Fabrication of Carboxylate‐Functionalized 2D MOF Nanosheet with Caged Cavity for Efficient and Selective Extraction of Uranium from Aqueous Solution
The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporat...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 23; pp. e2308910 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra‐low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50–500 µg L−1 within 5 min. Moreover, the 2D nano‐material exhibits ultra‐high anti‐interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT‐IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.
A carboxylate‐functionalized 2D metal–organic framework (MOF) nanosheet with cage‐like cavities was constructed based on the calix[4]arene, which not only facilitates MOF exfoliation and pollutant capture but also prevents pollutant desorption. The as‐synthesized MOF nanosheets show an ultrahigh selectivity and anti‐interference performance for uranium. |
---|---|
AbstractList | The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra‐low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50–500 µg L−1 within 5 min. Moreover, the 2D nano‐material exhibits ultra‐high anti‐interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT‐IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.
A carboxylate‐functionalized 2D metal–organic framework (MOF) nanosheet with cage‐like cavities was constructed based on the calix[4]arene, which not only facilitates MOF exfoliation and pollutant capture but also prevents pollutant desorption. The as‐synthesized MOF nanosheets show an ultrahigh selectivity and anti‐interference performance for uranium. The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets. The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra‐low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50–500 µg L −1 within 5 min. Moreover, the 2D nano‐material exhibits ultra‐high anti‐interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT‐IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets. The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L-1 within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L-1 within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets. The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal–organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra‐low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50–500 µg L−1 within 5 min. Moreover, the 2D nano‐material exhibits ultra‐high anti‐interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT‐IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets. |
Author | Yu, Cai‐Xia Liu, Wei Liu, Lei‐Lei Lei, Min Wang, Yanlong Sun, Xue‐Qin Jiang, Wen Yao, Meng‐Ru |
Author_xml | – sequence: 1 givenname: Cai‐Xia surname: Yu fullname: Yu, Cai‐Xia organization: Yantai University – sequence: 2 givenname: Wen surname: Jiang fullname: Jiang, Wen organization: Yantai University – sequence: 3 givenname: Min surname: Lei fullname: Lei, Min organization: Yantai University – sequence: 4 givenname: Meng‐Ru surname: Yao fullname: Yao, Meng‐Ru organization: Yantai University – sequence: 5 givenname: Xue‐Qin surname: Sun fullname: Sun, Xue‐Qin organization: Yantai University – sequence: 6 givenname: Yanlong surname: Wang fullname: Wang, Yanlong organization: Soochow University – sequence: 7 givenname: Wei surname: Liu fullname: Liu, Wei email: wliu@ytu.edu.cn organization: Yantai University – sequence: 8 givenname: Lei‐Lei orcidid: 0000-0002-3372-2953 surname: Liu fullname: Liu, Lei‐Lei email: liuleilei@ytu.edu.cn organization: Yantai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38150628$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URH9gyxJZYsMm4dpOPeNlFRKKlNJFynp0x2NTV55xsWfahhWPwKoPyJPgIW2QKiFWtnS_c-7VOYdkrwudIeQ1gykD4O9T6_2UAxdQKgbPyAGTTExkydXe7s9gnxymdAUgGJ8VL8i-KNkxSF4ekPsl1tFp7F3oaLB0jrEOdxuPvfn14-dy6PQ4Qe--m4byD_TsfEk_YxfSpTE9vXX9ZZZ8zbM53rh-Q22IdGGt0850PcWuoWvjTTa5MXRx10fUj5u-ROzc0FIbQ0tPvg0mDImugx9G4CV5btEn8-rhPSIXy8XF_HSyOv_4aX6ymmhRCJhYaaQChrW2Uh4LJppGqrqxWCttAZXGUswUK6WFEgCx4FwZxkrDwTQzJo7Iu63tdQz5gtRXrUvaeI_deE7FFRRM5TSLjL59gl6FIeZkUiVAzgous3em3jxQQ92aprqOrsW4qR4Dz8B0C-gYUorG7hAG1dhoNTZa7RrNgtkTgXb9n7pymM7_W6a2slvnzeY_S6r12Wr1V_sb1wS3-g |
CitedBy_id | crossref_primary_10_1021_acsanm_4c00294 crossref_primary_10_1016_j_jssc_2025_125277 crossref_primary_10_1021_acs_inorgchem_4c02148 crossref_primary_10_1016_j_seppur_2024_126892 crossref_primary_10_1016_j_ccr_2025_216543 crossref_primary_10_1039_D4QI02343A crossref_primary_10_1016_j_seppur_2025_132432 crossref_primary_10_20517_cs_2024_47 crossref_primary_10_1016_j_colsurfb_2025_114521 |
Cites_doi | 10.1016/j.cej.2022.135639 10.1039/C6CC10274C 10.1016/j.cej.2023.141978 10.1039/D3QI01619F 10.1002/anie.202014673 10.1021/acsami.2c06841 10.1016/j.cej.2021.133787 10.1016/j.jhazmat.2023.131484 10.1016/j.jclepro.2023.137140 10.1016/j.carbpol.2023.120970 10.1002/smll.202301001 10.1021/acs.inorgchem.2c01886 10.1007/s11426-022-1284-x 10.1039/D0TA07959F 10.1021/jacs.0c12125 10.1021/acs.est.2c02632 10.1002/anie.202207259 10.1016/j.chempr.2021.10.020 10.1021/jacs.9b07633 10.1016/j.jhazmat.2022.130277 10.1007/s12274-023-5750-7 10.1016/j.cej.2022.140318 10.1016/j.apcatb.2016.04.035 10.1021/acs.inorgchem.1c03040 10.1039/D2QM01333A 10.1016/j.jclepro.2020.120379 10.1039/D3TA00279A 10.1021/jacs.3c06159 10.1016/j.ccr.2022.214815 10.1021/jacs.6b07351 10.1021/acs.inorgchem.8b02315 10.1021/acs.est.3c03477 10.1021/acs.analchem.7b00821 10.1016/j.ccr.2022.214917 10.1016/j.cej.2023.141687 10.1002/anie.201910157 10.1016/j.molliq.2023.122143 10.1039/C8CS00268A 10.1016/j.cej.2022.137264 10.1016/j.cej.2023.142015 10.1007/s12274-022-4909-y 10.1016/j.jece.2023.109763 10.1016/j.snb.2020.127819 10.1007/s12274-022-4461-9 10.1002/anie.201909718 10.1021/jacs.2c08327 10.1016/j.cclet.2021.07.013 10.1021/acsami.8b08739 10.1016/j.cej.2021.129002 10.1016/j.cej.2020.126981 10.1016/j.jcis.2022.01.138 10.1016/j.carbpol.2023.120834 10.1016/j.colsurfa.2023.131983 10.1016/j.cej.2022.139486 10.1016/j.jece.2021.105340 10.1039/D1QI00259G 10.1039/D0CS01538E 10.1039/D1EN00059D 10.1002/adfm.202208148 10.1002/anie.202000670 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202308910 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38150628 10_1002_smll_202308910 SMLL202308910 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Science Foundation of the Higher Education Institutions of Jiangsu Province funderid: 22KJA150006 – fundername: Natural Science Foundation of Shandong Province funderid: ZR2021MB106; ZR2021QB090; ZR2020QB147 – fundername: Young Taishan Scholars Program funderid: TSQN201909082 – fundername: Natural Science Foundation of China funderid: 22376153; 22176163 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2021QB090 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2021MB106 – fundername: Natural Science Foundation of China grantid: 22376153 – fundername: Natural Science Foundation of China grantid: 22176163 – fundername: Young Taishan Scholars Program grantid: TSQN201909082 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2020QB147 – fundername: Science Foundation of the Higher Education Institutions of Jiangsu Province grantid: 22KJA150006 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AAHHS AANHP AASGY AAYOK AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3730-f6e6901abcf665313dd69bdfab9cf0a9ca8349186f0800aa7229e118e20ed413 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 05:20:08 EDT 2025 Fri Jul 25 12:15:34 EDT 2025 Mon Jul 21 06:01:20 EDT 2025 Tue Jul 01 02:54:53 EDT 2025 Thu Apr 24 23:09:30 EDT 2025 Sun Jul 06 04:45:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | functionalized 2D MOF nanosheet UO22 calixarene efficient and selective extraction caged cavity |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-f6e6901abcf665313dd69bdfab9cf0a9ca8349186f0800aa7229e118e20ed413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3372-2953 |
PMID | 38150628 |
PQID | 3064726229 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2907196827 proquest_journals_3064726229 pubmed_primary_38150628 crossref_primary_10_1002_smll_202308910 crossref_citationtrail_10_1002_smll_202308910 wiley_primary_10_1002_smll_202308910_SMLL202308910 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 461 2023; 383 2023; 7 2023; 145 2021; 405 2019; 58 2017; 89 2020; 59 2022; 65 2022; 614 2018; 47 2023; 454 2023; 452 2022; 32 2023; 459 2020; 256 2022; 33 2016; 193 2022; 446 2021; 9 2021; 8 2023; 10 2022; 473 2023; 57 2023; 11 2011 2023; 16 2023; 443 2023; 19 2021; 143 2021; 50 2022; 438 2019; 141 2023; 409 2022; 433 2022; 144 2017; 53 2022; 61 2023; 674 2023; 475 2022; 8 2021; 415 2022; 56 2023; 315 2022; 14 2023; 312 2020; 310 2016; 138 2021; 60 2018; 10 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – year: 2011 – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 2536 year: 2023 publication-title: Nano Res. – volume: 57 year: 2023 publication-title: Environ. Sci. Technol. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2021 publication-title: J. Environ. Chem. Eng. – volume: 61 year: 2022 publication-title: Inorg. Chem. – volume: 89 start-page: 5678 year: 2017 publication-title: Anal. Chem. – volume: 10 start-page: 6566 year: 2023 publication-title: Inorg. Chem. Front. – volume: 473 year: 2022 publication-title: Coord. Chem. Rev. – volume: 383 year: 2023 publication-title: J. Mol. Liq. – volume: 50 start-page: 5366 year: 2021 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 4554 year: 2023 publication-title: Nano Res. – volume: 7 start-page: 1684 year: 2023 publication-title: Mater. Chem. Front. – volume: 405 year: 2021 publication-title: Chem. Eng. J. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 47 start-page: 6267 year: 2018 publication-title: Chem. Soc. Rev. – volume: 61 start-page: 982 year: 2022 publication-title: Inorg. Chem. – volume: 59 start-page: 7788 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 452 year: 2023 publication-title: Chem. Eng. J. – volume: 674 year: 2023 publication-title: Colloid. Surface. A – volume: 19 year: 2023 publication-title: Small – volume: 409 year: 2023 publication-title: J Clean Prod – volume: 143 start-page: 3407 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 438 year: 2022 publication-title: Chem. Eng. J. – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 454 year: 2023 publication-title: Chem. Eng. J. – volume: 11 year: 2023 publication-title: J. Environ. Chem. Eng. – volume: 60 start-page: 6920 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 193 start-page: 189 year: 2016 publication-title: Appl Catal B – volume: 8 start-page: 1469 year: 2021 publication-title: Environ Sci: Nano – volume: 56 year: 2022 publication-title: Environ. Sci. Technol. – volume: 8 start-page: 450 year: 2022 publication-title: Chem – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 459 year: 2023 publication-title: Chem. Eng. J. – volume: 256 year: 2020 publication-title: J Clean Prod – volume: 33 start-page: 693 year: 2022 publication-title: Chinese Chem. Lett. – volume: 461 year: 2023 publication-title: Chem. Eng. J. – volume: 312 year: 2023 publication-title: Carbohydr. Polym. – volume: 9 start-page: 546 year: 2021 publication-title: J. Mater. Chem. A – volume: 415 year: 2021 publication-title: Chem. Eng. J. – volume: 57 year: 2018 publication-title: Inorg. Chem. – volume: 16 year: 2023 publication-title: Nano Res. – volume: 65 start-page: 1544 year: 2022 publication-title: Sci China Chem – volume: 315 year: 2023 publication-title: Carbohydr. Polym. – volume: 614 start-page: 547 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 454 year: 2023 publication-title: J. Hazard. Mater. – volume: 11 start-page: 6747 year: 2023 publication-title: J. Mater. Chem. A – volume: 310 year: 2020 publication-title: Sens Actuators B Chem – volume: 8 start-page: 2561 year: 2021 publication-title: Inorg. Chem. Front. – volume: 446 year: 2022 publication-title: Chem. Eng. J. – volume: 475 year: 2023 publication-title: Coord. Chem. Rev. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 443 year: 2023 publication-title: J. Hazard. Mater. – volume: 53 start-page: 4199 year: 2017 publication-title: Chem. Commun. – ident: e_1_2_7_39_1 doi: 10.1016/j.cej.2022.135639 – ident: e_1_2_7_48_1 doi: 10.1039/C6CC10274C – ident: e_1_2_7_57_1 doi: 10.1016/j.cej.2023.141978 – ident: e_1_2_7_37_1 doi: 10.1039/D3QI01619F – ident: e_1_2_7_38_1 doi: 10.1002/anie.202014673 – ident: e_1_2_7_3_1 – ident: e_1_2_7_45_1 doi: 10.1021/acsami.2c06841 – ident: e_1_2_7_11_1 doi: 10.1016/j.cej.2021.133787 – ident: e_1_2_7_10_1 doi: 10.1016/j.jhazmat.2023.131484 – ident: e_1_2_7_51_1 doi: 10.1016/j.jclepro.2023.137140 – ident: e_1_2_7_58_1 doi: 10.1016/j.carbpol.2023.120970 – ident: e_1_2_7_23_1 doi: 10.1002/smll.202301001 – ident: e_1_2_7_28_1 doi: 10.1021/acs.inorgchem.2c01886 – ident: e_1_2_7_24_1 doi: 10.1007/s11426-022-1284-x – ident: e_1_2_7_27_1 doi: 10.1039/D0TA07959F – ident: e_1_2_7_44_1 doi: 10.1021/jacs.0c12125 – ident: e_1_2_7_13_1 doi: 10.1021/acs.est.2c02632 – ident: e_1_2_7_16_1 doi: 10.1002/anie.202207259 – ident: e_1_2_7_26_1 doi: 10.1016/j.chempr.2021.10.020 – ident: e_1_2_7_40_1 doi: 10.1021/jacs.9b07633 – ident: e_1_2_7_31_1 doi: 10.1016/j.jhazmat.2022.130277 – ident: e_1_2_7_20_1 doi: 10.1007/s12274-023-5750-7 – ident: e_1_2_7_53_1 doi: 10.1016/j.cej.2022.140318 – ident: e_1_2_7_61_1 doi: 10.1016/j.apcatb.2016.04.035 – ident: e_1_2_7_29_1 doi: 10.1021/acs.inorgchem.1c03040 – ident: e_1_2_7_36_1 doi: 10.1039/D2QM01333A – ident: e_1_2_7_15_1 doi: 10.1016/j.jclepro.2020.120379 – ident: e_1_2_7_17_1 doi: 10.1039/D3TA00279A – ident: e_1_2_7_35_1 doi: 10.1021/jacs.3c06159 – ident: e_1_2_7_18_1 doi: 10.1016/j.ccr.2022.214815 – ident: e_1_2_7_50_1 doi: 10.1021/jacs.6b07351 – ident: e_1_2_7_46_1 doi: 10.1021/acs.inorgchem.8b02315 – ident: e_1_2_7_14_1 doi: 10.1021/acs.est.3c03477 – ident: e_1_2_7_49_1 doi: 10.1021/acs.analchem.7b00821 – ident: e_1_2_7_1_1 doi: 10.1016/j.ccr.2022.214917 – ident: e_1_2_7_2_1 doi: 10.1016/j.cej.2023.141687 – ident: e_1_2_7_34_1 doi: 10.1002/anie.201910157 – ident: e_1_2_7_56_1 doi: 10.1016/j.molliq.2023.122143 – ident: e_1_2_7_25_1 doi: 10.1039/C8CS00268A – ident: e_1_2_7_5_1 doi: 10.1016/j.cej.2022.137264 – ident: e_1_2_7_55_1 doi: 10.1016/j.cej.2023.142015 – ident: e_1_2_7_42_1 doi: 10.1007/s12274-022-4909-y – ident: e_1_2_7_12_1 doi: 10.1016/j.jece.2023.109763 – ident: e_1_2_7_41_1 doi: 10.1016/j.snb.2020.127819 – ident: e_1_2_7_32_1 doi: 10.1007/s12274-022-4461-9 – ident: e_1_2_7_4_1 doi: 10.1002/anie.201909718 – ident: e_1_2_7_43_1 doi: 10.1021/jacs.2c08327 – ident: e_1_2_7_30_1 doi: 10.1016/j.cclet.2021.07.013 – ident: e_1_2_7_47_1 doi: 10.1021/acsami.8b08739 – ident: e_1_2_7_54_1 doi: 10.1016/j.cej.2021.129002 – ident: e_1_2_7_33_1 doi: 10.1016/j.cej.2020.126981 – ident: e_1_2_7_59_1 doi: 10.1016/j.jcis.2022.01.138 – ident: e_1_2_7_9_1 doi: 10.1016/j.carbpol.2023.120834 – ident: e_1_2_7_52_1 doi: 10.1016/j.colsurfa.2023.131983 – ident: e_1_2_7_7_1 doi: 10.1016/j.cej.2022.139486 – ident: e_1_2_7_6_1 doi: 10.1016/j.jece.2021.105340 – ident: e_1_2_7_8_1 doi: 10.1039/D1QI00259G – ident: e_1_2_7_19_1 doi: 10.1039/D0CS01538E – ident: e_1_2_7_60_1 doi: 10.1039/D1EN00059D – ident: e_1_2_7_21_1 doi: 10.1002/adfm.202208148 – ident: e_1_2_7_22_1 doi: 10.1002/anie.202000670 |
SSID | ssj0031247 |
Score | 2.5566783 |
Snippet | The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2308910 |
SubjectTerms | Adsorption Aqueous solutions caged cavity calixarene Density functional theory efficient and selective extraction Fourier transforms functionalized 2D MOF nanosheet Infrared analysis Low concentrations Metal-organic frameworks Nanosheets Photoelectrons Seawater Sustainable development UO22 Uranium |
Title | Fabrication of Carboxylate‐Functionalized 2D MOF Nanosheet with Caged Cavity for Efficient and Selective Extraction of Uranium from Aqueous Solution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202308910 https://www.ncbi.nlm.nih.gov/pubmed/38150628 https://www.proquest.com/docview/3064726229 https://www.proquest.com/docview/2907196827 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hTnDoD9A2La2MVKmnwGIn2fiIlo1QxVKpgMQtsmOnRV2y1SYrVZz6CD31AXkSZuwksFQVUntLZFt2HM_M57HnG4D3lsdGKjr6lyIOo0hGoaQDx32hEZ0by6W7VTk5SY7Oo48X8cW9KH7PD9E73EgynL4mAVe63rsjDa2vpnR0gBA6lS7Gii5sESr63PNHCTReLrsK2qyQiLc61sYB31tuvmyV_oCay8jVmZ7sKahu0P7GybfdRaN3i-sHfI7_81XP4EmLS9mBX0jPYcVWG7B-j61wE35nSs9bFx-blWyk5hpHNEW0evPzV4YG0vsVL6-tYfyQTT5lDJX3rP5qbcPI4YtNvmDZSFHCCoZwmY0dgwUaPqYqw05dUh7Uv2z8o5n7kAvq6RwN6uXiilEsDDvASZstatY59LbgLBufjY7CNq1DWAjUJ2GZWMqCpXRRJgmqAGFMIrUplZZFOVCyUKmI5H6alIRmlRpyLi3ugywfWIM29wWsVrPKvgImcbMpBiYSBKxSGctCp0oMDcIqq2OpAgi7v5oXLeU5Zd6Y5p6smec03Xk_3QF86Ot_92Qff6253S2SvBX6OqfN3JAnONwAdvpiFFc6g1EVzU3OJWI6maR8GMBLv7j6rhA8xRTSGgB3S-SRMeSnk-Pj_u31vzR6A2v4HPmrb9uw2swX9i2CrEa_c4J0C-IHHwM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5R8CBYwE4pR26_xsfOBQ7W60pbtFolupN8uOHajYZtEmq0JPPAInnoNX6Sv0SZjJHywIISH1wDGxnVjjsefz2PMNwDPLAyMUHf0LL3B9X_iuoAPHLU8jOjeWi_JW5XgvHB74rw6DwxX41sTCVPwQrcONZka5XtMEJ4f05g_W0Px4SmcHiKEjtHn1vcpd--kEd235y50-DvFzzuPBpDd068QCbuKhRrtpaCkPk9JJGoaohJ4xodAmVVokaUeJREWeL7aiMCU8pVSXc2ERiVvesQZXffzsJbhMWcSJrb__piWs8tBalulc0Ei6xPTV0ER2-OZyd5fN4G_Ydhkql7Yuvg5njZSqKy7vNxaF3khOfyGQ_J_EeAPWauDNtquZchNWbHYLrv1Ex3gbvsZKz2sfJpulrKfmGiUwRTh-_vlLjAigcpwenVrDeJ-NX8cMrdMsf2dtwcijjU3eYllPUUYOhvsBNigpOtCyM5UZtl9mHUIDwwYfi3kVU0J_OkDEcLQ4ZhTsw7ZxkGaLnDUeyzswuQi53IXVbJbZ-8AE7qa9jvE9Qo6RCESiI-V1DeJGqwOhHHAbLZJJzelOqUWmsmKj5pJGV7aj68CLtv6His3kjzXXG6WU9aqWS9qtdnmI3XXgaVuM6xEdMqmMZCO5QNAqwoh3HbhXKXP7K0SHAcXsOsBLlfxLH-T-eDRqnx78S6MncGU4GY_kaGdv9yFcxfd-dc9vHVaL-cI-QkRZ6MflJGYgL1jbvwNtIHwT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0IFDASiFXa1HlMvGBRzUzU0pmCaCt1Z9mxQ6tOM9UkI6ArPoEVv8Gv8A18CffmBQNCSEhdsEziJNb1tc_xtX0uwFPLQyMULf0LP3SDQASuoAXHdV8jOzeWi2pX5Xgn2twPXh6EB0vwpT0LU-tDdAE36hnVeE0d_NRkaz9EQ4uTCS0dIIWOEfKabZXb9sM7nLQVL7YG2MLPOE-Ge_1Nt8kr4KY-OrSbRZbSMCmdZlGEPugbEwltMqVFmnlKpCr2A7EeRxnRKaV6nAuLRNxyzxoc9PGzF-BiEHmCckUM3nR6VT6CZZXNBTHSJaGvViXS42uL1V1Ewd-o7SJTrqAuuQZfWyPVO1yOV-elXk3PftGP_I-seB2uNrSbbdT95AYs2fwmXPlJjPEWfE6UnjURTDbNWF_NNBpggmT828dPCeJ_HTY9OrOG8QEbv0oYYtO0OLS2ZBTPxlfe4rO-onwcDGcDbFgJdCCuM5UbtlvlHEJ4YcP35aw-UUJ_2ke-cDQ_YXTUh21gG03nBWvjlbdh7zzscgeW82lu7wETOJf2PRP4xBtjEYpUx8rvGWSNVodCOeC2TiTTRtGdEotMZK1FzSW1ruxa14HnXfnTWsvkjyVXWp-UzZhWSJqr9niE1XXgSfcYRyNaYlI52UZygZRVRDHvOXC39uXuV8gNQzqx6wCvPPIvdZC749Gou7r_Ly89hkuvB4kcbe1sP4DLeDuoN_mtwHI5m9uHSCdL_ajqwgzkOTv7d2UAesI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Carboxylate%E2%80%90Functionalized+2D+MOF+Nanosheet+with+Caged+Cavity+for+Efficient+and+Selective+Extraction+of+Uranium+from+Aqueous+Solution&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cai%E2%80%90Xia+Yu&rft.au=Jiang%2C+Wen&rft.au=Min%2C+Lei&rft.au=Meng%E2%80%90Ru+Yao&rft.date=2024-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=23&rft_id=info:doi/10.1002%2Fsmll.202308910&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |