Electronically and Geometrically Modified Single‐Atom Fe Sites by Adjacent Fe Nanoparticles for Enhanced Oxygen Reduction

Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe–N–C materials. In this work, th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 5; pp. e2107291 - n/a
Main Authors Zhao, Shu‐Na, Li, Jun‐Kang, Wang, Rui, Cai, Jinmeng, Zang, Shuang‐Quan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202107291

Cover

Loading…
Abstract Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe–N–C materials. In this work, the electronic and geometric structures of the isolated Fe–N–C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC‐supported Fe single‐atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe–N–C sites. Meanwhile, strong interaction between isolated Fe–N–C sites and adjacent Fe NPs can change the geometric structure of isolated Fe–N–C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe–N–C sites by the co‐existence of Fe NPs narrows the energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure–activity relationship, but also sheds light on designing efficient Fe–N–C catalysts. The correlations between electronic and geometric structures of isolated Fe–N–C sites and their oxygen reduction reaction (ORR) performance are investigated by varying the secondary heat‐treatment of a NC‐supported Fe single‐atom catalyst. The adjacent Fe nanoparticles can regulate the electronic and geometric structure of isolated Fe–N–C sites, reducing energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance.
AbstractList Fe-N-C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe-N-C materials. In this work, the electronic and geometric structures of the isolated Fe-N-C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC-supported Fe single-atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe-N-C sites. Meanwhile, strong interaction between isolated Fe-N-C sites and adjacent Fe NPs can change the geometric structure of isolated Fe-N-C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe-N-C sites by the co-existence of Fe NPs narrows the energy barriers of the rate-limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure-activity relationship, but also sheds light on designing efficient Fe-N-C catalysts.Fe-N-C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe-N-C materials. In this work, the electronic and geometric structures of the isolated Fe-N-C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC-supported Fe single-atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe-N-C sites. Meanwhile, strong interaction between isolated Fe-N-C sites and adjacent Fe NPs can change the geometric structure of isolated Fe-N-C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe-N-C sites by the co-existence of Fe NPs narrows the energy barriers of the rate-limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure-activity relationship, but also sheds light on designing efficient Fe-N-C catalysts.
Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe–N–C materials. In this work, the electronic and geometric structures of the isolated Fe–N–C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC‐supported Fe single‐atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe–N–C sites. Meanwhile, strong interaction between isolated Fe–N–C sites and adjacent Fe NPs can change the geometric structure of isolated Fe–N–C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe–N–C sites by the co‐existence of Fe NPs narrows the energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure–activity relationship, but also sheds light on designing efficient Fe–N–C catalysts.
Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial Pt/C catalysts. However, it is challenging to unravel features of the superior ORR activity originating from Fe–N–C materials. In this work, the electronic and geometric structures of the isolated Fe–N–C sites and their correlations with the ORR performance are investigated by varying the secondary thermal activation temperature of a rationally designed NC‐supported Fe single‐atom catalyst (SAC). The systematic analyses demonstrate the significant role of coordinated atoms of SA and metallic Fe nanoparticles (NPs) in altering the electronic structure of isolated Fe–N–C sites. Meanwhile, strong interaction between isolated Fe–N–C sites and adjacent Fe NPs can change the geometric structure of isolated Fe–N–C sites. Theoretical calculations reveal that optimal regulation of the electronic and geometric structure of isolated Fe–N–C sites by the co‐existence of Fe NPs narrows the energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance. This work not only provides the fundamental understanding of the underlying structure–activity relationship, but also sheds light on designing efficient Fe–N–C catalysts. The correlations between electronic and geometric structures of isolated Fe–N–C sites and their oxygen reduction reaction (ORR) performance are investigated by varying the secondary heat‐treatment of a NC‐supported Fe single‐atom catalyst. The adjacent Fe nanoparticles can regulate the electronic and geometric structure of isolated Fe–N–C sites, reducing energy barriers of the rate‐limiting steps of ORR, resulting in outstanding ORR performance.
Author Cai, Jinmeng
Zhao, Shu‐Na
Zang, Shuang‐Quan
Li, Jun‐Kang
Wang, Rui
Author_xml – sequence: 1
  givenname: Shu‐Na
  surname: Zhao
  fullname: Zhao, Shu‐Na
  organization: Zhengzhou University
– sequence: 2
  givenname: Jun‐Kang
  surname: Li
  fullname: Li, Jun‐Kang
  organization: Zhengzhou University
– sequence: 3
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: Zhengzhou University
– sequence: 4
  givenname: Jinmeng
  surname: Cai
  fullname: Cai, Jinmeng
  organization: Zhengzhou University
– sequence: 5
  givenname: Shuang‐Quan
  orcidid: 0000-0002-6728-0559
  surname: Zang
  fullname: Zang, Shuang‐Quan
  email: zangsqzg@zzu.edu.cn
  organization: Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34796559$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFLUsUiQ2bDP5JPPYyaqcFqaUSdG957JvikWMPjiOI2PQR-ow8CYlmClIlxMrS8XeO7r3nBB2FGACh1wQvCcb0vbadXlJMCV5RSZ6hBakpKSss6yO0wJLVpeSVOEYnfb_FGEuO-Qt0zKqV5HUtF-jn2oPJKQZntPdjoYMtLiF2kNNBuY7WtQ5s8cWFOw-_7h-aHLviAiYhQ19sxqKxW20g5Fn8pEPc6ZSd8dNnG1OxDl91MFPAzY_xDkLxGexgsovhJXreat_Dq8N7im4v1rdnH8qrm8uPZ81VadiKkZK1rN3QVdu2jOmNqCvApOUAEgQhwlSrimsruGVgGbHYVNYKygkTQAmXnJ2id_vYXYrfBuiz6lxvwHsdIA69orWURDDBqgl9-wTdxiGFaThFOa2EFKyeA98cqGHTgVW75DqdRvV41Qmo9oBJse8TtMq4rOeVc9LOK4LVXJ6ay1N_yptsyye2x-R_GuTe8N15GP9Dq-b8uvnr_Q2zr61V
CitedBy_id crossref_primary_10_1016_j_jece_2025_115325
crossref_primary_10_1002_ange_202308344
crossref_primary_10_1016_j_jcis_2023_05_164
crossref_primary_10_1002_anie_202307504
crossref_primary_10_3390_nano13172434
crossref_primary_10_1002_smll_202403859
crossref_primary_10_1021_acsami_2c23232
crossref_primary_10_1007_s12598_024_03085_x
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1142_S1793604723400313
crossref_primary_10_1002_adma_202203621
crossref_primary_10_1002_eom2_12431
crossref_primary_10_1007_s12274_024_6923_8
crossref_primary_10_1002_ange_202316005
crossref_primary_10_1002_anie_202312255
crossref_primary_10_1039_D2TA06351D
crossref_primary_10_1016_j_cej_2022_139820
crossref_primary_10_1039_D3EE00747B
crossref_primary_10_1039_D3TA03926A
crossref_primary_10_1002_adfm_202418489
crossref_primary_10_1039_D5SC01221J
crossref_primary_10_1007_s12274_023_5578_1
crossref_primary_10_1016_j_jechem_2023_06_007
crossref_primary_10_1016_j_ijhydene_2023_01_147
crossref_primary_10_1021_acssuschemeng_2c00779
crossref_primary_10_1016_j_seppur_2022_121910
crossref_primary_10_1021_acs_inorgchem_4c04859
crossref_primary_10_1002_batt_202200494
crossref_primary_10_1002_adfm_202405328
crossref_primary_10_1002_advs_202205031
crossref_primary_10_3389_fenrg_2023_1194674
crossref_primary_10_1038_s41467_022_34619_5
crossref_primary_10_1016_j_diamond_2025_112134
crossref_primary_10_1039_D4NR00175C
crossref_primary_10_1007_s40820_024_01463_9
crossref_primary_10_1021_acs_inorgchem_3c00680
crossref_primary_10_1016_j_cej_2022_139430
crossref_primary_10_1002_advs_202412387
crossref_primary_10_1007_s41918_023_00190_w
crossref_primary_10_1021_acsnano_3c01287
crossref_primary_10_1002_ange_202408914
crossref_primary_10_1016_j_apcatb_2023_123009
crossref_primary_10_1016_j_jechem_2023_03_037
crossref_primary_10_1002_smll_202410264
crossref_primary_10_1007_s40242_022_2223_6
crossref_primary_10_1002_adma_202303243
crossref_primary_10_1016_j_jelechem_2023_117203
crossref_primary_10_1002_anie_202309784
crossref_primary_10_1021_acsami_2c09271
crossref_primary_10_1073_pnas_2216584120
crossref_primary_10_1073_pnas_2300281120
crossref_primary_10_1021_acs_energyfuels_4c02727
crossref_primary_10_1002_adfm_202424597
crossref_primary_10_1016_j_ccr_2023_215400
crossref_primary_10_1002_adfm_202404787
crossref_primary_10_1002_aenm_202203609
crossref_primary_10_1039_D2NH00362G
crossref_primary_10_1016_j_cej_2024_150673
crossref_primary_10_1155_2024_8714253
crossref_primary_10_1021_acs_jpclett_3c02308
crossref_primary_10_1016_j_est_2024_113668
crossref_primary_10_1021_acscatal_2c05540
crossref_primary_10_1002_advs_202402240
crossref_primary_10_1007_s12209_023_00372_z
crossref_primary_10_1002_adma_202309231
crossref_primary_10_1016_j_cej_2024_156425
crossref_primary_10_1039_D2SE01336C
crossref_primary_10_1039_D3CY01308A
crossref_primary_10_1002_anie_202308344
crossref_primary_10_1039_D4CC02722A
crossref_primary_10_1016_j_apcatb_2024_124170
crossref_primary_10_1016_j_jelechem_2022_116946
crossref_primary_10_1002_adma_202414801
crossref_primary_10_1016_j_cej_2023_141676
crossref_primary_10_1002_elt2_26
crossref_primary_10_1002_adfm_202311818
crossref_primary_10_1002_aenm_202203611
crossref_primary_10_1002_anie_202316005
crossref_primary_10_1021_acs_jpcc_4c03420
crossref_primary_10_1002_adfm_202410373
crossref_primary_10_1016_j_joule_2023_04_005
crossref_primary_10_1007_s40820_023_01022_8
crossref_primary_10_1002_smll_202302739
crossref_primary_10_1016_j_cej_2024_153669
crossref_primary_10_1016_j_apcatb_2024_124450
crossref_primary_10_1007_s11426_023_1863_8
crossref_primary_10_1016_j_cej_2023_144261
crossref_primary_10_1016_j_nanoms_2024_05_016
crossref_primary_10_1016_j_carbon_2022_06_015
crossref_primary_10_1002_EXP_20220005
crossref_primary_10_1016_j_jcis_2024_03_112
crossref_primary_10_1007_s12598_024_02975_4
crossref_primary_10_1021_acsnano_3c08839
crossref_primary_10_1016_j_nanoen_2024_110030
crossref_primary_10_1021_acsnano_5c00187
crossref_primary_10_1016_j_jcis_2023_04_162
crossref_primary_10_1039_D3QM00146F
crossref_primary_10_1021_acs_jpcc_4c03034
crossref_primary_10_1016_j_cej_2023_144818
crossref_primary_10_1002_anie_202408914
crossref_primary_10_1021_jacs_4c13137
crossref_primary_10_1016_j_cej_2022_140858
crossref_primary_10_1002_cnma_202300138
crossref_primary_10_1002_adfm_202309728
crossref_primary_10_1016_j_apsusc_2023_156906
crossref_primary_10_1039_D4CP03779K
crossref_primary_10_1016_j_jhazmat_2023_131596
crossref_primary_10_1016_j_jhazmat_2025_138029
crossref_primary_10_1016_j_jmat_2023_05_006
crossref_primary_10_1016_j_jpowsour_2024_234737
crossref_primary_10_1038_s41467_023_40667_2
crossref_primary_10_1002_smll_202305782
crossref_primary_10_1002_adma_202409436
crossref_primary_10_1002_smll_202205014
crossref_primary_10_1021_acs_chemmater_3c01171
crossref_primary_10_1088_1361_6528_ad0909
crossref_primary_10_1002_smll_202409474
crossref_primary_10_1002_advs_202401187
crossref_primary_10_1021_acs_inorgchem_3c04443
crossref_primary_10_1002_adfm_202303297
crossref_primary_10_1016_j_cej_2024_154334
crossref_primary_10_1016_j_jcis_2024_07_029
crossref_primary_10_1002_adfm_202315674
crossref_primary_10_1016_j_cej_2023_142184
crossref_primary_10_1002_smll_202305700
crossref_primary_10_26599_NR_2025_94907139
crossref_primary_10_1021_acsami_4c16063
crossref_primary_10_1002_aenm_202303733
crossref_primary_10_1002_aenm_202301711
crossref_primary_10_1016_j_apcatb_2023_123090
crossref_primary_10_1002_adma_202300347
crossref_primary_10_1002_adma_202202714
crossref_primary_10_1039_D4QI02430C
crossref_primary_10_1073_pnas_2404013121
crossref_primary_10_1039_D3EE02474A
crossref_primary_10_1038_s41467_023_42756_8
crossref_primary_10_1021_jacsau_3c00557
crossref_primary_10_1016_j_cej_2022_140759
crossref_primary_10_1016_j_jcis_2024_08_191
crossref_primary_10_1016_j_apcatb_2022_122163
crossref_primary_10_1039_D2QM01352E
crossref_primary_10_1016_j_mtener_2022_101043
crossref_primary_10_1002_adma_202306047
crossref_primary_10_1021_acssuschemeng_3c06903
crossref_primary_10_1002_ange_202307504
crossref_primary_10_1038_s41467_022_30702_z
crossref_primary_10_1002_cctc_202300545
crossref_primary_10_1016_j_apcatb_2023_122685
crossref_primary_10_1002_advs_202401508
crossref_primary_10_1039_D2QI02228A
crossref_primary_10_1039_D3CP02152A
crossref_primary_10_1039_D3CP04012G
crossref_primary_10_1002_adfm_202400893
crossref_primary_10_1002_adma_202304713
crossref_primary_10_1021_acs_jpclett_2c01398
crossref_primary_10_1002_ange_202309784
crossref_primary_10_1016_j_apsusc_2023_157155
crossref_primary_10_1016_j_carbon_2023_118365
crossref_primary_10_1038_s41467_023_40412_9
crossref_primary_10_3390_molecules29163785
crossref_primary_10_1016_j_cattod_2024_115108
crossref_primary_10_1002_ange_202312255
crossref_primary_10_1002_celc_202400034
crossref_primary_10_1039_D4TA02585G
crossref_primary_10_1002_smll_202305406
crossref_primary_10_1007_s40242_022_2248_x
crossref_primary_10_1002_adfm_202311337
crossref_primary_10_1039_D3TA00156C
crossref_primary_10_1002_cnma_202300465
crossref_primary_10_26599_NRE_2023_9120082
crossref_primary_10_1002_sstr_202200340
crossref_primary_10_1016_j_jcis_2022_02_106
crossref_primary_10_1155_2023_3265915
Cites_doi 10.1002/anie.202009277
10.1016/j.nanoen.2021.106153
10.1002/anie.202012798
10.1002/aenm.202002753
10.1002/anie.202107123
10.1038/s41467-020-17975-y
10.1002/adma.202003300
10.1021/jacs.6b00757
10.1002/aenm.202100303
10.1002/anie.202105186
10.1126/sciadv.aax6322
10.1016/j.chempr.2019.03.002
10.1038/ncomms8343
10.1021/jacs.8b04647
10.1002/adma.201704123
10.1002/advs.202002249
10.1002/smtd.202001165
10.1002/sstr.202000051
10.1002/adfm.202009197
10.1021/jacs.0c09060
10.1002/adma.202008151
10.1021/acs.chemrev.0c00594
10.1002/smll.202003096
10.1002/adfm.202103360
10.1021/acscatal.0c00936
10.1021/acscatal.0c05503
10.1002/anie.202010013
10.1039/D0TA05326K
10.1002/adfm.202104735
10.1021/acsnano.8b04693
10.1007/s12274-020-2920-8
10.1016/j.apcatb.2021.120311
10.1021/acsnano.9b05913
10.1021/jacs.9b11852
10.1093/nsr/nwz166
10.1002/anie.201204958
10.1038/s41467-020-16848-8
10.1039/D0EE01968B
10.1002/anie.202103557
10.1002/anie.202004841
10.1002/smll.202001384
10.1021/acsnano.9b09658
10.1002/adma.202004287
10.1021/jacs.8b05992
10.1002/advs.202000747
10.1016/j.apcatb.2019.03.046
10.1039/D1EE01675J
10.1038/s41467-020-16715-6
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202107291
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34796559
10_1002_adma_202107291
ADMA202107291
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 92061201; 21825106; 22105175
– fundername: Universities of Henan Province and Zhengzhou University
  funderid: 19IRTSTHN022
– fundername: Key Scientific and Technological Project of Henan Province
  funderid: 202102210027
– fundername: National Natural Science Foundation of China
  grantid: 92061201
– fundername: Universities of Henan Province and Zhengzhou University
  grantid: 19IRTSTHN022
– fundername: Key Scientific and Technological Project of Henan Province
  grantid: 202102210027
– fundername: National Natural Science Foundation of China
  grantid: 22105175
– fundername: National Natural Science Foundation of China
  grantid: 21825106
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3731-3f3fb27fff33ab854e01f6ee9e8118c4746ad86d3ed31d0c4dd826138e216963
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:28:25 EDT 2025
Sun Jul 13 05:02:22 EDT 2025
Wed Feb 19 02:27:45 EST 2025
Tue Jul 01 02:33:10 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Wed Jan 22 16:27:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords electronic modification
atomic Fe N(O) x sites
geometric modification
oxygen reduction reaction
Fe nanoparticles
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-3f3fb27fff33ab854e01f6ee9e8118c4746ad86d3ed31d0c4dd826138e216963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6728-0559
PMID 34796559
PQID 2624898356
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2599183834
proquest_journals_2624898356
pubmed_primary_34796559
crossref_citationtrail_10_1002_adma_202107291
crossref_primary_10_1002_adma_202107291
wiley_primary_10_1002_adma_202107291_ADMA202107291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021 2019 2021 2021 2021; 5 13 31 31 60
2020 2021; 14 295
2020 2020 2020 2020 2021; 10 59 142 11 60
2019 2020; 251 13
2021; 11
2019; 5
2020 2020; 8 11
2021 2020; 14 16
2020; 142
2018 2020; 12 59
2015 2021; 6 87
2016 2013; 138 52
2021 2020 2020 2020 2021 2021 2021; 33 120 11 11 11 33 60
2018 2018; 140 140
2018 2019; 30 5
2021 2020; 8 13
2021 2021; 2 60
2020; 59
2020 2020; 31 7
2020; 32
2020 2020; 7 16
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_3_3
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_8_3
e_1_2_7_3_7
e_1_2_7_5_5
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_3_6
e_1_2_7_5_4
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_3_5
e_1_2_7_5_3
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_8_5
e_1_2_7_8_4
e_1_2_7_20_2
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 8 13
  start-page: 3544
  year: 2021 2020
  publication-title: Adv. Sci. Energy Environ. Sci.
– volume: 31 7
  start-page: 609
  year: 2020 2020
  publication-title: Adv. Funct. Mater. Natl. Sci. Rev.
– volume: 251 13
  start-page: 240 2735
  year: 2019 2020
  publication-title: Appl. Catal., B Nano Res.
– volume: 8 11
  start-page: 2831
  year: 2020 2020
  publication-title: J. Mater. Chem. A Nat. Commun.
– volume: 33 120 11 11 11 33 60
  start-page: 4233 3923
  year: 2021 2020 2020 2020 2021 2021 2021
  publication-title: Adv. Mater. Chem. Rev. Adv. Energy Mater. Nat. Commun. ACS Catal. Adv. Mater. Angew. Chem., Int. Ed.
– volume: 12 59
  start-page: 9441
  year: 2018 2020
  publication-title: ACS Nano Angew. Chem., Int. Ed.
– volume: 30 5
  start-page: 1486
  year: 2018 2019
  publication-title: Adv. Mater. Chem
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 140 140
  year: 2018 2018
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5 13 31 31 60
  year: 2021 2019 2021 2021 2021
  publication-title: Small Methods ACS Nano Adv. Funct. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 2 60
  year: 2021 2021
  publication-title: Small Struct. Angew. Chem., Int. Ed.
– volume: 7 16
  year: 2020 2020
  publication-title: Adv. Sci. Small
– volume: 14 295
  start-page: 5506
  year: 2020 2021
  publication-title: ACS Nano Appl. Catal., B
– volume: 14 16
  start-page: 4948
  year: 2021 2020
  publication-title: Energy Environ. Sci. Small
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 138 52
  start-page: 3570 371
  year: 2016 2013
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 6 87
  start-page: 7343
  year: 2015 2021
  publication-title: Nat. Commun. Nano Energy
– volume: 10 59 142 11 60
  start-page: 5862 2404 3049 3212
  year: 2020 2020 2020 2020 2021
  publication-title: ACS Catal. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Nat. Commun. Angew. Chem., Int. Ed.
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.202009277
– ident: e_1_2_7_7_2
  doi: 10.1016/j.nanoen.2021.106153
– ident: e_1_2_7_5_5
  doi: 10.1002/anie.202012798
– ident: e_1_2_7_3_3
  doi: 10.1002/aenm.202002753
– ident: e_1_2_7_3_7
  doi: 10.1002/anie.202107123
– ident: e_1_2_7_3_4
  doi: 10.1038/s41467-020-17975-y
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.202003300
– ident: e_1_2_7_17_1
  doi: 10.1021/jacs.6b00757
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.202100303
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.202105186
– ident: e_1_2_7_15_1
  doi: 10.1126/sciadv.aax6322
– ident: e_1_2_7_1_2
  doi: 10.1016/j.chempr.2019.03.002
– ident: e_1_2_7_7_1
  doi: 10.1038/ncomms8343
– ident: e_1_2_7_19_2
  doi: 10.1021/jacs.8b04647
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201704123
– ident: e_1_2_7_4_1
  doi: 10.1002/advs.202002249
– ident: e_1_2_7_8_1
  doi: 10.1002/smtd.202001165
– ident: e_1_2_7_6_1
  doi: 10.1002/sstr.202000051
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.202009197
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.0c09060
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.202008151
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.chemrev.0c00594
– ident: e_1_2_7_2_2
  doi: 10.1002/smll.202003096
– ident: e_1_2_7_8_4
  doi: 10.1002/adfm.202103360
– ident: e_1_2_7_5_1
  doi: 10.1021/acscatal.0c00936
– ident: e_1_2_7_3_5
  doi: 10.1021/acscatal.0c05503
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.202010013
– ident: e_1_2_7_20_1
  doi: 10.1039/D0TA05326K
– ident: e_1_2_7_8_3
  doi: 10.1002/adfm.202104735
– ident: e_1_2_7_18_1
  doi: 10.1021/acsnano.8b04693
– ident: e_1_2_7_12_2
  doi: 10.1007/s12274-020-2920-8
– ident: e_1_2_7_16_2
  doi: 10.1016/j.apcatb.2021.120311
– ident: e_1_2_7_8_2
  doi: 10.1021/acsnano.9b05913
– ident: e_1_2_7_5_3
  doi: 10.1021/jacs.9b11852
– ident: e_1_2_7_11_2
  doi: 10.1093/nsr/nwz166
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.201204958
– ident: e_1_2_7_5_4
  doi: 10.1038/s41467-020-16848-8
– ident: e_1_2_7_4_2
  doi: 10.1039/D0EE01968B
– ident: e_1_2_7_8_5
  doi: 10.1002/anie.202103557
– ident: e_1_2_7_5_2
  doi: 10.1002/anie.202004841
– ident: e_1_2_7_14_2
  doi: 10.1002/smll.202001384
– ident: e_1_2_7_16_1
  doi: 10.1021/acsnano.9b09658
– ident: e_1_2_7_3_6
  doi: 10.1002/adma.202004287
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.8b05992
– ident: e_1_2_7_2_1
  doi: 10.1002/advs.202000747
– ident: e_1_2_7_12_1
  doi: 10.1016/j.apcatb.2019.03.046
– ident: e_1_2_7_14_1
  doi: 10.1039/D1EE01675J
– ident: e_1_2_7_20_2
  doi: 10.1038/s41467-020-16715-6
SSID ssj0009606
Score 2.692362
Snippet Fe–N–C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial...
Fe-N-C materials exhibit excellent activity and stability for oxygen reduction reaction (ORR), as one of the most promising candidates to replace commercial...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2107291
SubjectTerms atomic Fe N(O) x sites
electronic modification
Electronic structure
Fe nanoparticles
geometric modification
Iron
Materials science
Nanoparticles
oxygen reduction reaction
Oxygen reduction reactions
Single atom catalysts
Strong interactions (field theory)
Title Electronically and Geometrically Modified Single‐Atom Fe Sites by Adjacent Fe Nanoparticles for Enhanced Oxygen Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107291
https://www.ncbi.nlm.nih.gov/pubmed/34796559
https://www.proquest.com/docview/2624898356
https://www.proquest.com/docview/2599183834
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hnsoBKJ-hBRkJiZPbje14vceo7FIhLUilSL1F_hS026SiuxJbLvwEfiO_pGMnm3ZBCAmOcWzFsWfs95LxG4CX2uZWWG0oM8pQ9ERPR9oGGnQReFA2l2mmp-_kwUfx9rg4vnGKv9WH6D-4Rc9I63V0cG0u9q5FQ7VLukFIWRAfRv4TA7YiKjq81o-K8DyJ7fGCjqRQK9XGAdtbb76-K_0GNdeRa9p6JndBrzrdRpyc7i7mZtde_qLn-D9vdQ_udLiUlK0hbcEtX9-H2zfUCh_At3GfMkfPZkuia0fe-OYs5uRqS6aN-xwQ05IP2GDmf37_Uc6bMzLxWICQlpglKd2JjgGhsRBXdqTsXWQeQfRMxvWnFJFA3n9domWTwygsG03nIRxNxkf7B7TL3UAtH_Kccpxpw4YhBM61UYXwgzxI70deIaWxYiikdko67h3P3cAK55Do5Fx5lktcFB7BRt3U_gmQARqMVnqkkExHdUOlreNBMOYLZdDUMqCrqatsp2se02vMqlaRmVVxTKt-TDN41dc_bxU9_lhzZ2UJVefZFxWTTCjsTCEzeNHfRp-MP1p07ZsF1ikQdSvk_iKDx60F9Y-KJ3cl0rgMWLKDv_ShKl9Py_7q6b802oZNFs9spFDzHdiYf1n4Z4ik5uZ58pYrVp4WOg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL1CMwtgwfsRZgAjIbHKTGM7rruMoKXAdJCGIrGL_BSPToKglabDhk_gG_kSrp3HUBBCgmUcW3Hse51znOtzAR4qkxlulE6pljpFT3TpSBmfepV75qXJRJzp2aGYvubP3-RdNGE4C9PoQ_QbbsEz4nodHDxsSO-fqYYqG4WDkLMgQEQCtB3SekdWdXSmIBUAepTbY3k6Elx2uo0Dur_ZfvO79BvY3MSu8eMzuQy663YTc_Jhb7XUe-b0F0XH_3qvK3CphaakaGzpKpxz1TW4-JNg4XX4Mu6z5qjFYk1UZclTVx-HtFxNyay27zzCWvIKGyzc96_fimV9TCYOCxDVEr0mhX2vQkxoKMTFHVl7G5xHEECTcfU2BiWQlydrNG5yFLRlg_XcgPlkPH88Tdv0DalhQ5alDCdb06H3njGlZc7dIPPCuZGTyGoMH3KhrBSWOcsyOzDcWuQ6GZOOZgLXhZuwVdWVuw1kgDajpBpJ5NNB4FAqY5nnlLpcarS2BNJu7krTSpuHDBuLshFlpmUY07If0wQe9fU_NqIef6y525lC2Tr355IKyiV2JhcJPOhvo1uGfy2qcvUK6-QIvCXSf57ArcaE-keFw7sCmVwCNBrCX_pQFk9mRX91518a3Yfz0_nsoDx4dvhiBy7QcIQjRp7vwtby08rdRWC11Pei6_wAsbEaVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRUKwKG8aKGAkJFZuE9vxeJYRM0N5TEGlSN1FforHNKlgRmJgwyfwjXwJ10km7YAQEizj2Ipjn2ufm1yfC_BQ28wKqw1lRhmKlujpUNtAg84DD8pmspnp6b7ceyOeHeVHZ07xt_oQ_Qe3aBnNeh0N_MSF3VPRUO0a3SB0WZAfov9zXshURVyPDk4FpCI_b9T2eE6HUqiVbGPKdtfbr29Lv3HNdera7D2Ty6BXvW5DTj7sLOZmx375RdDxf17rCmx2xJQULZKuwjlfXYNLZ-QKr8PXcZ8zR89mS6IrR574-jgm5WpLprV7F5DUktfYYOZ_fPtezOtjMvFYgJyWmCUp3HsdI0JjIS7t6LN3oXkE6TMZV2-bkATy8vMSoU0OorJsxM4NOJyMDx_v0S55A7V8wDPKcaoNG4QQONdG5cKnWZDeD71Cn8aKgZDaKem4dzxzqRXOoaeTceVZJnFVuAkbVV35LSApIkYrPVToTUd5Q6Wt40Ew5nNlEGsJ0NXUlbYTNo_5NWZlK8nMyjimZT-mCTzq65-0kh5_rLm9QkLZmfankkkmFHYmlwk86G-jUcY_Lbry9QLr5Ei7FTr_IoFbLYL6R8WjuxL9uARYg4O_9KEsRtOiv7r9L43uw4VXo0n54un-8ztwkcXzG03Y-TZszD8u_F1kVXNzrzGcn2YHGQ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronically+and+Geometrically+Modified+Single%E2%80%90Atom+Fe+Sites+by+Adjacent+Fe+Nanoparticles+for+Enhanced+Oxygen+Reduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Shu%E2%80%90Na&rft.au=Li%2C+Jun%E2%80%90Kang&rft.au=Wang%2C+Rui&rft.au=Cai%2C+Jinmeng&rft.date=2022-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=5&rft_id=info:doi/10.1002%2Fadma.202107291&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202107291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon