Fabrication of Carboxylate‐Functionalized 2D MOF Nanosheet with Caged Cavity for Efficient and Selective Extraction of Uranium from Aqueous Solution

The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporat...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 23; pp. e2308910 - n/a
Main Authors Yu, Cai‐Xia, Jiang, Wen, Lei, Min, Yao, Meng‐Ru, Sun, Xue‐Qin, Wang, Yanlong, Liu, Wei, Liu, Lei‐Lei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra‐low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50–500 µg L−1 within 5 min. Moreover, the 2D nano‐material exhibits ultra‐high anti‐interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT‐IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets. A carboxylate‐functionalized 2D metal–organic framework (MOF) nanosheet with cage‐like cavities was constructed based on the calix[4]arene, which not only facilitates MOF exfoliation and pollutant capture but also prevents pollutant desorption. The as‐synthesized MOF nanosheets show an ultrahigh selectivity and anti‐interference performance for uranium.
AbstractList The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra‐low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50–500 µg L−1 within 5 min. Moreover, the 2D nano‐material exhibits ultra‐high anti‐interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT‐IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets. A carboxylate‐functionalized 2D metal–organic framework (MOF) nanosheet with cage‐like cavities was constructed based on the calix[4]arene, which not only facilitates MOF exfoliation and pollutant capture but also prevents pollutant desorption. The as‐synthesized MOF nanosheets show an ultrahigh selectivity and anti‐interference performance for uranium.
The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.
The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra‐low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50–500 µg L −1 within 5 min. Moreover, the 2D nano‐material exhibits ultra‐high anti‐interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT‐IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.
The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L-1 within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L-1 within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.
The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra‐low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50–500 µg L−1 within 5 min. Moreover, the 2D nano‐material exhibits ultra‐high anti‐interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT‐IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.
Author Yu, Cai‐Xia
Liu, Wei
Liu, Lei‐Lei
Lei, Min
Wang, Yanlong
Sun, Xue‐Qin
Jiang, Wen
Yao, Meng‐Ru
Author_xml – sequence: 1
  givenname: Cai‐Xia
  surname: Yu
  fullname: Yu, Cai‐Xia
  organization: Yantai University
– sequence: 2
  givenname: Wen
  surname: Jiang
  fullname: Jiang, Wen
  organization: Yantai University
– sequence: 3
  givenname: Min
  surname: Lei
  fullname: Lei, Min
  organization: Yantai University
– sequence: 4
  givenname: Meng‐Ru
  surname: Yao
  fullname: Yao, Meng‐Ru
  organization: Yantai University
– sequence: 5
  givenname: Xue‐Qin
  surname: Sun
  fullname: Sun, Xue‐Qin
  organization: Yantai University
– sequence: 6
  givenname: Yanlong
  surname: Wang
  fullname: Wang, Yanlong
  organization: Soochow University
– sequence: 7
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: wliu@ytu.edu.cn
  organization: Yantai University
– sequence: 8
  givenname: Lei‐Lei
  orcidid: 0000-0002-3372-2953
  surname: Liu
  fullname: Liu, Lei‐Lei
  email: liuleilei@ytu.edu.cn
  organization: Yantai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38150628$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URH9gyxJZYsMm4dpOPeNlFRKKlNJFynp0x2NTV55xsWfahhWPwKoPyJPgIW2QKiFWtnS_c-7VOYdkrwudIeQ1gykD4O9T6_2UAxdQKgbPyAGTTExkydXe7s9gnxymdAUgGJ8VL8i-KNkxSF4ekPsl1tFp7F3oaLB0jrEOdxuPvfn14-dy6PQ4Qe--m4byD_TsfEk_YxfSpTE9vXX9ZZZ8zbM53rh-Q22IdGGt0850PcWuoWvjTTa5MXRx10fUj5u-ROzc0FIbQ0tPvg0mDImugx9G4CV5btEn8-rhPSIXy8XF_HSyOv_4aX6ymmhRCJhYaaQChrW2Uh4LJppGqrqxWCttAZXGUswUK6WFEgCx4FwZxkrDwTQzJo7Iu63tdQz5gtRXrUvaeI_deE7FFRRM5TSLjL59gl6FIeZkUiVAzgous3em3jxQQ92aprqOrsW4qR4Dz8B0C-gYUorG7hAG1dhoNTZa7RrNgtkTgXb9n7pymM7_W6a2slvnzeY_S6r12Wr1V_sb1wS3-g
CitedBy_id crossref_primary_10_1021_acsanm_4c00294
crossref_primary_10_1016_j_jssc_2025_125277
crossref_primary_10_1021_acs_inorgchem_4c02148
crossref_primary_10_1016_j_seppur_2024_126892
crossref_primary_10_1016_j_ccr_2025_216543
crossref_primary_10_1039_D4QI02343A
crossref_primary_10_1016_j_seppur_2025_132432
crossref_primary_10_20517_cs_2024_47
crossref_primary_10_1016_j_colsurfb_2025_114521
Cites_doi 10.1016/j.cej.2022.135639
10.1039/C6CC10274C
10.1016/j.cej.2023.141978
10.1039/D3QI01619F
10.1002/anie.202014673
10.1021/acsami.2c06841
10.1016/j.cej.2021.133787
10.1016/j.jhazmat.2023.131484
10.1016/j.jclepro.2023.137140
10.1016/j.carbpol.2023.120970
10.1002/smll.202301001
10.1021/acs.inorgchem.2c01886
10.1007/s11426-022-1284-x
10.1039/D0TA07959F
10.1021/jacs.0c12125
10.1021/acs.est.2c02632
10.1002/anie.202207259
10.1016/j.chempr.2021.10.020
10.1021/jacs.9b07633
10.1016/j.jhazmat.2022.130277
10.1007/s12274-023-5750-7
10.1016/j.cej.2022.140318
10.1016/j.apcatb.2016.04.035
10.1021/acs.inorgchem.1c03040
10.1039/D2QM01333A
10.1016/j.jclepro.2020.120379
10.1039/D3TA00279A
10.1021/jacs.3c06159
10.1016/j.ccr.2022.214815
10.1021/jacs.6b07351
10.1021/acs.inorgchem.8b02315
10.1021/acs.est.3c03477
10.1021/acs.analchem.7b00821
10.1016/j.ccr.2022.214917
10.1016/j.cej.2023.141687
10.1002/anie.201910157
10.1016/j.molliq.2023.122143
10.1039/C8CS00268A
10.1016/j.cej.2022.137264
10.1016/j.cej.2023.142015
10.1007/s12274-022-4909-y
10.1016/j.jece.2023.109763
10.1016/j.snb.2020.127819
10.1007/s12274-022-4461-9
10.1002/anie.201909718
10.1021/jacs.2c08327
10.1016/j.cclet.2021.07.013
10.1021/acsami.8b08739
10.1016/j.cej.2021.129002
10.1016/j.cej.2020.126981
10.1016/j.jcis.2022.01.138
10.1016/j.carbpol.2023.120834
10.1016/j.colsurfa.2023.131983
10.1016/j.cej.2022.139486
10.1016/j.jece.2021.105340
10.1039/D1QI00259G
10.1039/D0CS01538E
10.1039/D1EN00059D
10.1002/adfm.202208148
10.1002/anie.202000670
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202308910
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38150628
10_1002_smll_202308910
SMLL202308910
Genre article
Journal Article
GrantInformation_xml – fundername: Science Foundation of the Higher Education Institutions of Jiangsu Province
  funderid: 22KJA150006
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2021MB106; ZR2021QB090; ZR2020QB147
– fundername: Young Taishan Scholars Program
  funderid: TSQN201909082
– fundername: Natural Science Foundation of China
  funderid: 22376153; 22176163
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021QB090
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021MB106
– fundername: Natural Science Foundation of China
  grantid: 22376153
– fundername: Natural Science Foundation of China
  grantid: 22176163
– fundername: Young Taishan Scholars Program
  grantid: TSQN201909082
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020QB147
– fundername: Science Foundation of the Higher Education Institutions of Jiangsu Province
  grantid: 22KJA150006
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3730-f6e6901abcf665313dd69bdfab9cf0a9ca8349186f0800aa7229e118e20ed413
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 05:20:08 EDT 2025
Fri Jul 25 12:15:34 EDT 2025
Mon Jul 21 06:01:20 EDT 2025
Tue Jul 01 02:54:53 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
Sun Jul 06 04:45:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords functionalized 2D MOF nanosheet
UO22
calixarene
efficient and selective extraction
caged cavity
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-f6e6901abcf665313dd69bdfab9cf0a9ca8349186f0800aa7229e118e20ed413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3372-2953
PMID 38150628
PQID 3064726229
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2907196827
proquest_journals_3064726229
pubmed_primary_38150628
crossref_primary_10_1002_smll_202308910
crossref_citationtrail_10_1002_smll_202308910
wiley_primary_10_1002_smll_202308910_SMLL202308910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 461
2023; 383
2023; 7
2023; 145
2021; 405
2019; 58
2017; 89
2020; 59
2022; 65
2022; 614
2018; 47
2023; 454
2023; 452
2022; 32
2023; 459
2020; 256
2022; 33
2016; 193
2022; 446
2021; 9
2021; 8
2023; 10
2022; 473
2023; 57
2023; 11
2011
2023; 16
2023; 443
2023; 19
2021; 143
2021; 50
2022; 438
2019; 141
2023; 409
2022; 433
2022; 144
2017; 53
2022; 61
2023; 674
2023; 475
2022; 8
2021; 415
2022; 56
2023; 315
2022; 14
2023; 312
2020; 310
2016; 138
2021; 60
2018; 10
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 2536
  year: 2023
  publication-title: Nano Res.
– volume: 57
  year: 2023
  publication-title: Environ. Sci. Technol.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2021
  publication-title: J. Environ. Chem. Eng.
– volume: 61
  year: 2022
  publication-title: Inorg. Chem.
– volume: 89
  start-page: 5678
  year: 2017
  publication-title: Anal. Chem.
– volume: 10
  start-page: 6566
  year: 2023
  publication-title: Inorg. Chem. Front.
– volume: 473
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 383
  year: 2023
  publication-title: J. Mol. Liq.
– volume: 50
  start-page: 5366
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 4554
  year: 2023
  publication-title: Nano Res.
– volume: 7
  start-page: 1684
  year: 2023
  publication-title: Mater. Chem. Front.
– volume: 405
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 47
  start-page: 6267
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 61
  start-page: 982
  year: 2022
  publication-title: Inorg. Chem.
– volume: 59
  start-page: 7788
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 452
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 674
  year: 2023
  publication-title: Colloid. Surface. A
– volume: 19
  year: 2023
  publication-title: Small
– volume: 409
  year: 2023
  publication-title: J Clean Prod
– volume: 143
  start-page: 3407
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 438
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 454
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 11
  year: 2023
  publication-title: J. Environ. Chem. Eng.
– volume: 60
  start-page: 6920
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 193
  start-page: 189
  year: 2016
  publication-title: Appl Catal B
– volume: 8
  start-page: 1469
  year: 2021
  publication-title: Environ Sci: Nano
– volume: 56
  year: 2022
  publication-title: Environ. Sci. Technol.
– volume: 8
  start-page: 450
  year: 2022
  publication-title: Chem
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 459
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 256
  year: 2020
  publication-title: J Clean Prod
– volume: 33
  start-page: 693
  year: 2022
  publication-title: Chinese Chem. Lett.
– volume: 461
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 312
  year: 2023
  publication-title: Carbohydr. Polym.
– volume: 9
  start-page: 546
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 415
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 57
  year: 2018
  publication-title: Inorg. Chem.
– volume: 16
  year: 2023
  publication-title: Nano Res.
– volume: 65
  start-page: 1544
  year: 2022
  publication-title: Sci China Chem
– volume: 315
  year: 2023
  publication-title: Carbohydr. Polym.
– volume: 614
  start-page: 547
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 454
  year: 2023
  publication-title: J. Hazard. Mater.
– volume: 11
  start-page: 6747
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 310
  year: 2020
  publication-title: Sens Actuators B Chem
– volume: 8
  start-page: 2561
  year: 2021
  publication-title: Inorg. Chem. Front.
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 475
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 443
  year: 2023
  publication-title: J. Hazard. Mater.
– volume: 53
  start-page: 4199
  year: 2017
  publication-title: Chem. Commun.
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cej.2022.135639
– ident: e_1_2_7_48_1
  doi: 10.1039/C6CC10274C
– ident: e_1_2_7_57_1
  doi: 10.1016/j.cej.2023.141978
– ident: e_1_2_7_37_1
  doi: 10.1039/D3QI01619F
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.202014673
– ident: e_1_2_7_3_1
– ident: e_1_2_7_45_1
  doi: 10.1021/acsami.2c06841
– ident: e_1_2_7_11_1
  doi: 10.1016/j.cej.2021.133787
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jhazmat.2023.131484
– ident: e_1_2_7_51_1
  doi: 10.1016/j.jclepro.2023.137140
– ident: e_1_2_7_58_1
  doi: 10.1016/j.carbpol.2023.120970
– ident: e_1_2_7_23_1
  doi: 10.1002/smll.202301001
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.inorgchem.2c01886
– ident: e_1_2_7_24_1
  doi: 10.1007/s11426-022-1284-x
– ident: e_1_2_7_27_1
  doi: 10.1039/D0TA07959F
– ident: e_1_2_7_44_1
  doi: 10.1021/jacs.0c12125
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.est.2c02632
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202207259
– ident: e_1_2_7_26_1
  doi: 10.1016/j.chempr.2021.10.020
– ident: e_1_2_7_40_1
  doi: 10.1021/jacs.9b07633
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jhazmat.2022.130277
– ident: e_1_2_7_20_1
  doi: 10.1007/s12274-023-5750-7
– ident: e_1_2_7_53_1
  doi: 10.1016/j.cej.2022.140318
– ident: e_1_2_7_61_1
  doi: 10.1016/j.apcatb.2016.04.035
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.inorgchem.1c03040
– ident: e_1_2_7_36_1
  doi: 10.1039/D2QM01333A
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jclepro.2020.120379
– ident: e_1_2_7_17_1
  doi: 10.1039/D3TA00279A
– ident: e_1_2_7_35_1
  doi: 10.1021/jacs.3c06159
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ccr.2022.214815
– ident: e_1_2_7_50_1
  doi: 10.1021/jacs.6b07351
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.inorgchem.8b02315
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.est.3c03477
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.analchem.7b00821
– ident: e_1_2_7_1_1
  doi: 10.1016/j.ccr.2022.214917
– ident: e_1_2_7_2_1
  doi: 10.1016/j.cej.2023.141687
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.201910157
– ident: e_1_2_7_56_1
  doi: 10.1016/j.molliq.2023.122143
– ident: e_1_2_7_25_1
  doi: 10.1039/C8CS00268A
– ident: e_1_2_7_5_1
  doi: 10.1016/j.cej.2022.137264
– ident: e_1_2_7_55_1
  doi: 10.1016/j.cej.2023.142015
– ident: e_1_2_7_42_1
  doi: 10.1007/s12274-022-4909-y
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jece.2023.109763
– ident: e_1_2_7_41_1
  doi: 10.1016/j.snb.2020.127819
– ident: e_1_2_7_32_1
  doi: 10.1007/s12274-022-4461-9
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.201909718
– ident: e_1_2_7_43_1
  doi: 10.1021/jacs.2c08327
– ident: e_1_2_7_30_1
  doi: 10.1016/j.cclet.2021.07.013
– ident: e_1_2_7_47_1
  doi: 10.1021/acsami.8b08739
– ident: e_1_2_7_54_1
  doi: 10.1016/j.cej.2021.129002
– ident: e_1_2_7_33_1
  doi: 10.1016/j.cej.2020.126981
– ident: e_1_2_7_59_1
  doi: 10.1016/j.jcis.2022.01.138
– ident: e_1_2_7_9_1
  doi: 10.1016/j.carbpol.2023.120834
– ident: e_1_2_7_52_1
  doi: 10.1016/j.colsurfa.2023.131983
– ident: e_1_2_7_7_1
  doi: 10.1016/j.cej.2022.139486
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jece.2021.105340
– ident: e_1_2_7_8_1
  doi: 10.1039/D1QI00259G
– ident: e_1_2_7_19_1
  doi: 10.1039/D0CS01538E
– ident: e_1_2_7_60_1
  doi: 10.1039/D1EN00059D
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.202208148
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202000670
SSID ssj0031247
Score 2.5566783
Snippet The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2308910
SubjectTerms Adsorption
Aqueous solutions
caged cavity
calixarene
Density functional theory
efficient and selective extraction
Fourier transforms
functionalized 2D MOF nanosheet
Infrared analysis
Low concentrations
Metal-organic frameworks
Nanosheets
Photoelectrons
Seawater
Sustainable development
UO22
Uranium
Title Fabrication of Carboxylate‐Functionalized 2D MOF Nanosheet with Caged Cavity for Efficient and Selective Extraction of Uranium from Aqueous Solution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202308910
https://www.ncbi.nlm.nih.gov/pubmed/38150628
https://www.proquest.com/docview/3064726229
https://www.proquest.com/docview/2907196827
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hTnDoD9A2La2MVKmnwGIn2fiIlo1QxVKpgMQtsmOnRV2y1SYrVZz6CD31AXkSZuwksFQVUntLZFt2HM_M57HnG4D3lsdGKjr6lyIOo0hGoaQDx32hEZ0by6W7VTk5SY7Oo48X8cW9KH7PD9E73EgynL4mAVe63rsjDa2vpnR0gBA6lS7Gii5sESr63PNHCTReLrsK2qyQiLc61sYB31tuvmyV_oCay8jVmZ7sKahu0P7GybfdRaN3i-sHfI7_81XP4EmLS9mBX0jPYcVWG7B-j61wE35nSs9bFx-blWyk5hpHNEW0evPzV4YG0vsVL6-tYfyQTT5lDJX3rP5qbcPI4YtNvmDZSFHCCoZwmY0dgwUaPqYqw05dUh7Uv2z8o5n7kAvq6RwN6uXiilEsDDvASZstatY59LbgLBufjY7CNq1DWAjUJ2GZWMqCpXRRJgmqAGFMIrUplZZFOVCyUKmI5H6alIRmlRpyLi3ugywfWIM29wWsVrPKvgImcbMpBiYSBKxSGctCp0oMDcIqq2OpAgi7v5oXLeU5Zd6Y5p6smec03Xk_3QF86Ot_92Qff6253S2SvBX6OqfN3JAnONwAdvpiFFc6g1EVzU3OJWI6maR8GMBLv7j6rhA8xRTSGgB3S-SRMeSnk-Pj_u31vzR6A2v4HPmrb9uw2swX9i2CrEa_c4J0C-IHHwM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5R8CBYwE4pR26_xsfOBQ7W60pbtFolupN8uOHajYZtEmq0JPPAInnoNX6Sv0SZjJHywIISH1wDGxnVjjsefz2PMNwDPLAyMUHf0LL3B9X_iuoAPHLU8jOjeWi_JW5XgvHB74rw6DwxX41sTCVPwQrcONZka5XtMEJ4f05g_W0Px4SmcHiKEjtHn1vcpd--kEd235y50-DvFzzuPBpDd068QCbuKhRrtpaCkPk9JJGoaohJ4xodAmVVokaUeJREWeL7aiMCU8pVSXc2ERiVvesQZXffzsJbhMWcSJrb__piWs8tBalulc0Ei6xPTV0ER2-OZyd5fN4G_Ydhkql7Yuvg5njZSqKy7vNxaF3khOfyGQ_J_EeAPWauDNtquZchNWbHYLrv1Ex3gbvsZKz2sfJpulrKfmGiUwRTh-_vlLjAigcpwenVrDeJ-NX8cMrdMsf2dtwcijjU3eYllPUUYOhvsBNigpOtCyM5UZtl9mHUIDwwYfi3kVU0J_OkDEcLQ4ZhTsw7ZxkGaLnDUeyzswuQi53IXVbJbZ-8AE7qa9jvE9Qo6RCESiI-V1DeJGqwOhHHAbLZJJzelOqUWmsmKj5pJGV7aj68CLtv6His3kjzXXG6WU9aqWS9qtdnmI3XXgaVuM6xEdMqmMZCO5QNAqwoh3HbhXKXP7K0SHAcXsOsBLlfxLH-T-eDRqnx78S6MncGU4GY_kaGdv9yFcxfd-dc9vHVaL-cI-QkRZ6MflJGYgL1jbvwNtIHwT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0IFDASiFXa1HlMvGBRzUzU0pmCaCt1Z9mxQ6tOM9UkI6ArPoEVv8Gv8A18CffmBQNCSEhdsEziJNb1tc_xtX0uwFPLQyMULf0LP3SDQASuoAXHdV8jOzeWi2pX5Xgn2twPXh6EB0vwpT0LU-tDdAE36hnVeE0d_NRkaz9EQ4uTCS0dIIWOEfKabZXb9sM7nLQVL7YG2MLPOE-Ge_1Nt8kr4KY-OrSbRZbSMCmdZlGEPugbEwltMqVFmnlKpCr2A7EeRxnRKaV6nAuLRNxyzxoc9PGzF-BiEHmCckUM3nR6VT6CZZXNBTHSJaGvViXS42uL1V1Ewd-o7SJTrqAuuQZfWyPVO1yOV-elXk3PftGP_I-seB2uNrSbbdT95AYs2fwmXPlJjPEWfE6UnjURTDbNWF_NNBpggmT828dPCeJ_HTY9OrOG8QEbv0oYYtO0OLS2ZBTPxlfe4rO-onwcDGcDbFgJdCCuM5UbtlvlHEJ4YcP35aw-UUJ_2ke-cDQ_YXTUh21gG03nBWvjlbdh7zzscgeW82lu7wETOJf2PRP4xBtjEYpUx8rvGWSNVodCOeC2TiTTRtGdEotMZK1FzSW1ruxa14HnXfnTWsvkjyVXWp-UzZhWSJqr9niE1XXgSfcYRyNaYlI52UZygZRVRDHvOXC39uXuV8gNQzqx6wCvPPIvdZC749Gou7r_Ly89hkuvB4kcbe1sP4DLeDuoN_mtwHI5m9uHSCdL_ajqwgzkOTv7d2UAesI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Carboxylate%E2%80%90Functionalized+2D+MOF+Nanosheet+with+Caged+Cavity+for+Efficient+and+Selective+Extraction+of+Uranium+from+Aqueous+Solution&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cai%E2%80%90Xia+Yu&rft.au=Jiang%2C+Wen&rft.au=Min%2C+Lei&rft.au=Meng%E2%80%90Ru+Yao&rft.date=2024-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=23&rft_id=info:doi/10.1002%2Fsmll.202308910&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon