Balancing Pd–H Interactions: Thiolate‐Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing

The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H2 affinity, intens...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 51; pp. e2404291 - n/a
Main Authors Chen, Zhuo, Yuan, Peng, Chen, Cailing, Wang, Xinhuilan, Wang, Jinrong, Jia, Jiaqi, Davaasuren, Bambar, Lai, Zhiping, Khashab, Niveen M., Huang, Kuo‐Wei, Bakr, Osman M., Yin, Jun, Salama, Khaled N.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202404291

Cover

Loading…
Abstract The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H2 affinity, intense palladium–hydrogen (Pd–H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors’ durability and detection speeds after multiple uses. In response, this study introduces a high‐performance H2 sensor designed from thiolate‐protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium–hydrogen–sulfur (Pd–H–S) state during H2 adsorption. Striking a balance, it preserves Pd–H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption‐dissociation‐recombination‐desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16‐based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd‐based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real‐world gas sensing using ligand‐protected metal nanoclusters. Thiolate‐protected palladium nanoclusters (Pd8SR16) enhance hydrogen gas (H2) sensing by leveraging metal‐ thiolate synergy, balancing palladium–hydrogen (Pd–H) interactions, and preventing excessive binding and phase transitions. Pd8SR16 surpass traditional Pd metals in durability and reversibility, enabling rapid H2 detection at parts per million (ppm) levels. A portable, wireless prototype highlights the practicality of ligand‐protected nanoclusters in real‐world scenarios.
AbstractList The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H2 affinity, intense palladium–hydrogen (Pd–H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors’ durability and detection speeds after multiple uses. In response, this study introduces a high‐performance H2 sensor designed from thiolate‐protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium–hydrogen–sulfur (Pd–H–S) state during H2 adsorption. Striking a balance, it preserves Pd–H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption‐dissociation‐recombination‐desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16‐based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd‐based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real‐world gas sensing using ligand‐protected metal nanoclusters.
The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H2 affinity, intense palladium–hydrogen (Pd–H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors’ durability and detection speeds after multiple uses. In response, this study introduces a high‐performance H2 sensor designed from thiolate‐protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium–hydrogen–sulfur (Pd–H–S) state during H2 adsorption. Striking a balance, it preserves Pd–H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption‐dissociation‐recombination‐desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16‐based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd‐based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real‐world gas sensing using ligand‐protected metal nanoclusters. Thiolate‐protected palladium nanoclusters (Pd8SR16) enhance hydrogen gas (H2) sensing by leveraging metal‐ thiolate synergy, balancing palladium–hydrogen (Pd–H) interactions, and preventing excessive binding and phase transitions. Pd8SR16 surpass traditional Pd metals in durability and reversibility, enabling rapid H2 detection at parts per million (ppm) levels. A portable, wireless prototype highlights the practicality of ligand‐protected nanoclusters in real‐world scenarios.
The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.
The transition toward hydrogen gas (H 2 ) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H 2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H 2 affinity, intense palladium–hydrogen (Pd–H) interactions lead to phase transitions to palladium hydride (PdH x ), compromising sensors’ durability and detection speeds after multiple uses. In response, this study introduces a high‐performance H 2 sensor designed from thiolate‐protected Pd nanoclusters (Pd 8 SR 16 ), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium–hydrogen–sulfur (Pd–H–S) state during H 2 adsorption. Striking a balance, it preserves Pd–H binding affinity while preventing excessive interaction, thus lowering the energy required for H 2 desorption. The dynamic adsorption‐dissociation‐recombination‐desorption process is efficiently and highly reversible with Pd 8 SR 16 , ensuring robust and rapid H 2 sensing at parts per million (ppm). The Pd 8 SR 16 ‐based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t 90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd‐based H 2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real‐world gas sensing using ligand‐protected metal nanoclusters.
The transition toward hydrogen gas (H ) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdH ), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H sensor designed from thiolate-protected Pd nanoclusters (Pd SR ), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd SR , ensuring robust and rapid H sensing at parts per million (ppm). The Pd SR -based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.
Author Wang, Jinrong
Khashab, Niveen M.
Wang, Xinhuilan
Chen, Zhuo
Yuan, Peng
Davaasuren, Bambar
Jia, Jiaqi
Bakr, Osman M.
Lai, Zhiping
Chen, Cailing
Yin, Jun
Huang, Kuo‐Wei
Salama, Khaled N.
Author_xml – sequence: 1
  givenname: Zhuo
  orcidid: 0000-0001-5001-5743
  surname: Chen
  fullname: Chen, Zhuo
  email: zhuo.chen.1@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Peng
  surname: Yuan
  fullname: Yuan, Peng
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Cailing
  orcidid: 0000-0003-2598-1354
  surname: Chen
  fullname: Chen, Cailing
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Xinhuilan
  surname: Wang
  fullname: Wang, Xinhuilan
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Jinrong
  surname: Wang
  fullname: Wang, Jinrong
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Jiaqi
  surname: Jia
  fullname: Jia, Jiaqi
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Bambar
  surname: Davaasuren
  fullname: Davaasuren, Bambar
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 9
  givenname: Niveen M.
  orcidid: 0000-0003-2728-0666
  surname: Khashab
  fullname: Khashab, Niveen M.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 10
  givenname: Kuo‐Wei
  orcidid: 0000-0003-1900-2658
  surname: Huang
  fullname: Huang, Kuo‐Wei
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 11
  givenname: Osman M.
  orcidid: 0000-0002-3428-1002
  surname: Bakr
  fullname: Bakr, Osman M.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 12
  givenname: Jun
  orcidid: 0000-0002-1749-1120
  surname: Yin
  fullname: Yin, Jun
  email: jun.yin@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 13
  givenname: Khaled N.
  orcidid: 0000-0001-7742-1282
  surname: Salama
  fullname: Salama, Khaled N.
  email: khaled.salama@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38975670$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFK0dkiQuXLOM4idfclgLdSgVWpZyjiT0pqRJ7sROhvfURkHjDPglebSlSJcRpNNL3zYzmP2IHzjti7LmAuQDIX6MdcJ5DXkCRa_GIzUSZi6wAXR6wGWhZZroqFofsKMZrANAVVE_YoVxoVVYKZmx8iz0607krvra3N79W_MyNFNCMnXfxDb_81vkeR7q9-bkOfiQzkuVr7Hu03TTwT-i86aeYlMhbH_iFb1LH0Vl-gZvO8tXWBn9Fjp9i5F_IxbTqKXvcYh_p2V09Zl8_vL88WWXnn0_PTpbnmZFKiiyHti2bBgWSKACUNlZIECAUSSRFjdQWiQphTCuhVUULoqnQCsqFlYtSHrNX-7mb4L9PFMd66KKhdLwjP8VagqpUVZVykdCXD9BrPwWXrqulKBKjlVaJenFHTc1Att6EbsCwrf_8MwHzPWCCjzFQe48IqHeB1bvA6vvAklA8EEw34u75Y8Cu_7em99qPrqftf5bUy3cfl3_d3w6ZrHs
CitedBy_id crossref_primary_10_1039_D4QI02385D
crossref_primary_10_1007_s12598_024_03105_w
crossref_primary_10_1002_smll_202411264
crossref_primary_10_1039_D4CC05430J
crossref_primary_10_46670_JSST_2024_33_5_288
crossref_primary_10_1021_acs_nanolett_4c03886
Cites_doi 10.1021/acsnano.2c10736
10.1038/nmat4030
10.1021/acsnano.1c04602
10.1021/acs.nanolett.5b01053
10.1016/j.mtnano.2022.100189
10.1016/j.snb.2010.07.009
10.1002/adma.201605028
10.1038/s41563-019-0308-5
10.1016/j.snb.2023.133790
10.1021/jp512643a
10.1029/2001JD001199
10.1039/C8NR03260B
10.1007/s00216-013-7606-6
10.1002/adma.200903689
10.1021/acssensors.3c01659
10.1016/j.susc.2011.12.017
10.1021/jacs.1c05856
10.1021/acsenergylett.3c01098
10.1016/j.memsci.2017.09.012
10.1021/jp003721t
10.1016/j.snb.2005.03.070
10.1038/nmat4842
10.1021/acsami.2c05002
10.1002/adma.201805343
10.1002/aenm.202203893
10.1021/acs.chemrev.6b00769
10.1016/j.aca.2020.09.012
10.1002/adma.201503558
10.1021/acsami.0c22106
10.1002/admt.202302081
10.1021/jp403089x
10.1021/acs.chemrev.5b00703
10.1021/nn800593m
10.1016/j.ijhydene.2019.08.052
10.1038/nmat1967
10.1016/j.jallcom.2017.03.274
10.1021/jp907747w
10.1016/j.ijhydene.2019.04.140
10.1021/jp305635w
10.1002/adem.200300557
10.1039/C9NR07834G
10.1146/annurev.ms.21.080191.001413
10.1007/BF03046394
10.1002/adma.202005929
10.1016/j.snb.2013.05.093
10.1021/ic403050c
10.1088/1361-648X/abf477
10.1002/anie.201709095
10.1021/acssensors.1c00132
10.1021/acsnano.7b04529
10.1016/j.cis.2019.05.006
10.1002/admi.201801442
10.1038/s44287-024-00039-4
10.1021/acsanm.8b02029
10.1016/j.snb.2023.134240
10.1002/smll.202005328
10.1002/smll.202106874
10.1016/S0360-3199(97)00112-2
10.1021/acsnano.0c05476
10.1088/0953-8984/8/19/015
10.1016/j.snb.2020.128330
10.1021/acs.jpcc.7b03996
10.1021/la0617309
10.1021/acs.chemmater.9b01561
10.1002/adma.202007100
10.1016/j.cej.2020.125864
10.1038/s43247-023-00857-8
10.1021/acsami.0c13137
10.1021/acssensors.0c02019
10.1098/rsta.2016.0406
10.1002/adma.200602975
10.1021/acsnano.0c05307
10.1021/acsnano.2c01783
10.1016/j.ijhydene.2010.04.051
10.1016/j.snb.2004.12.024
10.1002/adma.201203172
10.1016/j.snb.2009.02.008
10.1007/s10853-010-4970-x
10.1021/acs.jpcc.5b01636
10.1016/j.snb.2006.07.030
10.1002/adma.201502895
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202404291
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 38975670
10_1002_adma_202404291
ADMA202404291
Genre article
Journal Article
GrantInformation_xml – fundername: Hong Kong Polytechnic University
  funderid: P0042930; PolyU 25300823
– fundername: King Abdullah University of Science and Technology
– fundername: Hong Kong Polytechnic University
  grantid: P0042930
– fundername: Hong Kong Polytechnic University
  grantid: PolyU 25300823
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3731-20ff5bba1ae140079cd1301017e3ae7eb39daee41ccf30f74f01b6ad1e21d3853
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 02:07:48 EDT 2025
Fri Jul 25 22:57:18 EDT 2025
Thu Apr 03 07:06:56 EDT 2025
Tue Jul 01 00:54:52 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Wed Jan 22 17:11:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords palladium nanoclusters
hydrogen adsorption
thiolate ligands
graphene
gas sensors
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-20ff5bba1ae140079cd1301017e3ae7eb39daee41ccf30f74f01b6ad1e21d3853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9555-6009
0000-0002-1749-1120
0000-0002-3428-1002
0000-0003-1900-2658
0000-0001-7742-1282
0000-0001-5001-5743
0000-0003-2728-0666
0000-0003-2598-1354
PMID 38975670
PQID 3146659797
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_3076766538
proquest_journals_3146659797
pubmed_primary_38975670
crossref_primary_10_1002_adma_202404291
crossref_citationtrail_10_1002_adma_202404291
wiley_primary_10_1002_adma_202404291_ADMA202404291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 25
2023; 4
2019; 11
2023; 8
2023; 387
2012; 606
2004; 6
2020; 14
2019; 18
2009; 113
2020; 12
2020; 400
2024
2020; 1138
2017; 710
2017; 117
2001; 105
2010; 22
2020; 5
2014; 406
2021; 33
2006; 22
2013; 117
2005; 107
2007; 6
2014; 13
2010; 150
2024; 1
2020; 45
2016; 116
2017; 121
2019; 270
1996; 8
2014; 53
2007; 19
2015; 15
2007; 123
2021; 6
2023; 13
2019; 6
2010; 35
2016; 19
2019; 31
2023; 17
2019; 2
2017; 29
2021; 143
2013; 186
2017; 375
1998; 23
2009; 138
2006; 113
1963; 58
2021; 13
2003; 108
2015; 27
2019; 44
1991; 21
2023; 393
2017; 16
2017; 11
2021; 17
2017; 56
2022; 14
2011; 46
2015; 119
2009; 3
2012; 116
2018; 10
2022; 16
2017; 544
2022; 18
2020; 319
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Al Bulushi S. (e_1_2_8_74_1) 2016; 19
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 18
  year: 2022
  publication-title: Small
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 123
  start-page: 101
  year: 2007
  publication-title: Sens. Actuators, B
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 454
  year: 2019
  publication-title: Nat. Mater.
– volume: 270
  start-page: 1
  year: 2019
  publication-title: Adv. Colloid. Interface
– volume: 6
  start-page: 2858
  year: 2021
  publication-title: ACS Sens.
– volume: 11
  start-page: 9276
  year: 2017
  publication-title: ACS Nano
– volume: 13
  start-page: 802
  year: 2014
  publication-title: Nat. Mater.
– volume: 4
  start-page: 203
  year: 2023
  publication-title: Commun. Earth Environ.
– volume: 138
  start-page: 168
  year: 2009
  publication-title: Sens. Actuators, B
– volume: 105
  start-page: 3052
  year: 2001
  publication-title: J. Phys. Chem. A
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 108
  year: 2003
  publication-title: J. Geophys. Res. Atmos
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 27
  start-page: 6945
  year: 2015
  publication-title: Adv. Mater.
– volume: 35
  start-page: 6984
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 3399
  year: 1996
  publication-title: J. Phys. Condens. Matter
– volume: 375
  year: 2017
  publication-title: Philos. Trans. R. Soc. A
– volume: 22
  start-page: 2392
  year: 2010
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3306
  year: 2020
  publication-title: ACS Sens.
– volume: 16
  start-page: 1781
  year: 2022
  publication-title: ACS Nano
– volume: 113
  year: 2009
  publication-title: J. Phys. Chem. A
– volume: 1
  start-page: 210
  year: 2024
  publication-title: Nat. Rev. Electr. Eng.
– volume: 400
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 150
  start-page: 230
  year: 2010
  publication-title: Sens. Actuators, B
– volume: 22
  start-page: 9789
  year: 2006
  publication-title: Langmuir
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 186
  start-page: 172
  year: 2013
  publication-title: Sens. Actuators, B
– volume: 2
  start-page: 1178
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 21
  start-page: 269
  year: 1991
  publication-title: Annu. Rev. Mater. Sci.
– volume: 606
  start-page: 679
  year: 2012
  publication-title: Surf. Sci.
– volume: 19
  start-page: 2818
  year: 2007
  publication-title: Adv. Mater.
– volume: 53
  start-page: 3558
  year: 2014
  publication-title: Inorg. Chem.
– volume: 23
  start-page: 593
  year: 1998
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 3251
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 565
  year: 2017
  publication-title: Nat. Mater.
– volume: 1138
  start-page: 49
  year: 2020
  publication-title: Anal. Chim. Acta
– volume: 19
  start-page: 47
  year: 2016
  publication-title: Int. J.
– volume: 710
  start-page: 216
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 319
  year: 2020
  publication-title: Sens. Actuators, B
– volume: 31
  start-page: 5663
  year: 2019
  publication-title: Chem. Mater.
– volume: 46
  start-page: 1597
  year: 2011
  publication-title: J. Mater. Sci.
– volume: 17
  start-page: 2679
  year: 2023
  publication-title: ACS Nano
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 33
  year: 2021
  publication-title: J. Phys.: Condens. Mater.
– volume: 107
  start-page: 831
  year: 2005
  publication-title: Sens. Actuators, B
– volume: 119
  start-page: 3594
  year: 2015
  publication-title: J. Phys. Chem. A
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 17
  year: 2021
  publication-title: Small
– volume: 8
  start-page: 4293
  year: 2023
  publication-title: ACS Sens.
– volume: 393
  year: 2023
  publication-title: Sens. Actuators, B
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 387
  year: 2023
  publication-title: Sens. Actuators, B
– volume: 58
  start-page: 327
  year: 1963
  publication-title: Proc. Indian Acad. Sci.
– volume: 117
  start-page: 8208
  year: 2017
  publication-title: Chem. Rev.
– volume: 27
  start-page: 7365
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 766
  year: 2013
  publication-title: Adv. Mater.
– volume: 406
  start-page: 3931
  year: 2014
  publication-title: Anal. Bioanal. Chem.
– volume: 113
  start-page: 532
  year: 2006
  publication-title: Sens. Actuators, B
– volume: 6
  start-page: 11
  year: 2004
  publication-title: Adv. Eng. Mater.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 3
  start-page: 301
  year: 2009
  publication-title: ACS Nano
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed. Eng.
– volume: 544
  start-page: 151
  year: 2017
  publication-title: J. Membrane Sci.
– volume: 6
  start-page: 652
  year: 2007
  publication-title: Nat. Mater.
– volume: 18
  year: 2022
  publication-title: Mater. Today Nano
– volume: 15
  start-page: 3563
  year: 2015
  publication-title: Nano Lett.
– volume: 45
  year: 2020
  publication-title: Int. J. Hydrogen Energy
– year: 2024
  publication-title: Adv. Mater. Technol.
– ident: e_1_2_8_77_1
  doi: 10.1021/acsnano.2c10736
– ident: e_1_2_8_19_1
  doi: 10.1038/nmat4030
– ident: e_1_2_8_30_1
  doi: 10.1021/acsnano.1c04602
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.nanolett.5b01053
– ident: e_1_2_8_49_1
  doi: 10.1016/j.mtnano.2022.100189
– ident: e_1_2_8_60_1
  doi: 10.1016/j.snb.2010.07.009
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.201605028
– ident: e_1_2_8_61_1
  doi: 10.1038/s41563-019-0308-5
– ident: e_1_2_8_82_1
  doi: 10.1016/j.snb.2023.133790
– ident: e_1_2_8_47_1
  doi: 10.1021/jp512643a
– ident: e_1_2_8_12_1
  doi: 10.1029/2001JD001199
– ident: e_1_2_8_80_1
  doi: 10.1039/C8NR03260B
– ident: e_1_2_8_10_1
  doi: 10.1007/s00216-013-7606-6
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.200903689
– ident: e_1_2_8_70_1
  doi: 10.1021/acssensors.3c01659
– ident: e_1_2_8_18_1
  doi: 10.1016/j.susc.2011.12.017
– ident: e_1_2_8_66_1
  doi: 10.1021/jacs.1c05856
– ident: e_1_2_8_3_1
  doi: 10.1021/acsenergylett.3c01098
– ident: e_1_2_8_35_1
  doi: 10.1016/j.memsci.2017.09.012
– ident: e_1_2_8_62_1
  doi: 10.1021/jp003721t
– ident: e_1_2_8_25_1
  doi: 10.1016/j.snb.2005.03.070
– ident: e_1_2_8_22_1
  doi: 10.1038/nmat4842
– ident: e_1_2_8_37_1
  doi: 10.1021/acsami.2c05002
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201805343
– ident: e_1_2_8_67_1
  doi: 10.1002/aenm.202203893
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.chemrev.6b00769
– ident: e_1_2_8_34_1
  doi: 10.1016/j.aca.2020.09.012
– ident: e_1_2_8_56_1
  doi: 10.1002/adma.201503558
– ident: e_1_2_8_69_1
  doi: 10.1021/acsami.0c22106
– ident: e_1_2_8_75_1
  doi: 10.1002/admt.202302081
– ident: e_1_2_8_48_1
  doi: 10.1021/jp403089x
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.chemrev.5b00703
– ident: e_1_2_8_65_1
  doi: 10.1021/nn800593m
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ijhydene.2019.08.052
– ident: e_1_2_8_53_1
  doi: 10.1038/nmat1967
– ident: e_1_2_8_81_1
  doi: 10.1016/j.jallcom.2017.03.274
– ident: e_1_2_8_64_1
  doi: 10.1021/jp907747w
– ident: e_1_2_8_23_1
  doi: 10.1016/j.ijhydene.2019.04.140
– ident: e_1_2_8_45_1
  doi: 10.1021/jp305635w
– ident: e_1_2_8_24_1
  doi: 10.1002/adem.200300557
– ident: e_1_2_8_33_1
  doi: 10.1039/C9NR07834G
– ident: e_1_2_8_20_1
  doi: 10.1146/annurev.ms.21.080191.001413
– ident: e_1_2_8_63_1
  doi: 10.1007/BF03046394
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202005929
– ident: e_1_2_8_72_1
  doi: 10.1016/j.snb.2013.05.093
– ident: e_1_2_8_54_1
  doi: 10.1021/ic403050c
– ident: e_1_2_8_8_1
  doi: 10.1088/1361-648X/abf477
– ident: e_1_2_8_42_1
  doi: 10.1002/anie.201709095
– ident: e_1_2_8_73_1
  doi: 10.1021/acssensors.1c00132
– ident: e_1_2_8_15_1
  doi: 10.1021/acsnano.7b04529
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cis.2019.05.006
– ident: e_1_2_8_17_1
  doi: 10.1002/admi.201801442
– ident: e_1_2_8_5_1
  doi: 10.1038/s44287-024-00039-4
– ident: e_1_2_8_32_1
  doi: 10.1021/acsanm.8b02029
– ident: e_1_2_8_79_1
  doi: 10.1016/j.snb.2023.134240
– volume: 19
  start-page: 47
  year: 2016
  ident: e_1_2_8_74_1
  publication-title: Int. J.
– ident: e_1_2_8_50_1
  doi: 10.1002/smll.202005328
– ident: e_1_2_8_31_1
  doi: 10.1002/smll.202106874
– ident: e_1_2_8_9_1
  doi: 10.1016/S0360-3199(97)00112-2
– ident: e_1_2_8_27_1
  doi: 10.1021/acsnano.0c05476
– ident: e_1_2_8_21_1
  doi: 10.1088/0953-8984/8/19/015
– ident: e_1_2_8_59_1
  doi: 10.1016/j.snb.2020.128330
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.jpcc.7b03996
– ident: e_1_2_8_71_1
  doi: 10.1021/la0617309
– ident: e_1_2_8_68_1
  doi: 10.1021/acs.chemmater.9b01561
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.202007100
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cej.2020.125864
– ident: e_1_2_8_2_1
  doi: 10.1038/s43247-023-00857-8
– ident: e_1_2_8_57_1
  doi: 10.1021/acsami.0c13137
– ident: e_1_2_8_29_1
  doi: 10.1021/acssensors.0c02019
– ident: e_1_2_8_11_1
  doi: 10.1098/rsta.2016.0406
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.200602975
– ident: e_1_2_8_78_1
  doi: 10.1021/acsnano.0c05307
– ident: e_1_2_8_26_1
  doi: 10.1021/acsnano.2c01783
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ijhydene.2010.04.051
– ident: e_1_2_8_58_1
  doi: 10.1016/j.snb.2004.12.024
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.201203172
– ident: e_1_2_8_76_1
  doi: 10.1016/j.snb.2009.02.008
– ident: e_1_2_8_38_1
  doi: 10.1007/s10853-010-4970-x
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.jpcc.5b01636
– ident: e_1_2_8_41_1
  doi: 10.1016/j.snb.2006.07.030
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201502895
SSID ssj0009606
Score 2.5096755
Snippet The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors...
The transition toward hydrogen gas (H 2 ) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors...
The transition toward hydrogen gas (H ) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors...
The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2404291
SubjectTerms Adsorption
Affinity
Ambient temperature
Desorption
Energy of dissociation
Gas sensors
graphene
Hydrogen
hydrogen adsorption
Leak detection
Ligands
Nanoclusters
Palladium
palladium nanoclusters
Phase transitions
Renewable energy sources
Robustness
Sensors
Synergistic effect
thiolate ligands
Title Balancing Pd–H Interactions: Thiolate‐Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202404291
https://www.ncbi.nlm.nih.gov/pubmed/38975670
https://www.proquest.com/docview/3146659797
https://www.proquest.com/docview/3076766538
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQT-UAlM9AQUZC4pQ2iZ046W35KCsk0Gpppd6isT0pK0pSNckBTv0JlfiH_SWM4920C0JIcLMVW0mceZ43zviZsRcarTJJBKEUSoVSGwgLVAnhqpKVgDzK9ZDl-zGbHsr3R-nRtV38Xh9iXHBzyBjmawdw0O3ulWgo2EE3iDwSTaku_nEJW44Vza_0oxw9H8T2RBoWmcxXqo1Rsrvefd0r_UY115nr4Hr2bzNYPbTPOPmy03d6x3z_Rc_xf97qDru15KV84g1pi93A-i67eU2t8B7rXrk0SENlPrOX5z-mfFhO9Dsj2j1-8HlBcXKHl-cXM6_-gJbP3EK9XfRfOc3jjTnpnTBDy4kq83mjqcahtnwOpwvLp9_sWUMGzd9Byz-5zPr6-D473H978HoaLg9tCI1QIibUVVWqNcSAsTtzvTCW3KQDPgpARbF7YQFRxsZUIqqUrKJYZ2BjTGIriDw8YBt1U-MjxlMrTYQFAuZCWkgLIazJyLZiAxREVwELVx-tNEtFc3ewxknptZiT0o1mOY5mwF6O7U-9lscfW26vbKBcYrotBTmVjOKvQgXs-XiZ0Oh-sUCNTU9tIpUpaiXygD30tjPeiqihSjMVBSwZLOAvz1BO3nyYjLXH_9LpCdt0ZZ99s802urMenxKH6vSzASc_AfeDFWY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvB-BAkZC4pQ2iZ044bY8SoC2Wi1biVvkV2BFSapucoBTfwIS_7C_hLG9SVkQQoJbnEwUx5nP88j4M8BjaTRXSSRCRjkPmVQiLAxPEFc1q6nIo1y6Kt_9rDxgb96nQzWhXQvj-SHGhJtFhpuvLcBtQnr7jDVUaEcchCYJ51QMgM7bbb1dVDU7Y5CyDrqj26NpWGQsH3gbo2R7_f51u_Sbs7nuuzrjs3MF5NBtX3Pyaavv5Jb6-guj43-911W4vHJNycTr0jU4Z5rrcOknwsIb0D2zlZAKj8lUn558L4nLKPrFEcunZP5xgaFyZ05Pvk09AYTRZGpz9XrRfyY4lbfqsLfcDEuC3jKZtRJbRDSazMTRQpPyiz5uUafJK7Ek72xxffPhJhzsvJw_L8PVvg2hopzGCLy6TqUUsTCx3Xa9UBotpcW-ocJwDN8LLYxhsVI1jWrO6iiWmdCxSWJN0X-4BRtN25g7QFLNVGQKI0xOmRZpQalWGapXrATG0XUA4fDVKrUiNbd7axxWno45qexoVuNoBvBklD_ydB5_lNwclKBawXpZUbQrGYZgBQ_g0XgZAWn_sojGtD3KRDzjKEXzAG575Rkfhd4hTzMeBZA4FfhLH6rJi73J2Lr7Lzc9hAvlfG-32n29__YeXLTnfTHOJmx0x725jy5VJx840PwAP0AZgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRUKwoDxLSgEjIbFK68ROnLAbGIbhVY2GVuou8iswoiSjTrKAVT8BiT_sl3Adz6QdEEKCXZw4iuPc43uuc30M8ERZI3RMZciZECFXWoa5FTHiquQlkxnNVJflu5-OD_mbo-Towip-rw_RT7g5ZHTjtQP43JR756Kh0nS6QeiRcEjF-OcyT2nm7Ho4PReQcvy8U9tjSZinPFvJNtJ4b_3-dbf0G9dcp66d7xltgly12qecfN5tG7Wrv_0i6Pg_r3UDri-JKRl4S7oJl2x1C65dkCu8Dc1zlwep8ZhMzNnpjzHp5hP90ojFM3LwaYaBcmPPTr9PvPyDNWTiZurNrP1CcCCv9XHrlBkWBLkymdYKS0RWhkzlfGbI-Ks5qdGiySu5IB9can318Q4cjl4evBiHy10bQs0EixB2ZZkoJSNpI7fpeq4N-kmHfMukFRi850ZayyOtS0ZLwUsaqVSayMaRYcge7sJGVVf2HpDEcE1tbqXNGDcyyRkzOkXjirTEKLoMIFx9tEIvJc3dzhrHhRdjjgvXm0XfmwE87evPvZjHH2vurGygWIJ6UTD0KikGYLkI4HF_GeHo_rHIytYt1qEiFViLZQFsedvpH4XcUCSpoAHEnQX8pQ3FYPh-0Je2_-WmR3BlMhwV717vv70PV91pn4mzAxvNSWsfIJ9q1MMOMj8B-1gYOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+Pd%E2%80%93H+Interactions%3A+Thiolate%E2%80%90Protected+Palladium+Nanoclusters+for+Robust+and+Rapid+Hydrogen+Gas+Sensing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Zhuo&rft.au=Yuan%2C+Peng&rft.au=Chen%2C+Cailing&rft.au=Wang%2C+Xinhuilan&rft.date=2024-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=51&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202404291&rft.externalDBID=10.1002%252Fadma.202404291&rft.externalDocID=ADMA202404291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon