Balancing Pd–H Interactions: Thiolate‐Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing
The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H2 affinity, intens...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 51; pp. e2404291 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202404291 |
Cover
Loading…
Abstract | The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H2 affinity, intense palladium–hydrogen (Pd–H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors’ durability and detection speeds after multiple uses. In response, this study introduces a high‐performance H2 sensor designed from thiolate‐protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium–hydrogen–sulfur (Pd–H–S) state during H2 adsorption. Striking a balance, it preserves Pd–H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption‐dissociation‐recombination‐desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16‐based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd‐based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real‐world gas sensing using ligand‐protected metal nanoclusters.
Thiolate‐protected palladium nanoclusters (Pd8SR16) enhance hydrogen gas (H2) sensing by leveraging metal‐ thiolate synergy, balancing palladium–hydrogen (Pd–H) interactions, and preventing excessive binding and phase transitions. Pd8SR16 surpass traditional Pd metals in durability and reversibility, enabling rapid H2 detection at parts per million (ppm) levels. A portable, wireless prototype highlights the practicality of ligand‐protected nanoclusters in real‐world scenarios. |
---|---|
AbstractList | The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H2 affinity, intense palladium–hydrogen (Pd–H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors’ durability and detection speeds after multiple uses. In response, this study introduces a high‐performance H2 sensor designed from thiolate‐protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium–hydrogen–sulfur (Pd–H–S) state during H2 adsorption. Striking a balance, it preserves Pd–H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption‐dissociation‐recombination‐desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16‐based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd‐based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real‐world gas sensing using ligand‐protected metal nanoclusters. The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H2 affinity, intense palladium–hydrogen (Pd–H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors’ durability and detection speeds after multiple uses. In response, this study introduces a high‐performance H2 sensor designed from thiolate‐protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium–hydrogen–sulfur (Pd–H–S) state during H2 adsorption. Striking a balance, it preserves Pd–H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption‐dissociation‐recombination‐desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16‐based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd‐based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real‐world gas sensing using ligand‐protected metal nanoclusters. Thiolate‐protected palladium nanoclusters (Pd8SR16) enhance hydrogen gas (H2) sensing by leveraging metal‐ thiolate synergy, balancing palladium–hydrogen (Pd–H) interactions, and preventing excessive binding and phase transitions. Pd8SR16 surpass traditional Pd metals in durability and reversibility, enabling rapid H2 detection at parts per million (ppm) levels. A portable, wireless prototype highlights the practicality of ligand‐protected nanoclusters in real‐world scenarios. The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters. The transition toward hydrogen gas (H 2 ) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H 2 leak detection and concentration monitoring. Although palladium (Pd)‐based materials are preferred for their strong H 2 affinity, intense palladium–hydrogen (Pd–H) interactions lead to phase transitions to palladium hydride (PdH x ), compromising sensors’ durability and detection speeds after multiple uses. In response, this study introduces a high‐performance H 2 sensor designed from thiolate‐protected Pd nanoclusters (Pd 8 SR 16 ), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium–hydrogen–sulfur (Pd–H–S) state during H 2 adsorption. Striking a balance, it preserves Pd–H binding affinity while preventing excessive interaction, thus lowering the energy required for H 2 desorption. The dynamic adsorption‐dissociation‐recombination‐desorption process is efficiently and highly reversible with Pd 8 SR 16 , ensuring robust and rapid H 2 sensing at parts per million (ppm). The Pd 8 SR 16 ‐based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t 90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd‐based H 2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real‐world gas sensing using ligand‐protected metal nanoclusters. The transition toward hydrogen gas (H ) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdH ), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H sensor designed from thiolate-protected Pd nanoclusters (Pd SR ), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd SR , ensuring robust and rapid H sensing at parts per million (ppm). The Pd SR -based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters. |
Author | Wang, Jinrong Khashab, Niveen M. Wang, Xinhuilan Chen, Zhuo Yuan, Peng Davaasuren, Bambar Jia, Jiaqi Bakr, Osman M. Lai, Zhiping Chen, Cailing Yin, Jun Huang, Kuo‐Wei Salama, Khaled N. |
Author_xml | – sequence: 1 givenname: Zhuo orcidid: 0000-0001-5001-5743 surname: Chen fullname: Chen, Zhuo email: zhuo.chen.1@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Peng surname: Yuan fullname: Yuan, Peng organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Cailing orcidid: 0000-0003-2598-1354 surname: Chen fullname: Chen, Cailing organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Xinhuilan surname: Wang fullname: Wang, Xinhuilan organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Jinrong surname: Wang fullname: Wang, Jinrong organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Jiaqi surname: Jia fullname: Jia, Jiaqi organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Bambar surname: Davaasuren fullname: Davaasuren, Bambar organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping organization: King Abdullah University of Science and Technology (KAUST) – sequence: 9 givenname: Niveen M. orcidid: 0000-0003-2728-0666 surname: Khashab fullname: Khashab, Niveen M. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 10 givenname: Kuo‐Wei orcidid: 0000-0003-1900-2658 surname: Huang fullname: Huang, Kuo‐Wei organization: King Abdullah University of Science and Technology (KAUST) – sequence: 11 givenname: Osman M. orcidid: 0000-0002-3428-1002 surname: Bakr fullname: Bakr, Osman M. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 12 givenname: Jun orcidid: 0000-0002-1749-1120 surname: Yin fullname: Yin, Jun email: jun.yin@polyu.edu.hk organization: The Hong Kong Polytechnic University – sequence: 13 givenname: Khaled N. orcidid: 0000-0001-7742-1282 surname: Salama fullname: Salama, Khaled N. email: khaled.salama@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38975670$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFK0dkiQuXLOM4idfclgLdSgVWpZyjiT0pqRJ7sROhvfURkHjDPglebSlSJcRpNNL3zYzmP2IHzjti7LmAuQDIX6MdcJ5DXkCRa_GIzUSZi6wAXR6wGWhZZroqFofsKMZrANAVVE_YoVxoVVYKZmx8iz0607krvra3N79W_MyNFNCMnXfxDb_81vkeR7q9-bkOfiQzkuVr7Hu03TTwT-i86aeYlMhbH_iFb1LH0Vl-gZvO8tXWBn9Fjp9i5F_IxbTqKXvcYh_p2V09Zl8_vL88WWXnn0_PTpbnmZFKiiyHti2bBgWSKACUNlZIECAUSSRFjdQWiQphTCuhVUULoqnQCsqFlYtSHrNX-7mb4L9PFMd66KKhdLwjP8VagqpUVZVykdCXD9BrPwWXrqulKBKjlVaJenFHTc1Att6EbsCwrf_8MwHzPWCCjzFQe48IqHeB1bvA6vvAklA8EEw34u75Y8Cu_7em99qPrqftf5bUy3cfl3_d3w6ZrHs |
CitedBy_id | crossref_primary_10_1039_D4QI02385D crossref_primary_10_1007_s12598_024_03105_w crossref_primary_10_1002_smll_202411264 crossref_primary_10_1039_D4CC05430J crossref_primary_10_46670_JSST_2024_33_5_288 crossref_primary_10_1021_acs_nanolett_4c03886 |
Cites_doi | 10.1021/acsnano.2c10736 10.1038/nmat4030 10.1021/acsnano.1c04602 10.1021/acs.nanolett.5b01053 10.1016/j.mtnano.2022.100189 10.1016/j.snb.2010.07.009 10.1002/adma.201605028 10.1038/s41563-019-0308-5 10.1016/j.snb.2023.133790 10.1021/jp512643a 10.1029/2001JD001199 10.1039/C8NR03260B 10.1007/s00216-013-7606-6 10.1002/adma.200903689 10.1021/acssensors.3c01659 10.1016/j.susc.2011.12.017 10.1021/jacs.1c05856 10.1021/acsenergylett.3c01098 10.1016/j.memsci.2017.09.012 10.1021/jp003721t 10.1016/j.snb.2005.03.070 10.1038/nmat4842 10.1021/acsami.2c05002 10.1002/adma.201805343 10.1002/aenm.202203893 10.1021/acs.chemrev.6b00769 10.1016/j.aca.2020.09.012 10.1002/adma.201503558 10.1021/acsami.0c22106 10.1002/admt.202302081 10.1021/jp403089x 10.1021/acs.chemrev.5b00703 10.1021/nn800593m 10.1016/j.ijhydene.2019.08.052 10.1038/nmat1967 10.1016/j.jallcom.2017.03.274 10.1021/jp907747w 10.1016/j.ijhydene.2019.04.140 10.1021/jp305635w 10.1002/adem.200300557 10.1039/C9NR07834G 10.1146/annurev.ms.21.080191.001413 10.1007/BF03046394 10.1002/adma.202005929 10.1016/j.snb.2013.05.093 10.1021/ic403050c 10.1088/1361-648X/abf477 10.1002/anie.201709095 10.1021/acssensors.1c00132 10.1021/acsnano.7b04529 10.1016/j.cis.2019.05.006 10.1002/admi.201801442 10.1038/s44287-024-00039-4 10.1021/acsanm.8b02029 10.1016/j.snb.2023.134240 10.1002/smll.202005328 10.1002/smll.202106874 10.1016/S0360-3199(97)00112-2 10.1021/acsnano.0c05476 10.1088/0953-8984/8/19/015 10.1016/j.snb.2020.128330 10.1021/acs.jpcc.7b03996 10.1021/la0617309 10.1021/acs.chemmater.9b01561 10.1002/adma.202007100 10.1016/j.cej.2020.125864 10.1038/s43247-023-00857-8 10.1021/acsami.0c13137 10.1021/acssensors.0c02019 10.1098/rsta.2016.0406 10.1002/adma.200602975 10.1021/acsnano.0c05307 10.1021/acsnano.2c01783 10.1016/j.ijhydene.2010.04.051 10.1016/j.snb.2004.12.024 10.1002/adma.201203172 10.1016/j.snb.2009.02.008 10.1007/s10853-010-4970-x 10.1021/acs.jpcc.5b01636 10.1016/j.snb.2006.07.030 10.1002/adma.201502895 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202404291 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 38975670 10_1002_adma_202404291 ADMA202404291 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Hong Kong Polytechnic University funderid: P0042930; PolyU 25300823 – fundername: King Abdullah University of Science and Technology – fundername: Hong Kong Polytechnic University grantid: P0042930 – fundername: Hong Kong Polytechnic University grantid: PolyU 25300823 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3731-20ff5bba1ae140079cd1301017e3ae7eb39daee41ccf30f74f01b6ad1e21d3853 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 02:07:48 EDT 2025 Fri Jul 25 22:57:18 EDT 2025 Thu Apr 03 07:06:56 EDT 2025 Tue Jul 01 00:54:52 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Wed Jan 22 17:11:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | palladium nanoclusters hydrogen adsorption thiolate ligands graphene gas sensors |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-20ff5bba1ae140079cd1301017e3ae7eb39daee41ccf30f74f01b6ad1e21d3853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9555-6009 0000-0002-1749-1120 0000-0002-3428-1002 0000-0003-1900-2658 0000-0001-7742-1282 0000-0001-5001-5743 0000-0003-2728-0666 0000-0003-2598-1354 |
PMID | 38975670 |
PQID | 3146659797 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3076766538 proquest_journals_3146659797 pubmed_primary_38975670 crossref_primary_10_1002_adma_202404291 crossref_citationtrail_10_1002_adma_202404291 wiley_primary_10_1002_adma_202404291_ADMA202404291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 25 2023; 4 2019; 11 2023; 8 2023; 387 2012; 606 2004; 6 2020; 14 2019; 18 2009; 113 2020; 12 2020; 400 2024 2020; 1138 2017; 710 2017; 117 2001; 105 2010; 22 2020; 5 2014; 406 2021; 33 2006; 22 2013; 117 2005; 107 2007; 6 2014; 13 2010; 150 2024; 1 2020; 45 2016; 116 2017; 121 2019; 270 1996; 8 2014; 53 2007; 19 2015; 15 2007; 123 2021; 6 2023; 13 2019; 6 2010; 35 2016; 19 2019; 31 2023; 17 2019; 2 2017; 29 2021; 143 2013; 186 2017; 375 1998; 23 2009; 138 2006; 113 1963; 58 2021; 13 2003; 108 2015; 27 2019; 44 1991; 21 2023; 393 2017; 16 2017; 11 2021; 17 2017; 56 2022; 14 2011; 46 2015; 119 2009; 3 2012; 116 2018; 10 2022; 16 2017; 544 2022; 18 2020; 319 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Al Bulushi S. (e_1_2_8_74_1) 2016; 19 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 44 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 18 year: 2022 publication-title: Small – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 123 start-page: 101 year: 2007 publication-title: Sens. Actuators, B – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 18 start-page: 454 year: 2019 publication-title: Nat. Mater. – volume: 270 start-page: 1 year: 2019 publication-title: Adv. Colloid. Interface – volume: 6 start-page: 2858 year: 2021 publication-title: ACS Sens. – volume: 11 start-page: 9276 year: 2017 publication-title: ACS Nano – volume: 13 start-page: 802 year: 2014 publication-title: Nat. Mater. – volume: 4 start-page: 203 year: 2023 publication-title: Commun. Earth Environ. – volume: 138 start-page: 168 year: 2009 publication-title: Sens. Actuators, B – volume: 105 start-page: 3052 year: 2001 publication-title: J. Phys. Chem. A – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 108 year: 2003 publication-title: J. Geophys. Res. Atmos – volume: 14 year: 2020 publication-title: ACS Nano – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 27 start-page: 6945 year: 2015 publication-title: Adv. Mater. – volume: 35 start-page: 6984 year: 2010 publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 3399 year: 1996 publication-title: J. Phys. Condens. Matter – volume: 375 year: 2017 publication-title: Philos. Trans. R. Soc. A – volume: 22 start-page: 2392 year: 2010 publication-title: Adv. Mater. – volume: 5 start-page: 3306 year: 2020 publication-title: ACS Sens. – volume: 16 start-page: 1781 year: 2022 publication-title: ACS Nano – volume: 113 year: 2009 publication-title: J. Phys. Chem. A – volume: 1 start-page: 210 year: 2024 publication-title: Nat. Rev. Electr. Eng. – volume: 400 year: 2020 publication-title: Chem. Eng. J. – volume: 150 start-page: 230 year: 2010 publication-title: Sens. Actuators, B – volume: 22 start-page: 9789 year: 2006 publication-title: Langmuir – volume: 11 year: 2019 publication-title: Nanoscale – volume: 186 start-page: 172 year: 2013 publication-title: Sens. Actuators, B – volume: 2 start-page: 1178 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 21 start-page: 269 year: 1991 publication-title: Annu. Rev. Mater. Sci. – volume: 606 start-page: 679 year: 2012 publication-title: Surf. Sci. – volume: 19 start-page: 2818 year: 2007 publication-title: Adv. Mater. – volume: 53 start-page: 3558 year: 2014 publication-title: Inorg. Chem. – volume: 23 start-page: 593 year: 1998 publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 3251 year: 2023 publication-title: ACS Energy Lett. – volume: 16 start-page: 565 year: 2017 publication-title: Nat. Mater. – volume: 1138 start-page: 49 year: 2020 publication-title: Anal. Chim. Acta – volume: 19 start-page: 47 year: 2016 publication-title: Int. J. – volume: 710 start-page: 216 year: 2017 publication-title: J. Alloys Compd. – volume: 117 year: 2013 publication-title: J. Phys. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 319 year: 2020 publication-title: Sens. Actuators, B – volume: 31 start-page: 5663 year: 2019 publication-title: Chem. Mater. – volume: 46 start-page: 1597 year: 2011 publication-title: J. Mater. Sci. – volume: 17 start-page: 2679 year: 2023 publication-title: ACS Nano – volume: 16 year: 2022 publication-title: ACS Nano – volume: 33 year: 2021 publication-title: J. Phys.: Condens. Mater. – volume: 107 start-page: 831 year: 2005 publication-title: Sens. Actuators, B – volume: 119 start-page: 3594 year: 2015 publication-title: J. Phys. Chem. A – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 17 year: 2021 publication-title: Small – volume: 8 start-page: 4293 year: 2023 publication-title: ACS Sens. – volume: 393 year: 2023 publication-title: Sens. Actuators, B – volume: 10 year: 2018 publication-title: Nanoscale – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 387 year: 2023 publication-title: Sens. Actuators, B – volume: 58 start-page: 327 year: 1963 publication-title: Proc. Indian Acad. Sci. – volume: 117 start-page: 8208 year: 2017 publication-title: Chem. Rev. – volume: 27 start-page: 7365 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 766 year: 2013 publication-title: Adv. Mater. – volume: 406 start-page: 3931 year: 2014 publication-title: Anal. Bioanal. Chem. – volume: 113 start-page: 532 year: 2006 publication-title: Sens. Actuators, B – volume: 6 start-page: 11 year: 2004 publication-title: Adv. Eng. Mater. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 3 start-page: 301 year: 2009 publication-title: ACS Nano – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. Eng. – volume: 544 start-page: 151 year: 2017 publication-title: J. Membrane Sci. – volume: 6 start-page: 652 year: 2007 publication-title: Nat. Mater. – volume: 18 year: 2022 publication-title: Mater. Today Nano – volume: 15 start-page: 3563 year: 2015 publication-title: Nano Lett. – volume: 45 year: 2020 publication-title: Int. J. Hydrogen Energy – year: 2024 publication-title: Adv. Mater. Technol. – ident: e_1_2_8_77_1 doi: 10.1021/acsnano.2c10736 – ident: e_1_2_8_19_1 doi: 10.1038/nmat4030 – ident: e_1_2_8_30_1 doi: 10.1021/acsnano.1c04602 – ident: e_1_2_8_39_1 doi: 10.1021/acs.nanolett.5b01053 – ident: e_1_2_8_49_1 doi: 10.1016/j.mtnano.2022.100189 – ident: e_1_2_8_60_1 doi: 10.1016/j.snb.2010.07.009 – ident: e_1_2_8_55_1 doi: 10.1002/adma.201605028 – ident: e_1_2_8_61_1 doi: 10.1038/s41563-019-0308-5 – ident: e_1_2_8_82_1 doi: 10.1016/j.snb.2023.133790 – ident: e_1_2_8_47_1 doi: 10.1021/jp512643a – ident: e_1_2_8_12_1 doi: 10.1029/2001JD001199 – ident: e_1_2_8_80_1 doi: 10.1039/C8NR03260B – ident: e_1_2_8_10_1 doi: 10.1007/s00216-013-7606-6 – ident: e_1_2_8_52_1 doi: 10.1002/adma.200903689 – ident: e_1_2_8_70_1 doi: 10.1021/acssensors.3c01659 – ident: e_1_2_8_18_1 doi: 10.1016/j.susc.2011.12.017 – ident: e_1_2_8_66_1 doi: 10.1021/jacs.1c05856 – ident: e_1_2_8_3_1 doi: 10.1021/acsenergylett.3c01098 – ident: e_1_2_8_35_1 doi: 10.1016/j.memsci.2017.09.012 – ident: e_1_2_8_62_1 doi: 10.1021/jp003721t – ident: e_1_2_8_25_1 doi: 10.1016/j.snb.2005.03.070 – ident: e_1_2_8_22_1 doi: 10.1038/nmat4842 – ident: e_1_2_8_37_1 doi: 10.1021/acsami.2c05002 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201805343 – ident: e_1_2_8_67_1 doi: 10.1002/aenm.202203893 – ident: e_1_2_8_43_1 doi: 10.1021/acs.chemrev.6b00769 – ident: e_1_2_8_34_1 doi: 10.1016/j.aca.2020.09.012 – ident: e_1_2_8_56_1 doi: 10.1002/adma.201503558 – ident: e_1_2_8_69_1 doi: 10.1021/acsami.0c22106 – ident: e_1_2_8_75_1 doi: 10.1002/admt.202302081 – ident: e_1_2_8_48_1 doi: 10.1021/jp403089x – ident: e_1_2_8_44_1 doi: 10.1021/acs.chemrev.5b00703 – ident: e_1_2_8_65_1 doi: 10.1021/nn800593m – ident: e_1_2_8_4_1 doi: 10.1016/j.ijhydene.2019.08.052 – ident: e_1_2_8_53_1 doi: 10.1038/nmat1967 – ident: e_1_2_8_81_1 doi: 10.1016/j.jallcom.2017.03.274 – ident: e_1_2_8_64_1 doi: 10.1021/jp907747w – ident: e_1_2_8_23_1 doi: 10.1016/j.ijhydene.2019.04.140 – ident: e_1_2_8_45_1 doi: 10.1021/jp305635w – ident: e_1_2_8_24_1 doi: 10.1002/adem.200300557 – ident: e_1_2_8_33_1 doi: 10.1039/C9NR07834G – ident: e_1_2_8_20_1 doi: 10.1146/annurev.ms.21.080191.001413 – ident: e_1_2_8_63_1 doi: 10.1007/BF03046394 – ident: e_1_2_8_6_1 doi: 10.1002/adma.202005929 – ident: e_1_2_8_72_1 doi: 10.1016/j.snb.2013.05.093 – ident: e_1_2_8_54_1 doi: 10.1021/ic403050c – ident: e_1_2_8_8_1 doi: 10.1088/1361-648X/abf477 – ident: e_1_2_8_42_1 doi: 10.1002/anie.201709095 – ident: e_1_2_8_73_1 doi: 10.1021/acssensors.1c00132 – ident: e_1_2_8_15_1 doi: 10.1021/acsnano.7b04529 – ident: e_1_2_8_7_1 doi: 10.1016/j.cis.2019.05.006 – ident: e_1_2_8_17_1 doi: 10.1002/admi.201801442 – ident: e_1_2_8_5_1 doi: 10.1038/s44287-024-00039-4 – ident: e_1_2_8_32_1 doi: 10.1021/acsanm.8b02029 – ident: e_1_2_8_79_1 doi: 10.1016/j.snb.2023.134240 – volume: 19 start-page: 47 year: 2016 ident: e_1_2_8_74_1 publication-title: Int. J. – ident: e_1_2_8_50_1 doi: 10.1002/smll.202005328 – ident: e_1_2_8_31_1 doi: 10.1002/smll.202106874 – ident: e_1_2_8_9_1 doi: 10.1016/S0360-3199(97)00112-2 – ident: e_1_2_8_27_1 doi: 10.1021/acsnano.0c05476 – ident: e_1_2_8_21_1 doi: 10.1088/0953-8984/8/19/015 – ident: e_1_2_8_59_1 doi: 10.1016/j.snb.2020.128330 – ident: e_1_2_8_46_1 doi: 10.1021/acs.jpcc.7b03996 – ident: e_1_2_8_71_1 doi: 10.1021/la0617309 – ident: e_1_2_8_68_1 doi: 10.1021/acs.chemmater.9b01561 – ident: e_1_2_8_1_1 doi: 10.1002/adma.202007100 – ident: e_1_2_8_36_1 doi: 10.1016/j.cej.2020.125864 – ident: e_1_2_8_2_1 doi: 10.1038/s43247-023-00857-8 – ident: e_1_2_8_57_1 doi: 10.1021/acsami.0c13137 – ident: e_1_2_8_29_1 doi: 10.1021/acssensors.0c02019 – ident: e_1_2_8_11_1 doi: 10.1098/rsta.2016.0406 – ident: e_1_2_8_13_1 doi: 10.1002/adma.200602975 – ident: e_1_2_8_78_1 doi: 10.1021/acsnano.0c05307 – ident: e_1_2_8_26_1 doi: 10.1021/acsnano.2c01783 – ident: e_1_2_8_28_1 doi: 10.1016/j.ijhydene.2010.04.051 – ident: e_1_2_8_58_1 doi: 10.1016/j.snb.2004.12.024 – ident: e_1_2_8_51_1 doi: 10.1002/adma.201203172 – ident: e_1_2_8_76_1 doi: 10.1016/j.snb.2009.02.008 – ident: e_1_2_8_38_1 doi: 10.1007/s10853-010-4970-x – ident: e_1_2_8_40_1 doi: 10.1021/acs.jpcc.5b01636 – ident: e_1_2_8_41_1 doi: 10.1016/j.snb.2006.07.030 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201502895 |
SSID | ssj0009606 |
Score | 2.5096755 |
Snippet | The transition toward hydrogen gas (H2) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors... The transition toward hydrogen gas (H 2 ) as an eco‐friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors... The transition toward hydrogen gas (H ) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors... The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2404291 |
SubjectTerms | Adsorption Affinity Ambient temperature Desorption Energy of dissociation Gas sensors graphene Hydrogen hydrogen adsorption Leak detection Ligands Nanoclusters Palladium palladium nanoclusters Phase transitions Renewable energy sources Robustness Sensors Synergistic effect thiolate ligands |
Title | Balancing Pd–H Interactions: Thiolate‐Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202404291 https://www.ncbi.nlm.nih.gov/pubmed/38975670 https://www.proquest.com/docview/3146659797 https://www.proquest.com/docview/3076766538 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQT-UAlM9AQUZC4pQ2iZ046W35KCsk0Gpppd6isT0pK0pSNckBTv0JlfiH_SWM4920C0JIcLMVW0mceZ43zviZsRcarTJJBKEUSoVSGwgLVAnhqpKVgDzK9ZDl-zGbHsr3R-nRtV38Xh9iXHBzyBjmawdw0O3ulWgo2EE3iDwSTaku_nEJW44Vza_0oxw9H8T2RBoWmcxXqo1Rsrvefd0r_UY115nr4Hr2bzNYPbTPOPmy03d6x3z_Rc_xf97qDru15KV84g1pi93A-i67eU2t8B7rXrk0SENlPrOX5z-mfFhO9Dsj2j1-8HlBcXKHl-cXM6_-gJbP3EK9XfRfOc3jjTnpnTBDy4kq83mjqcahtnwOpwvLp9_sWUMGzd9Byz-5zPr6-D473H978HoaLg9tCI1QIibUVVWqNcSAsTtzvTCW3KQDPgpARbF7YQFRxsZUIqqUrKJYZ2BjTGIriDw8YBt1U-MjxlMrTYQFAuZCWkgLIazJyLZiAxREVwELVx-tNEtFc3ewxknptZiT0o1mOY5mwF6O7U-9lscfW26vbKBcYrotBTmVjOKvQgXs-XiZ0Oh-sUCNTU9tIpUpaiXygD30tjPeiqihSjMVBSwZLOAvz1BO3nyYjLXH_9LpCdt0ZZ99s802urMenxKH6vSzASc_AfeDFWY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvB-BAkZC4pQ2iZ044bY8SoC2Wi1biVvkV2BFSapucoBTfwIS_7C_hLG9SVkQQoJbnEwUx5nP88j4M8BjaTRXSSRCRjkPmVQiLAxPEFc1q6nIo1y6Kt_9rDxgb96nQzWhXQvj-SHGhJtFhpuvLcBtQnr7jDVUaEcchCYJ51QMgM7bbb1dVDU7Y5CyDrqj26NpWGQsH3gbo2R7_f51u_Sbs7nuuzrjs3MF5NBtX3Pyaavv5Jb6-guj43-911W4vHJNycTr0jU4Z5rrcOknwsIb0D2zlZAKj8lUn558L4nLKPrFEcunZP5xgaFyZ05Pvk09AYTRZGpz9XrRfyY4lbfqsLfcDEuC3jKZtRJbRDSazMTRQpPyiz5uUafJK7Ek72xxffPhJhzsvJw_L8PVvg2hopzGCLy6TqUUsTCx3Xa9UBotpcW-ocJwDN8LLYxhsVI1jWrO6iiWmdCxSWJN0X-4BRtN25g7QFLNVGQKI0xOmRZpQalWGapXrATG0XUA4fDVKrUiNbd7axxWno45qexoVuNoBvBklD_ydB5_lNwclKBawXpZUbQrGYZgBQ_g0XgZAWn_sojGtD3KRDzjKEXzAG575Rkfhd4hTzMeBZA4FfhLH6rJi73J2Lr7Lzc9hAvlfG-32n29__YeXLTnfTHOJmx0x725jy5VJx840PwAP0AZgQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRUKwoDxLSgEjIbFK68ROnLAbGIbhVY2GVuou8iswoiSjTrKAVT8BiT_sl3Adz6QdEEKCXZw4iuPc43uuc30M8ERZI3RMZciZECFXWoa5FTHiquQlkxnNVJflu5-OD_mbo-Towip-rw_RT7g5ZHTjtQP43JR756Kh0nS6QeiRcEjF-OcyT2nm7Ho4PReQcvy8U9tjSZinPFvJNtJ4b_3-dbf0G9dcp66d7xltgly12qecfN5tG7Wrv_0i6Pg_r3UDri-JKRl4S7oJl2x1C65dkCu8Dc1zlwep8ZhMzNnpjzHp5hP90ojFM3LwaYaBcmPPTr9PvPyDNWTiZurNrP1CcCCv9XHrlBkWBLkymdYKS0RWhkzlfGbI-Ks5qdGiySu5IB9can318Q4cjl4evBiHy10bQs0EixB2ZZkoJSNpI7fpeq4N-kmHfMukFRi850ZayyOtS0ZLwUsaqVSayMaRYcge7sJGVVf2HpDEcE1tbqXNGDcyyRkzOkXjirTEKLoMIFx9tEIvJc3dzhrHhRdjjgvXm0XfmwE87evPvZjHH2vurGygWIJ6UTD0KikGYLkI4HF_GeHo_rHIytYt1qEiFViLZQFsedvpH4XcUCSpoAHEnQX8pQ3FYPh-0Je2_-WmR3BlMhwV717vv70PV91pn4mzAxvNSWsfIJ9q1MMOMj8B-1gYOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+Pd%E2%80%93H+Interactions%3A+Thiolate%E2%80%90Protected+Palladium+Nanoclusters+for+Robust+and+Rapid+Hydrogen+Gas+Sensing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Zhuo&rft.au=Yuan%2C+Peng&rft.au=Chen%2C+Cailing&rft.au=Wang%2C+Xinhuilan&rft.date=2024-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=51&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202404291&rft.externalDBID=10.1002%252Fadma.202404291&rft.externalDocID=ADMA202404291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |