Titanium Incorporation into Zr‐Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrug‐Resistant Pathogens
This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug‐resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN‐224) are incorporated with titanium through a...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 7; pp. e1906240 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug‐resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN‐224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN‐224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN‐224(Zr/Ti) NPs are loaded onto lactic‐co‐glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT‐based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT.
This study uses metal–organic frameworks alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy of chronic wounds infected by multidrug‐resistant bacteria. The Ti incorporation could greatly boost the generation of reactive oxygen species for effective elimination of multidrug‐resistant bacteria, and the validated biocompatibility of PCN‐224(Zr/Ti) would ensure the biosafety for photodynamic therapy. |
---|---|
AbstractList | This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug‐resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN‐224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN‐224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN‐224(Zr/Ti) NPs are loaded onto lactic‐co‐glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT‐based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT.
This study uses metal–organic frameworks alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy of chronic wounds infected by multidrug‐resistant bacteria. The Ti incorporation could greatly boost the generation of reactive oxygen species for effective elimination of multidrug‐resistant bacteria, and the validated biocompatibility of PCN‐224(Zr/Ti) would ensure the biosafety for photodynamic therapy. This study uses metal-organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug-resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN-224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN-224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN-224(Zr/Ti) NPs are loaded onto lactic-co-glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT-based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT.This study uses metal-organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug-resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN-224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN-224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN-224(Zr/Ti) NPs are loaded onto lactic-co-glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT-based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT. This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug‐resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN‐224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN‐224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN‐224(Zr/Ti) NPs are loaded onto lactic‐ co ‐glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT‐based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT. This study uses metal-organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of chronic wounds infected by multidrug-resistant (MDR) bacteria. Nanoparticles (NPs) of MOFs (PCN-224) are incorporated with titanium through a facile cation exchange strategy. The obtained bimetallic PCN-224(Zr/Ti) shows greatly enhanced photocatalytic performance for the generation of reactive oxygen species under visible light, which is responsible for the effective antibacterial activities. The PCN-224(Zr/Ti) NPs are loaded onto lactic-co-glycolic acid nanofibers to prepare a wound dressing, which shows high biocompatibility and minimal cytotoxicity. The wound dressing is efficient for PDT-based in vivo healing of the chronic wound infected by MDR bacteria. Most importantly, this work does not involve any additional antibacterial agents, which is facile, low cost, and in particular, greatly explores the potential of MOFs as a powerful nonantibiotic agent in PDT. |
Author | Zhang, Jiangjiang Hou, Xiandeng Wang, Le Li, Sixiang Jiang, Xingyu Long, Zhou Chen, Mian Dong, Ruihua Zhao, Xiaohui Shao, Huawu |
Author_xml | – sequence: 1 givenname: Mian surname: Chen fullname: Chen, Mian organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Zhou surname: Long fullname: Long, Zhou organization: Sichuan University – sequence: 3 givenname: Ruihua surname: Dong fullname: Dong, Ruihua organization: Southern University of Science and Technology – sequence: 4 givenname: Le surname: Wang fullname: Wang, Le organization: Southern University of Science and Technology – sequence: 5 givenname: Jiangjiang surname: Zhang fullname: Zhang, Jiangjiang organization: Southern University of Science and Technology – sequence: 6 givenname: Sixiang surname: Li fullname: Li, Sixiang organization: National Center for NanoScience and Technology – sequence: 7 givenname: Xiaohui surname: Zhao fullname: Zhao, Xiaohui organization: Southern University of Science and Technology – sequence: 8 givenname: Xiandeng surname: Hou fullname: Hou, Xiandeng email: houxd@scu.edu.cn organization: Sichuan University – sequence: 9 givenname: Huawu surname: Shao fullname: Shao, Huawu email: shaohw@cib.ac.cn organization: Chinese Academy of Sciences – sequence: 10 givenname: Xingyu orcidid: 0000-0002-5008-4703 surname: Jiang fullname: Jiang, Xingyu email: jiang@sustech.edu.cn organization: National Center for NanoScience and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31967726$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URD_gyhFZ4tJLgr3erONjVLVQKVErKBcuq1nvbOLitYvtJcqtPwEJfmF_CY5SglQJcfKHnmdmNO8xOXDeISGvORtzxop3sbd2XDCuWFWU7Bk54hUXo2paqIP9nbNDchzjLWOCF6V8QQ4FV5WURXVEft2YBM4MPb102oc7HyAZ76hxydMv4eH-x3X-XW2CcUbTBSawD_c_r8IStu-LAD2uffga6dqkFT13K3AaWzpzyTSgEwYDls50Mt9N2lBYgnEx0cVgk2nDsMz1P2I0Mc-Q6DWklV-iiy_J8w5sxFeP5wn5fHF-c_ZhNL96f3k2m4-0kIKNOjZhrFUtQ6WwExPs2nYCZSUKlExoJSU2KGGqoW0VNJUGLZBjIzrFGuxKcUJOd3Xvgv82YEx1b6JGa8GhH2JdiFKUSuZlZfTtE_TWD8Hl6TI1mQpecjnN1JtHamh6bOu7YHoIm_rPvjMw3gE6-BgDdnuEs3obaL0NtN4HmoXyiaBzYNuIUgBj_62pnbY2Fjf_aVJ_Wsznf93fo8i9BQ |
CitedBy_id | crossref_primary_10_1016_j_mtbio_2023_100827 crossref_primary_10_1021_acsami_2c02497 crossref_primary_10_1016_j_foodchem_2024_140707 crossref_primary_10_1021_jacs_2c03060 crossref_primary_10_1039_D0CS00178C crossref_primary_10_1039_D3TB00639E crossref_primary_10_1007_s10904_025_03716_5 crossref_primary_10_1021_acsnano_0c09617 crossref_primary_10_1039_D0CE01215G crossref_primary_10_1039_D4MH00259H crossref_primary_10_1186_s12866_024_03587_9 crossref_primary_10_1002_adfm_202310636 crossref_primary_10_1007_s40005_024_00691_w crossref_primary_10_1021_acsami_1c02045 crossref_primary_10_1098_rsos_240380 crossref_primary_10_1016_j_ajps_2022_01_001 crossref_primary_10_1016_j_heliyon_2024_e39611 crossref_primary_10_1002_adma_202412071 crossref_primary_10_1039_D2CS00460G crossref_primary_10_1039_D3TB03067A crossref_primary_10_1002_agt2_505 crossref_primary_10_1021_acsnano_1c11613 crossref_primary_10_1002_smll_202311903 crossref_primary_10_1016_j_cjac_2023_100286 crossref_primary_10_1021_acs_inorgchem_3c03555 crossref_primary_10_1016_j_microc_2023_109143 crossref_primary_10_1016_j_ccr_2023_215431 crossref_primary_10_1021_acs_nanolett_3c02828 crossref_primary_10_3390_pharmaceutics15010274 crossref_primary_10_1002_adhm_202300375 crossref_primary_10_1007_s10904_024_03571_w crossref_primary_10_1039_D1TA08741J crossref_primary_10_2147_IJN_S397298 crossref_primary_10_1016_j_envres_2025_121410 crossref_primary_10_1002_smll_202406171 crossref_primary_10_1039_D3NA00530E crossref_primary_10_1016_j_nantod_2023_102089 crossref_primary_10_1039_D2TB00341D crossref_primary_10_1002_adhm_202001821 crossref_primary_10_1016_j_ccr_2021_213929 crossref_primary_10_1016_j_jiec_2021_08_035 crossref_primary_10_1021_acs_chemrev_3c00326 crossref_primary_10_3389_fchem_2022_1044627 crossref_primary_10_3390_catal11101186 crossref_primary_10_1016_j_carbpol_2022_120486 crossref_primary_10_1002_slct_202405715 crossref_primary_10_1080_1040841X_2021_1950120 crossref_primary_10_1021_acsnano_2c11339 crossref_primary_10_1021_acsami_1c05615 crossref_primary_10_1039_D4TB01882F crossref_primary_10_1080_17568919_2025_2458459 crossref_primary_10_1007_s12274_021_3417_4 crossref_primary_10_1039_D2DT02470E crossref_primary_10_1021_acs_molpharmaceut_0c00346 crossref_primary_10_1016_j_bioactmat_2024_09_003 crossref_primary_10_1007_s12223_024_01206_8 crossref_primary_10_1016_j_jcis_2021_04_109 crossref_primary_10_1016_j_ccr_2021_214121 crossref_primary_10_1021_acsmaterialslett_4c02191 crossref_primary_10_1016_j_ccr_2021_214007 crossref_primary_10_3389_fmicb_2022_1028086 crossref_primary_10_1016_j_cej_2023_141954 crossref_primary_10_1007_s10904_024_03076_6 crossref_primary_10_1016_j_carbpol_2021_118391 crossref_primary_10_3390_antibiotics12020351 crossref_primary_10_1021_acsanm_3c04675 crossref_primary_10_1016_j_cej_2024_152293 crossref_primary_10_1016_j_cej_2023_141959 crossref_primary_10_1039_D3BM00663H crossref_primary_10_1021_acs_langmuir_3c02535 crossref_primary_10_1002_adem_202101550 crossref_primary_10_1007_s12274_022_4240_7 crossref_primary_10_1016_j_fuel_2022_126766 crossref_primary_10_3389_fchem_2021_635344 crossref_primary_10_1002_adhm_202001966 crossref_primary_10_1016_j_cej_2023_148220 crossref_primary_10_1007_s00253_024_13337_6 crossref_primary_10_1021_acsabm_1c00008 crossref_primary_10_1016_j_jcis_2023_05_190 crossref_primary_10_1039_D0NR04540C crossref_primary_10_1039_D1RA08824F crossref_primary_10_1002_adhm_202001205 crossref_primary_10_1002_adma_202302587 crossref_primary_10_3390_nano12111946 crossref_primary_10_1016_j_cej_2024_155791 crossref_primary_10_1515_ntrev_2022_0152 crossref_primary_10_1093_rb_rbae009 crossref_primary_10_1039_D0SC04889E crossref_primary_10_1039_D4NJ00192C crossref_primary_10_1016_j_cej_2022_134975 crossref_primary_10_1002_adfm_202002234 crossref_primary_10_1360_TB_2022_0974 crossref_primary_10_1016_j_microc_2020_105417 crossref_primary_10_1021_acsami_1c05234 crossref_primary_10_1016_j_cherd_2024_06_042 crossref_primary_10_1016_j_cej_2024_150945 crossref_primary_10_1021_acsabm_3c00391 crossref_primary_10_1126_sciadv_abo1874 crossref_primary_10_1002_asia_202100546 crossref_primary_10_1016_j_watres_2022_119366 crossref_primary_10_1002_adhm_202302087 crossref_primary_10_1039_D1TB02141A crossref_primary_10_1002_adhm_202303688 crossref_primary_10_1186_s12951_024_02803_y crossref_primary_10_1002_chem_202100920 crossref_primary_10_1016_j_jece_2023_109652 crossref_primary_10_1126_sciadv_adk9485 crossref_primary_10_1002_adhm_202303967 crossref_primary_10_1016_j_msec_2021_112514 crossref_primary_10_1016_j_cej_2023_145840 crossref_primary_10_1021_acsami_2c03001 crossref_primary_10_1016_j_actbio_2023_06_025 crossref_primary_10_1021_acsomega_1c00919 crossref_primary_10_1016_j_cej_2023_146773 crossref_primary_10_1039_D2CY00393G crossref_primary_10_1016_j_ccr_2021_214273 crossref_primary_10_1016_j_jssc_2022_123311 crossref_primary_10_1016_j_carbpol_2022_120042 crossref_primary_10_1016_j_ccr_2024_216298 crossref_primary_10_1021_acs_chemmater_3c01140 crossref_primary_10_1016_j_cej_2021_134351 crossref_primary_10_1016_j_biomaterials_2022_121577 crossref_primary_10_1016_j_jcis_2023_03_050 crossref_primary_10_1002_smll_202303594 crossref_primary_10_1016_j_apcatb_2023_123374 crossref_primary_10_1002_adhm_202001897 crossref_primary_10_3390_ijms23116108 crossref_primary_10_1039_D1CS00056J crossref_primary_10_3389_fchem_2022_971747 crossref_primary_10_1002_advs_202300328 crossref_primary_10_1016_j_cej_2021_130832 crossref_primary_10_1021_jacs_3c05425 crossref_primary_10_6023_A23020041 crossref_primary_10_1016_j_cej_2024_150642 crossref_primary_10_1016_j_nxmate_2024_100111 crossref_primary_10_1002_adhm_202401211 crossref_primary_10_1039_D3MA00389B crossref_primary_10_1007_s10904_024_03078_4 crossref_primary_10_1039_D2CC06948B crossref_primary_10_1021_acsmaterialslett_4c01460 crossref_primary_10_1016_j_hybadv_2025_100406 crossref_primary_10_1016_j_ajps_2024_100951 crossref_primary_10_1021_acsnano_2c08262 crossref_primary_10_1007_s40097_022_00500_6 crossref_primary_10_1016_j_scitotenv_2023_167475 crossref_primary_10_1016_j_matdes_2023_112252 |
Cites_doi | 10.1002/adfm.201804632 10.1002/adma.201706831 10.1002/cphc.201700182 10.1002/smll.201804131 10.1021/acscentsci.9b00639 10.1016/j.biomaterials.2009.09.081 10.1021/ja508679h 10.1021/ja904492x 10.1021/acsnano.7b01240 10.1128/CMR.00058-07 10.1002/smll.201902522 10.1002/adfm.201808594 10.1021/jacs.6b00007 10.1002/anie.201904818 10.1126/science.1230444 10.1038/nrmicro3439 10.1039/C7CC00076F 10.1038/nrmicro2312 10.1021/nn300934k 10.1002/adma.201806024 10.1002/adma.200700171 10.1021/acsnano.8b07251 10.1021/ja1028843 10.1002/adma.201704653 10.1126/sciadv.1701776 10.1021/acsami.5b02542 10.1021/acs.chemrev.5b00125 10.1021/ic300825s 10.1039/C7SC03913A 10.1097/01.prs.0000225430.42531.c2 10.1021/acs.chemmater.8b03043 10.1039/C8CC04891F 10.1097/AIA.0b013e318034194e 10.1039/C8MH00647D 10.1016/S1473-3099(09)70325-1 10.1021/nl301934w 10.1039/C5RA24135A 10.1021/acsnano.8b09501 10.1378/chest.117.4.1162 10.1093/cid/ciq146 10.1039/C5NR08367B 10.1002/anie.200604646 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201906240 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 31967726 10_1002_smll_201906240 SMLL201906240 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21535001; 81730051; 21761142006 – fundername: National Key Research and Development Program of China funderid: 2018YFA0902600; 2017YFA0205901 – fundername: Chinese Academy of Sciences funderid: QYZDJ‐SSW‐SLH039; 121D11KYSB20170026; XDA16020902 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3730-f0500d9d0e99ef35efdd5a4632e703c977ebe7a8cadd9ab6cac3e1eb3f90bef43 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 01:19:31 EDT 2025 Fri Jul 25 12:20:50 EDT 2025 Mon Jul 21 05:56:08 EDT 2025 Tue Jul 01 02:10:50 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Wed Jan 22 16:34:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | wound healing photodynamic therapy MDR bacteria titanium incorporation metal-organic frameworks |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-f0500d9d0e99ef35efdd5a4632e703c977ebe7a8cadd9ab6cac3e1eb3f90bef43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5008-4703 |
PMID | 31967726 |
PQID | 2358314178 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2343497196 proquest_journals_2358314178 pubmed_primary_31967726 crossref_primary_10_1002_smll_201906240 crossref_citationtrail_10_1002_smll_201906240 wiley_primary_10_1002_smll_201906240_SMLL201906240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 13 2010; 10 2007; 19 2010; 31 2018; 28 2017; 3 2019; 5 2019; 31 2019; 13 2000; 117 2019; 15 2019; 58 2011; 52 2013; 341 2009; 131 2012; 12 2015; 7 2006; 117 2014; 136 2012; 51 2016; 6 2017; 53 2018; 9 2018; 5 2015; 115 2015; 40 2017; 11 2010; 132 2019; 29 2008; 21 2018; 30 2016; 138 2017; 18 2012; 6 2018; 54 2007; 45 2007; 46 2016; 8 2010; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Ventola C. L. (e_1_2_7_1_1) 2015; 40 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 46 start-page: 5670 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 6443 year: 2012 publication-title: Inorg. Chem. – volume: 12 start-page: 4271 year: 2012 publication-title: Nano Lett. – volume: 6 start-page: 5164 year: 2012 publication-title: ACS Nano – volume: 18 start-page: 1903 year: 2017 publication-title: ChemPhysChem – volume: 31 start-page: 706 year: 2010 publication-title: Biomaterials – volume: 30 start-page: 6867 year: 2018 publication-title: Chem. Mater. – volume: 19 start-page: 3702 year: 2007 publication-title: Adv. Mater. – volume: 9 start-page: 2179 year: 2018 publication-title: Chem. Sci. – volume: 8 start-page: 251 year: 2010 publication-title: Nat. Rev. Microbiol. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 52 year: 2011 publication-title: Clin. Infect. Dis. – volume: 10 start-page: 43 year: 2010 publication-title: Lancet Infect. Dis. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5737 year: 2017 publication-title: ACS Nano – volume: 8 start-page: 3482 year: 2016 publication-title: Nanoscale – volume: 40 start-page: 277 year: 2015 publication-title: Pharm. Ther. – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 start-page: 3671 year: 2016 publication-title: RSC Adv. – volume: 5 start-page: 1591 year: 2019 publication-title: ACS Cent. Sci. – volume: 45 start-page: 27 year: 2007 publication-title: Int. Anesthesiol. Clin. – volume: 53 start-page: 3361 year: 2017 publication-title: Chem. Commun. – volume: 341 year: 2013 publication-title: Science – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 13 start-page: 310 year: 2015 publication-title: Nat. Rev. Microbiol. – volume: 13 start-page: 1511 year: 2019 publication-title: ACS Nano – volume: 54 start-page: 8610 year: 2018 publication-title: Chem. Commun. – volume: 117 start-page: 1162 year: 2000 publication-title: Chest – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 3518 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 12S year: 2006 publication-title: Plast. Reconstr. Surg. – volume: 21 start-page: 538 year: 2008 publication-title: Clin. Microbiol. Rev. – volume: 13 start-page: 5222 year: 2019 publication-title: ACS Nano – volume: 5 start-page: 1137 year: 2018 publication-title: Mater. Horiz. – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201804632 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201706831 – ident: e_1_2_7_27_1 doi: 10.1002/cphc.201700182 – volume: 40 start-page: 277 year: 2015 ident: e_1_2_7_1_1 publication-title: Pharm. Ther. – ident: e_1_2_7_18_1 doi: 10.1002/smll.201804131 – ident: e_1_2_7_24_1 doi: 10.1021/acscentsci.9b00639 – ident: e_1_2_7_10_1 doi: 10.1016/j.biomaterials.2009.09.081 – ident: e_1_2_7_19_1 doi: 10.1021/ja508679h – ident: e_1_2_7_40_1 doi: 10.1021/ja904492x – ident: e_1_2_7_33_1 doi: 10.1021/acsnano.7b01240 – ident: e_1_2_7_6_1 doi: 10.1128/CMR.00058-07 – ident: e_1_2_7_23_1 doi: 10.1002/smll.201902522 – ident: e_1_2_7_21_1 doi: 10.1002/adfm.201808594 – ident: e_1_2_7_25_1 doi: 10.1021/jacs.6b00007 – ident: e_1_2_7_42_1 doi: 10.1002/anie.201904818 – ident: e_1_2_7_12_1 doi: 10.1126/science.1230444 – ident: e_1_2_7_2_1 doi: 10.1038/nrmicro3439 – ident: e_1_2_7_30_1 doi: 10.1039/C7CC00076F – ident: e_1_2_7_3_1 doi: 10.1038/nrmicro2312 – ident: e_1_2_7_9_1 doi: 10.1021/nn300934k – ident: e_1_2_7_36_1 doi: 10.1002/adma.201806024 – ident: e_1_2_7_32_1 doi: 10.1002/adma.200700171 – ident: e_1_2_7_17_1 doi: 10.1021/acsnano.8b07251 – ident: e_1_2_7_8_1 doi: 10.1021/ja1028843 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201704653 – ident: e_1_2_7_16_1 doi: 10.1126/sciadv.1701776 – ident: e_1_2_7_34_1 doi: 10.1021/acsami.5b02542 – ident: e_1_2_7_13_1 doi: 10.1021/acs.chemrev.5b00125 – ident: e_1_2_7_26_1 doi: 10.1021/ic300825s – ident: e_1_2_7_41_1 doi: 10.1039/C7SC03913A – ident: e_1_2_7_39_1 doi: 10.1097/01.prs.0000225430.42531.c2 – ident: e_1_2_7_20_1 doi: 10.1021/acs.chemmater.8b03043 – ident: e_1_2_7_28_1 doi: 10.1039/C8CC04891F – ident: e_1_2_7_38_1 doi: 10.1097/AIA.0b013e318034194e – ident: e_1_2_7_43_1 doi: 10.1039/C8MH00647D – ident: e_1_2_7_5_1 doi: 10.1016/S1473-3099(09)70325-1 – ident: e_1_2_7_7_1 doi: 10.1021/nl301934w – ident: e_1_2_7_29_1 doi: 10.1039/C5RA24135A – ident: e_1_2_7_22_1 doi: 10.1021/acsnano.8b09501 – ident: e_1_2_7_37_1 doi: 10.1378/chest.117.4.1162 – ident: e_1_2_7_4_1 doi: 10.1093/cid/ciq146 – ident: e_1_2_7_35_1 doi: 10.1039/C5NR08367B – ident: e_1_2_7_31_1 doi: 10.1002/anie.200604646 |
SSID | ssj0031247 |
Score | 2.6453419 |
Snippet | This study uses metal–organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of... This study uses metal-organic frameworks (MOFs) alone without any added antibacterial ingredients as the nonantibiotic agent for photodynamic therapy (PDT) of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1906240 |
SubjectTerms | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Bacteria Bacteria - drug effects Bimetals Biocompatibility Cation exchanging Drug Resistance, Multiple, Bacterial - drug effects Glycolic acid MDR bacteria Metal-organic frameworks Metal-Organic Frameworks - pharmacology Nanofibers Nanoparticles Nanotechnology Photochemotherapy - methods Photodynamic therapy Reagents Titanium Titanium - chemistry Titanium - pharmacology titanium incorporation Toxicity Wound healing Wound Healing - drug effects Zirconium |
Title | Titanium Incorporation into Zr‐Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrug‐Resistant Pathogens |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201906240 https://www.ncbi.nlm.nih.gov/pubmed/31967726 https://www.proquest.com/docview/2358314178 https://www.proquest.com/docview/2343497196 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_VgoyEhInNI6sTePY4W6KqiLqtJKFZfIj0mJaJNqk1w49ScgwS_sL2EmTkIXhJDgGNlOHHtm_Nme-YaxV5CCouu5AIRLAxW5ItCFCgObZgZia0D22RuW7-O9Y_XuZH5yLYrf80NMB26kGb29JgXXptn-SRranJ_R1UFIRLuKNu3ksEWo6HDij5K4ePXZVXDNCoh4a2RtFNH2evP1Vek3qLmOXPulZ3GH6bHT3uPk81bXmi375Rc-x__5q7vs9oBL-Y4XpHvsBlT32a1rbIUP2PejEpFk2Z3zt0R-eTEIDy-rtuYfV1eXXw9qmjW6E7J8CQjrry6_-WBPyxejF1jD6eyX71afeucDvlO1pfGc0dQB69NZcH2qS4SuvI8QdqvuFN9_CA3B3arlBwhca5T95iE7XuwevdkLhqQOgZVoTYJCzIVwmROQZVDIORTOzbWKZQRofCzCURSrRKcWDW-mTWy1lRDilr_IhIFCyUdso6oreMK41g7fYV3inFBKpyaLwaRGRgIgsdLNWDBOam4HxnNKvHGWe67mKKfRzqfRnrHXU_0Lz_Xxx5qbo4zkg843OQUdy1CFSTpjL6di1Fa6gtEV1B3VUVJlCZq9GXvsZWv6FBlD3OtgSdRLyF_6kH9Y7u9PT0__pdEzdjOi44PeCX2TbbSrDp4jxmrNi16PfgAwXicS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQCH8oYtBYyExCltNvbmcaxQV1vYraqylRCXyI9JiWiTapNcOPUnIMEv7C9hxnnAghASHCPbiWPPjD-Px98w9hJikHQ854FvY08GNvNUJseeiRMNodEgXPaGxWE4O5Fv3k_6aEK6C9PyQwwON9IMZ69JwckhvfuDNbQ6P6OzgzEx7UrctV-ntN5uV3U8MEgJXL5cfhVctTyi3up5G_1gd739-rr0G9hcx65u8ZneZrrvdhtz8mmnqfWO-fwLo-N__dcdttlBU77XytJddg2Ke-zWT4SF99m3ZY5gMm_O-QHxX1508sPzoi75h9XV5ZejkiaOjoUMXwAi-6vLr-19T8OnfSBYxcn9y_eLjy7-gO8Vda5b2mjqgGkzWnB1qnJEr9xdErar5hTffwwVId6i5keIXUsU_-oBO5nuL1_PvC6vg2cEGhQv8ye-bxPrQ5JAJiaQWTtRMhQBoP0xiEhRsiIVG7S9idKhUUbAGHf9WeJryKR4yDaKsoDHjCtl8R3GRtb6UqpYJyHoWIvAB4iMsCPm9bOamo70nHJvnKUtXXOQ0minw2iP2Kuh_kVL9_HHmtu9kKSd2lcp3TsWYzmO4hF7MRSjwtIpjCqgbKiOFDKJ0PKN2KNWuIZPkT3E7Q6WBE5E_tKH9N1iPh-etv6l0XN2Y7ZczNP5weHbJ-xmQN4EF5O-zTbqVQNPEXLV-plTqu9zbSst |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcyhu2FDASEqe0TuzN41jRrlrYrVallSoukWNPSkSbrDbJhVN_AhL8wv4SZvKiC0JIcIxsJ449M_5sz3zD2GsIQdH1nAPCho7ybOroVLmOCaMEfJOAbLI3zA79_RP17nR8ei2Kv-WHGA7cSDMae00KvrDp9k_S0PLinK4OXCLaVbhpv6l8EZJc7x4NBFISV68mvQouWg4xb_W0jcLbXm2_uiz9hjVXoWuz9kzuMt33unU5-bxVV8mW-fILoeP__NY9tt4BU77TStJ9dgPyB-zONbrCh-z7cYZQMqsv-AGxXy466eFZXhX84_Lq8uu8oGmjSyHDZ4C4_uryWxvtafikdwMrOR3-8r38U-N9wHfyKkta0mjqgGnzWXB9pjPErrwJEbbL-gzffwQl4d284nNErgUKf_mInUz2jt_uO11WB8dINCdOKsZC2MgKiCJI5RhSa8da-dIDtD4G8SjKVaBDg5Y30olvtJHg4p4_jUQCqZKP2Vpe5PCUca0tvsPYwFqhlA6TyIckTKQnAAIj7Yg5_aTGpqM8p8wb53FL1uzFNNrxMNoj9maov2jJPv5Yc7OXkbhT-jKmqGPpKjcIR-zVUIzqSncwOoeipjpKqihAuzdiT1rZGj5F1hA3O1jiNRLylz7EH2bT6fC08S-NXrJb891JPD04fP-M3fboKKFxSN9ka9WyhueIt6rkRaNSPwD_winl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Titanium+Incorporation+into+Zr-Porphyrinic+Metal-Organic+Frameworks+with+Enhanced+Antibacterial+Activity+against+Multidrug-Resistant+Pathogens&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chen%2C+Mian&rft.au=Long%2C+Zhou&rft.au=Dong%2C+Ruihua&rft.au=Wang%2C+Le&rft.date=2020-02-01&rft.eissn=1613-6829&rft.volume=16&rft.issue=7&rft.spage=e1906240&rft_id=info:doi/10.1002%2Fsmll.201906240&rft_id=info%3Apmid%2F31967726&rft.externalDocID=31967726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |