Advancements in Electrocatalytic Nitrogen Reduction: A Comprehensive Review of Single‐Atom Catalysts for Sustainable Ammonia Synthesis

Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research an...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 32; pp. e2400551 - n/a
Main Authors Long, Xianhu, Huang, Fan, Yao, Zhangnan, Li, Ping, Zhong, Tao, Zhao, Huinan, Tian, Shuanghong, Shu, Dong, He, Chun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In‐depth insights into the material preparation methods, single‐atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed. Electrocatalytic nitrogen reduction (NRR) technology harmonizes seamlessly with the principles of environmentally friendly production. Here, a comprehensive review of recent advancements in electrocatalytic NRR utilizing single‐atom catalysts (SACs) is presented. The systematic comparison of the NRR of various SAC provides a comprehensive research framework. Additionally, the challenges and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are addressed.
AbstractList Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.
Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In‐depth insights into the material preparation methods, single‐atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.
Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In‐depth insights into the material preparation methods, single‐atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed. Electrocatalytic nitrogen reduction (NRR) technology harmonizes seamlessly with the principles of environmentally friendly production. Here, a comprehensive review of recent advancements in electrocatalytic NRR utilizing single‐atom catalysts (SACs) is presented. The systematic comparison of the NRR of various SAC provides a comprehensive research framework. Additionally, the challenges and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are addressed.
Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.
Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH 3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In‐depth insights into the material preparation methods, single‐atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.
Author Yao, Zhangnan
Long, Xianhu
Tian, Shuanghong
Shu, Dong
Li, Ping
Zhong, Tao
Zhao, Huinan
He, Chun
Huang, Fan
Author_xml – sequence: 1
  givenname: Xianhu
  orcidid: 0000-0002-3000-3427
  surname: Long
  fullname: Long, Xianhu
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Fan
  surname: Huang
  fullname: Huang, Fan
  organization: Sun Yat‐sen University
– sequence: 3
  givenname: Zhangnan
  surname: Yao
  fullname: Yao, Zhangnan
  organization: Sun Yat‐sen University
– sequence: 4
  givenname: Ping
  surname: Li
  fullname: Li, Ping
  organization: Sun Yat‐sen University
– sequence: 5
  givenname: Tao
  surname: Zhong
  fullname: Zhong, Tao
  organization: Sun Yat‐sen University
– sequence: 6
  givenname: Huinan
  surname: Zhao
  fullname: Zhao, Huinan
  email: zhaohn@mail2.sysu.edu.cn
  organization: Sun Yat‐sen University
– sequence: 7
  givenname: Shuanghong
  surname: Tian
  fullname: Tian, Shuanghong
  email: tshuangh@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
– sequence: 8
  givenname: Dong
  surname: Shu
  fullname: Shu, Dong
  organization: South China Normal University
– sequence: 9
  givenname: Chun
  orcidid: 0000-0002-3875-5631
  surname: He
  fullname: He, Chun
  email: hechun@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38516940$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vFCEYxompsR969WhIvPSyKzAzzOBtsqnaZLWJq2fCMO-0NAyswGyzN48e_Rv9S2S7_UiaGE9A-D3PC89zjA6cd4DQa0rmlBD2Lo7WzhlhJSFVRZ-hI8ppMeMNEwcPe0oO0XGM14QUlJX1C3RYNBXloiRH6Ffbb5TTMIJLERuHzyzoFLxWSdltMhp_Mfl4CQ5_hX7SyXj3Hrd44cd1gCtw0WwgX20M3GA_4JVxlxb-_PzdJj_ixa1LzM6DD3g1xaSMU50F3I6jd0bh1dalK4gmvkTPB2UjvLpbT9D3D2ffFp9my4uP54t2OdNFXdAZY9XQ9bTgvVCiLCuuGq46VhBRCq55TRrWdbRSBQjBeKNEp-u-anj-egl1D8UJOt37roP_MUFMcjRRg7XKgZ-iZKLOWZY1FRl9-wS99lNw-XUyzyNVQypCM_Xmjpq6EXq5DmZUYSvvM85AuQd08DEGGKQ2Se2CTEEZKymRuyrlrkr5UGWWzZ_I7p3_KRB7wY2xsP0PLVefl8tH7V9l37L6
CitedBy_id crossref_primary_10_1002_cey2_708
crossref_primary_10_1016_j_apmate_2025_100279
crossref_primary_10_1016_j_vacuum_2024_113390
crossref_primary_10_1016_j_surfin_2024_105401
crossref_primary_10_1016_j_surfin_2025_105764
crossref_primary_10_1002_inf2_12639
crossref_primary_10_1002_smll_202408111
crossref_primary_10_1039_D3NJ04846B
crossref_primary_10_1016_j_apsusc_2025_162726
crossref_primary_10_1002_smll_202404696
crossref_primary_10_1016_j_apcatb_2024_124944
crossref_primary_10_1039_D4TA06862A
crossref_primary_10_20517_jmi_2024_65
crossref_primary_10_26599_NR_2025_94907289
crossref_primary_10_1016_j_apcata_2024_119990
crossref_primary_10_1039_D4TA06667G
crossref_primary_10_1039_D4NR05259E
crossref_primary_10_1039_D4NR02387K
crossref_primary_10_1002_adfm_202424142
crossref_primary_10_1016_j_ijoes_2024_100911
Cites_doi 10.1021/jacs.3c01319
10.1016/j.nanoen.2019.04.092
10.1039/C4CP05501B
10.1002/smtd.202300277
10.1021/acsenergylett.9b00699
10.1021/acssuschemeng.7b02890
10.1039/C5CP07363D
10.1021/acssuschemeng.2c00018
10.1038/s41467-019-12510-0
10.1038/s44160-023-00321-7
10.1039/C9TA13700A
10.1002/anie.202100526
10.1002/adfm.202000768
10.1007/s11426-009-0135-7
10.1002/aenm.201500658
10.1021/cs300579b
10.1021/acs.est.2c04456
10.1021/acsami.2c21744
10.1021/acsanm.1c02108
10.1039/D2CS00797E
10.1039/D0CC01136C
10.1016/S1872-2067(23)64456-0
10.1039/C5CC06051F
10.1002/advs.201802109
10.1021/acs.jpcc.1c06464
10.1039/C9CC04034J
10.1126/science.1085326
10.1016/j.checat.2022.09.001
10.1016/j.ccr.2013.02.010
10.1021/jacs.6b01230
10.1002/cssc.202102352
10.1002/anie.201609533
10.1002/adfm.202209843
10.1039/C9CP00997C
10.1039/D0EE03575K
10.1038/s41598-021-04640-7
10.1021/ja500432h
10.1039/D1CY00022E
10.1002/adma.201700001
10.1016/j.apcatb.2022.121651
10.1002/anie.202302789
10.1016/j.electacta.2022.140805
10.1021/acs.est.3c04343
10.1002/adma.202002177
10.1002/anie.200301553
10.1016/j.chempr.2021.01.009
10.1007/s12598-022-02215-7
10.1039/D3QI01448G
10.1007/s12274-023-5997-z
10.1038/s41467-018-03795-8
10.1002/aenm.201401986
10.1002/smll.202104043
10.1021/jacs.7b04393
10.1002/cctc.202300795
10.1016/j.apcatb.2005.08.006
10.1021/acsanm.3c01669
10.1038/s41578-020-0193-1
10.1149/2.F04152if
10.1002/anie.201706921
10.1002/cctc.202000006
10.1002/adma.201606550
10.1002/adma.201803498
10.1038/srep01145
10.1039/C9CS00159J
10.1002/celc.202100251
10.1016/j.pecs.2020.100860
10.1016/j.cclet.2020.11.013
10.1038/s41467-018-08120-x
10.1038/s41586-019-1260-x
10.1038/s41467-021-23115-x
10.1039/C8TA10497B
10.1149/1.3159311
10.1039/C1CP22271F
10.1002/anie.201811728
10.1021/acs.nanolett.3c02259
10.1002/ange.202203022
10.1016/j.xcrp.2021.100438
10.1002/adma.202001267
10.1021/acs.chemrev.7b00776
10.1002/anie.202011596
10.1021/acssuschemeng.7b01742
10.1021/jacs.8b13165
10.1021/acsanm.2c02399
10.1039/D3CC00721A
10.1016/j.joule.2018.06.007
10.1016/S1872-2067(22)64136-6
10.1016/j.cattod.2016.11.047
10.1002/cjoc.201090044
10.1021/acsnano.0c01340
10.1021/jacs.8b07472
10.1002/adma.201604799
10.1016/j.joule.2022.07.009
10.1002/smtd.201800202
10.1016/j.apcatb.2023.122430
10.1002/adts.202100044
10.1002/cssc.201500322
10.1016/j.mcat.2022.112658
10.1002/aenm.202301543
10.1126/science.aaq1684
10.1021/acscatal.9b04103
10.1016/j.chempr.2023.08.014
10.1002/adma.201805367
10.1073/pnas.2015108117
10.1002/adma.202007650
10.1016/j.jcis.2023.08.079
10.1007/s40820-023-01092-8
10.1016/j.scib.2018.07.005
10.1021/acsami.0c13414
10.1016/j.chempr.2020.01.013
10.1039/b004885m
10.1021/acs.jpcc.1c03425
10.1021/jacs.0c06118
10.1002/aenm.201800369
10.1002/adma.201805617
10.1016/j.checat.2022.06.010
10.1002/ntls.20220047
10.1016/j.chempr.2018.10.007
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202400551
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38516940
10_1002_smll_202400551
SMLL202400551
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2023A1515012198
– fundername: National Natural Science Foundation of China
  funderid: 52070195 21876212
– fundername: National Natural Science Foundation of China
  grantid: 52070195 21876212
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  grantid: 2023A1515012198
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3731-225fbd136d9a94456a86ab2309496c67082bb15a3e99268a9bc7d5860314e7de3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 08:06:50 EDT 2025
Wed Aug 13 11:16:29 EDT 2025
Mon Jul 21 06:04:45 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
Tue Jul 01 02:55:01 EDT 2025
Wed Jan 22 17:15:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords NH3 synthesis
electrocatalysis
single atom catalyst
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-225fbd136d9a94456a86ab2309496c67082bb15a3e99268a9bc7d5860314e7de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3000-3427
0000-0002-3875-5631
PMID 38516940
PQID 3090580501
PQPubID 1046358
PageCount 27
ParticipantIDs proquest_miscellaneous_2974004719
proquest_journals_3090580501
pubmed_primary_38516940
crossref_citationtrail_10_1002_smll_202400551
crossref_primary_10_1002_smll_202400551
wiley_primary_10_1002_smll_202400551_SMLL202400551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2019; 10
2020; 14
2020; 12
2020; 10
2012; 14
2014; 136
2018; 9
2023; 62
2018; 8
2018; 2
2010; 28
2019; 21
2018; 30
2017; 286
2024; 24
2009; 16
2003; 42
2019; 7
2023; 52
2019; 4
2023; 57
2019; 6
2019; 5
2019; 31
2023; 59
2015; 51
2020; 142
2024; 10
2023; 328
2020; 32
2016; 18
2017; 139
2023; 42
2018; 359
2020; 30
2022; 5
2018; 118
2022; 6
2019; 48
2017; 56
2022; 12
2022; 15
2022; 10
2022; 2
2019; 570
2021; 60
2023; 50
2022; 18
2017; 5
2022; 134
2023; 33
2023; 6
2019; 55
2023; 7
2021; 125
2023; 145
2019; 58
2020; 59
2020; 56
2023; 2
2023; 3
2022; 531
2020; 8
2020; 6
2020; 5
2009; 52
2021; 32
2021; 33
2006; 62
2019; 61
2000
2023; 652
2023; 10
2021; 8
2021; 7
2023; 13
2015; 17
2015; 5
2021; 4
2018; 140
2021; 2
2023; 17
2023; 15
2020; 81
2018; 63
2017; 29
2022; 43
2019; 141
2015; 8
2022; 316
2021; 14
2015; 24
2012; 2
2021; 12
2021; 11
2022; 56
2013; 257
2020; 117
2016; 138
2003; 301
2022; 426
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
Burgess B. K. (e_1_2_10_75_1) 2000
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
Bao D. (e_1_2_10_100_1) 2017; 29
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 5
  start-page: 517
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 57
  year: 2023
  publication-title: Environ. Sci. Technol.
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 53
  year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 81
  year: 2020
  publication-title: Prog. Energy Combust. Sci.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 55
  start-page: 9335
  year: 2019
  publication-title: Chem. Commun.
– volume: 14
  start-page: 1235
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 18
  start-page: 9161
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 61
  start-page: 420
  year: 2019
  publication-title: Nano Energy
– volume: 12
  start-page: 657
  year: 2022
  publication-title: Sci. Rep.
– volume: 62
  start-page: 306
  year: 2006
  publication-title: Appl. Catal. B
– volume: 5
  start-page: 204
  year: 2019
  publication-title: Chem
– volume: 6
  start-page: 2083
  year: 2022
  publication-title: Joule
– volume: 4
  year: 2021
  publication-title: Adv. Theory Simul.
– volume: 531
  year: 2022
  publication-title: Mol. Catal.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 4394
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 301
  start-page: 76
  year: 2003
  publication-title: Science
– volume: 257
  start-page: 2551
  year: 2013
  publication-title: Coord. Chem. Rev.
– volume: 48
  start-page: 5658
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 4243
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 42
  start-page: 2004
  year: 2003
  publication-title: Angew. Chem., Int. Ed.
– volume: 359
  start-page: 896
  year: 2018
  publication-title: Science
– volume: 10
  start-page: 4585
  year: 2019
  publication-title: Nat. Commun.
– volume: 2
  start-page: 612
  year: 2023
  publication-title: Nat. Synth.
– volume: 5
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 24
  start-page: 51
  year: 2015
  publication-title: Electrochem. Soc. Interface
– volume: 56
  start-page: 2699
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  start-page: 9078
  year: 2021
  publication-title: Angew. Chem.Int. Ed.
– volume: 58
  start-page: 2321
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  year: 2022
  publication-title: Environ. Sci. Technol.
– volume: 316
  year: 2022
  publication-title: Appl. Catal. B
– volume: 141
  start-page: 2884
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2023
  publication-title: Small Methods
– volume: 52
  start-page: 1171
  year: 2009
  publication-title: Sci. China Ser. B: Chem.
– volume: 12
  start-page: 2870
  year: 2021
  publication-title: Nat. Commun.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 42
  start-page: 1075
  year: 2023
  publication-title: Rare Met.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 5812
  year: 2023
  publication-title: Inorg. Chem. Front.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  year: 2023
  publication-title: Nat. Sci.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 63
  start-page: 1246
  year: 2018
  publication-title: Sci. Bull.
– volume: 15
  year: 2023
  publication-title: ChemCatChem
– volume: 10
  start-page: 48
  year: 2024
  publication-title: Chem
– volume: 118
  start-page: 4981
  year: 2018
  publication-title: Chem. Rev.
– volume: 6
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 16
  start-page: 89
  year: 2009
  publication-title: ECS Trans.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 139
  start-page: 9771
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 6938
  year: 2023
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 6938
  year: 2020
  publication-title: ACS Nano
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 2
  start-page: 2590
  year: 2022
  publication-title: Chem. Catal.
– volume: 5
  start-page: 7393
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 43
  start-page: 3177
  year: 2022
  publication-title: Chin. J. Catal.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 134
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 2761
  year: 2012
  publication-title: ACS Catal.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 1596
  year: 2021
  publication-title: ChemElectroChem
– volume: 570
  start-page: 504
  year: 2019
  publication-title: Nature
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 139
  year: 2010
  publication-title: Chin. J. Chem.
– volume: 10
  start-page: 341
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2392
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1336
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 1247
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1610
  year: 2018
  publication-title: Joule
– volume: 24
  start-page: 541
  year: 2024
  publication-title: Nano Lett.
– volume: 286
  start-page: 69
  year: 2017
  publication-title: Catal. Today
– volume: 5
  year: 2022
  publication-title: ACS Appl. Nano Mater.
– volume: 3
  start-page: 1145
  year: 2013
  publication-title: Sci. Rep.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 8
  start-page: 2180
  year: 2015
  publication-title: ChemSusChem
– volume: 2
  year: 2021
  publication-title: Cell. Rep. Phys. Sci.
– volume: 7
  start-page: 1708
  year: 2021
  publication-title: Chem
– volume: 6
  start-page: 885
  year: 2020
  publication-title: Chem
– volume: 17
  start-page: 3768
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 50
  start-page: 195
  year: 2023
  publication-title: Chin. J. Catal.
– start-page: 13
  year: 2000
  end-page: 18
– volume: 10
  start-page: 1847
  year: 2020
  publication-title: ACS Catal.
– volume: 21
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 3910
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 328
  year: 2023
  publication-title: Appl. Catal. B
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1209
  year: 2023
  publication-title: Nano Res.
– volume: 652
  start-page: 155
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 426
  year: 2022
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 113
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 9
  start-page: 1610
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2589
  year: 2021
  publication-title: Catal. Sci. Technol.
– volume: 59
  start-page: 5403
  year: 2023
  publication-title: Chem. Commun.
– start-page: 1673
  year: 2000
  publication-title: Chem. Commun.
– volume: 10
  start-page: 4345
  year: 2022
  publication-title: ACS Sustainable Chem. Eng.
– volume: 2
  start-page: 2275
  year: 2022
  publication-title: Chem Catal.
– volume: 12
  start-page: 2760
  year: 2020
  publication-title: ChemCatChem
– volume: 15
  year: 2022
  publication-title: ChemSusChem
– ident: e_1_2_10_63_1
  doi: 10.1021/jacs.3c01319
– ident: e_1_2_10_78_1
  doi: 10.1016/j.nanoen.2019.04.092
– ident: e_1_2_10_38_1
  doi: 10.1039/C4CP05501B
– ident: e_1_2_10_19_1
  doi: 10.1002/smtd.202300277
– ident: e_1_2_10_56_1
  doi: 10.1021/acsenergylett.9b00699
– ident: e_1_2_10_29_1
  doi: 10.1021/acssuschemeng.7b02890
– ident: e_1_2_10_57_1
  doi: 10.1039/C5CP07363D
– ident: e_1_2_10_45_1
  doi: 10.1021/acssuschemeng.2c00018
– ident: e_1_2_10_15_1
  doi: 10.1038/s41467-019-12510-0
– ident: e_1_2_10_4_1
  doi: 10.1038/s44160-023-00321-7
– ident: e_1_2_10_103_1
  doi: 10.1039/C9TA13700A
– ident: e_1_2_10_81_1
  doi: 10.1002/anie.202100526
– ident: e_1_2_10_86_1
  doi: 10.1002/adfm.202000768
– ident: e_1_2_10_31_1
  doi: 10.1007/s11426-009-0135-7
– ident: e_1_2_10_97_1
  doi: 10.1002/aenm.201500658
– ident: e_1_2_10_77_1
  doi: 10.1021/cs300579b
– ident: e_1_2_10_113_1
  doi: 10.1021/acs.est.2c04456
– ident: e_1_2_10_60_1
  doi: 10.1021/acsami.2c21744
– ident: e_1_2_10_76_1
  doi: 10.1021/acsanm.1c02108
– ident: e_1_2_10_1_1
  doi: 10.1039/D2CS00797E
– ident: e_1_2_10_94_1
  doi: 10.1039/D0CC01136C
– ident: e_1_2_10_18_1
  doi: 10.1016/S1872-2067(23)64456-0
– ident: e_1_2_10_98_1
  doi: 10.1039/C5CC06051F
– ident: e_1_2_10_48_1
  doi: 10.1002/advs.201802109
– ident: e_1_2_10_105_1
  doi: 10.1021/acs.jpcc.1c06464
– ident: e_1_2_10_110_1
  doi: 10.1039/C9CC04034J
– ident: e_1_2_10_85_1
  doi: 10.1126/science.1085326
– ident: e_1_2_10_3_1
  doi: 10.1016/j.checat.2022.09.001
– ident: e_1_2_10_8_1
  doi: 10.1016/j.ccr.2013.02.010
– ident: e_1_2_10_28_1
  doi: 10.1021/jacs.6b01230
– ident: e_1_2_10_64_1
  doi: 10.1002/cssc.202102352
– ident: e_1_2_10_35_1
  doi: 10.1002/anie.201609533
– ident: e_1_2_10_23_1
  doi: 10.1002/adfm.202209843
– start-page: 13
  volume-title: Nitrogen Fixation: From Molecules to Crop Productivity
  year: 2000
  ident: e_1_2_10_75_1
– ident: e_1_2_10_104_1
  doi: 10.1039/C9CP00997C
– ident: e_1_2_10_16_1
  doi: 10.1039/D0EE03575K
– ident: e_1_2_10_26_1
  doi: 10.1038/s41598-021-04640-7
– ident: e_1_2_10_96_1
  doi: 10.1021/ja500432h
– ident: e_1_2_10_91_1
  doi: 10.1039/D1CY00022E
– ident: e_1_2_10_41_1
  doi: 10.1002/adma.201700001
– ident: e_1_2_10_70_1
  doi: 10.1016/j.apcatb.2022.121651
– ident: e_1_2_10_92_1
  doi: 10.1002/anie.202302789
– ident: e_1_2_10_80_1
  doi: 10.1016/j.electacta.2022.140805
– ident: e_1_2_10_112_1
  doi: 10.1021/acs.est.3c04343
– ident: e_1_2_10_88_1
  doi: 10.1002/adma.202002177
– ident: e_1_2_10_54_1
  doi: 10.1002/anie.200301553
– ident: e_1_2_10_52_1
  doi: 10.1016/j.chempr.2021.01.009
– ident: e_1_2_10_7_1
  doi: 10.1007/s12598-022-02215-7
– ident: e_1_2_10_6_1
  doi: 10.1039/D3QI01448G
– ident: e_1_2_10_69_1
  doi: 10.1007/s12274-023-5997-z
– ident: e_1_2_10_74_1
  doi: 10.1038/s41467-018-03795-8
– ident: e_1_2_10_11_1
  doi: 10.1002/aenm.201401986
– ident: e_1_2_10_68_1
  doi: 10.1002/smll.202104043
– ident: e_1_2_10_42_1
  doi: 10.1021/jacs.7b04393
– ident: e_1_2_10_116_1
  doi: 10.1002/cctc.202300795
– ident: e_1_2_10_37_1
  doi: 10.1016/j.apcatb.2005.08.006
– ident: e_1_2_10_90_1
  doi: 10.1021/acsanm.3c01669
– ident: e_1_2_10_10_1
  doi: 10.1038/s41578-020-0193-1
– ident: e_1_2_10_30_1
  doi: 10.1149/2.F04152if
– ident: e_1_2_10_43_1
  doi: 10.1002/anie.201706921
– ident: e_1_2_10_82_1
  doi: 10.1002/cctc.202000006
– ident: e_1_2_10_40_1
  doi: 10.1002/adma.201606550
– ident: e_1_2_10_59_1
  doi: 10.1002/adma.201803498
– ident: e_1_2_10_33_1
  doi: 10.1038/srep01145
– ident: e_1_2_10_21_1
  doi: 10.1039/C9CS00159J
– ident: e_1_2_10_44_1
  doi: 10.1002/celc.202100251
– ident: e_1_2_10_2_1
  doi: 10.1016/j.pecs.2020.100860
– ident: e_1_2_10_89_1
  doi: 10.1016/j.cclet.2020.11.013
– ident: e_1_2_10_79_1
  doi: 10.1038/s41467-018-08120-x
– ident: e_1_2_10_53_1
  doi: 10.1038/s41586-019-1260-x
– ident: e_1_2_10_73_1
  doi: 10.1038/s41467-021-23115-x
– ident: e_1_2_10_102_1
  doi: 10.1039/C8TA10497B
– ident: e_1_2_10_50_1
  doi: 10.1149/1.3159311
– ident: e_1_2_10_55_1
  doi: 10.1039/C1CP22271F
– ident: e_1_2_10_87_1
  doi: 10.1002/anie.201811728
– ident: e_1_2_10_115_1
  doi: 10.1021/acs.nanolett.3c02259
– ident: e_1_2_10_49_1
  doi: 10.1002/ange.202203022
– ident: e_1_2_10_25_1
  doi: 10.1016/j.xcrp.2021.100438
– ident: e_1_2_10_109_1
  doi: 10.1002/adma.202001267
– ident: e_1_2_10_17_1
  doi: 10.1021/acs.chemrev.7b00776
– ident: e_1_2_10_47_1
  doi: 10.1002/anie.202011596
– ident: e_1_2_10_36_1
  doi: 10.1021/acssuschemeng.7b01742
– ident: e_1_2_10_107_1
  doi: 10.1021/jacs.8b13165
– ident: e_1_2_10_101_1
  doi: 10.1021/acsanm.2c02399
– ident: e_1_2_10_65_1
  doi: 10.1039/D3CC00721A
– volume: 29
  year: 2017
  ident: e_1_2_10_100_1
  publication-title: Adv. Mater.
– ident: e_1_2_10_99_1
  doi: 10.1016/j.joule.2018.06.007
– ident: e_1_2_10_61_1
  doi: 10.1016/S1872-2067(22)64136-6
– ident: e_1_2_10_27_1
  doi: 10.1016/j.cattod.2016.11.047
– ident: e_1_2_10_32_1
  doi: 10.1002/cjoc.201090044
– ident: e_1_2_10_72_1
  doi: 10.1021/acsnano.0c01340
– ident: e_1_2_10_93_1
  doi: 10.1021/jacs.8b07472
– ident: e_1_2_10_39_1
  doi: 10.1002/adma.201604799
– ident: e_1_2_10_46_1
  doi: 10.1016/j.joule.2022.07.009
– ident: e_1_2_10_67_1
  doi: 10.1002/smtd.201800202
– ident: e_1_2_10_9_1
  doi: 10.1016/j.apcatb.2023.122430
– ident: e_1_2_10_119_1
  doi: 10.1002/adts.202100044
– ident: e_1_2_10_58_1
  doi: 10.1002/cssc.201500322
– ident: e_1_2_10_106_1
  doi: 10.1016/j.mcat.2022.112658
– ident: e_1_2_10_13_1
  doi: 10.1002/aenm.202301543
– ident: e_1_2_10_83_1
  doi: 10.1126/science.aaq1684
– ident: e_1_2_10_62_1
  doi: 10.1021/acscatal.9b04103
– ident: e_1_2_10_114_1
  doi: 10.1016/j.chempr.2023.08.014
– ident: e_1_2_10_20_1
  doi: 10.1002/adma.201805367
– ident: e_1_2_10_71_1
  doi: 10.1073/pnas.2015108117
– ident: e_1_2_10_24_1
  doi: 10.1002/adma.202007650
– ident: e_1_2_10_117_1
  doi: 10.1016/j.jcis.2023.08.079
– ident: e_1_2_10_14_1
  doi: 10.1007/s40820-023-01092-8
– ident: e_1_2_10_66_1
  doi: 10.1016/j.scib.2018.07.005
– ident: e_1_2_10_108_1
  doi: 10.1021/acsami.0c13414
– ident: e_1_2_10_84_1
  doi: 10.1016/j.chempr.2020.01.013
– ident: e_1_2_10_34_1
  doi: 10.1039/b004885m
– ident: e_1_2_10_22_1
  doi: 10.1021/acs.jpcc.1c03425
– ident: e_1_2_10_111_1
  doi: 10.1021/jacs.0c06118
– ident: e_1_2_10_118_1
  doi: 10.1002/aenm.201800369
– ident: e_1_2_10_12_1
  doi: 10.1002/adma.201805617
– ident: e_1_2_10_95_1
  doi: 10.1016/j.checat.2022.06.010
– ident: e_1_2_10_5_1
  doi: 10.1002/ntls.20220047
– ident: e_1_2_10_51_1
  doi: 10.1016/j.chempr.2018.10.007
SSID ssj0031247
Score 2.5832877
SecondaryResourceType review_article
Snippet Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2400551
SubjectTerms Ammonia
Catalysts
Chemical reduction
Chemical synthesis
electrocatalysis
Gold
Iron
NH3 synthesis
Noble metals
single atom catalyst
Transition metals
Title Advancements in Electrocatalytic Nitrogen Reduction: A Comprehensive Review of Single‐Atom Catalysts for Sustainable Ammonia Synthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202400551
https://www.ncbi.nlm.nih.gov/pubmed/38516940
https://www.proquest.com/docview/3090580501
https://www.proquest.com/docview/2974004719
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8H4WCjITEFMjDSWy2qAIhBAwUJLbIThxR0aaItANMjIz8Rn4Jd3YbKAghwRYrthPHd77P8d13hOwWwucuC7TjSY85TAlYBzMoSq7jIMtVXpjYqvOL6OSand6EN5-i-C0_RP3DDTXDrNeo4FJVBx-koVWvi0cH6AMZmhhqdNhCVHRZ80cFYLxMdhWwWQ4Sb41ZG13_YLL5pFX6BjUnkasxPcfzRI5f2nqc3O0PB2o_e_rC5_ifUS2QuREupYkVpEUypcslMvuJrXCZvCTWX8AExdFOSY9sCh3zB-gR2tGLDhRBIuklEsLilB_ShOKS86Bvrac8tYcRtF_QNvTa1W_Pr8mg36Mt00sFPQOMpu2PuC6aoKp0JG0_loBWq061Qq6Pj65aJ84okYOTBXHgObBmFCqH-cmFFAwgm-SRVLD5EUxEWRQDDFHKC2WghfAjLoXK4jzkmACb6TjXwSqZLvulXicUTEsYwYaAaZhbzbksopzHWZSDmQUZ4w3ijCcyzUYs55hso5tafmY_xS-c1l-4Qfbq-veW3-PHms2xXKQjPa9SGIIbcjd04fZOfRs0FI9dZKn7wyr1YcuGpJyeaJA1K0_1owKO55TMbRDfSMUv75C2z8_O6tLGXxptkhm8tj6MTTI9eBjqLcBVA7VtdOcdwaUbyg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAH3o8tBYyExCltEjuOzS0qrRbY3UO3lbhZduKoK7bZqtk9lBNHjvxGfgkz9iZlQQgJjo4f8WPGM7ZnviHkVa1SGXPmosQkPOJWwT5YQtJIl7OyslXtfavGEzE84e8_Zp01IfrCBHyI_sINOcPv18jgeCG9d4Ua2p7N8e0AjSAzdKK-jmG9ET7_7VGPIMVAfPn4KiC1IoTe6nAb43Rvs_6mXPpN2dzUXb3wObxDbNftYHPyaXe1tLvl518QHf9rXHfJ7bVqSotAS_fINdfcJ7d-Aix8QL4WwWTA-8XRWUMPQhQdfwl0CfXoZAZJIEp6hJiwuOpvaEFx17lwp8FYnob3CLqo6RRanbvvX74Vy8UZ3fettNAyaNJ0euXaRQvklpmh08sGFNZ21j4kJ4cHx_vDaB3LISpZzpIIto3aVgkTlTKKg9ZmpDAWzj-KK1GKHDQRa5PMMKdUKqRRtsyrTGIMbO7yyrFHZKtZNO4JoSBdMgFnAu5gcZ2UphaVzEtRgaQFMpMDEnUrqcs10DnG25jrANGcapxh3c_wgLzuy58HiI8_ltzpCEOvWb3VMIQ4k3EWQ_bLPhuYFF9eTOMWq1ancGpDXM5EDcjjQFD9r5jEp0oeD0jqyeIvfdDT8WjUp7b_pdILcmN4PB7p0bvJh6fkJn4PJo07ZGt5sXLPQM1a2ueekX4AcVMf5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkSo4AOVRFgoYCYlT2iR2HLu3qO2qwHaFulTqLbJjR6zYZqtm91BOHDnyG_tLmLF30y4IIcHR8SN-zHjG9sw3hLypVSpjzlyU6IRH3CjYBytIaulyVllja-9bdTQUhyf8_Wl2esOLP-BDdBduyBl-v0YGP7f1zjVoaHs2wacDtIHM0If6NhexwuAN-8cdgBQD6eXDq4DQihB5awnbGKc7q_VXxdJvuuaq6uplT_8-0cteB5OTL9vzmdmuvv4C6Pg_w3pA7i0UU1oEStogt1zzkNy9AVf4iHwvgsGA94qj44YehBg6_groEurR4RiSQJL0GBFhcc13aUFxz7lwn4OpPA2vEXRa0xG0OnFX334Us-kZ3fOttNAy6NF0dO3YRQvklbGmo8sG1NV23D4mJ_2DT3uH0SKSQ1SxnCURbBq1sQkTVmnFQWfTUmgDpx_FlahEDnqIMUmmmVMqFVIrU-U2kxgBm7vcOvaErDXTxj0lFGRLJuBEwB2srZNS18LKvBIW5CwQmeyRaLmQZbWAOcdoG5MyADSnJc5w2c1wj7ztyp8HgI8_ltxa0kW5YPS2hCHEmYyzGLJfd9nAovjuohs3nbdlCmc2ROVMVI9sBnrqfsUkPlTyuEdSTxV_6UM5OhoMutSzf6n0iqx_3O-Xg3fDD8_JHfwc7Bm3yNrsYu5egI41My89G_0E9qkelQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+Electrocatalytic+Nitrogen+Reduction%3A+A+Comprehensive+Review+of+Single-Atom+Catalysts+for+Sustainable+Ammonia+Synthesis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Long%2C+Xianhu&rft.au=Huang%2C+Fan&rft.au=Yao%2C+Zhangnan&rft.au=Li%2C+Ping&rft.date=2024-08-01&rft.eissn=1613-6829&rft.spage=e2400551&rft_id=info:doi/10.1002%2Fsmll.202400551&rft_id=info%3Apmid%2F38516940&rft.externalDocID=38516940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon