Speech quality assessment with WARP‐Q: From similarity to subsequence dynamic time warp cost
Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at les...
Saved in:
Published in | IET signal processing Vol. 16; no. 9; pp. 1050 - 1070 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
John Wiley & Sons, Inc
01.12.2022
Wiley |
Online Access | Get full text |
ISSN | 1751-9675 1751-9683 |
DOI | 10.1049/sil2.12151 |
Cover
Abstract | Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at less than 3 kb/s. Generative codecs produce high‐quality speech based on synthesising speech from a DNN and the parametric input. Existing objective speech quality models (e.g., ViSQOL and POLQA) cannot be used to accurately evaluate the quality of coded speech from generative models as they penalise based on signal differences not apparent in subjective listening test results. This paper presents WARP‐Q, a full‐reference objective speech quality metric that uses a dynamic time warping cost for MFCC representations of the signals. It is robust to low perceptual signal changes introduced by low bit rate neural vocoders. An evaluation using waveform matching, parametric, and generative neural vocoder‐based codecs as well as channel and environmental noise shows that WARP‐Q has better correlation and codec quality ranking for novel codecs compared to traditional metrics as well as the versatility of capturing other types of degradations, such as additive noise and transmission channel degradations. |
---|---|
AbstractList | Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at less than 3 kb/s. Generative codecs produce high‐quality speech based on synthesising speech from a DNN and the parametric input. Existing objective speech quality models (e.g., ViSQOL and POLQA) cannot be used to accurately evaluate the quality of coded speech from generative models as they penalise based on signal differences not apparent in subjective listening test results. This paper presents WARP‐Q, a full‐reference objective speech quality metric that uses a dynamic time warping cost for MFCC representations of the signals. It is robust to low perceptual signal changes introduced by low bit rate neural vocoders. An evaluation using waveform matching, parametric, and generative neural vocoder‐based codecs as well as channel and environmental noise shows that WARP‐Q has better correlation and codec quality ranking for novel codecs compared to traditional metrics as well as the versatility of capturing other types of degradations, such as additive noise and transmission channel degradations. Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at less than 3 kb/s. Generative codecs produce high‐quality speech based on synthesising speech from a DNN and the parametric input. Existing objective speech quality models (e.g., ViSQOL and POLQA) cannot be used to accurately evaluate the quality of coded speech from generative models as they penalise based on signal differences not apparent in subjective listening test results. This paper presents WARP‐Q, a full‐reference objective speech quality metric that uses a dynamic time warping cost for MFCC representations of the signals. It is robust to low perceptual signal changes introduced by low bit rate neural vocoders. An evaluation using waveform matching, parametric, and generative neural vocoder‐based codecs as well as channel and environmental noise shows that WARP‐Q has better correlation and codec quality ranking for novel codecs compared to traditional metrics as well as the versatility of capturing other types of degradations, such as additive noise and transmission channel degradations. Abstract Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams, recently developed generative speech models can reconstruct high‐quality wideband speech from the bit streams of standard parametric encoders at less than 3 kb/s. Generative codecs produce high‐quality speech based on synthesising speech from a DNN and the parametric input. Existing objective speech quality models (e.g., ViSQOL and POLQA) cannot be used to accurately evaluate the quality of coded speech from generative models as they penalise based on signal differences not apparent in subjective listening test results. This paper presents WARP‐Q, a full‐reference objective speech quality metric that uses a dynamic time warping cost for MFCC representations of the signals. It is robust to low perceptual signal changes introduced by low bit rate neural vocoders. An evaluation using waveform matching, parametric, and generative neural vocoder‐based codecs as well as channel and environmental noise shows that WARP‐Q has better correlation and codec quality ranking for novel codecs compared to traditional metrics as well as the versatility of capturing other types of degradations, such as additive noise and transmission channel degradations. |
Audience | Academic |
Author | Hines, Andrew Skoglund, Jan Chinen, Michael Jassim, Wissam A. |
Author_xml | – sequence: 1 givenname: Wissam A. orcidid: 0000-0001-5998-142X surname: Jassim fullname: Jassim, Wissam A. email: wissam.a.jassim@gmail.com organization: University College Dublin – sequence: 2 givenname: Jan surname: Skoglund fullname: Skoglund, Jan organization: Google – sequence: 3 givenname: Michael surname: Chinen fullname: Chinen, Michael organization: Google – sequence: 4 givenname: Andrew surname: Hines fullname: Hines, Andrew organization: University College Dublin |
BookMark | eNp9kc1uEzEUhS1UJNrChifwGinB1-O_YRdVFCJFKlAQO6w7Hrt1NTNO7Ymi7HgEnpEn6SSDukRe2Dr6ztG9PhfkbEiDJ-QtsCUwUb8vseNL4CDhBTkHLWFRK1OdPb-1fEUuSnlgTCoJ_Jz8ut167-7p4w67OB4oluJL6f0w0n0c7-nP1bcvf3__-fqBXufU0xL72GE-kmOiZdcU_7jzg_O0PQzYR0fH2Hu6x7ylLpXxNXkZsCv-zb_7kvy4_vj96vNic_NpfbXaLFylK1hAq3wDXKOXFQ-hBtCibhultQPDhGKKK1XXaJxuA3DhTBDAHBONrKSpWHVJ1nNum_DBbnPsMR9swmhPQsp3FvMYXectkyCbgAhMojBQ1yLIRjcOKqMQT1nLOesOJzwOIY0Z3XRaPy04_XeIk77SwkjBjZGT4d1scDmVkn14HgCYPdZij7XYUy0TDDO8n1IO_yHt7XrDZ88T5nKQpw |
Cites_doi | 10.1109/QoMEX48832.2020.9123109 10.1016/j.specom.2011.09.004 10.21437/Interspeech.2021-299 10.1109/ICASSP.1996.540325 10.1109/ICASSP39728.2021.9414901 10.21437/Interspeech.2019-1255 10.1109/ICASSP.2015.7179063 10.3813/aaa.918857 10.1109/ICASSP39728.2021.9415120 10.1186/s13636‐015‐0054‐9 10.1109/ICASSP.2019.8682804 10.1109/ISSC.2019.8904962 10.1109/IEEECONF51394.2020.9443273 10.1109/TSA.2002.804299 10.1109/ICASSP.2019.8683143 10.1109/ICASSP.2019.8682435 10.25080/Majora-7b98e3ed-003 10.1109/ICASSP.2018.8461368 10.1109/ICASSP39728.2021.9414878 10.21437/Interspeech.2020-2382 10.1109/msp.2011.942469 10.1121/1.4931899 10.1109/QoMEX48832.2020.9123150 10.21437/Interspeech.2020-2939 10.1109/QoMEX.2015.7148100 10.1007/978-3-319-21945-5 10.1109/ICASSP.2018.8462529 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. COPYRIGHT 2022 John Wiley & Sons, Inc. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/sil2.12151 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-9683 |
EndPage | 1070 |
ExternalDocumentID | oai_doaj_org_article_0515bfaa105a481994f5b7bc1386aa30 A748542885 10_1049_sil2_12151 SIL212151 |
Genre | article |
GrantInformation_xml | – fundername: Science Foundation Ireland funderid: 13/RC/2077; 13/RC/2289_P2 – fundername: Google Chrome University Program |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IGS IPLJI ITC J9A JAVBF K6V K7- L6V LAI LXU M43 M7S MCNEO NADUK NXXTH O9- OCL OK1 P2P P62 PTHSS RIE RNS RUI S0W UNMZH ~ZZ AAYXX CITATION IDLOA PHGZM PHGZT WIN |
ID | FETCH-LOGICAL-c3731-1d6eb127ae532ff911749db677c180460626699a8c7df124c8f410c04b5358303 |
IEDL.DBID | 24P |
ISSN | 1751-9675 |
IngestDate | Wed Aug 27 01:28:42 EDT 2025 Tue Jun 10 21:00:58 EDT 2025 Tue Jul 01 02:39:45 EDT 2025 Wed Jan 22 16:23:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-1d6eb127ae532ff911749db677c180460626699a8c7df124c8f410c04b5358303 |
ORCID | 0000-0001-5998-142X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12151 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0515bfaa105a481994f5b7bc1386aa30 gale_infotracacademiconefile_A748542885 crossref_primary_10_1049_sil2_12151 wiley_primary_10_1049_sil2_12151_SIL212151 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | IET signal processing |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2015; 1 2019; 2019 2001 2012 2015; 138 2021 2020 2015; 101 2018; 863 2002; 10 1998 2019 2018 2017 1995 2016 1996; 1 2015 2011; 12 2011; 28 2015; 8 2012; 54 2001; 862 Kleijn W.B. (e_1_2_13_20_1) 1995 e_1_2_13_25_1 e_1_2_13_24_1 e_1_2_13_26_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_40_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_6_1 Pedregosa F. (e_1_2_13_45_1) 2011; 12 Kalchbrenner N. (e_1_2_13_11_1) 2018 e_1_2_13_17_1 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_19_1 Mehri S. (e_1_2_13_12_1) 2016 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_14_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_32_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_34_1 e_1_2_13_33_1 e_1_2_13_30_1 Müller M. (e_1_2_13_27_1) 2015 Oord A. (e_1_2_13_7_1) 2016 ITU (e_1_2_13_35_1) 1998 Arik S.Ö. (e_1_2_13_9_1) 2017 e_1_2_13_5_1 ITU (e_1_2_13_4_1) 2001 e_1_2_13_2_1 ITU (e_1_2_13_3_1) 2018; 863 e_1_2_13_29_1 e_1_2_13_28_1 |
References_xml | – start-page: 676 year: 2018 end-page: 680 – start-page: 1 year: 2015 end-page: 6 – volume: 863 year: 2018 article-title: Perceptual objective listening quality assessment publication-title: Int. Telecomm. UnionGeneva – start-page: 1 year: 2019 end-page: 6 – year: 2001 – year: 2021 – volume: 1 start-page: 13 year: 2015 article-title: ViSQOL: an objective speech quality model publication-title: EURASIP J. Audio Speech Music Process. – start-page: 401 year: 2021 end-page: 405 – volume: 10 start-page: 620 issue: 8 year: 2002 end-page: 636 – volume: 8 year: 2015 – year: 2016 – year: 2018 article-title: Efficient neural audio synthesis publication-title: CoRR – year: 1998 – year: 2012 – volume: 101 start-page: 616 issue: 3 year: 2015 end-page: 631 article-title: An analysis of the impact of playout delay adjustments introduced by VoIP jitter buffers on listening speech quality publication-title: Acta Acustica united Acustica – start-page: 6493 year: 2021 end-page: 6497 – start-page: 4779 year: 2018 end-page: 4783 – start-page: 3617 year: 2019 end-page: 3621 – volume: 28 start-page: 18 issue: 6 year: 2011 end-page: 28 article-title: Speech quality estimation: models and trends publication-title: IEEE Signal Process. Mag. – volume: 862 year: 2001 – volume: 54 start-page: 306 issue: 2 year: 2012 end-page: 320 article-title: Speech intelligibility prediction using a neurogram similarity index measure publication-title: Speech Commun. – year: 2020 – start-page: 7155 year: 2019 end-page: 7159 – year: 1995 – volume: 2019 start-page: 3406 year: 2019 end-page: 3410 – volume: 138 start-page: 2470 issue: 4 year: 2015 end-page: 2482 article-title: Comparing the information conveyed by envelope modulation for speech intelligibility, speech quality, and music quality publication-title: J. Acoust. Soc. Am. – start-page: 5891 year: 2019 end-page: 5895 – start-page: 1 year: 2020 end-page: 6 – year: 2017 – year: 2017 article-title: Deep voice 2: multi‐speaker neural text‐to‐speech publication-title: CoRR – year: 2016 article-title: SampleRNN: an unconditional end‐to‐end neural audio generation model publication-title: arXiv:1612.07837 – start-page: 5698 year: 2015 end-page: 5702 – year: 2019 – volume: 1 start-page: 200 year: 1996 end-page: 203 – year: 2015 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in Python publication-title: J. Mach. Learn. Res. – ident: e_1_2_13_24_1 – ident: e_1_2_13_18_1 doi: 10.1109/QoMEX48832.2020.9123109 – ident: e_1_2_13_26_1 doi: 10.1016/j.specom.2011.09.004 – ident: e_1_2_13_37_1 doi: 10.21437/Interspeech.2021-299 – ident: e_1_2_13_21_1 doi: 10.1109/ICASSP.1996.540325 – ident: e_1_2_13_19_1 doi: 10.1109/ICASSP39728.2021.9414901 – ident: e_1_2_13_43_1 – ident: e_1_2_13_25_1 doi: 10.21437/Interspeech.2019-1255 – ident: e_1_2_13_40_1 doi: 10.1109/ICASSP.2015.7179063 – volume-title: ITU‐T Rec year: 1998 ident: e_1_2_13_35_1 – volume: 863 year: 2018 ident: e_1_2_13_3_1 article-title: Perceptual objective listening quality assessment publication-title: Int. Telecomm. UnionGeneva – ident: e_1_2_13_16_1 doi: 10.3813/aaa.918857 – ident: e_1_2_13_29_1 – ident: e_1_2_13_42_1 doi: 10.1109/ICASSP39728.2021.9415120 – ident: e_1_2_13_6_1 doi: 10.1186/s13636‐015‐0054‐9 – ident: e_1_2_13_14_1 doi: 10.1109/ICASSP.2019.8682804 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_13_45_1 article-title: Scikit‐learn: machine learning in Python publication-title: J. Mach. Learn. Res. – ident: e_1_2_13_17_1 doi: 10.1109/ISSC.2019.8904962 – ident: e_1_2_13_41_1 doi: 10.1109/IEEECONF51394.2020.9443273 – ident: e_1_2_13_23_1 doi: 10.1109/TSA.2002.804299 – ident: e_1_2_13_10_1 doi: 10.1109/ICASSP.2019.8683143 – ident: e_1_2_13_31_1 – volume-title: Publishing CompanyIncorporated year: 2015 ident: e_1_2_13_27_1 – volume-title: Arxiv year: 2016 ident: e_1_2_13_7_1 – year: 2016 ident: e_1_2_13_12_1 article-title: SampleRNN: an unconditional end‐to‐end neural audio generation model publication-title: arXiv:1612.07837 – volume-title: Speech Coding and Synthesis year: 1995 ident: e_1_2_13_20_1 – ident: e_1_2_13_15_1 doi: 10.1109/ICASSP.2019.8682435 – ident: e_1_2_13_30_1 doi: 10.25080/Majora-7b98e3ed-003 – ident: e_1_2_13_8_1 doi: 10.1109/ICASSP.2018.8461368 – ident: e_1_2_13_39_1 doi: 10.1109/ICASSP39728.2021.9414878 – ident: e_1_2_13_38_1 doi: 10.21437/Interspeech.2020-2382 – ident: e_1_2_13_2_1 doi: 10.1109/msp.2011.942469 – ident: e_1_2_13_36_1 doi: 10.1121/1.4931899 – year: 2018 ident: e_1_2_13_11_1 article-title: Efficient neural audio synthesis publication-title: CoRR – year: 2017 ident: e_1_2_13_9_1 article-title: Deep voice 2: multi‐speaker neural text‐to‐speech publication-title: CoRR – ident: e_1_2_13_5_1 doi: 10.1109/QoMEX48832.2020.9123150 – ident: e_1_2_13_33_1 doi: 10.21437/Interspeech.2020-2939 – volume-title: ITU‐T Rec year: 2001 ident: e_1_2_13_4_1 – ident: e_1_2_13_22_1 – ident: e_1_2_13_34_1 doi: 10.1109/QoMEX.2015.7148100 – ident: e_1_2_13_28_1 – ident: e_1_2_13_32_1 doi: 10.1007/978-3-319-21945-5 – ident: e_1_2_13_44_1 – ident: e_1_2_13_13_1 doi: 10.1109/ICASSP.2018.8462529 |
SSID | ssj0056512 |
Score | 2.2881024 |
Snippet | Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate streams,... Abstract Speech coding has been shown to achieve good speech quality using either waveform matching or parametric reconstruction. For very low bit rate... |
SourceID | doaj gale crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1050 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXAQVBKG6TtEm9reKiIuITPRmStMEF3V12K-LNn-Bv9Jc4k3aX9aIXb6XkMMw0M990Zr4hZMdJhaTkaYQ1tkj42MKVSnhkBOeFMmByHxpkL9KTO3H2kDxMrPrCnrCKHrhS3D7uILHeGMABRihksvWJldbFXKXG8JCtN7PmKJmqfDCglKrOKXGJPGDiETGpyPaHnWcWOBXiH6EoMPaP_fIkUA2Rpj1P5mqISFuVaAtkquguktkJ4sAl8njTLwr3RKuRyHdqxvyaFH-s0vvW9eXXx-fVAW0Pei902HnpQAaLJ8seHYKvqBuoaV4tpKe4Yp6-mUGfut6wXCZ37ePbo5Oo3pQQOS55HMV5Cj6XSVMknHkPDkyKLLeplC5WWPqEtCXNMqOczD1EdKe8iJuuKWwCJoIotkKmu71usUoolj0942mRMyeYBfjiExFnuWLeWohdDbI9UpruV4QYOhSyRaZRtTqotkEOUZ_jE0hiHV6AaXVtWv2XaRtkF62h8aqVA-NMPTEAgiJplW5JoRJIn1TSIHvBYL9IpG9Oz1l4WvsP2dbJDMNBiNDYskGmy8FrsQnwpLRb4Uv8BtfD3aw priority: 102 providerName: Directory of Open Access Journals |
Title | Speech quality assessment with WARP‐Q: From similarity to subsequence dynamic time warp cost |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12151 https://doaj.org/article/0515bfaa105a481994f5b7bc1386aa30 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fSxwxEA-iL_VBtK149Q-BFgRh8TbJbrLFl1M8rqXIWRV9MiTZjR7U22NvpfjmR_Az-kmcye5d9UXo27JkIczszPwmk_kNId-cVEhKnkZYY4uEjy2YVMIjIzgvlAGV-3BB9iQdXIifV8nVAjmY9cI0_BDzAze0jOCv0cCNbaaQAKjFptfRHxa4ESD3WcLeWhzcwMRw5ocBqTS1TomD5AEXz8hJRbb_79s34Siw9s9982uwGqJNf5WstDCR9hq9rpGFYvyRLL8iD_xErs8mReFuadMW-UDNnGOT4uEqvez9Hj4_Pp1-p_2qvKPT0d0IslhcWZd0Cv6ivURN82YoPcUx8_SvqSbUldP6M7noH58fDaJ2WkLkuORxFOcp-F0mTZFw5j04MSmy3KZSulhh-RNSlzTLjHIy9xDVnfIi7rqusAmoCSLZOlkcl-Nig1AsfXrG0yJnTjALEMYnIs5yxby1EL865OtMaHrSkGLoUMwWmUbR6iDaDjlEec5XIJF1eFFWN7q1C40jZqw3BmCeEQqJin1ipXUxV6kxvNshu6gNjeZWV8aZtmsANorEVbonhUoghVJJh-wFhb2zI3324xcLT1_-Z_Em-cCw6SFcYtkii3V1X2wDFKntTvjjdkIi_wKTdtdI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEBYlObQ9lLRp6eZXkECgYLqWZEvubRO6bJpNyC_NqUKSrWShu168LqW3PEKeMU-SGdm7SS-F3oyRQcx4Zj5pZr4hZNdJhaTkaYQ5tkj42IJJJTwygvNCGVC5DwWyJ-ngSny7Tq7b2hzshWn4IRYXbmgZwV-jgeOFdHPgFEiSORv9ZIEcAQ4_ywKAOVb0MXE6d8QAVZpkp8RJ8gCM5-ykIvv89O1f8SjQ9i-c83O0GsJNf4W8aXEi7TWKfUteFJN35PUz9sBV8uNiWhTuljZ9kX-oWZBsUrxdpd9756cPd_dnX2i_Ksd0NhqP4BiLK-uSzsBhtFXUNG-m0lOcM09_m2pKXTmr35Or_tfLg0HUjkuIHJc8juI8BcfLpCkSzrwHLyZFlttUShcrzH-CiNIsM8rJ3ENYd8qLuOu6wiagJwhlH8jSpJwUHwnF3KdnPC1y5gSzgGF8IuIsV8xbCwGsQ3bmQtPThhVDh2y2yDSKVgfRdsg-ynOxApmsw4uyutGtYWicMWO9MYDzjFDIVOwTK62LuUqN4d0O2UNtaLS3ujLOtG0DsFFkrtI9KVQCZyiVdMinoLB_7EhfHA5ZeFr7n8Xb5OXg8nioh4cnR-vkFcMOiFDRskGW6upXsQm4pLZb4e97BDzi2cY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1faxQxEB9KC0UfRG3F818DFoTC4m2S3WTFl9N6tFpKtZ4WHxqS7EYP7O2xtyK--RH8jH4SZ7J71_oi-LYsWQgzmZnf7GR-A7DrlSZS8jyhGlsiQ-rQpDKRWClEpS2qPMQLssf5wUS-PsvO1uD5shem44dY_XAjy4j-mgx8XoYu35TEkbmYfuWRGwFznw2iycNTvjH6MPk0WXpixCpdtVPRKHlExkt6Ulk8vfz6r4AUeftX3vkqXI3xZnwTbvRAkY06zd6CtWp2G65foQ_cgvPTeVX5L6xrjPzB7Iplk9HvVfZx9O7k989fb5-xcVNfsMX0Yop5LK1sa7ZAj9Ffo2ZlN5ae0aB59t02c-brRbsNk_Gr9y8Pkn5eQuKFEmmSljl6Xq5slQkeAroxJYvS5Ur5VFMBFJOXvCis9qoMGNe9DjId-qF0GSoKY9kdWJ_Vs-ouMCp-Bi7yquRecocgJmQyLUrNg3MYwQbweCk0M-9oMUwsZ8vCkGhNFO0AXpA8VyuIyjq-qJvPprcMQ0NmXLAWgZ6VmqiKQ-aU86nQubViOIAnpA1DBtc21tu-bwA3StRVZqSkzjCJ0tkA9qLC_rEjc3p4xOPTvf9ZvAObJ_tjc3R4_OY-XOPUARFvtDyA9bb5Vj1EXNK6R_3x-wMkJtq1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speech+quality+assessment+with+WARP%E2%80%90Q%3A+From+similarity+to+subsequence+dynamic+time+warp+cost&rft.jtitle=IET+signal+processing&rft.au=Jassim%2C+Wissam+A.&rft.au=Skoglund%2C+Jan&rft.au=Chinen%2C+Michael&rft.au=Hines%2C+Andrew&rft.date=2022-12-01&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=16&rft.issue=9&rft.spage=1050&rft.epage=1070&rft_id=info:doi/10.1049%2Fsil2.12151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_sil2_12151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon |