Titanium Incorporation into Zr‐Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrug‐Resistant Pathogens

This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug‐resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN‐224) are incorporated with titanium through a...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 7; pp. e1906240 - n/a
Main Authors Chen, Mian, Long, Zhou, Dong, Ruihua, Wang, Le, Zhang, Jiangjiang, Li, Sixiang, Zhao, Xiaohui, Hou, Xiandeng, Shao, Huawu, Jiang, Xingyu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug‐resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN‐224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN‐224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN‐224(Zr/Ti) NPs are loaded onto lactic‐co‐glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT‐based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT. This study uses metal–organic frameworks alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy of chronic wounds infected by multidrug‐resistant bacteria. The Ti incorporation could greatly boost the generation of reactive oxygen species for effective elimination of multidrug‐resistant bacteria, and the validated biocompatibility of PCN‐224(Zr/Ti) would ensure the biosafety for photodynamic therapy.
AbstractList This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug‐resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN‐224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN‐224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN‐224(Zr/Ti) NPs are loaded onto lactic‐co‐glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT‐based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT. This study uses metal–organic frameworks alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy of chronic wounds infected by multidrug‐resistant bacteria. The Ti incorporation could greatly boost the generation of reactive oxygen species for effective elimination of multidrug‐resistant bacteria, and the validated biocompatibility of PCN‐224(Zr/Ti) would ensure the biosafety for photodynamic therapy.
This study uses metal-organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug-resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN-224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN-224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN-224(Zr/Ti) NPs are loaded onto lactic-co-glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT-based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT.This study uses metal-organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug-resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN-224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN-224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN-224(Zr/Ti) NPs are loaded onto lactic-co-glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT-based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT.
This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug‐resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN‐224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN‐224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN‐224(Zr/Ti) NPs are loaded onto lactic‐ co ‐glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT‐based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT.
This study uses metal-organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug-resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN-224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN-224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN-224(Zr/Ti) NPs are loaded onto lactic-co-glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT-based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT.
Author Zhang, Jiangjiang
Hou, Xiandeng
Wang, Le
Li, Sixiang
Jiang, Xingyu
Long, Zhou
Chen, Mian
Dong, Ruihua
Zhao, Xiaohui
Shao, Huawu
Author_xml – sequence: 1
  givenname: Mian
  surname: Chen
  fullname: Chen, Mian
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhou
  surname: Long
  fullname: Long, Zhou
  organization: Sichuan University
– sequence: 3
  givenname: Ruihua
  surname: Dong
  fullname: Dong, Ruihua
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Le
  surname: Wang
  fullname: Wang, Le
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Jiangjiang
  surname: Zhang
  fullname: Zhang, Jiangjiang
  organization: Southern University of Science and Technology
– sequence: 6
  givenname: Sixiang
  surname: Li
  fullname: Li, Sixiang
  organization: National Center for NanoScience and Technology
– sequence: 7
  givenname: Xiaohui
  surname: Zhao
  fullname: Zhao, Xiaohui
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Xiandeng
  surname: Hou
  fullname: Hou, Xiandeng
  email: houxd@scu.edu.cn
  organization: Sichuan University
– sequence: 9
  givenname: Huawu
  surname: Shao
  fullname: Shao, Huawu
  email: shaohw@cib.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Xingyu
  orcidid: 0000-0002-5008-4703
  surname: Jiang
  fullname: Jiang, Xingyu
  email: jiang@sustech.edu.cn
  organization: National Center for NanoScience and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31967726$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URD_gyhFZ4tJLgr3erONjVLVQKVErKBcuq1nvbOLitYvtJcqtPwEJfmF_CY5SglQJcfKHnmdmNO8xOXDeISGvORtzxop3sbd2XDCuWFWU7Bk54hUXo2paqIP9nbNDchzjLWOCF6V8QQ4FV5WURXVEft2YBM4MPb102oc7HyAZ76hxydMv4eH-x3X-XW2CcUbTBSawD_c_r8IStu-LAD2uffga6dqkFT13K3AaWzpzyTSgEwYDls50Mt9N2lBYgnEx0cVgk2nDsMz1P2I0Mc-Q6DWklV-iiy_J8w5sxFeP5wn5fHF-c_ZhNL96f3k2m4-0kIKNOjZhrFUtQ6WwExPs2nYCZSUKlExoJSU2KGGqoW0VNJUGLZBjIzrFGuxKcUJOd3Xvgv82YEx1b6JGa8GhH2JdiFKUSuZlZfTtE_TWD8Hl6TI1mQpecjnN1JtHamh6bOu7YHoIm_rPvjMw3gE6-BgDdnuEs3obaL0NtN4HmoXyiaBzYNuIUgBj_62pnbY2Fjf_aVJ_Wsznf93fo8i9BQ
CitedBy_id crossref_primary_10_1016_j_mtbio_2023_100827
crossref_primary_10_1021_acsami_2c02497
crossref_primary_10_1016_j_foodchem_2024_140707
crossref_primary_10_1021_jacs_2c03060
crossref_primary_10_1039_D0CS00178C
crossref_primary_10_1039_D3TB00639E
crossref_primary_10_1007_s10904_025_03716_5
crossref_primary_10_1021_acsnano_0c09617
crossref_primary_10_1039_D0CE01215G
crossref_primary_10_1039_D4MH00259H
crossref_primary_10_1186_s12866_024_03587_9
crossref_primary_10_1002_adfm_202310636
crossref_primary_10_1007_s40005_024_00691_w
crossref_primary_10_1021_acsami_1c02045
crossref_primary_10_1098_rsos_240380
crossref_primary_10_1016_j_ajps_2022_01_001
crossref_primary_10_1016_j_heliyon_2024_e39611
crossref_primary_10_1002_adma_202412071
crossref_primary_10_1039_D2CS00460G
crossref_primary_10_1039_D3TB03067A
crossref_primary_10_1002_agt2_505
crossref_primary_10_1021_acsnano_1c11613
crossref_primary_10_1002_smll_202311903
crossref_primary_10_1016_j_cjac_2023_100286
crossref_primary_10_1021_acs_inorgchem_3c03555
crossref_primary_10_1016_j_microc_2023_109143
crossref_primary_10_1016_j_ccr_2023_215431
crossref_primary_10_1021_acs_nanolett_3c02828
crossref_primary_10_3390_pharmaceutics15010274
crossref_primary_10_1002_adhm_202300375
crossref_primary_10_1007_s10904_024_03571_w
crossref_primary_10_1039_D1TA08741J
crossref_primary_10_2147_IJN_S397298
crossref_primary_10_1016_j_envres_2025_121410
crossref_primary_10_1002_smll_202406171
crossref_primary_10_1039_D3NA00530E
crossref_primary_10_1016_j_nantod_2023_102089
crossref_primary_10_1039_D2TB00341D
crossref_primary_10_1002_adhm_202001821
crossref_primary_10_1016_j_ccr_2021_213929
crossref_primary_10_1016_j_jiec_2021_08_035
crossref_primary_10_1021_acs_chemrev_3c00326
crossref_primary_10_3389_fchem_2022_1044627
crossref_primary_10_3390_catal11101186
crossref_primary_10_1016_j_carbpol_2022_120486
crossref_primary_10_1002_slct_202405715
crossref_primary_10_1080_1040841X_2021_1950120
crossref_primary_10_1021_acsnano_2c11339
crossref_primary_10_1021_acsami_1c05615
crossref_primary_10_1039_D4TB01882F
crossref_primary_10_1080_17568919_2025_2458459
crossref_primary_10_1007_s12274_021_3417_4
crossref_primary_10_1039_D2DT02470E
crossref_primary_10_1021_acs_molpharmaceut_0c00346
crossref_primary_10_1016_j_bioactmat_2024_09_003
crossref_primary_10_1007_s12223_024_01206_8
crossref_primary_10_1016_j_jcis_2021_04_109
crossref_primary_10_1016_j_ccr_2021_214121
crossref_primary_10_1021_acsmaterialslett_4c02191
crossref_primary_10_1016_j_ccr_2021_214007
crossref_primary_10_3389_fmicb_2022_1028086
crossref_primary_10_1016_j_cej_2023_141954
crossref_primary_10_1007_s10904_024_03076_6
crossref_primary_10_1016_j_carbpol_2021_118391
crossref_primary_10_3390_antibiotics12020351
crossref_primary_10_1021_acsanm_3c04675
crossref_primary_10_1016_j_cej_2024_152293
crossref_primary_10_1016_j_cej_2023_141959
crossref_primary_10_1039_D3BM00663H
crossref_primary_10_1021_acs_langmuir_3c02535
crossref_primary_10_1002_adem_202101550
crossref_primary_10_1007_s12274_022_4240_7
crossref_primary_10_1016_j_fuel_2022_126766
crossref_primary_10_3389_fchem_2021_635344
crossref_primary_10_1002_adhm_202001966
crossref_primary_10_1016_j_cej_2023_148220
crossref_primary_10_1007_s00253_024_13337_6
crossref_primary_10_1021_acsabm_1c00008
crossref_primary_10_1016_j_jcis_2023_05_190
crossref_primary_10_1039_D0NR04540C
crossref_primary_10_1039_D1RA08824F
crossref_primary_10_1002_adhm_202001205
crossref_primary_10_1002_adma_202302587
crossref_primary_10_3390_nano12111946
crossref_primary_10_1016_j_cej_2024_155791
crossref_primary_10_1515_ntrev_2022_0152
crossref_primary_10_1093_rb_rbae009
crossref_primary_10_1039_D0SC04889E
crossref_primary_10_1039_D4NJ00192C
crossref_primary_10_1016_j_cej_2022_134975
crossref_primary_10_1002_adfm_202002234
crossref_primary_10_1360_TB_2022_0974
crossref_primary_10_1016_j_microc_2020_105417
crossref_primary_10_1021_acsami_1c05234
crossref_primary_10_1016_j_cherd_2024_06_042
crossref_primary_10_1016_j_cej_2024_150945
crossref_primary_10_1021_acsabm_3c00391
crossref_primary_10_1126_sciadv_abo1874
crossref_primary_10_1002_asia_202100546
crossref_primary_10_1016_j_watres_2022_119366
crossref_primary_10_1002_adhm_202302087
crossref_primary_10_1039_D1TB02141A
crossref_primary_10_1002_adhm_202303688
crossref_primary_10_1186_s12951_024_02803_y
crossref_primary_10_1002_chem_202100920
crossref_primary_10_1016_j_jece_2023_109652
crossref_primary_10_1126_sciadv_adk9485
crossref_primary_10_1002_adhm_202303967
crossref_primary_10_1016_j_msec_2021_112514
crossref_primary_10_1016_j_cej_2023_145840
crossref_primary_10_1021_acsami_2c03001
crossref_primary_10_1016_j_actbio_2023_06_025
crossref_primary_10_1021_acsomega_1c00919
crossref_primary_10_1016_j_cej_2023_146773
crossref_primary_10_1039_D2CY00393G
crossref_primary_10_1016_j_ccr_2021_214273
crossref_primary_10_1016_j_jssc_2022_123311
crossref_primary_10_1016_j_carbpol_2022_120042
crossref_primary_10_1016_j_ccr_2024_216298
crossref_primary_10_1021_acs_chemmater_3c01140
crossref_primary_10_1016_j_cej_2021_134351
crossref_primary_10_1016_j_biomaterials_2022_121577
crossref_primary_10_1016_j_jcis_2023_03_050
crossref_primary_10_1002_smll_202303594
crossref_primary_10_1016_j_apcatb_2023_123374
crossref_primary_10_1002_adhm_202001897
crossref_primary_10_3390_ijms23116108
crossref_primary_10_1039_D1CS00056J
crossref_primary_10_3389_fchem_2022_971747
crossref_primary_10_1002_advs_202300328
crossref_primary_10_1016_j_cej_2021_130832
crossref_primary_10_1021_jacs_3c05425
crossref_primary_10_6023_A23020041
crossref_primary_10_1016_j_cej_2024_150642
crossref_primary_10_1016_j_nxmate_2024_100111
crossref_primary_10_1002_adhm_202401211
crossref_primary_10_1039_D3MA00389B
crossref_primary_10_1007_s10904_024_03078_4
crossref_primary_10_1039_D2CC06948B
crossref_primary_10_1021_acsmaterialslett_4c01460
crossref_primary_10_1016_j_hybadv_2025_100406
crossref_primary_10_1016_j_ajps_2024_100951
crossref_primary_10_1021_acsnano_2c08262
crossref_primary_10_1007_s40097_022_00500_6
crossref_primary_10_1016_j_scitotenv_2023_167475
crossref_primary_10_1016_j_matdes_2023_112252
Cites_doi 10.1002/adfm.201804632
10.1002/adma.201706831
10.1002/cphc.201700182
10.1002/smll.201804131
10.1021/acscentsci.9b00639
10.1016/j.biomaterials.2009.09.081
10.1021/ja508679h
10.1021/ja904492x
10.1021/acsnano.7b01240
10.1128/CMR.00058-07
10.1002/smll.201902522
10.1002/adfm.201808594
10.1021/jacs.6b00007
10.1002/anie.201904818
10.1126/science.1230444
10.1038/nrmicro3439
10.1039/C7CC00076F
10.1038/nrmicro2312
10.1021/nn300934k
10.1002/adma.201806024
10.1002/adma.200700171
10.1021/acsnano.8b07251
10.1021/ja1028843
10.1002/adma.201704653
10.1126/sciadv.1701776
10.1021/acsami.5b02542
10.1021/acs.chemrev.5b00125
10.1021/ic300825s
10.1039/C7SC03913A
10.1097/01.prs.0000225430.42531.c2
10.1021/acs.chemmater.8b03043
10.1039/C8CC04891F
10.1097/AIA.0b013e318034194e
10.1039/C8MH00647D
10.1016/S1473-3099(09)70325-1
10.1021/nl301934w
10.1039/C5RA24135A
10.1021/acsnano.8b09501
10.1378/chest.117.4.1162
10.1093/cid/ciq146
10.1039/C5NR08367B
10.1002/anie.200604646
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201906240
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 31967726
10_1002_smll_201906240
SMLL201906240
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21535001; 81730051; 21761142006
– fundername: National Key Research and Development Program of China
  funderid: 2018YFA0902600; 2017YFA0205901
– fundername: Chinese Academy of Sciences
  funderid: QYZDJ‐SSW‐SLH039; 121D11KYSB20170026; XDA16020902
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3730-f0500d9d0e99ef35efdd5a4632e703c977ebe7a8cadd9ab6cac3e1eb3f90bef43
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 01:19:31 EDT 2025
Fri Jul 25 12:20:50 EDT 2025
Mon Jul 21 05:56:08 EDT 2025
Tue Jul 01 02:10:50 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Wed Jan 22 16:34:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords wound healing
photodynamic therapy
MDR bacteria
titanium incorporation
metal-organic frameworks
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-f0500d9d0e99ef35efdd5a4632e703c977ebe7a8cadd9ab6cac3e1eb3f90bef43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5008-4703
PMID 31967726
PQID 2358314178
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2343497196
proquest_journals_2358314178
pubmed_primary_31967726
crossref_primary_10_1002_smll_201906240
crossref_citationtrail_10_1002_smll_201906240
wiley_primary_10_1002_smll_201906240_SMLL201906240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 13
2010; 10
2007; 19
2010; 31
2018; 28
2017; 3
2019; 5
2019; 31
2019; 13
2000; 117
2019; 15
2019; 58
2011; 52
2013; 341
2009; 131
2012; 12
2015; 7
2006; 117
2014; 136
2012; 51
2016; 6
2017; 53
2018; 9
2018; 5
2015; 115
2015; 40
2017; 11
2010; 132
2019; 29
2008; 21
2018; 30
2016; 138
2017; 18
2012; 6
2018; 54
2007; 45
2007; 46
2016; 8
2010; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Ventola C. L. (e_1_2_7_1_1) 2015; 40
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 46
  start-page: 5670
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 6443
  year: 2012
  publication-title: Inorg. Chem.
– volume: 12
  start-page: 4271
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  start-page: 5164
  year: 2012
  publication-title: ACS Nano
– volume: 18
  start-page: 1903
  year: 2017
  publication-title: ChemPhysChem
– volume: 31
  start-page: 706
  year: 2010
  publication-title: Biomaterials
– volume: 30
  start-page: 6867
  year: 2018
  publication-title: Chem. Mater.
– volume: 19
  start-page: 3702
  year: 2007
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2179
  year: 2018
  publication-title: Chem. Sci.
– volume: 8
  start-page: 251
  year: 2010
  publication-title: Nat. Rev. Microbiol.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 52
  year: 2011
  publication-title: Clin. Infect. Dis.
– volume: 10
  start-page: 43
  year: 2010
  publication-title: Lancet Infect. Dis.
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5737
  year: 2017
  publication-title: ACS Nano
– volume: 8
  start-page: 3482
  year: 2016
  publication-title: Nanoscale
– volume: 40
  start-page: 277
  year: 2015
  publication-title: Pharm. Ther.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3671
  year: 2016
  publication-title: RSC Adv.
– volume: 5
  start-page: 1591
  year: 2019
  publication-title: ACS Cent. Sci.
– volume: 45
  start-page: 27
  year: 2007
  publication-title: Int. Anesthesiol. Clin.
– volume: 53
  start-page: 3361
  year: 2017
  publication-title: Chem. Commun.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 13
  start-page: 310
  year: 2015
  publication-title: Nat. Rev. Microbiol.
– volume: 13
  start-page: 1511
  year: 2019
  publication-title: ACS Nano
– volume: 54
  start-page: 8610
  year: 2018
  publication-title: Chem. Commun.
– volume: 117
  start-page: 1162
  year: 2000
  publication-title: Chest
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 3518
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 12S
  year: 2006
  publication-title: Plast. Reconstr. Surg.
– volume: 21
  start-page: 538
  year: 2008
  publication-title: Clin. Microbiol. Rev.
– volume: 13
  start-page: 5222
  year: 2019
  publication-title: ACS Nano
– volume: 5
  start-page: 1137
  year: 2018
  publication-title: Mater. Horiz.
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201804632
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201706831
– ident: e_1_2_7_27_1
  doi: 10.1002/cphc.201700182
– volume: 40
  start-page: 277
  year: 2015
  ident: e_1_2_7_1_1
  publication-title: Pharm. Ther.
– ident: e_1_2_7_18_1
  doi: 10.1002/smll.201804131
– ident: e_1_2_7_24_1
  doi: 10.1021/acscentsci.9b00639
– ident: e_1_2_7_10_1
  doi: 10.1016/j.biomaterials.2009.09.081
– ident: e_1_2_7_19_1
  doi: 10.1021/ja508679h
– ident: e_1_2_7_40_1
  doi: 10.1021/ja904492x
– ident: e_1_2_7_33_1
  doi: 10.1021/acsnano.7b01240
– ident: e_1_2_7_6_1
  doi: 10.1128/CMR.00058-07
– ident: e_1_2_7_23_1
  doi: 10.1002/smll.201902522
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.201808594
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.6b00007
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201904818
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1230444
– ident: e_1_2_7_2_1
  doi: 10.1038/nrmicro3439
– ident: e_1_2_7_30_1
  doi: 10.1039/C7CC00076F
– ident: e_1_2_7_3_1
  doi: 10.1038/nrmicro2312
– ident: e_1_2_7_9_1
  doi: 10.1021/nn300934k
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201806024
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.200700171
– ident: e_1_2_7_17_1
  doi: 10.1021/acsnano.8b07251
– ident: e_1_2_7_8_1
  doi: 10.1021/ja1028843
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201704653
– ident: e_1_2_7_16_1
  doi: 10.1126/sciadv.1701776
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.5b02542
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.chemrev.5b00125
– ident: e_1_2_7_26_1
  doi: 10.1021/ic300825s
– ident: e_1_2_7_41_1
  doi: 10.1039/C7SC03913A
– ident: e_1_2_7_39_1
  doi: 10.1097/01.prs.0000225430.42531.c2
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.chemmater.8b03043
– ident: e_1_2_7_28_1
  doi: 10.1039/C8CC04891F
– ident: e_1_2_7_38_1
  doi: 10.1097/AIA.0b013e318034194e
– ident: e_1_2_7_43_1
  doi: 10.1039/C8MH00647D
– ident: e_1_2_7_5_1
  doi: 10.1016/S1473-3099(09)70325-1
– ident: e_1_2_7_7_1
  doi: 10.1021/nl301934w
– ident: e_1_2_7_29_1
  doi: 10.1039/C5RA24135A
– ident: e_1_2_7_22_1
  doi: 10.1021/acsnano.8b09501
– ident: e_1_2_7_37_1
  doi: 10.1378/chest.117.4.1162
– ident: e_1_2_7_4_1
  doi: 10.1093/cid/ciq146
– ident: e_1_2_7_35_1
  doi: 10.1039/C5NR08367B
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.200604646
SSID ssj0031247
Score 2.6453419
Snippet This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of...
This study uses metal-organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1906240
SubjectTerms Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Bacteria
Bacteria - drug effects
Bimetals
Biocompatibility
Cation exchanging
Drug Resistance, Multiple, Bacterial - drug effects
Glycolic acid
MDR bacteria
Metal-organic frameworks
Metal-Organic Frameworks - pharmacology
Nanofibers
Nanoparticles
Nanotechnology
Photochemotherapy - methods
Photodynamic therapy
Reagents
Titanium
Titanium - chemistry
Titanium - pharmacology
titanium incorporation
Toxicity
Wound healing
Wound Healing - drug effects
Zirconium
Title Titanium Incorporation into Zr‐Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrug‐Resistant Pathogens
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201906240
https://www.ncbi.nlm.nih.gov/pubmed/31967726
https://www.proquest.com/docview/2358314178
https://www.proquest.com/docview/2343497196
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_VgoyEhInNI6sTePY4W6KqiLqtJKFZfIj0mJaJNqk1w49ScgwS_sL2EmTkIXhJDgGNlOHHtm_Nme-YaxV5CCouu5AIRLAxW5ItCFCgObZgZia0D22RuW7-O9Y_XuZH5yLYrf80NMB26kGb29JgXXptn-SRranJ_R1UFIRLuKNu3ksEWo6HDij5K4ePXZVXDNCoh4a2RtFNH2evP1Vek3qLmOXPulZ3GH6bHT3uPk81bXmi375Rc-x__5q7vs9oBL-Y4XpHvsBlT32a1rbIUP2PejEpFk2Z3zt0R-eTEIDy-rtuYfV1eXXw9qmjW6E7J8CQjrry6_-WBPyxejF1jD6eyX71afeucDvlO1pfGc0dQB69NZcH2qS4SuvI8QdqvuFN9_CA3B3arlBwhca5T95iE7XuwevdkLhqQOgZVoTYJCzIVwmROQZVDIORTOzbWKZQRofCzCURSrRKcWDW-mTWy1lRDilr_IhIFCyUdso6oreMK41g7fYV3inFBKpyaLwaRGRgIgsdLNWDBOam4HxnNKvHGWe67mKKfRzqfRnrHXU_0Lz_Xxx5qbo4zkg843OQUdy1CFSTpjL6di1Fa6gtEV1B3VUVJlCZq9GXvsZWv6FBlD3OtgSdRLyF_6kH9Y7u9PT0__pdEzdjOi44PeCX2TbbSrDp4jxmrNi16PfgAwXicS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQCH8oYtBYyExCltNvbmcaxQV1vYraqylRCXyI9JiWiTapNcOPUnIMEv7C9hxnnAghASHCPbiWPPjD-Px98w9hJikHQ854FvY08GNvNUJseeiRMNodEgXPaGxWE4O5Fv3k_6aEK6C9PyQwwON9IMZ69JwckhvfuDNbQ6P6OzgzEx7UrctV-ntN5uV3U8MEgJXL5cfhVctTyi3up5G_1gd739-rr0G9hcx65u8ZneZrrvdhtz8mmnqfWO-fwLo-N__dcdttlBU77XytJddg2Ke-zWT4SF99m3ZY5gMm_O-QHxX1508sPzoi75h9XV5ZejkiaOjoUMXwAi-6vLr-19T8OnfSBYxcn9y_eLjy7-gO8Vda5b2mjqgGkzWnB1qnJEr9xdErar5hTffwwVId6i5keIXUsU_-oBO5nuL1_PvC6vg2cEGhQv8ye-bxPrQ5JAJiaQWTtRMhQBoP0xiEhRsiIVG7S9idKhUUbAGHf9WeJryKR4yDaKsoDHjCtl8R3GRtb6UqpYJyHoWIvAB4iMsCPm9bOamo70nHJvnKUtXXOQ0minw2iP2Kuh_kVL9_HHmtu9kKSd2lcp3TsWYzmO4hF7MRSjwtIpjCqgbKiOFDKJ0PKN2KNWuIZPkT3E7Q6WBE5E_tKH9N1iPh-etv6l0XN2Y7ZczNP5weHbJ-xmQN4EF5O-zTbqVQNPEXLV-plTqu9zbSst
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcyhu2FDASEqe0TuzN41jRrlrYrVallSoukWNPSkSbrDbJhVN_AhL8wv4SZvKiC0JIcIxsJ449M_5sz3zD2GsIQdH1nAPCho7ybOroVLmOCaMEfJOAbLI3zA79_RP17nR8ei2Kv-WHGA7cSDMae00KvrDp9k_S0PLinK4OXCLaVbhpv6l8EZJc7x4NBFISV68mvQouWg4xb_W0jcLbXm2_uiz9hjVXoWuz9kzuMt33unU5-bxVV8mW-fILoeP__NY9tt4BU77TStJ9dgPyB-zONbrCh-z7cYZQMqsv-AGxXy466eFZXhX84_Lq8uu8oGmjSyHDZ4C4_uryWxvtafikdwMrOR3-8r38U-N9wHfyKkta0mjqgGnzWXB9pjPErrwJEbbL-gzffwQl4d284nNErgUKf_mInUz2jt_uO11WB8dINCdOKsZC2MgKiCJI5RhSa8da-dIDtD4G8SjKVaBDg5Y30olvtJHg4p4_jUQCqZKP2Vpe5PCUca0tvsPYwFqhlA6TyIckTKQnAAIj7Yg5_aTGpqM8p8wb53FL1uzFNNrxMNoj9maov2jJPv5Yc7OXkbhT-jKmqGPpKjcIR-zVUIzqSncwOoeipjpKqihAuzdiT1rZGj5F1hA3O1jiNRLylz7EH2bT6fC08S-NXrJb891JPD04fP-M3fboKKFxSN9ka9WyhueIt6rkRaNSPwD_winl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Titanium+Incorporation+into+Zr-Porphyrinic+Metal-Organic+Frameworks+with+Enhanced+Antibacterial+Activity+against+Multidrug-Resistant+Pathogens&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chen%2C+Mian&rft.au=Long%2C+Zhou&rft.au=Dong%2C+Ruihua&rft.au=Wang%2C+Le&rft.date=2020-02-01&rft.eissn=1613-6829&rft.volume=16&rft.issue=7&rft.spage=e1906240&rft_id=info:doi/10.1002%2Fsmll.201906240&rft_id=info%3Apmid%2F31967726&rft.externalDocID=31967726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon