Advancements in Electrocatalytic Nitrogen Reduction: A Comprehensive Review of Single‐Atom Catalysts for Sustainable Ammonia Synthesis
Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research an...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 32; pp. e2400551 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In‐depth insights into the material preparation methods, single‐atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.
Electrocatalytic nitrogen reduction (NRR) technology harmonizes seamlessly with the principles of environmentally friendly production. Here, a comprehensive review of recent advancements in electrocatalytic NRR utilizing single‐atom catalysts (SACs) is presented. The systematic comparison of the NRR of various SAC provides a comprehensive research framework. Additionally, the challenges and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are addressed. |
---|---|
AbstractList | Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH
synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed. Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In‐depth insights into the material preparation methods, single‐atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed. Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In‐depth insights into the material preparation methods, single‐atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed. Electrocatalytic nitrogen reduction (NRR) technology harmonizes seamlessly with the principles of environmentally friendly production. Here, a comprehensive review of recent advancements in electrocatalytic NRR utilizing single‐atom catalysts (SACs) is presented. The systematic comparison of the NRR of various SAC provides a comprehensive research framework. Additionally, the challenges and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are addressed. Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed. Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH 3 synthesis utilizing single‐atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In‐depth insights into the material preparation methods, single‐atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed. |
Author | Yao, Zhangnan Long, Xianhu Tian, Shuanghong Shu, Dong Li, Ping Zhong, Tao Zhao, Huinan He, Chun Huang, Fan |
Author_xml | – sequence: 1 givenname: Xianhu orcidid: 0000-0002-3000-3427 surname: Long fullname: Long, Xianhu organization: Sun Yat‐sen University – sequence: 2 givenname: Fan surname: Huang fullname: Huang, Fan organization: Sun Yat‐sen University – sequence: 3 givenname: Zhangnan surname: Yao fullname: Yao, Zhangnan organization: Sun Yat‐sen University – sequence: 4 givenname: Ping surname: Li fullname: Li, Ping organization: Sun Yat‐sen University – sequence: 5 givenname: Tao surname: Zhong fullname: Zhong, Tao organization: Sun Yat‐sen University – sequence: 6 givenname: Huinan surname: Zhao fullname: Zhao, Huinan email: zhaohn@mail2.sysu.edu.cn organization: Sun Yat‐sen University – sequence: 7 givenname: Shuanghong surname: Tian fullname: Tian, Shuanghong email: tshuangh@mail.sysu.edu.cn organization: Sun Yat‐sen University – sequence: 8 givenname: Dong surname: Shu fullname: Shu, Dong organization: South China Normal University – sequence: 9 givenname: Chun orcidid: 0000-0002-3875-5631 surname: He fullname: He, Chun email: hechun@mail.sysu.edu.cn organization: Sun Yat‐sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38516940$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1vFCEYxompsR969WhIvPSyKzAzzOBtsqnaZLWJq2fCMO-0NAyswGyzN48e_Rv9S2S7_UiaGE9A-D3PC89zjA6cd4DQa0rmlBD2Lo7WzhlhJSFVRZ-hI8ppMeMNEwcPe0oO0XGM14QUlJX1C3RYNBXloiRH6Ffbb5TTMIJLERuHzyzoFLxWSdltMhp_Mfl4CQ5_hX7SyXj3Hrd44cd1gCtw0WwgX20M3GA_4JVxlxb-_PzdJj_ixa1LzM6DD3g1xaSMU50F3I6jd0bh1dalK4gmvkTPB2UjvLpbT9D3D2ffFp9my4uP54t2OdNFXdAZY9XQ9bTgvVCiLCuuGq46VhBRCq55TRrWdbRSBQjBeKNEp-u-anj-egl1D8UJOt37roP_MUFMcjRRg7XKgZ-iZKLOWZY1FRl9-wS99lNw-XUyzyNVQypCM_Xmjpq6EXq5DmZUYSvvM85AuQd08DEGGKQ2Se2CTEEZKymRuyrlrkr5UGWWzZ_I7p3_KRB7wY2xsP0PLVefl8tH7V9l37L6 |
CitedBy_id | crossref_primary_10_1002_cey2_708 crossref_primary_10_1016_j_apmate_2025_100279 crossref_primary_10_1016_j_vacuum_2024_113390 crossref_primary_10_1016_j_surfin_2024_105401 crossref_primary_10_1016_j_surfin_2025_105764 crossref_primary_10_1002_inf2_12639 crossref_primary_10_1002_smll_202408111 crossref_primary_10_1039_D3NJ04846B crossref_primary_10_1016_j_apsusc_2025_162726 crossref_primary_10_1002_smll_202404696 crossref_primary_10_1016_j_apcatb_2024_124944 crossref_primary_10_1039_D4TA06862A crossref_primary_10_20517_jmi_2024_65 crossref_primary_10_26599_NR_2025_94907289 crossref_primary_10_1016_j_apcata_2024_119990 crossref_primary_10_1039_D4TA06667G crossref_primary_10_1039_D4NR05259E crossref_primary_10_1039_D4NR02387K crossref_primary_10_1002_adfm_202424142 crossref_primary_10_1016_j_ijoes_2024_100911 |
Cites_doi | 10.1021/jacs.3c01319 10.1016/j.nanoen.2019.04.092 10.1039/C4CP05501B 10.1002/smtd.202300277 10.1021/acsenergylett.9b00699 10.1021/acssuschemeng.7b02890 10.1039/C5CP07363D 10.1021/acssuschemeng.2c00018 10.1038/s41467-019-12510-0 10.1038/s44160-023-00321-7 10.1039/C9TA13700A 10.1002/anie.202100526 10.1002/adfm.202000768 10.1007/s11426-009-0135-7 10.1002/aenm.201500658 10.1021/cs300579b 10.1021/acs.est.2c04456 10.1021/acsami.2c21744 10.1021/acsanm.1c02108 10.1039/D2CS00797E 10.1039/D0CC01136C 10.1016/S1872-2067(23)64456-0 10.1039/C5CC06051F 10.1002/advs.201802109 10.1021/acs.jpcc.1c06464 10.1039/C9CC04034J 10.1126/science.1085326 10.1016/j.checat.2022.09.001 10.1016/j.ccr.2013.02.010 10.1021/jacs.6b01230 10.1002/cssc.202102352 10.1002/anie.201609533 10.1002/adfm.202209843 10.1039/C9CP00997C 10.1039/D0EE03575K 10.1038/s41598-021-04640-7 10.1021/ja500432h 10.1039/D1CY00022E 10.1002/adma.201700001 10.1016/j.apcatb.2022.121651 10.1002/anie.202302789 10.1016/j.electacta.2022.140805 10.1021/acs.est.3c04343 10.1002/adma.202002177 10.1002/anie.200301553 10.1016/j.chempr.2021.01.009 10.1007/s12598-022-02215-7 10.1039/D3QI01448G 10.1007/s12274-023-5997-z 10.1038/s41467-018-03795-8 10.1002/aenm.201401986 10.1002/smll.202104043 10.1021/jacs.7b04393 10.1002/cctc.202300795 10.1016/j.apcatb.2005.08.006 10.1021/acsanm.3c01669 10.1038/s41578-020-0193-1 10.1149/2.F04152if 10.1002/anie.201706921 10.1002/cctc.202000006 10.1002/adma.201606550 10.1002/adma.201803498 10.1038/srep01145 10.1039/C9CS00159J 10.1002/celc.202100251 10.1016/j.pecs.2020.100860 10.1016/j.cclet.2020.11.013 10.1038/s41467-018-08120-x 10.1038/s41586-019-1260-x 10.1038/s41467-021-23115-x 10.1039/C8TA10497B 10.1149/1.3159311 10.1039/C1CP22271F 10.1002/anie.201811728 10.1021/acs.nanolett.3c02259 10.1002/ange.202203022 10.1016/j.xcrp.2021.100438 10.1002/adma.202001267 10.1021/acs.chemrev.7b00776 10.1002/anie.202011596 10.1021/acssuschemeng.7b01742 10.1021/jacs.8b13165 10.1021/acsanm.2c02399 10.1039/D3CC00721A 10.1016/j.joule.2018.06.007 10.1016/S1872-2067(22)64136-6 10.1016/j.cattod.2016.11.047 10.1002/cjoc.201090044 10.1021/acsnano.0c01340 10.1021/jacs.8b07472 10.1002/adma.201604799 10.1016/j.joule.2022.07.009 10.1002/smtd.201800202 10.1016/j.apcatb.2023.122430 10.1002/adts.202100044 10.1002/cssc.201500322 10.1016/j.mcat.2022.112658 10.1002/aenm.202301543 10.1126/science.aaq1684 10.1021/acscatal.9b04103 10.1016/j.chempr.2023.08.014 10.1002/adma.201805367 10.1073/pnas.2015108117 10.1002/adma.202007650 10.1016/j.jcis.2023.08.079 10.1007/s40820-023-01092-8 10.1016/j.scib.2018.07.005 10.1021/acsami.0c13414 10.1016/j.chempr.2020.01.013 10.1039/b004885m 10.1021/acs.jpcc.1c03425 10.1021/jacs.0c06118 10.1002/aenm.201800369 10.1002/adma.201805617 10.1016/j.checat.2022.06.010 10.1002/ntls.20220047 10.1016/j.chempr.2018.10.007 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202400551 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38516940 10_1002_smll_202400551 SMLL202400551 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province funderid: 2023A1515012198 – fundername: National Natural Science Foundation of China funderid: 52070195 21876212 – fundername: National Natural Science Foundation of China grantid: 52070195 21876212 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province grantid: 2023A1515012198 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3731-225fbd136d9a94456a86ab2309496c67082bb15a3e99268a9bc7d5860314e7de3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 08:06:50 EDT 2025 Wed Aug 13 11:16:29 EDT 2025 Mon Jul 21 06:04:45 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 Tue Jul 01 02:55:01 EDT 2025 Wed Jan 22 17:15:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | NH3 synthesis electrocatalysis single atom catalyst |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-225fbd136d9a94456a86ab2309496c67082bb15a3e99268a9bc7d5860314e7de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3000-3427 0000-0002-3875-5631 |
PMID | 38516940 |
PQID | 3090580501 |
PQPubID | 1046358 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_2974004719 proquest_journals_3090580501 pubmed_primary_38516940 crossref_citationtrail_10_1002_smll_202400551 crossref_primary_10_1002_smll_202400551 wiley_primary_10_1002_smll_202400551_SMLL202400551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2019; 10 2020; 14 2020; 12 2020; 10 2012; 14 2014; 136 2018; 9 2023; 62 2018; 8 2018; 2 2010; 28 2019; 21 2018; 30 2017; 286 2024; 24 2009; 16 2003; 42 2019; 7 2023; 52 2019; 4 2023; 57 2019; 6 2019; 5 2019; 31 2023; 59 2015; 51 2020; 142 2024; 10 2023; 328 2020; 32 2016; 18 2017; 139 2023; 42 2018; 359 2020; 30 2022; 5 2018; 118 2022; 6 2019; 48 2017; 56 2022; 12 2022; 15 2022; 10 2022; 2 2019; 570 2021; 60 2023; 50 2022; 18 2017; 5 2022; 134 2023; 33 2023; 6 2019; 55 2023; 7 2021; 125 2023; 145 2019; 58 2020; 59 2020; 56 2023; 2 2023; 3 2022; 531 2020; 8 2020; 6 2020; 5 2009; 52 2021; 32 2021; 33 2006; 62 2019; 61 2000 2023; 652 2023; 10 2021; 8 2021; 7 2023; 13 2015; 17 2015; 5 2021; 4 2018; 140 2021; 2 2023; 17 2023; 15 2020; 81 2018; 63 2017; 29 2022; 43 2019; 141 2015; 8 2022; 316 2021; 14 2015; 24 2012; 2 2021; 12 2021; 11 2022; 56 2013; 257 2020; 117 2016; 138 2003; 301 2022; 426 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Burgess B. K. (e_1_2_10_75_1) 2000 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 Bao D. (e_1_2_10_100_1) 2017; 29 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 5 start-page: 517 year: 2020 publication-title: Nat. Rev. Mater. – volume: 57 year: 2023 publication-title: Environ. Sci. Technol. – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 publication-title: Small – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 53 year: 2021 publication-title: Chin. Chem. Lett. – volume: 81 year: 2020 publication-title: Prog. Energy Combust. Sci. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 55 start-page: 9335 year: 2019 publication-title: Chem. Commun. – volume: 14 start-page: 1235 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 18 start-page: 9161 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 61 start-page: 420 year: 2019 publication-title: Nano Energy – volume: 12 start-page: 657 year: 2022 publication-title: Sci. Rep. – volume: 62 start-page: 306 year: 2006 publication-title: Appl. Catal. B – volume: 5 start-page: 204 year: 2019 publication-title: Chem – volume: 6 start-page: 2083 year: 2022 publication-title: Joule – volume: 4 year: 2021 publication-title: Adv. Theory Simul. – volume: 531 year: 2022 publication-title: Mol. Catal. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 4394 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 301 start-page: 76 year: 2003 publication-title: Science – volume: 257 start-page: 2551 year: 2013 publication-title: Coord. Chem. Rev. – volume: 48 start-page: 5658 year: 2019 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 4243 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 42 start-page: 2004 year: 2003 publication-title: Angew. Chem., Int. Ed. – volume: 359 start-page: 896 year: 2018 publication-title: Science – volume: 10 start-page: 4585 year: 2019 publication-title: Nat. Commun. – volume: 2 start-page: 612 year: 2023 publication-title: Nat. Synth. – volume: 5 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 24 start-page: 51 year: 2015 publication-title: Electrochem. Soc. Interface – volume: 56 start-page: 2699 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 60 start-page: 9078 year: 2021 publication-title: Angew. Chem.Int. Ed. – volume: 58 start-page: 2321 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 56 year: 2022 publication-title: Environ. Sci. Technol. – volume: 316 year: 2022 publication-title: Appl. Catal. B – volume: 141 start-page: 2884 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2023 publication-title: Small Methods – volume: 52 start-page: 1171 year: 2009 publication-title: Sci. China Ser. B: Chem. – volume: 12 start-page: 2870 year: 2021 publication-title: Nat. Commun. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 42 start-page: 1075 year: 2023 publication-title: Rare Met. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 10 start-page: 5812 year: 2023 publication-title: Inorg. Chem. Front. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 year: 2023 publication-title: Nat. Sci. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 63 start-page: 1246 year: 2018 publication-title: Sci. Bull. – volume: 15 year: 2023 publication-title: ChemCatChem – volume: 10 start-page: 48 year: 2024 publication-title: Chem – volume: 118 start-page: 4981 year: 2018 publication-title: Chem. Rev. – volume: 6 year: 2023 publication-title: ACS Appl. Nano Mater. – volume: 16 start-page: 89 year: 2009 publication-title: ECS Trans. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 139 start-page: 9771 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 6938 year: 2023 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 6938 year: 2020 publication-title: ACS Nano – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 2 start-page: 2590 year: 2022 publication-title: Chem. Catal. – volume: 5 start-page: 7393 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 43 start-page: 3177 year: 2022 publication-title: Chin. J. Catal. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 134 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 2761 year: 2012 publication-title: ACS Catal. – volume: 2 year: 2018 publication-title: Small Methods – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1596 year: 2021 publication-title: ChemElectroChem – volume: 570 start-page: 504 year: 2019 publication-title: Nature – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 28 start-page: 139 year: 2010 publication-title: Chin. J. Chem. – volume: 10 start-page: 341 year: 2019 publication-title: Nat. Commun. – volume: 7 start-page: 2392 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1336 year: 2019 publication-title: ACS Energy Lett. – volume: 14 start-page: 1247 year: 2021 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1610 year: 2018 publication-title: Joule – volume: 24 start-page: 541 year: 2024 publication-title: Nano Lett. – volume: 286 start-page: 69 year: 2017 publication-title: Catal. Today – volume: 5 year: 2022 publication-title: ACS Appl. Nano Mater. – volume: 3 start-page: 1145 year: 2013 publication-title: Sci. Rep. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 4 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 8 start-page: 2180 year: 2015 publication-title: ChemSusChem – volume: 2 year: 2021 publication-title: Cell. Rep. Phys. Sci. – volume: 7 start-page: 1708 year: 2021 publication-title: Chem – volume: 6 start-page: 885 year: 2020 publication-title: Chem – volume: 17 start-page: 3768 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 50 start-page: 195 year: 2023 publication-title: Chin. J. Catal. – start-page: 13 year: 2000 end-page: 18 – volume: 10 start-page: 1847 year: 2020 publication-title: ACS Catal. – volume: 21 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 8 start-page: 3910 year: 2020 publication-title: J. Mater. Chem. A – volume: 328 year: 2023 publication-title: Appl. Catal. B – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1209 year: 2023 publication-title: Nano Res. – volume: 652 start-page: 155 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 426 year: 2022 publication-title: Electrochim. Acta – volume: 15 start-page: 113 year: 2023 publication-title: Nano‐Micro Lett. – volume: 9 start-page: 1610 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 2589 year: 2021 publication-title: Catal. Sci. Technol. – volume: 59 start-page: 5403 year: 2023 publication-title: Chem. Commun. – start-page: 1673 year: 2000 publication-title: Chem. Commun. – volume: 10 start-page: 4345 year: 2022 publication-title: ACS Sustainable Chem. Eng. – volume: 2 start-page: 2275 year: 2022 publication-title: Chem Catal. – volume: 12 start-page: 2760 year: 2020 publication-title: ChemCatChem – volume: 15 year: 2022 publication-title: ChemSusChem – ident: e_1_2_10_63_1 doi: 10.1021/jacs.3c01319 – ident: e_1_2_10_78_1 doi: 10.1016/j.nanoen.2019.04.092 – ident: e_1_2_10_38_1 doi: 10.1039/C4CP05501B – ident: e_1_2_10_19_1 doi: 10.1002/smtd.202300277 – ident: e_1_2_10_56_1 doi: 10.1021/acsenergylett.9b00699 – ident: e_1_2_10_29_1 doi: 10.1021/acssuschemeng.7b02890 – ident: e_1_2_10_57_1 doi: 10.1039/C5CP07363D – ident: e_1_2_10_45_1 doi: 10.1021/acssuschemeng.2c00018 – ident: e_1_2_10_15_1 doi: 10.1038/s41467-019-12510-0 – ident: e_1_2_10_4_1 doi: 10.1038/s44160-023-00321-7 – ident: e_1_2_10_103_1 doi: 10.1039/C9TA13700A – ident: e_1_2_10_81_1 doi: 10.1002/anie.202100526 – ident: e_1_2_10_86_1 doi: 10.1002/adfm.202000768 – ident: e_1_2_10_31_1 doi: 10.1007/s11426-009-0135-7 – ident: e_1_2_10_97_1 doi: 10.1002/aenm.201500658 – ident: e_1_2_10_77_1 doi: 10.1021/cs300579b – ident: e_1_2_10_113_1 doi: 10.1021/acs.est.2c04456 – ident: e_1_2_10_60_1 doi: 10.1021/acsami.2c21744 – ident: e_1_2_10_76_1 doi: 10.1021/acsanm.1c02108 – ident: e_1_2_10_1_1 doi: 10.1039/D2CS00797E – ident: e_1_2_10_94_1 doi: 10.1039/D0CC01136C – ident: e_1_2_10_18_1 doi: 10.1016/S1872-2067(23)64456-0 – ident: e_1_2_10_98_1 doi: 10.1039/C5CC06051F – ident: e_1_2_10_48_1 doi: 10.1002/advs.201802109 – ident: e_1_2_10_105_1 doi: 10.1021/acs.jpcc.1c06464 – ident: e_1_2_10_110_1 doi: 10.1039/C9CC04034J – ident: e_1_2_10_85_1 doi: 10.1126/science.1085326 – ident: e_1_2_10_3_1 doi: 10.1016/j.checat.2022.09.001 – ident: e_1_2_10_8_1 doi: 10.1016/j.ccr.2013.02.010 – ident: e_1_2_10_28_1 doi: 10.1021/jacs.6b01230 – ident: e_1_2_10_64_1 doi: 10.1002/cssc.202102352 – ident: e_1_2_10_35_1 doi: 10.1002/anie.201609533 – ident: e_1_2_10_23_1 doi: 10.1002/adfm.202209843 – start-page: 13 volume-title: Nitrogen Fixation: From Molecules to Crop Productivity year: 2000 ident: e_1_2_10_75_1 – ident: e_1_2_10_104_1 doi: 10.1039/C9CP00997C – ident: e_1_2_10_16_1 doi: 10.1039/D0EE03575K – ident: e_1_2_10_26_1 doi: 10.1038/s41598-021-04640-7 – ident: e_1_2_10_96_1 doi: 10.1021/ja500432h – ident: e_1_2_10_91_1 doi: 10.1039/D1CY00022E – ident: e_1_2_10_41_1 doi: 10.1002/adma.201700001 – ident: e_1_2_10_70_1 doi: 10.1016/j.apcatb.2022.121651 – ident: e_1_2_10_92_1 doi: 10.1002/anie.202302789 – ident: e_1_2_10_80_1 doi: 10.1016/j.electacta.2022.140805 – ident: e_1_2_10_112_1 doi: 10.1021/acs.est.3c04343 – ident: e_1_2_10_88_1 doi: 10.1002/adma.202002177 – ident: e_1_2_10_54_1 doi: 10.1002/anie.200301553 – ident: e_1_2_10_52_1 doi: 10.1016/j.chempr.2021.01.009 – ident: e_1_2_10_7_1 doi: 10.1007/s12598-022-02215-7 – ident: e_1_2_10_6_1 doi: 10.1039/D3QI01448G – ident: e_1_2_10_69_1 doi: 10.1007/s12274-023-5997-z – ident: e_1_2_10_74_1 doi: 10.1038/s41467-018-03795-8 – ident: e_1_2_10_11_1 doi: 10.1002/aenm.201401986 – ident: e_1_2_10_68_1 doi: 10.1002/smll.202104043 – ident: e_1_2_10_42_1 doi: 10.1021/jacs.7b04393 – ident: e_1_2_10_116_1 doi: 10.1002/cctc.202300795 – ident: e_1_2_10_37_1 doi: 10.1016/j.apcatb.2005.08.006 – ident: e_1_2_10_90_1 doi: 10.1021/acsanm.3c01669 – ident: e_1_2_10_10_1 doi: 10.1038/s41578-020-0193-1 – ident: e_1_2_10_30_1 doi: 10.1149/2.F04152if – ident: e_1_2_10_43_1 doi: 10.1002/anie.201706921 – ident: e_1_2_10_82_1 doi: 10.1002/cctc.202000006 – ident: e_1_2_10_40_1 doi: 10.1002/adma.201606550 – ident: e_1_2_10_59_1 doi: 10.1002/adma.201803498 – ident: e_1_2_10_33_1 doi: 10.1038/srep01145 – ident: e_1_2_10_21_1 doi: 10.1039/C9CS00159J – ident: e_1_2_10_44_1 doi: 10.1002/celc.202100251 – ident: e_1_2_10_2_1 doi: 10.1016/j.pecs.2020.100860 – ident: e_1_2_10_89_1 doi: 10.1016/j.cclet.2020.11.013 – ident: e_1_2_10_79_1 doi: 10.1038/s41467-018-08120-x – ident: e_1_2_10_53_1 doi: 10.1038/s41586-019-1260-x – ident: e_1_2_10_73_1 doi: 10.1038/s41467-021-23115-x – ident: e_1_2_10_102_1 doi: 10.1039/C8TA10497B – ident: e_1_2_10_50_1 doi: 10.1149/1.3159311 – ident: e_1_2_10_55_1 doi: 10.1039/C1CP22271F – ident: e_1_2_10_87_1 doi: 10.1002/anie.201811728 – ident: e_1_2_10_115_1 doi: 10.1021/acs.nanolett.3c02259 – ident: e_1_2_10_49_1 doi: 10.1002/ange.202203022 – ident: e_1_2_10_25_1 doi: 10.1016/j.xcrp.2021.100438 – ident: e_1_2_10_109_1 doi: 10.1002/adma.202001267 – ident: e_1_2_10_17_1 doi: 10.1021/acs.chemrev.7b00776 – ident: e_1_2_10_47_1 doi: 10.1002/anie.202011596 – ident: e_1_2_10_36_1 doi: 10.1021/acssuschemeng.7b01742 – ident: e_1_2_10_107_1 doi: 10.1021/jacs.8b13165 – ident: e_1_2_10_101_1 doi: 10.1021/acsanm.2c02399 – ident: e_1_2_10_65_1 doi: 10.1039/D3CC00721A – volume: 29 year: 2017 ident: e_1_2_10_100_1 publication-title: Adv. Mater. – ident: e_1_2_10_99_1 doi: 10.1016/j.joule.2018.06.007 – ident: e_1_2_10_61_1 doi: 10.1016/S1872-2067(22)64136-6 – ident: e_1_2_10_27_1 doi: 10.1016/j.cattod.2016.11.047 – ident: e_1_2_10_32_1 doi: 10.1002/cjoc.201090044 – ident: e_1_2_10_72_1 doi: 10.1021/acsnano.0c01340 – ident: e_1_2_10_93_1 doi: 10.1021/jacs.8b07472 – ident: e_1_2_10_39_1 doi: 10.1002/adma.201604799 – ident: e_1_2_10_46_1 doi: 10.1016/j.joule.2022.07.009 – ident: e_1_2_10_67_1 doi: 10.1002/smtd.201800202 – ident: e_1_2_10_9_1 doi: 10.1016/j.apcatb.2023.122430 – ident: e_1_2_10_119_1 doi: 10.1002/adts.202100044 – ident: e_1_2_10_58_1 doi: 10.1002/cssc.201500322 – ident: e_1_2_10_106_1 doi: 10.1016/j.mcat.2022.112658 – ident: e_1_2_10_13_1 doi: 10.1002/aenm.202301543 – ident: e_1_2_10_83_1 doi: 10.1126/science.aaq1684 – ident: e_1_2_10_62_1 doi: 10.1021/acscatal.9b04103 – ident: e_1_2_10_114_1 doi: 10.1016/j.chempr.2023.08.014 – ident: e_1_2_10_20_1 doi: 10.1002/adma.201805367 – ident: e_1_2_10_71_1 doi: 10.1073/pnas.2015108117 – ident: e_1_2_10_24_1 doi: 10.1002/adma.202007650 – ident: e_1_2_10_117_1 doi: 10.1016/j.jcis.2023.08.079 – ident: e_1_2_10_14_1 doi: 10.1007/s40820-023-01092-8 – ident: e_1_2_10_66_1 doi: 10.1016/j.scib.2018.07.005 – ident: e_1_2_10_108_1 doi: 10.1021/acsami.0c13414 – ident: e_1_2_10_84_1 doi: 10.1016/j.chempr.2020.01.013 – ident: e_1_2_10_34_1 doi: 10.1039/b004885m – ident: e_1_2_10_22_1 doi: 10.1021/acs.jpcc.1c03425 – ident: e_1_2_10_111_1 doi: 10.1021/jacs.0c06118 – ident: e_1_2_10_118_1 doi: 10.1002/aenm.201800369 – ident: e_1_2_10_12_1 doi: 10.1002/adma.201805617 – ident: e_1_2_10_95_1 doi: 10.1016/j.checat.2022.06.010 – ident: e_1_2_10_5_1 doi: 10.1002/ntls.20220047 – ident: e_1_2_10_51_1 doi: 10.1016/j.chempr.2018.10.007 |
SSID | ssj0031247 |
Score | 2.5832877 |
SecondaryResourceType | review_article |
Snippet | Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2400551 |
SubjectTerms | Ammonia Catalysts Chemical reduction Chemical synthesis electrocatalysis Gold Iron NH3 synthesis Noble metals single atom catalyst Transition metals |
Title | Advancements in Electrocatalytic Nitrogen Reduction: A Comprehensive Review of Single‐Atom Catalysts for Sustainable Ammonia Synthesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202400551 https://www.ncbi.nlm.nih.gov/pubmed/38516940 https://www.proquest.com/docview/3090580501 https://www.proquest.com/docview/2974004719 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8H4WCjITEFMjDSWy2qAIhBAwUJLbIThxR0aaItANMjIz8Rn4Jd3YbKAghwRYrthPHd77P8d13hOwWwucuC7TjSY85TAlYBzMoSq7jIMtVXpjYqvOL6OSand6EN5-i-C0_RP3DDTXDrNeo4FJVBx-koVWvi0cH6AMZmhhqdNhCVHRZ80cFYLxMdhWwWQ4Sb41ZG13_YLL5pFX6BjUnkasxPcfzRI5f2nqc3O0PB2o_e_rC5_ifUS2QuREupYkVpEUypcslMvuJrXCZvCTWX8AExdFOSY9sCh3zB-gR2tGLDhRBIuklEsLilB_ShOKS86Bvrac8tYcRtF_QNvTa1W_Pr8mg36Mt00sFPQOMpu2PuC6aoKp0JG0_loBWq061Qq6Pj65aJ84okYOTBXHgObBmFCqH-cmFFAwgm-SRVLD5EUxEWRQDDFHKC2WghfAjLoXK4jzkmACb6TjXwSqZLvulXicUTEsYwYaAaZhbzbksopzHWZSDmQUZ4w3ijCcyzUYs55hso5tafmY_xS-c1l-4Qfbq-veW3-PHms2xXKQjPa9SGIIbcjd04fZOfRs0FI9dZKn7wyr1YcuGpJyeaJA1K0_1owKO55TMbRDfSMUv75C2z8_O6tLGXxptkhm8tj6MTTI9eBjqLcBVA7VtdOcdwaUbyg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAH3o8tBYyExCltEjuOzS0qrRbY3UO3lbhZduKoK7bZqtk9lBNHjvxGfgkz9iZlQQgJjo4f8WPGM7ZnviHkVa1SGXPmosQkPOJWwT5YQtJIl7OyslXtfavGEzE84e8_Zp01IfrCBHyI_sINOcPv18jgeCG9d4Ua2p7N8e0AjSAzdKK-jmG9ET7_7VGPIMVAfPn4KiC1IoTe6nAb43Rvs_6mXPpN2dzUXb3wObxDbNftYHPyaXe1tLvl518QHf9rXHfJ7bVqSotAS_fINdfcJ7d-Aix8QL4WwWTA-8XRWUMPQhQdfwl0CfXoZAZJIEp6hJiwuOpvaEFx17lwp8FYnob3CLqo6RRanbvvX74Vy8UZ3fettNAyaNJ0euXaRQvklpmh08sGFNZ21j4kJ4cHx_vDaB3LISpZzpIIto3aVgkTlTKKg9ZmpDAWzj-KK1GKHDQRa5PMMKdUKqRRtsyrTGIMbO7yyrFHZKtZNO4JoSBdMgFnAu5gcZ2UphaVzEtRgaQFMpMDEnUrqcs10DnG25jrANGcapxh3c_wgLzuy58HiI8_ltzpCEOvWb3VMIQ4k3EWQ_bLPhuYFF9eTOMWq1ancGpDXM5EDcjjQFD9r5jEp0oeD0jqyeIvfdDT8WjUp7b_pdILcmN4PB7p0bvJh6fkJn4PJo07ZGt5sXLPQM1a2ueekX4AcVMf5g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkSo4AOVRFgoYCYlT2iR2HLu3qO2qwHaFulTqLbJjR6zYZqtm91BOHDnyG_tLmLF30y4IIcHR8SN-zHjG9sw3hLypVSpjzlyU6IRH3CjYBytIaulyVllja-9bdTQUhyf8_Wl2esOLP-BDdBduyBl-v0YGP7f1zjVoaHs2wacDtIHM0If6NhexwuAN-8cdgBQD6eXDq4DQihB5awnbGKc7q_VXxdJvuuaq6uplT_8-0cteB5OTL9vzmdmuvv4C6Pg_w3pA7i0UU1oEStogt1zzkNy9AVf4iHwvgsGA94qj44YehBg6_groEurR4RiSQJL0GBFhcc13aUFxz7lwn4OpPA2vEXRa0xG0OnFX334Us-kZ3fOttNAy6NF0dO3YRQvklbGmo8sG1NV23D4mJ_2DT3uH0SKSQ1SxnCURbBq1sQkTVmnFQWfTUmgDpx_FlahEDnqIMUmmmVMqFVIrU-U2kxgBm7vcOvaErDXTxj0lFGRLJuBEwB2srZNS18LKvBIW5CwQmeyRaLmQZbWAOcdoG5MyADSnJc5w2c1wj7ztyp8HgI8_ltxa0kW5YPS2hCHEmYyzGLJfd9nAovjuohs3nbdlCmc2ROVMVI9sBnrqfsUkPlTyuEdSTxV_6UM5OhoMutSzf6n0iqx_3O-Xg3fDD8_JHfwc7Bm3yNrsYu5egI41My89G_0E9qkelQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+Electrocatalytic+Nitrogen+Reduction%3A+A+Comprehensive+Review+of+Single-Atom+Catalysts+for+Sustainable+Ammonia+Synthesis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Long%2C+Xianhu&rft.au=Huang%2C+Fan&rft.au=Yao%2C+Zhangnan&rft.au=Li%2C+Ping&rft.date=2024-08-01&rft.eissn=1613-6829&rft.spage=e2400551&rft_id=info:doi/10.1002%2Fsmll.202400551&rft_id=info%3Apmid%2F38516940&rft.externalDocID=38516940 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |