOeVc9LOK4LVXJ6ay1N_yptsyye2x-R_GuTe8N15GP9Dq-b8uvnr_Q2zr61V |
CitedBy_id | crossref_primary_10_1016_j_jece_2025_115325 crossref_primary_10_1002_ange_202308344 crossref_primary_10_1016_j_jcis_2023_05_164 crossref_primary_10_1002_anie_202307504 crossref_primary_10_3390_nano13172434 crossref_primary_10_1002_smll_202403859 crossref_primary_10_1021_acsami_2c23232 crossref_primary_10_1007_s12598_024_03085_x crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1142_S1793604723400313 crossref_primary_10_1002_adma_202203621 crossref_primary_10_1002_eom2_12431 crossref_primary_10_1007_s12274_024_6923_8 crossref_primary_10_1002_ange_202316005 crossref_primary_10_1002_anie_202312255 crossref_primary_10_1039_D2TA06351D crossref_primary_10_1016_j_cej_2022_139820 crossref_primary_10_1039_D3EE00747B crossref_primary_10_1039_D3TA03926A crossref_primary_10_1002_adfm_202418489 crossref_primary_10_1039_D5SC01221J crossref_primary_10_1007_s12274_023_5578_1 crossref_primary_10_1016_j_jechem_2023_06_007 crossref_primary_10_1016_j_ijhydene_2023_01_147 crossref_primary_10_1021_acssuschemeng_2c00779 crossref_primary_10_1016_j_seppur_2022_121910 crossref_primary_10_1021_acs_inorgchem_4c04859 crossref_primary_10_1002_batt_202200494 crossref_primary_10_1002_adfm_202405328 crossref_primary_10_1002_advs_202205031 crossref_primary_10_3389_fenrg_2023_1194674 crossref_primary_10_1038_s41467_022_34619_5 crossref_primary_10_1016_j_diamond_2025_112134 crossref_primary_10_1039_D4NR00175C crossref_primary_10_1007_s40820_024_01463_9 crossref_primary_10_1021_acs_inorgchem_3c00680 crossref_primary_10_1016_j_cej_2022_139430 crossref_primary_10_1002_advs_202412387 crossref_primary_10_1007_s41918_023_00190_w crossref_primary_10_1021_acsnano_3c01287 crossref_primary_10_1002_ange_202408914 crossref_primary_10_1016_j_apcatb_2023_123009 crossref_primary_10_1016_j_jechem_2023_03_037 crossref_primary_10_1002_smll_202410264 crossref_primary_10_1007_s40242_022_2223_6 crossref_primary_10_1002_adma_202303243 crossref_primary_10_1016_j_jelechem_2023_117203 crossref_primary_10_1002_anie_202309784 crossref_primary_10_1021_acsami_2c09271 crossref_primary_10_1073_pnas_2216584120 crossref_primary_10_1073_pnas_2300281120 crossref_primary_10_1021_acs_energyfuels_4c02727 crossref_primary_10_1002_adfm_202424597 crossref_primary_10_1016_j_ccr_2023_215400 crossref_primary_10_1002_adfm_202404787 crossref_primary_10_1002_aenm_202203609 crossref_primary_10_1039_D2NH00362G crossref_primary_10_1016_j_cej_2024_150673 crossref_primary_10_1155_2024_8714253 crossref_primary_10_1021_acs_jpclett_3c02308 crossref_primary_10_1016_j_est_2024_113668 crossref_primary_10_1021_acscatal_2c05540 crossref_primary_10_1002_advs_202402240 crossref_primary_10_1007_s12209_023_00372_z crossref_primary_10_1002_adma_202309231 crossref_primary_10_1016_j_cej_2024_156425 crossref_primary_10_1039_D2SE01336C crossref_primary_10_1039_D3CY01308A crossref_primary_10_1002_anie_202308344 crossref_primary_10_1039_D4CC02722A crossref_primary_10_1016_j_apcatb_2024_124170 crossref_primary_10_1016_j_jelechem_2022_116946 crossref_primary_10_1002_adma_202414801 crossref_primary_10_1016_j_cej_2023_141676 crossref_primary_10_1002_elt2_26 crossref_primary_10_1002_adfm_202311818 crossref_primary_10_1002_aenm_202203611 crossref_primary_10_1002_anie_202316005 crossref_primary_10_1021_acs_jpcc_4c03420 crossref_primary_10_1002_adfm_202410373 crossref_primary_10_1016_j_joule_2023_04_005 crossref_primary_10_1007_s40820_023_01022_8 crossref_primary_10_1002_smll_202302739 crossref_primary_10_1016_j_cej_2024_153669 crossref_primary_10_1016_j_apcatb_2024_124450 crossref_primary_10_1007_s11426_023_1863_8 crossref_primary_10_1016_j_cej_2023_144261 crossref_primary_10_1016_j_nanoms_2024_05_016 crossref_primary_10_1016_j_carbon_2022_06_015 crossref_primary_10_1002_EXP_20220005 crossref_primary_10_1016_j_jcis_2024_03_112 crossref_primary_10_1007_s12598_024_02975_4 crossref_primary_10_1021_acsnano_3c08839 crossref_primary_10_1016_j_nanoen_2024_110030 crossref_primary_10_1021_acsnano_5c00187 crossref_primary_10_1016_j_jcis_2023_04_162 crossref_primary_10_1039_D3QM00146F crossref_primary_10_1021_acs_jpcc_4c03034 crossref_primary_10_1016_j_cej_2023_144818 crossref_primary_10_1002_anie_202408914 crossref_primary_10_1021_jacs_4c13137 crossref_primary_10_1016_j_cej_2022_140858 crossref_primary_10_1002_cnma_202300138 crossref_primary_10_1002_adfm_202309728 crossref_primary_10_1016_j_apsusc_2023_156906 crossref_primary_10_1039_D4CP03779K crossref_primary_10_1016_j_jhazmat_2023_131596 crossref_primary_10_1016_j_jhazmat_2025_138029 crossref_primary_10_1016_j_jmat_2023_05_006 crossref_primary_10_1016_j_jpowsour_2024_234737 crossref_primary_10_1038_s41467_023_40667_2 crossref_primary_10_1002_smll_202305782 crossref_primary_10_1002_adma_202409436 crossref_primary_10_1002_smll_202205014 crossref_primary_10_1021_acs_chemmater_3c01171 crossref_primary_10_1088_1361_6528_ad0909 crossref_primary_10_1002_smll_202409474 crossref_primary_10_1002_advs_202401187 crossref_primary_10_1021_acs_inorgchem_3c04443 crossref_primary_10_1002_adfm_202303297 crossref_primary_10_1016_j_cej_2024_154334 crossref_primary_10_1016_j_jcis_2024_07_029 crossref_primary_10_1002_adfm_202315674 crossref_primary_10_1016_j_cej_2023_142184 crossref_primary_10_1002_smll_202305700 crossref_primary_10_26599_NR_2025_94907139 crossref_primary_10_1021_acsami_4c16063 crossref_primary_10_1002_aenm_202303733 crossref_primary_10_1002_aenm_202301711 crossref_primary_10_1016_j_apcatb_2023_123090 crossref_primary_10_1002_adma_202300347 crossref_primary_10_1002_adma_202202714 crossref_primary_10_1039_D4QI02430C crossref_primary_10_1073_pnas_2404013121 crossref_primary_10_1039_D3EE02474A crossref_primary_10_1038_s41467_023_42756_8 crossref_primary_10_1021_jacsau_3c00557 crossref_primary_10_1016_j_cej_2022_140759 crossref_primary_10_1016_j_jcis_2024_08_191 crossref_primary_10_1016_j_apcatb_2022_122163 crossref_primary_10_1039_D2QM01352E crossref_primary_10_1016_j_mtener_2022_101043 crossref_primary_10_1002_adma_202306047 crossref_primary_10_1021_acssuschemeng_3c06903 crossref_primary_10_1002_ange_202307504 crossref_primary_10_1038_s41467_022_30702_z crossref_primary_10_1002_cctc_202300545 crossref_primary_10_1016_j_apcatb_2023_122685 crossref_primary_10_1002_advs_202401508 crossref_primary_10_1039_D2QI02228A crossref_primary_10_1039_D3CP02152A crossref_primary_10_1039_D3CP04012G crossref_primary_10_1002_adfm_202400893 crossref_primary_10_1002_adma_202304713 crossref_primary_10_1021_acs_jpclett_2c01398 crossref_primary_10_1002_ange_202309784 crossref_primary_10_1016_j_apsusc_2023_157155 crossref_primary_10_1016_j_carbon_2023_118365 crossref_primary_10_1038_s41467_023_40412_9 crossref_primary_10_3390_molecules29163785 crossref_primary_10_1016_j_cattod_2024_115108 crossref_primary_10_1002_ange_202312255 crossref_primary_10_1002_celc_202400034 crossref_primary_10_1039_D4TA02585G crossref_primary_10_1002_smll_202305406 crossref_primary_10_1007_s40242_022_2248_x crossref_primary_10_1002_adfm_202311337 crossref_primary_10_1039_D3TA00156C crossref_primary_10_1002_cnma_202300465 crossref_primary_10_26599_NRE_2023_9120082 crossref_primary_10_1002_sstr_202200340 crossref_primary_10_1016_j_jcis_2022_02_106 crossref_primary_10_1155_2023_3265915 |
Cites_doi | 10.1002/anie.202009277 10.1016/j.nanoen.2021.106153 10.1002/anie.202012798 10.1002/aenm.202002753 10.1002/anie.202107123 10.1038/s41467-020-17975-y 10.1002/adma.202003300 10.1021/jacs.6b00757 10.1002/aenm.202100303 10.1002/anie.202105186 10.1126/sciadv.aax6322 10.1016/j.chempr.2019.03.002 10.1038/ncomms8343 10.1021/jacs.8b04647 10.1002/adma.201704123 10.1002/advs.202002249 10.1002/smtd.202001165 10.1002/sstr.202000051 10.1002/adfm.202009197 10.1021/jacs.0c09060 10.1002/adma.202008151 10.1021/acs.chemrev.0c00594 10.1002/smll.202003096 10.1002/adfm.202103360 10.1021/acscatal.0c00936 10.1021/acscatal.0c05503 10.1002/anie.202010013 10.1039/D0TA05326K 10.1002/adfm.202104735 10.1021/acsnano.8b04693 10.1007/s12274-020-2920-8 10.1016/j.apcatb.2021.120311 10.1021/acsnano.9b05913 10.1021/jacs.9b11852 10.1093/nsr/nwz166 10.1002/anie.201204958 10.1038/s41467-020-16848-8 10.1039/D0EE01968B 10.1002/anie.202103557 10.1002/anie.202004841 10.1002/smll.202001384 10.1021/acsnano.9b09658 10.1002/adma.202004287 10.1021/jacs.8b05992 10.1002/advs.202000747 10.1016/j.apcatb.2019.03.046 10.1039/D1EE01675J 10.1038/s41467-020-16715-6 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202107291 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34796559 10_1002_adma_202107291 ADMA202107291 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 92061201; 21825106; 22105175 – fundername: Universities of Henan Province and Zhengzhou University funderid: 19IRTSTHN022 – fundername: Key Scientific and Technological Project of Henan Province funderid: 202102210027 – fundername: National Natural Science Foundation of China grantid: 92061201 – fundername: Universities of Henan Province and Zhengzhou University grantid: 19IRTSTHN022 – fundername: Key Scientific and Technological Project of Henan Province grantid: 202102210027 – fundername: National Natural Science Foundation of China grantid: 22105175 – fundername: National Natural Science Foundation of China grantid: 21825106 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3731-3f3fb27fff33ab854e01f6ee9e8118c4746ad86d3ed31d0c4dd826138e216963 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:28:25 EDT 2025 Sun Jul 13 05:02:22 EDT 2025 Wed Feb 19 02:27:45 EST 2025 Tue Jul 01 02:33:10 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 Wed Jan 22 16:27:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | electronic modification atomic Fe N(O) x sites geometric modification oxygen reduction reaction Fe nanoparticles |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-3f3fb27fff33ab854e01f6ee9e8118c4746ad86d3ed31d0c4dd826138e216963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6728-0559 |
PMID | 34796559 |
PQID | 2624898356 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2599183834 proquest_journals_2624898356 pubmed_primary_34796559 crossref_citationtrail_10_1002_adma_202107291 crossref_primary_10_1002_adma_202107291 wiley_primary_10_1002_adma_202107291_ADMA202107291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021 2019 2021 2021 2021; 5 13 31 31 60 2020 2021; 14 295 2020 2020 2020 2020 2021; 10 59 142 11 60 2019 2020; 251 13 2021; 11 2019; 5 2020 2020; 8 11 2021 2020; 14 16 2020; 142 2018 2020; 12 59 2015 2021; 6 87 2016 2013; 138 52 2021 2020 2020 2020 2021 2021 2021; 33 120 11 11 11 33 60 2018 2018; 140 140 2018 2019; 30 5 2021 2020; 8 13 2021 2021; 2 60 2020; 59 2020 2020; 31 7 2020; 32 2020 2020; 7 16 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_3_3 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_8_3 e_1_2_7_3_7 e_1_2_7_5_5 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_3_6 e_1_2_7_5_4 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_3_5 e_1_2_7_5_3 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_8_5 e_1_2_7_8_4 e_1_2_7_20_2 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 8 13 start-page: 3544 year: 2021 2020 publication-title: Adv. Sci. Energy Environ. Sci. – volume: 31 7 start-page: 609 year: 2020 2020 publication-title: Adv. Funct. Mater. Natl. Sci. Rev. – volume: 251 13 start-page: 240 2735 year: 2019 2020 publication-title: Appl. Catal., B Nano Res. – volume: 8 11 start-page: 2831 year: 2020 2020 publication-title: J. Mater. Chem. A Nat. Commun. – volume: 33 120 11 11 11 33 60 start-page: 4233 3923 year: 2021 2020 2020 2020 2021 2021 2021 publication-title: Adv. Mater. Chem. Rev. Adv. Energy Mater. Nat. Commun. ACS Catal. Adv. Mater. Angew. Chem., Int. Ed. – volume: 12 59 start-page: 9441 year: 2018 2020 publication-title: ACS Nano Angew. Chem., Int. Ed. – volume: 30 5 start-page: 1486 year: 2018 2019 publication-title: Adv. Mater. Chem – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 140 140 year: 2018 2018 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 13 31 31 60 year: 2021 2019 2021 2021 2021 publication-title: Small Methods ACS Nano Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 2 60 year: 2021 2021 publication-title: Small Struct. Angew. Chem., Int. Ed. – volume: 7 16 year: 2020 2020 publication-title: Adv. Sci. Small – volume: 14 295 start-page: 5506 year: 2020 2021 publication-title: ACS Nano Appl. Catal., B – volume: 14 16 start-page: 4948 year: 2021 2020 publication-title: Energy Environ. Sci. Small – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 138 52 start-page: 3570 371 year: 2016 2013 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 6 87 start-page: 7343 year: 2015 2021 publication-title: Nat. Commun. Nano Energy – volume: 10 59 142 11 60 start-page: 5862 2404 3049 3212 year: 2020 2020 2020 2020 2021 publication-title: ACS Catal. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Nat. Commun. Angew. Chem., Int. Ed. – ident: e_1_2_7_18_2 doi: 10.1002/anie.202009277 – ident: e_1_2_7_7_2 doi: 10.1016/j.nanoen.2021.106153 – ident: e_1_2_7_5_5 doi: 10.1002/anie.202012798 – ident: e_1_2_7_3_3 doi: 10.1002/aenm.202002753 – ident: e_1_2_7_3_7 doi: 10.1002/anie.202107123 – ident: e_1_2_7_3_4 doi: 10.1038/s41467-020-17975-y – ident: e_1_2_7_21_1 doi: 10.1002/adma.202003300 – ident: e_1_2_7_17_1 doi: 10.1021/jacs.6b00757 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.202100303 – ident: e_1_2_7_6_2 doi: 10.1002/anie.202105186 – ident: e_1_2_7_15_1 doi: 10.1126/sciadv.aax6322 – ident: e_1_2_7_1_2 doi: 10.1016/j.chempr.2019.03.002 – ident: e_1_2_7_7_1 doi: 10.1038/ncomms8343 – ident: e_1_2_7_19_2 doi: 10.1021/jacs.8b04647 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201704123 – ident: e_1_2_7_4_1 doi: 10.1002/advs.202002249 – ident: e_1_2_7_8_1 doi: 10.1002/smtd.202001165 – ident: e_1_2_7_6_1 doi: 10.1002/sstr.202000051 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.202009197 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.0c09060 – ident: e_1_2_7_3_1 doi: 10.1002/adma.202008151 – ident: e_1_2_7_3_2 doi: 10.1021/acs.chemrev.0c00594 – ident: e_1_2_7_2_2 doi: 10.1002/smll.202003096 – ident: e_1_2_7_8_4 doi: 10.1002/adfm.202103360 – ident: e_1_2_7_5_1 doi: 10.1021/acscatal.0c00936 – ident: e_1_2_7_3_5 doi: 10.1021/acscatal.0c05503 – ident: e_1_2_7_10_1 doi: 10.1002/anie.202010013 – ident: e_1_2_7_20_1 doi: 10.1039/D0TA05326K – ident: e_1_2_7_8_3 doi: 10.1002/adfm.202104735 – ident: e_1_2_7_18_1 doi: 10.1021/acsnano.8b04693 – ident: e_1_2_7_12_2 doi: 10.1007/s12274-020-2920-8 – ident: e_1_2_7_16_2 doi: 10.1016/j.apcatb.2021.120311 – ident: e_1_2_7_8_2 doi: 10.1021/acsnano.9b05913 – ident: e_1_2_7_5_3 doi: 10.1021/jacs.9b11852 – ident: e_1_2_7_11_2 doi: 10.1093/nsr/nwz166 – ident: e_1_2_7_17_2 doi: 10.1002/anie.201204958 – ident: e_1_2_7_5_4 doi: 10.1038/s41467-020-16848-8 – ident: e_1_2_7_4_2 doi: 10.1039/D0EE01968B – ident: e_1_2_7_8_5 doi: 10.1002/anie.202103557 – ident: e_1_2_7_5_2 doi: 10.1002/anie.202004841 – ident: e_1_2_7_14_2 doi: 10.1002/smll.202001384 – ident: e_1_2_7_16_1 doi: 10.1021/acsnano.9b09658 – ident: e_1_2_7_3_6 doi: 10.1002/adma.202004287 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.8b05992 – ident: e_1_2_7_2_1 doi: 10.1002/advs.202000747 – ident: e_1_2_7_12_1 doi: 10.1016/j.apcatb.2019.03.046 – ident: e_1_2_7_14_1 doi: 10.1039/D1EE01675J – ident: e_1_2_7_20_2 doi: 10.1038/s41467-020-16715-6 |
SSID | ssj0009606 |
Score | 2.692362 |
Snippet | Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial... Fe-N-C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2107291 |
SubjectTerms | atomic Fe N(O) x sites electronic modification Electronic structure Fe nanoparticles geometric modification Iron Materials science Nanoparticles oxygen reduction reaction Oxygen reduction reactions Single atom catalysts Strong interactions (field theory) |
Title | Electronically and Geometrically Modified Single‐Atom Fe Sites by Adjacent Fe Nanoparticles for Enhanced Oxygen Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107291 https://www.ncbi.nlm.nih.gov/pubmed/34796559 https://www.proquest.com/docview/2624898356 https://www.proquest.com/docview/2599183834 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hnsoBKJ-hBRkJiZPbje14vceo7FIhLUilSL1F_hS026SiuxJbLvwEfiO_pGMnm3ZBCAmOcWzFsWfs95LxG4CX2uZWWG0oM8pQ9ERPR9oGGnQReFA2l2mmp-_kwUfx9rg4vnGKv9WH6D-4Rc9I63V0cG0u9q5FQ7VLukFIWRAfRv4TA7YiKjq81o-K8DyJ7fGCjqRQK9XGAdtbb76-K_0GNdeRa9p6JndBrzrdRpyc7i7mZtde_qLn-D9vdQ_udLiUlK0hbcEtX9-H2zfUCh_At3GfMkfPZkuia0fe-OYs5uRqS6aN-xwQ05IP2GDmf37_Uc6bMzLxWICQlpglKd2JjgGhsRBXdqTsXWQeQfRMxvWnFJFA3n9domWTwygsG03nIRxNxkf7B7TL3UAtH_Kccpxpw4YhBM61UYXwgzxI70deIaWxYiikdko67h3P3cAK55Do5Fx5lktcFB7BRt3U_gmQARqMVnqkkExHdUOlreNBMOYLZdDUMqCrqatsp2se02vMqlaRmVVxTKt-TDN41dc_bxU9_lhzZ2UJVefZFxWTTCjsTCEzeNHfRp-MP1p07ZsF1ikQdSvk_iKDx60F9Y-KJ3cl0rgMWLKDv_ShKl9Py_7q6b802oZNFs9spFDzHdiYf1n4Z4ik5uZ58pYrVp4WOg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL1CMwtgwfsRZgAjIbHKTGM7rruMoKXAdJCGIrGL_BSPToKglabDhk_gG_kSrp3HUBBCgmUcW3Hse51znOtzAR4qkxlulE6pljpFT3TpSBmfepV75qXJRJzp2aGYvubP3-RdNGE4C9PoQ_QbbsEz4nodHDxsSO-fqYYqG4WDkLMgQEQCtB3SekdWdXSmIBUAepTbY3k6Elx2uo0Dur_ZfvO79BvY3MSu8eMzuQy663YTc_Jhb7XUe-b0F0XH_3qvK3CphaakaGzpKpxz1TW4-JNg4XX4Mu6z5qjFYk1UZclTVx-HtFxNyay27zzCWvIKGyzc96_fimV9TCYOCxDVEr0mhX2vQkxoKMTFHVl7G5xHEECTcfU2BiWQlydrNG5yFLRlg_XcgPlkPH88Tdv0DalhQ5alDCdb06H3njGlZc7dIPPCuZGTyGoMH3KhrBSWOcsyOzDcWuQ6GZOOZgLXhZuwVdWVuw1kgDajpBpJ5NNB4FAqY5nnlLpcarS2BNJu7krTSpuHDBuLshFlpmUY07If0wQe9fU_NqIef6y525lC2Tr355IKyiV2JhcJPOhvo1uGfy2qcvUK6-QIvCXSf57ArcaE-keFw7sCmVwCNBrCX_pQFk9mRX91518a3Yfz0_nsoDx4dvhiBy7QcIQjRp7vwtby08rdRWC11Pei6_wAsbEaVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRUKwKG8aKGAkJFZuE9vxeJYRM0N5TEGlSN1FforHNKlgRmJgwyfwjXwJ10km7YAQEizj2Ipjn2ufm1yfC_BQ28wKqw1lRhmKlujpUNtAg84DD8pmspnp6b7ceyOeHeVHZ07xt_oQ_Qe3aBnNeh0N_MSF3VPRUO0a3SB0WZAfov9zXshURVyPDk4FpCI_b9T2eE6HUqiVbGPKdtfbr29Lv3HNdera7D2Ty6BXvW5DTj7sLOZmx375RdDxf17rCmx2xJQULZKuwjlfXYNLZ-QKr8PXcZ8zR89mS6IrR574-jgm5WpLprV7F5DUktfYYOZ_fPtezOtjMvFYgJyWmCUp3HsdI0JjIS7t6LN3oXkE6TMZV2-bkATy8vMSoU0OorJsxM4NOJyMDx_v0S55A7V8wDPKcaoNG4QQONdG5cKnWZDeD71Cn8aKgZDaKem4dzxzqRXOoaeTceVZJnFVuAkbVV35LSApIkYrPVToTUd5Q6Wt40Ew5nNlEGsJ0NXUlbYTNo_5NWZlK8nMyjimZT-mCTzq65-0kh5_rLm9QkLZmfankkkmFHYmlwk86G-jUcY_Lbry9QLr5Ei7FTr_IoFbLYL6R8WjuxL9uARYg4O_9KEsRtOiv7r9L43uw4VXo0n54un-8ztwkcXzG03Y-TZszD8u_F1kVXNzrzGcn2YHGQ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronically+and+Geometrically+Modified+Single%E2%80%90Atom+Fe+Sites+by+Adjacent+Fe+Nanoparticles+for+Enhanced+Oxygen+Reduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Shu%E2%80%90Na&rft.au=Li%2C+Jun%E2%80%90Kang&rft.au=Wang%2C+Rui&rft.au=Cai%2C+Jinmeng&rft.date=2022-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=5&rft_id=info:doi/10.1002%2Fadma.202107291&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202107291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |