Speech quality assessment with WARP‐Q: From similarity to subsequence dynamic time warp cost

Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at les...

Full description

Saved in:
Bibliographic Details
Published inIET signal processing Vol. 16; no. 9; pp. 1050 - 1070
Main Authors Jassim, Wissam A., Skoglund, Jan, Chinen, Michael, Hines, Andrew
Format Journal Article
LanguageEnglish
Published John Wiley & Sons, Inc 01.12.2022
Wiley
Online AccessGet full text
ISSN1751-9675
1751-9683
DOI10.1049/sil2.12151

Cover

Abstract Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at less than 3 kb/s. Generative codecs produce high‐quality speech based on synthesising speech from a DNN and the parametric input. Existing objective speech quality models (e.g., ViSQOL and POLQA) cannot be used to accurately evaluate the quality of coded speech from generative models as they penalise based on signal differences not apparent in subjective listening test results. This paper presents WARP‐Q, a full‐reference objective speech quality metric that uses a dynamic time warping cost for MFCC representations of the signals. It is robust to low perceptual signal changes introduced by low bit rate neural vocoders. An evaluation using waveform matching, parametric, and generative neural vocoder‐based codecs as well as channel and environmental noise shows that WARP‐Q has better correlation and codec quality ranking for novel codecs compared to traditional metrics as well as the versatility of capturing other types of degradations, such as additive noise and transmission channel degradations.
AbstractList Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at less than 3 kb/s. Generative codecs produce high‐quality speech based on synthesising speech from a DNN and the parametric input. Existing objective speech quality models (e.g., ViSQOL and POLQA) cannot be used to accurately evaluate the quality of coded speech from generative models as they penalise based on signal differences not apparent in subjective listening test results. This paper presents WARP‐Q, a full‐reference objective speech quality metric that uses a dynamic time warping cost for MFCC representations of the signals. It is robust to low perceptual signal changes introduced by low bit rate neural vocoders. An evaluation using waveform matching, parametric, and generative neural vocoder‐based codecs as well as channel and environmental noise shows that WARP‐Q has better correlation and codec quality ranking for novel codecs compared to traditional metrics as well as the versatility of capturing other types of degradations, such as additive noise and transmission channel degradations.
Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at less than 3 kb/s. Generative codecs produce high‐quality speech based on synthesising speech from a DNN and the parametric input. Existing objective speech quality models (e.g., ViSQOL and POLQA) cannot be used to accurately evaluate the quality of coded speech from generative models as they penalise based on signal differences not apparent in subjective listening test results. This paper presents WARP‐Q, a full‐reference objective speech quality metric that uses a dynamic time warping cost for MFCC representations of the signals. It is robust to low perceptual signal changes introduced by low bit rate neural vocoders. An evaluation using waveform matching, parametric, and generative neural vocoder‐based codecs as well as channel and environmental noise shows that WARP‐Q has better correlation and codec quality ranking for novel codecs compared to traditional metrics as well as the versatility of capturing other types of degradations, such as additive noise and transmission channel degradations.
Abstract Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at less than 3 kb/s. Generative codecs produce high‐quality speech based on synthesising speech from a DNN and the parametric input. Existing objective speech quality models (e.g., ViSQOL and POLQA) cannot be used to accurately evaluate the quality of coded speech from generative models as they penalise based on signal differences not apparent in subjective listening test results. This paper presents WARP‐Q, a full‐reference objective speech quality metric that uses a dynamic time warping cost for MFCC representations of the signals. It is robust to low perceptual signal changes introduced by low bit rate neural vocoders. An evaluation using waveform matching, parametric, and generative neural vocoder‐based codecs as well as channel and environmental noise shows that WARP‐Q has better correlation and codec quality ranking for novel codecs compared to traditional metrics as well as the versatility of capturing other types of degradations, such as additive noise and transmission channel degradations.
Audience Academic
Author Hines, Andrew
Skoglund, Jan
Chinen, Michael
Jassim, Wissam A.
Author_xml – sequence: 1
  givenname: Wissam A.
  orcidid: 0000-0001-5998-142X
  surname: Jassim
  fullname: Jassim, Wissam A.
  email: wissam.a.jassim@gmail.com
  organization: University College Dublin
– sequence: 2
  givenname: Jan
  surname: Skoglund
  fullname: Skoglund, Jan
  organization: Google
– sequence: 3
  givenname: Michael
  surname: Chinen
  fullname: Chinen, Michael
  organization: Google
– sequence: 4
  givenname: Andrew
  surname: Hines
  fullname: Hines, Andrew
  organization: University College Dublin
BookMark eNp9kc1uEzEUhS1UJNrChifwGinB1-O_YRdVFCJFKlAQO6w7Hrt1NTNO7Ymi7HgEnpEn6SSDukRe2Dr6ztG9PhfkbEiDJ-QtsCUwUb8vseNL4CDhBTkHLWFRK1OdPb-1fEUuSnlgTCoJ_Jz8ut167-7p4w67OB4oluJL6f0w0n0c7-nP1bcvf3__-fqBXufU0xL72GE-kmOiZdcU_7jzg_O0PQzYR0fH2Hu6x7ylLpXxNXkZsCv-zb_7kvy4_vj96vNic_NpfbXaLFylK1hAq3wDXKOXFQ-hBtCibhultQPDhGKKK1XXaJxuA3DhTBDAHBONrKSpWHVJ1nNum_DBbnPsMR9swmhPQsp3FvMYXectkyCbgAhMojBQ1yLIRjcOKqMQT1nLOesOJzwOIY0Z3XRaPy04_XeIk77SwkjBjZGT4d1scDmVkn14HgCYPdZij7XYUy0TDDO8n1IO_yHt7XrDZ88T5nKQpw
Cites_doi 10.1109/QoMEX48832.2020.9123109
10.1016/j.specom.2011.09.004
10.21437/Interspeech.2021-299
10.1109/ICASSP.1996.540325
10.1109/ICASSP39728.2021.9414901
10.21437/Interspeech.2019-1255
10.1109/ICASSP.2015.7179063
10.3813/aaa.918857
10.1109/ICASSP39728.2021.9415120
10.1186/s13636‐015‐0054‐9
10.1109/ICASSP.2019.8682804
10.1109/ISSC.2019.8904962
10.1109/IEEECONF51394.2020.9443273
10.1109/TSA.2002.804299
10.1109/ICASSP.2019.8683143
10.1109/ICASSP.2019.8682435
10.25080/Majora-7b98e3ed-003
10.1109/ICASSP.2018.8461368
10.1109/ICASSP39728.2021.9414878
10.21437/Interspeech.2020-2382
10.1109/msp.2011.942469
10.1121/1.4931899
10.1109/QoMEX48832.2020.9123150
10.21437/Interspeech.2020-2939
10.1109/QoMEX.2015.7148100
10.1007/978-3-319-21945-5
10.1109/ICASSP.2018.8462529
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/sil2.12151
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage 1070
ExternalDocumentID oai_doaj_org_article_0515bfaa105a481994f5b7bc1386aa30
A748542885
10_1049_sil2_12151
SIL212151
Genre article
GrantInformation_xml – fundername: Science Foundation Ireland
  funderid: 13/RC/2077; 13/RC/2289_P2
– fundername: Google Chrome University Program
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
J9A
JAVBF
K6V
K7-
L6V
LAI
LXU
M43
M7S
MCNEO
NADUK
NXXTH
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
~ZZ
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
WIN
ID FETCH-LOGICAL-c3731-1d6eb127ae532ff911749db677c180460626699a8c7df124c8f410c04b5358303
IEDL.DBID 24P
ISSN 1751-9675
IngestDate Wed Aug 27 01:28:42 EDT 2025
Tue Jun 10 21:00:58 EDT 2025
Tue Jul 01 02:39:45 EDT 2025
Wed Jan 22 16:23:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-1d6eb127ae532ff911749db677c180460626699a8c7df124c8f410c04b5358303
ORCID 0000-0001-5998-142X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12151
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_0515bfaa105a481994f5b7bc1386aa30
gale_infotracacademiconefile_A748542885
crossref_primary_10_1049_sil2_12151
wiley_primary_10_1049_sil2_12151_SIL212151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle IET signal processing
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 1
2019; 2019
2001
2012
2015; 138
2021
2020
2015; 101
2018; 863
2002; 10
1998
2019
2018
2017
1995
2016
1996; 1
2015
2011; 12
2011; 28
2015; 8
2012; 54
2001; 862
Kleijn W.B. (e_1_2_13_20_1) 1995
e_1_2_13_25_1
e_1_2_13_24_1
e_1_2_13_26_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_40_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_6_1
Pedregosa F. (e_1_2_13_45_1) 2011; 12
Kalchbrenner N. (e_1_2_13_11_1) 2018
e_1_2_13_17_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_19_1
Mehri S. (e_1_2_13_12_1) 2016
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_14_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_32_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_34_1
e_1_2_13_33_1
e_1_2_13_30_1
Müller M. (e_1_2_13_27_1) 2015
Oord A. (e_1_2_13_7_1) 2016
ITU (e_1_2_13_35_1) 1998
Arik S.Ö. (e_1_2_13_9_1) 2017
e_1_2_13_5_1
ITU (e_1_2_13_4_1) 2001
e_1_2_13_2_1
ITU (e_1_2_13_3_1) 2018; 863
e_1_2_13_29_1
e_1_2_13_28_1
References_xml – start-page: 676
  year: 2018
  end-page: 680
– start-page: 1
  year: 2015
  end-page: 6
– volume: 863
  year: 2018
  article-title: Perceptual objective listening quality assessment
  publication-title: Int. Telecomm. UnionGeneva
– start-page: 1
  year: 2019
  end-page: 6
– year: 2001
– year: 2021
– volume: 1
  start-page: 13
  year: 2015
  article-title: ViSQOL: an objective speech quality model
  publication-title: EURASIP J. Audio Speech Music Process.
– start-page: 401
  year: 2021
  end-page: 405
– volume: 10
  start-page: 620
  issue: 8
  year: 2002
  end-page: 636
– volume: 8
  year: 2015
– year: 2016
– year: 2018
  article-title: Efficient neural audio synthesis
  publication-title: CoRR
– year: 1998
– year: 2012
– volume: 101
  start-page: 616
  issue: 3
  year: 2015
  end-page: 631
  article-title: An analysis of the impact of playout delay adjustments introduced by VoIP jitter buffers on listening speech quality
  publication-title: Acta Acustica united Acustica
– start-page: 6493
  year: 2021
  end-page: 6497
– start-page: 4779
  year: 2018
  end-page: 4783
– start-page: 3617
  year: 2019
  end-page: 3621
– volume: 28
  start-page: 18
  issue: 6
  year: 2011
  end-page: 28
  article-title: Speech quality estimation: models and trends
  publication-title: IEEE Signal Process. Mag.
– volume: 862
  year: 2001
– volume: 54
  start-page: 306
  issue: 2
  year: 2012
  end-page: 320
  article-title: Speech intelligibility prediction using a neurogram similarity index measure
  publication-title: Speech Commun.
– year: 2020
– start-page: 7155
  year: 2019
  end-page: 7159
– year: 1995
– volume: 2019
  start-page: 3406
  year: 2019
  end-page: 3410
– volume: 138
  start-page: 2470
  issue: 4
  year: 2015
  end-page: 2482
  article-title: Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality
  publication-title: J. Acoust. Soc. Am.
– start-page: 5891
  year: 2019
  end-page: 5895
– start-page: 1
  year: 2020
  end-page: 6
– year: 2017
– year: 2017
  article-title: Deep voice 2: multi‐speaker neural text‐to‐speech
  publication-title: CoRR
– year: 2016
  article-title: SampleRNN: an unconditional end‐to‐end neural audio generation model
  publication-title: arXiv:1612.07837
– start-page: 5698
  year: 2015
  end-page: 5702
– year: 2019
– volume: 1
  start-page: 200
  year: 1996
  end-page: 203
– year: 2015
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_13_24_1
– ident: e_1_2_13_18_1
  doi: 10.1109/QoMEX48832.2020.9123109
– ident: e_1_2_13_26_1
  doi: 10.1016/j.specom.2011.09.004
– ident: e_1_2_13_37_1
  doi: 10.21437/Interspeech.2021-299
– ident: e_1_2_13_21_1
  doi: 10.1109/ICASSP.1996.540325
– ident: e_1_2_13_19_1
  doi: 10.1109/ICASSP39728.2021.9414901
– ident: e_1_2_13_43_1
– ident: e_1_2_13_25_1
  doi: 10.21437/Interspeech.2019-1255
– ident: e_1_2_13_40_1
  doi: 10.1109/ICASSP.2015.7179063
– volume-title: ITU‐T Rec
  year: 1998
  ident: e_1_2_13_35_1
– volume: 863
  year: 2018
  ident: e_1_2_13_3_1
  article-title: Perceptual objective listening quality assessment
  publication-title: Int. Telecomm. UnionGeneva
– ident: e_1_2_13_16_1
  doi: 10.3813/aaa.918857
– ident: e_1_2_13_29_1
– ident: e_1_2_13_42_1
  doi: 10.1109/ICASSP39728.2021.9415120
– ident: e_1_2_13_6_1
  doi: 10.1186/s13636‐015‐0054‐9
– ident: e_1_2_13_14_1
  doi: 10.1109/ICASSP.2019.8682804
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_13_45_1
  article-title: Scikit‐learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_13_17_1
  doi: 10.1109/ISSC.2019.8904962
– ident: e_1_2_13_41_1
  doi: 10.1109/IEEECONF51394.2020.9443273
– ident: e_1_2_13_23_1
  doi: 10.1109/TSA.2002.804299
– ident: e_1_2_13_10_1
  doi: 10.1109/ICASSP.2019.8683143
– ident: e_1_2_13_31_1
– volume-title: Publishing CompanyIncorporated
  year: 2015
  ident: e_1_2_13_27_1
– volume-title: Arxiv
  year: 2016
  ident: e_1_2_13_7_1
– year: 2016
  ident: e_1_2_13_12_1
  article-title: SampleRNN: an unconditional end‐to‐end neural audio generation model
  publication-title: arXiv:1612.07837
– volume-title: Speech Coding and Synthesis
  year: 1995
  ident: e_1_2_13_20_1
– ident: e_1_2_13_15_1
  doi: 10.1109/ICASSP.2019.8682435
– ident: e_1_2_13_30_1
  doi: 10.25080/Majora-7b98e3ed-003
– ident: e_1_2_13_8_1
  doi: 10.1109/ICASSP.2018.8461368
– ident: e_1_2_13_39_1
  doi: 10.1109/ICASSP39728.2021.9414878
– ident: e_1_2_13_38_1
  doi: 10.21437/Interspeech.2020-2382
– ident: e_1_2_13_2_1
  doi: 10.1109/msp.2011.942469
– ident: e_1_2_13_36_1
  doi: 10.1121/1.4931899
– year: 2018
  ident: e_1_2_13_11_1
  article-title: Efficient neural audio synthesis
  publication-title: CoRR
– year: 2017
  ident: e_1_2_13_9_1
  article-title: Deep voice 2: multi‐speaker neural text‐to‐speech
  publication-title: CoRR
– ident: e_1_2_13_5_1
  doi: 10.1109/QoMEX48832.2020.9123150
– ident: e_1_2_13_33_1
  doi: 10.21437/Interspeech.2020-2939
– volume-title: ITU‐T Rec
  year: 2001
  ident: e_1_2_13_4_1
– ident: e_1_2_13_22_1
– ident: e_1_2_13_34_1
  doi: 10.1109/QoMEX.2015.7148100
– ident: e_1_2_13_28_1
– ident: e_1_2_13_32_1
  doi: 10.1007/978-3-319-21945-5
– ident: e_1_2_13_44_1
– ident: e_1_2_13_13_1
  doi: 10.1109/ICASSP.2018.8462529
SSID ssj0056512
Score 2.2881024
Snippet Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams,...
Abstract Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate...
SourceID doaj
gale
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1050
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXAQVBKG6TtEm9reKiIuITPRmStMEF3V12K-LNn-Bv9Jc4k3aX9aIXb6XkMMw0M990Zr4hZMdJhaTkaYQ1tkj42MKVSnhkBOeFMmByHxpkL9KTO3H2kDxMrPrCnrCKHrhS3D7uILHeGMABRihksvWJldbFXKXG8JCtN7PmKJmqfDCglKrOKXGJPGDiETGpyPaHnWcWOBXiH6EoMPaP_fIkUA2Rpj1P5mqISFuVaAtkquguktkJ4sAl8njTLwr3RKuRyHdqxvyaFH-s0vvW9eXXx-fVAW0Pei902HnpQAaLJ8seHYKvqBuoaV4tpKe4Yp6-mUGfut6wXCZ37ePbo5Oo3pQQOS55HMV5Cj6XSVMknHkPDkyKLLeplC5WWPqEtCXNMqOczD1EdKe8iJuuKWwCJoIotkKmu71usUoolj0942mRMyeYBfjiExFnuWLeWohdDbI9UpruV4QYOhSyRaZRtTqotkEOUZ_jE0hiHV6AaXVtWv2XaRtkF62h8aqVA-NMPTEAgiJplW5JoRJIn1TSIHvBYL9IpG9Oz1l4WvsP2dbJDMNBiNDYskGmy8FrsQnwpLRb4Uv8BtfD3aw
  priority: 102
  providerName: Directory of Open Access Journals
Title Speech quality assessment with WARP‐Q: From similarity to subsequence dynamic time warp cost
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12151
https://doaj.org/article/0515bfaa105a481994f5b7bc1386aa30
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fSxwxEA-iL_VBtK149Q-BFgRh8TbJbrLFl1M8rqXIWRV9MiTZjR7U22NvpfjmR_Az-kmcye5d9UXo27JkIczszPwmk_kNId-cVEhKnkZYY4uEjy2YVMIjIzgvlAGV-3BB9iQdXIifV8nVAjmY9cI0_BDzAze0jOCv0cCNbaaQAKjFptfRHxa4ESD3WcLeWhzcwMRw5ocBqTS1TomD5AEXz8hJRbb_79s34Siw9s9982uwGqJNf5WstDCR9hq9rpGFYvyRLL8iD_xErs8mReFuadMW-UDNnGOT4uEqvez9Hj4_Pp1-p_2qvKPT0d0IslhcWZd0Cv6ivURN82YoPcUx8_SvqSbUldP6M7noH58fDaJ2WkLkuORxFOcp-F0mTZFw5j04MSmy3KZSulhh-RNSlzTLjHIy9xDVnfIi7rqusAmoCSLZOlkcl-Nig1AsfXrG0yJnTjALEMYnIs5yxby1EL865OtMaHrSkGLoUMwWmUbR6iDaDjlEec5XIJF1eFFWN7q1C40jZqw3BmCeEQqJin1ipXUxV6kxvNshu6gNjeZWV8aZtmsANorEVbonhUoghVJJh-wFhb2zI3324xcLT1_-Z_Em-cCw6SFcYtkii3V1X2wDFKntTvjjdkIi_wKTdtdI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEBYlObQ9lLRp6eZXkECgYLqWZEvubRO6bJpNyC_NqUKSrWShu168LqW3PEKeMU-SGdm7SS-F3oyRQcx4Zj5pZr4hZNdJhaTkaYQ5tkj42IJJJTwygvNCGVC5DwWyJ-ngSny7Tq7b2hzshWn4IRYXbmgZwV-jgeOFdHPgFEiSORv9ZIEcAQ4_ywKAOVb0MXE6d8QAVZpkp8RJ8gCM5-ykIvv89O1f8SjQ9i-c83O0GsJNf4W8aXEi7TWKfUteFJN35PUz9sBV8uNiWhTuljZ9kX-oWZBsUrxdpd9756cPd_dnX2i_Ksd0NhqP4BiLK-uSzsBhtFXUNG-m0lOcM09_m2pKXTmr35Or_tfLg0HUjkuIHJc8juI8BcfLpCkSzrwHLyZFlttUShcrzH-CiNIsM8rJ3ENYd8qLuOu6wiagJwhlH8jSpJwUHwnF3KdnPC1y5gSzgGF8IuIsV8xbCwGsQ3bmQtPThhVDh2y2yDSKVgfRdsg-ynOxApmsw4uyutGtYWicMWO9MYDzjFDIVOwTK62LuUqN4d0O2UNtaLS3ujLOtG0DsFFkrtI9KVQCZyiVdMinoLB_7EhfHA5ZeFr7n8Xb5OXg8nioh4cnR-vkFcMOiFDRskGW6upXsQm4pLZb4e97BDzi2cY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1faxQxEB9KC0UfRG3F818DFoTC4m2S3WTFl9N6tFpKtZ4WHxqS7EYP7O2xtyK--RH8jH4SZ7J71_oi-LYsWQgzmZnf7GR-A7DrlSZS8jyhGlsiQ-rQpDKRWClEpS2qPMQLssf5wUS-PsvO1uD5shem44dY_XAjy4j-mgx8XoYu35TEkbmYfuWRGwFznw2iycNTvjH6MPk0WXpixCpdtVPRKHlExkt6Ulk8vfz6r4AUeftX3vkqXI3xZnwTbvRAkY06zd6CtWp2G65foQ_cgvPTeVX5L6xrjPzB7Iplk9HvVfZx9O7k989fb5-xcVNfsMX0Yop5LK1sa7ZAj9Ffo2ZlN5ae0aB59t02c-brRbsNk_Gr9y8Pkn5eQuKFEmmSljl6Xq5slQkeAroxJYvS5Ur5VFMBFJOXvCis9qoMGNe9DjId-qF0GSoKY9kdWJ_Vs-ouMCp-Bi7yquRecocgJmQyLUrNg3MYwQbweCk0M-9oMUwsZ8vCkGhNFO0AXpA8VyuIyjq-qJvPprcMQ0NmXLAWgZ6VmqiKQ-aU86nQubViOIAnpA1DBtc21tu-bwA3StRVZqSkzjCJ0tkA9qLC_rEjc3p4xOPTvf9ZvAObJ_tjc3R4_OY-XOPUARFvtDyA9bb5Vj1EXNK6R_3x-wMkJtq1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speech+quality+assessment+with+WARP%E2%80%90Q%3A+From+similarity+to+subsequence+dynamic+time+warp+cost&rft.jtitle=IET+signal+processing&rft.au=Jassim%2C+Wissam+A.&rft.au=Skoglund%2C+Jan&rft.au=Chinen%2C+Michael&rft.au=Hines%2C+Andrew&rft.date=2022-12-01&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=16&rft.issue=9&rft.spage=1050&rft.epage=1070&rft_id=info:doi/10.1049%2Fsil2.12151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_sil2_12151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon