Asymmetric α‐Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts

Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl r...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 17; pp. e202200850 - n/a
Main Authors Ma, Jiguo, Gao, Bin, Song, Guanshui, Zhang, Ruixin, Wang, Qingfang, Ye, Zi, Chen, Wen‐Wen, Zhao, Baoguo
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 19.04.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N‐allylation to α‐C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN2′–SN2′ products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo‐ and enantiocontrol of the pyridoxal catalysts. A novel bifunctional chiral pyridoxal derivative 1 with a bigger catalytic cavity than that of previous pyridoxal catalysts promoted direct asymmetric α‐C allylation of NH2‐unprotected glycinates with Morita–Baylis–Hillman acetates. In this way, the chemoselectivity for glycinates was switched from intrinsic N‐allylation to α‐C allylation to produce chiral glutamic acid esters with excellent stereoselectivity (up to >20 : 1 dr and 97 % ee).
AbstractList Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN 2'-SN 2' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts.Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN 2'-SN 2' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts.
Owing to the strong nucleophilicity of the NH group, free-NH glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as S 2'-S 2' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts.
Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N‐allylation to α‐C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN2′–SN2′ products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo‐ and enantiocontrol of the pyridoxal catalysts.In memory of Robert H. Grubbs
Owing to the strong nucleophilicity of the NH 2 group, free‐NH 2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH 2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N‐allylation to α‐C allylation. The reaction formed chiral multisubstituted glutamic acid esters as S N 2′–S N 2′ products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo‐ and enantiocontrol of the pyridoxal catalysts.
Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to alpha-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as S(N)2 '-S(N)2 ' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts.
Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N‐allylation to α‐C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN2′–SN2′ products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo‐ and enantiocontrol of the pyridoxal catalysts. A novel bifunctional chiral pyridoxal derivative 1 with a bigger catalytic cavity than that of previous pyridoxal catalysts promoted direct asymmetric α‐C allylation of NH2‐unprotected glycinates with Morita–Baylis–Hillman acetates. In this way, the chemoselectivity for glycinates was switched from intrinsic N‐allylation to α‐C allylation to produce chiral glutamic acid esters with excellent stereoselectivity (up to >20 : 1 dr and 97 % ee).
ArticleNumber 202200850
Author Ma, Jiguo
Zhang, Ruixin
Zhao, Baoguo
Wang, Qingfang
Song, Guanshui
Gao, Bin
Ye, Zi
Chen, Wen‐Wen
Author_xml – sequence: 1
  givenname: Jiguo
  surname: Ma
  fullname: Ma, Jiguo
  organization: Shanghai Normal University
– sequence: 2
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  organization: Shanghai Normal University
– sequence: 3
  givenname: Guanshui
  surname: Song
  fullname: Song, Guanshui
  organization: Shanghai Normal University
– sequence: 4
  givenname: Ruixin
  surname: Zhang
  fullname: Zhang, Ruixin
  organization: Shanghai Normal University
– sequence: 5
  givenname: Qingfang
  surname: Wang
  fullname: Wang, Qingfang
  organization: Shanghai Normal University
– sequence: 6
  givenname: Zi
  surname: Ye
  fullname: Ye, Zi
  organization: Shanghai Normal University
– sequence: 7
  givenname: Wen‐Wen
  orcidid: 0000-0002-2723-2843
  surname: Chen
  fullname: Chen, Wen‐Wen
  email: wenwen@shnu.edu.cn
  organization: Shanghai Normal University
– sequence: 8
  givenname: Baoguo
  orcidid: 0000-0001-7579-6670
  surname: Zhao
  fullname: Zhao, Baoguo
  email: zhaobg2006@shnu.edu.cn
  organization: Shanghai Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35182094$$D View this record in MEDLINE/PubMed
BookMark eNqNks-K1TAUxoOMOH9061IKbgTpNU2aNlley3UcGFRQ1yVNTrkZ0mRsUscKgo_gq_giPoRPYuq9M8KAaBbJl5zfd3JIzjE6cN4BQg8LvCowJs-kM7AimBCMOcN30FHBSJHTuqYHSZeU5jVnxSE6DuEi8Zzj6h46pKzgBIvyCH1Zh3kYII5GZT--__z6bW3tbGU03mW-z07trIyTEbIrE7fZ2zSrLeis2cLgA1hQ0Xw0cc42TnY2Bbo5a6YQ_WA-p91z009OLcmkzd7Mo9H-U1KNjNLOIYb76G4vbYAH-_UEvX-xede8zM9fn5416_Nc0ZriHGrBNOt00euu7HRFNReM9tCVWicBfDnESuESSg5YK8EIqyWvOp54JugJerLLezn6DxOE2A4mKLBWOvBTaElFsSAVoVVCH99CL_w0pvoXqhREYFKQRD3aU1M3gG4vRzPIcW6vHzYBT3fAFXS-D8qAU3CDYYzrSjBR4WUUieb_Tzcm_v6fxk8uJmu5s6rRhzBC36p9PI7S2LbA7dIo7dIo7U2jJNvqlu36tr8axL5EY2H-B92uX51t_nh_Adkr0dY
CitedBy_id crossref_primary_10_1002_ange_202310320
crossref_primary_10_1039_D2QO00705C
crossref_primary_10_1039_D3SC01294H
crossref_primary_10_1055_s_0041_1737445
crossref_primary_10_1021_acsomega_3c09974
crossref_primary_10_1002_ange_202418910
crossref_primary_10_1021_acscatal_3c01770
crossref_primary_10_1002_ange_202206111
crossref_primary_10_1039_D4GC05739B
crossref_primary_10_1002_chem_202301348
crossref_primary_10_1039_D3QO01155K
crossref_primary_10_1021_acs_orglett_4c03424
crossref_primary_10_1021_jacs_4c11113
crossref_primary_10_1002_anie_202206111
crossref_primary_10_1016_j_jcat_2022_09_018
crossref_primary_10_1021_acs_accounts_3c00053
crossref_primary_10_1021_jacs_4c09840
crossref_primary_10_1002_anie_202402038
crossref_primary_10_1002_anie_202424843
crossref_primary_10_1021_acs_joc_3c01152
crossref_primary_10_12677_jocr_2024_122021
crossref_primary_10_1055_a_1973_4292
crossref_primary_10_1002_anie_202418910
crossref_primary_10_1002_ange_202424843
crossref_primary_10_1021_acscatal_3c00790
crossref_primary_10_1002_ange_202402038
crossref_primary_10_1038_s41467_022_35062_2
crossref_primary_10_3389_fchem_2024_1347370
crossref_primary_10_1016_j_mcat_2023_113514
crossref_primary_10_1002_anie_202310320
crossref_primary_10_1002_chem_202404209
crossref_primary_10_1038_s41929_022_00875_3
crossref_primary_10_1002_asia_202300731
crossref_primary_10_1007_s11426_023_1578_y
crossref_primary_10_1021_acs_joc_2c02329
crossref_primary_10_3390_molecules28073002
crossref_primary_10_1002_ejoc_202300593
Cites_doi 10.1002/anie.201609332
10.1038/s41467-021-25449-y
10.2174/1389201021999201118161155
10.1002/cjoc.201800478
10.1021/ja311363a
10.1002/ange.201204925
10.1002/anie.201707019
10.3184/030823408X338684
10.1021/jacs.6b03930
10.4155/fmc.13.62
10.1021/jacs.7b05460
10.1039/C4CS00507D
10.1021/cr300192h
10.1002/ange.200461381
10.1016/j.drudis.2012.01.013
10.1002/anie.202017306
10.1002/ange.201701455
10.1021/jacs.8b00187
10.1021/acs.accounts.0c00113
10.1002/anie.201607918
10.1021/ar0300625
10.1021/jacs.8b06014
10.1039/C6OB01349J
10.1039/C39880000718
10.1002/ange.200902093
10.1021/ar00051a008
10.1021/acs.orglett.1c03064
10.1039/C9CS00921C
10.1002/ange.202009460
10.1039/c2cs35017c
10.1021/acs.accounts.6b00163
10.1038/s41467-019-10940-4
10.1016/j.chempr.2021.07.013
10.1016/j.tet.2009.07.034
10.1002/ange.201103748
10.1002/anie.200703022
10.1021/cr100212h
10.1002/ange.201814403
10.1016/j.tetlet.2018.06.023
10.1002/ange.200503132
10.1021/ja992754n
10.1002/chem.201402548
10.1002/ange.201204921
10.1002/adsc.200600467
10.1002/ange.202102842
10.1002/anie.201103748
10.1055/s-0040-1707157
10.1039/C3CS60037H
10.1016/j.tetlet.2004.04.135
10.1021/acs.chemrev.8b00081
10.1021/jacs.0c11787
10.1002/anie.201301509
10.1002/ange.201609332
10.1038/s41467-020-19245-3
10.1039/D0SC07052A
10.1002/anie.200461381
10.1016/S0028-3908(98)00122-1
10.1021/ja410707q
10.1007/s11426-018-9345-5
10.1021/ja802422d
10.1039/b926037d
10.1016/S0960-894X(00)00346-2
10.1021/ol016567h
10.1021/jm9911682
10.1021/acs.joc.7b02064
10.1039/c3sc53314j
10.1002/anie.201204921
10.1002/anie.202104031
10.1055/s-0031-1289786
10.1021/acs.orglett.7b02378
10.1016/j.bmc.2012.04.061
10.1002/ange.201301509
10.1002/anie.202009460
10.1021/ol049600j
10.1039/D1CC02861H
10.1021/acs.accounts.0c00697
10.1021/acs.orglett.8b02297
10.1021/jacs.8b06676
10.1002/ange.200703022
10.1002/ange.201707019
10.1021/ja994326n
10.1002/anie.201204925
10.1111/febs.12581
10.1002/anie.201814403
10.1021/ja050340q
10.1021/acs.orglett.5b02895
10.1002/ange.201808700
10.1002/ange.202017306
10.1039/c1ob00017a
10.1021/ol202326j
10.1021/ol900439h
10.1002/ange.202000044
10.1021/ja110795m
10.1002/anie.201701455
10.1016/j.bioorg.2018.03.004
10.1002/anie.200902093
10.1016/j.tetlet.2009.06.051
10.1002/anie.201808700
10.1016/S0040-4039(02)01334-5
10.1021/acs.chemrev.8b00349
10.1021/ja052638m
10.1021/ja303115m
10.1002/anie.202000044
10.1021/cr068057c
10.1002/chem.201102522
10.1002/anie.202102842
10.1021/ja078006c
10.1126/science.aat4210
10.1016/j.chempr.2018.08.011
10.1002/ange.202104031
10.1002/anie.200503132
10.1038/s41557-019-0319-5
10.1002/ejoc.201801363
10.1021/jacs.9b01910
10.1002/chem.201801670
10.1016/S0040-4039(02)02274-8
10.1021/ja020290e
10.1002/adsc.201800986
10.1021/jacs.8b13582
10.1021/cr068373r
10.1039/C1CY00387A
10.1002/ange.201607918
10.1039/d0sc07052a
10.4155/FMC.13.62
10.1039/c9cs00921c
10.1039/c6ob01349j
10.1021/acs.joc.0c00175
10.1039/c4cs00507d
10.1055/s-0028-1088075
10.1039/c1cy00387a
10.1055/s-0031-1290131
10.1039/c3cs60037h
10.1039/d1cc02861h
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
1KN
AHQBO
BLEPL
DTL
EGQ
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202200850
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
CrossRef
Web of Science

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35182094
000769596000001
10_1002_anie_202200850
ANIE202200850
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 18ZR1447600; 20JC1416800
– fundername: "111" Innovation and Talent Recruitment Base on Photochemical and Energy Materials
  funderid: D18020
– fundername: Shanghai Engineering Research Center of Green Energy Chemical Engineering
  funderid: 18DZ2254200
– fundername: National Natural Science Foundation of China
  funderid: 21871181
– fundername: Shanghai Municipal Education Commission
  funderid: 2019-01-07-00-02-E00029
– fundername: Shanghai Municipal Committee of Science and Technology; Science & Technology Commission of Shanghai Municipality (STCSM)
  grantid: 18ZR1447600; 20JC1416800
– fundername: Shanghai Municipal Education Commission; Shanghai Municipal Education Commission (SHMEC)
  grantid: 2019-01-07-00-02-E00029
– fundername: Shanghai Engineering Research Center of Green Energy Chemical Engineering
  grantid: 18DZ2254200
– fundername: "111 Innovation and Talent Recruitment Base on Photochemical and Energy Materials
  grantid: D18020
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21871181
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3730-e795d5bd1fdb4bd63d8953feb4dd953e84bd60cc04e48e0dc95257a86b8b4b593
IEDL.DBID DR2
ISICitedReferencesCount 39
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000769596000001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:44:05 EDT 2025
Fri Jul 25 12:12:28 EDT 2025
Wed Feb 19 02:25:28 EST 2025
Wed Jul 09 18:33:23 EDT 2025
Fri Aug 29 16:02:18 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Tue Jul 01 01:18:17 EDT 2025
Wed Jan 22 16:25:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Vitamin B-6
ACTIVATED ALLYLIC ACETATES
Allylic Substitution
CONJUGATE ADDITION-ELIMINATION
ALDEHYDE CATALYSIS
Organocatalysis
GLUTAMIC-ACID DERIVATIVES
ENANTIOSELECTIVE CONSTRUCTION
Carbonyl Catalysis
BIOMIMETIC TRANSAMINATION
DIPHOSPHINE LIGANDS
AMINO-ACIDS
SYNERGISTIC CU/PD CATALYSIS
BAYLIS-HILLMAN CARBONATES
Biomimetic Catalysis
Vitamin B6
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3730-e795d5bd1fdb4bd63d8953feb4dd953e84bd60cc04e48e0dc95257a86b8b4b593
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7579-6670
0000-0002-2723-2843
PMID 35182094
PQID 2649290212
PQPubID 946352
PageCount 7
ParticipantIDs proquest_journals_2649290212
crossref_citationtrail_10_1002_anie_202200850
proquest_miscellaneous_2630926236
webofscience_primary_000769596000001
wiley_primary_10_1002_anie_202200850_ANIE202200850
webofscience_primary_000769596000001CitationCount
crossref_primary_10_1002_anie_202200850
pubmed_primary_35182094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 19, 2022
PublicationDateYYYYMMDD 2022-04-19
PublicationDate_xml – month: 04
  year: 2022
  text: April 19, 2022
  day: 19
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2007; 349
2007; 107
2021; 23
2017; 82
2018; 360
2021; 22
2009 2009; 48 121
2019; 11
2019; 10
2000; 43
2020 2020; 59 132
1999; 121
2004; 6
2011; 13
2012; 17
2020; 11
2011; 17
2013; 5
2008; 2008
2014; 136
2011; 111
2013 2013; 52 125
2014; 20
2009; 11
2014; 5
2012; 134
2019; 62
2018; 4
2020; 53
1995; 28
2020; 52
2009; 50
2012 2012; 51 124
2000; 10
2004; 37
2002; 43
2015; 44
2020; 49
2013; 113
2000; 122
2014; 281
2018; 78
2016; 49
2012; 23
2012; 20
1988
2021; 7
2004 2004; 43 116
2015; 17
2009; 65
2018; 140
2004; 45
2019; 37
2009
2017 2017; 56 129
2021; 143
2019; 141
2018; 20
2016; 14
2019 2019; 58 131
2011; 133
2017; 139
2014; 43
2018; 24
2011; 9
2021; 57
1998; 37
2006 2006; 45 118
2012; 2
2021; 54
2016 2016; 55 128
2021; 12
2010; 46
2020; 31
2018; 118
2002; 124
2005; 127
2007 2007; 46 119
2021 2021; 60 133
2019
2013; 135
2017; 19
2001; 3
2011 2011; 50 123
2016; 138
2009; 109
2008; 130
2018; 59
2012; 41
e_1_2_3_92_3
e_1_2_3_92_2
e_1_2_3_50_1
e_1_2_3_114_2
e_1_2_3_110_2
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_39_2
e_1_2_3_12_1
e_1_2_3_58_1
e_1_2_3_8_2
e_1_2_3_35_3
e_1_2_3_77_2
e_1_2_3_35_2
e_1_2_3_118_2
e_1_2_3_54_2
e_1_2_3_73_2
e_1_2_3_96_2
e_1_2_3_31_2
e_1_2_3_81_2
e_1_2_3_125_2
e_1_2_3_102_1
e_1_2_3_121_2
e_1_2_3_28_2
e_1_2_3_24_2
e_1_2_3_66_2
e_1_2_3_89_2
e_1_2_3_47_1
e_1_2_3_106_2
e_1_2_3_129_2
e_1_2_3_20_2
e_1_2_3_62_2
e_1_2_3_20_3
e_1_2_3_43_1
e_1_2_3_85_1
e_1_2_3_72_2
e_1_2_3_91_1
e_1_2_3_19_2
e_1_2_3_115_1
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_111_1
e_1_2_3_3_2
e_1_2_3_38_3
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_7_2
e_1_2_3_57_2
e_1_2_3_53_1
e_1_2_3_76_1
e_1_2_3_99_1
e_1_2_3_30_2
e_1_2_3_119_2
e_1_2_3_30_3
e_1_2_3_95_2
e_1_2_3_84_1
e_1_2_3_61_2
e_1_2_3_80_2
Wang J. (e_1_2_3_60_2) 2009
e_1_2_3_103_1
e_1_2_3_126_2
e_1_2_3_122_3
e_1_2_3_27_2
e_1_2_3_122_2
e_1_2_3_23_2
e_1_2_3_69_2
e_1_2_3_23_3
e_1_2_3_46_2
e_1_2_3_88_2
e_1_2_3_107_1
e_1_2_3_65_2
e_1_2_3_126_3
e_1_2_3_42_2
e_1_2_3_71_2
e_1_2_3_71_3
e_1_2_3_94_1
e_1_2_3_90_2
e_1_2_3_18_3
e_1_2_3_14_3
e_1_2_3_37_3
e_1_2_3_37_2
e_1_2_3_112_1
e_1_2_3_18_2
e_1_2_3_56_2
e_1_2_3_33_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_79_1
e_1_2_3_52_2
e_1_2_3_75_2
e_1_2_3_98_2
e_1_2_3_116_2
e_1_2_3_10_2
e_1_2_3_83_2
e_1_2_3_127_1
e_1_2_3_104_2
e_1_2_3_26_2
e_1_2_3_49_2
e_1_2_3_26_3
e_1_2_3_123_1
e_1_2_3_100_2
e_1_2_3_22_2
e_1_2_3_45_2
e_1_2_3_68_2
e_1_2_3_87_3
e_1_2_3_41_2
e_1_2_3_87_2
e_1_2_3_108_2
e_1_2_3_41_3
e_1_2_3_64_1
e_1_2_3_93_3
e_1_2_3_93_2
e_1_2_3_70_2
e_1_2_3_1_1
e_1_2_3_113_2
e_1_2_3_5_2
Calcatelli A. (e_1_2_3_2_2) 2020; 52
e_1_2_3_17_2
e_1_2_3_59_2
e_1_2_3_9_1
e_1_2_3_55_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_78_2
e_1_2_3_51_2
e_1_2_3_97_2
e_1_2_3_32_1
e_1_2_3_74_2
e_1_2_3_117_2
e_1_2_3_82_2
e_1_2_3_29_3
e_1_2_3_101_2
e_1_2_3_124_2
e_1_2_3_25_3
e_1_2_3_48_2
e_1_2_3_120_1
e_1_2_3_29_2
e_1_2_3_44_2
e_1_2_3_109_2
e_1_2_3_25_2
e_1_2_3_67_2
e_1_2_3_40_3
e_1_2_3_40_2
e_1_2_3_86_2
e_1_2_3_105_2
e_1_2_3_21_2
e_1_2_3_63_2
e_1_2_3_128_2
Wang, XM (WOS:000308399500011) 2012; 51
(000769596000001.33) 2012; 124
Chen, CG (WOS:000265908400008) 2009; 11
Du, YS (WOS:000221936100034) 2004; 45
Chen, P (WOS:000462680700066) 2019; 58
Chen, JF (WOS:000455884800001) 2019; 37
Zhao, BG (WOS:000318107400006) 2013; 52
Hong, L (WOS:000276376000044) 2010; 46
Wang, J (WOS:000266382800023) 2009
(000769596000001.38) 2017; 129
Crugeiras, J (WOS:000289455200057) 2011; 133
Elleuch, H (WOS:000433242100004) 2018; 78
Hu, YM (WOS:000572120700001) 2020; 59
Cui, HL (WOS:000268538100034) 2009; 48
Lindbäck, E (WOS:000342797500003) 2014; 20
Xie, Y (WOS:000351606600002) 2015; 44
Cheong, PHY (WOS:000294699500014) 2011; 111
Gowrisankar, S (WOS:000271345300001) 2009; 65
Liu, TY (WOS:000303999800001) 2012; 41
van Steenis, DJVC (WOS:000244268900002) 2007; 349
Lu, SC (WOS:000474824900001) 2019; 10
Ali, I (WOS:000320826000014) 2013; 5
Zheng, Y (WOS:000417342300024) 2017; 82
Trost, BM (WOS:000176338400002) 2002; 124
Trost, BM (WOS:000086477100038) 2000; 122
Janecka, A (WOS:000305094100006) 2012; 17
Wang, XB (WOS:000394997200034) 2017; 56
Crugeiras, J (WOS:000253100200043) 2008; 130
Chen, P (WOS:000385799200073) 2016; 55
Wang, XM (WOS:000618081800018) 2021; 54
Li, DF (WOS:000259889500003) 2008
Zhong, X (WOS:000635768300010) 2021; 12
Trost, BM (WOS:000229085200036) 2005; 127
Wen, W (WOS:000440877000061) 2018; 140
Wang, GL (WOS:000675837000002) 2021; 22
Bai, XB (WOS:000716793100041) 2021; 23
Chen, WY (WOS:000315080100010) 2013; 135
Cho, CW (WOS:000225869900020) 2004; 43
Gong, LZ (WOS:000456087200002) 2019; 62
Lima, CG (WOS:000305279700001) 2012; 20
Ramachandran, PV (WOS:000232257100004) 2005; 127
di Salvo, ML (WOS:000330591100011) 2014; 281
Shi, LM (WOS:000366152000016) 2015; 17
Teng, HL (WOS:000295817100048) 2011; 13
Serra, M (WOS:000457450900018) 2019; 2019
Wang, XM (WOS:000329586600064) 2014; 136
Hu, YM (WOS:000677434700001) 2021; 57
Lin, HC (WOS:000464769000035) 2019; 141
Kim, JH (WOS:000176637100002) 2002; 43
Caruano, J (WOS:000387902900002) 2016; 14
Rios, R (WOS:000299291000003) 2012; 2
Wang, TL (WOS:000380296400005) 2016; 49
Small, B (WOS:000077219400008) 1998; 37
Chen, L (WOS:000463843700019) 2019; 141
Ma, JG (WOS:000634675000001) 2021; 60
Wei, L (WOS:000537147700010) 2020; 53
Guo, HC (WOS:000448754700002) 2018; 118
Xu, B (WOS:000334492700039) 2014; 5
Wei, L (WOS:000411267800050) 2017; 56
Mao, HB (WOS:000320375800029) 2013; 52
Wei, L (WOS:000455584100005) 2018; 360
Declerck, V (WOS:000262482500001) 2009; 109
Mei, GJ (WOS:000708501600014) 2021; 7
Liu, JW (WOS:000399384700027) 2017; 56
Ghosh, S (WOS:000268508900025) 2009; 50
Wei, Y (WOS:000323301200018) 2013; 113
Taylor, MS (WOS:000235752600004) 2006; 45
(000769596000001.36) 2017; 129
Liu, YE (WOS:000382513300004) 2016; 138
Zampella, A (WOS:000177467500018) 2002; 43
Chen, QQ (WOS:000444527000068) 2018; 20
Cho, CW (WOS:000220709100038) 2004; 6
Furukawa, T (WOS:000296205000034) 2011; 50
(000769596000001.108) 2013; 125
Wen, W (WOS:000586507600011) 2020; 11
Yang, YL (WOS:000289488000035) 2011; 9
Trost, BM (WOS:000084014300008) 1999; 121
Nakoji, M (WOS:000171708000026) 2001; 3
Pedregal, C (WOS:000087223900006) 2000; 43
Chen, JF (WOS:000436598000071) 2018; 360
Cai, WQ (WOS:000738605600001) 2021; 12
Paria, S (WOS:000526405900046) 2020; 85
Lin, AJ (WOS:000298060800008) 2011; 17
Doyle, AG (WOS:000251583300009) 2007; 107
Prabhudas, B (WOS:000251761500032) 2007; 46
O'Donnell, MJ (WOS:000223385800004) 2004; 37
Chen, WW (WOS:000570338800003) 2020; 31
Tang, ST (WOS:000448754700005) 2018; 118
Cheng, AL (WOS:000672900000001) 2021; 60
Falivene, L (WOS:000487584400007) 2019; 11
Yin, Q (WOS:000570357800001) 2020; 49
Huo, XH (WOS:000406649600018) 2017; 139
Yuan, Y (WOS:000411304300049) 2017; 19
Lu, LQ (WOS:000300711600006) 2012
GENET, JP (WOS:A1988N739100017) 1988
Li, SL (WOS:000447354800032) 2018; 140
Zhong, FR (WOS:000305358900063) 2012; 134
Huo, XH (WOS:000425475300024) 2018; 140
Reddy, TN (WOS:000439674000001) 2018; 59
Baker, SR (WOS:000088837600008) 2000; 10
Wang, Q (WOS:000476423300002) 2019; 58
Jiang, YQ (WOS:000256550600018) 2008; 130
BRESLOW, R (WOS:A1995QM79200009) 1995; 28
Ma, J. (000769596000001.1) 1000; 2022
Cai, M (WOS:000612557200059) 2021; 143
Li, S (WOS:000444488400012) 2018; 4
Yang, ZH (WOS:000649206900001) 2021; 60
Chen, P (WOS:000526818900017) 2020; 59
Zhu, Y (WOS:000436245300009) 2018; 24
Raynal, M (WOS:000331188400018) 2014; 43
References_xml – volume: 78
  start-page: 24
  year: 2018
  end-page: 28
  publication-title: Bioorg. Chem.
– volume: 50
  start-page: 4892
  year: 2009
  end-page: 4895
  publication-title: Tetrahedron Lett.
– volume: 53
  start-page: 1084
  year: 2020
  end-page: 1100
  publication-title: Acc. Chem. Res.
– volume: 135
  start-page: 2068
  year: 2013
  end-page: 2071
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 5784
  year: 2015
  end-page: 5787
  publication-title: Org. Lett.
– volume: 127
  start-page: 7014
  year: 2005
  end-page: 7024
  publication-title: J. Am. Chem. Soc.
– volume: 349
  start-page: 281
  year: 2007
  end-page: 286
  publication-title: Adv. Synth. Catal.
– volume: 48 121
  start-page: 5737 5847
  year: 2009 2009
  end-page: 5740 5850
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 7083 7149
  year: 2020 2020
  end-page: 7088 7154
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43 116
  start-page: 6689 6857
  year: 2004 2004
  end-page: 6691 6859
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 5372
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3061
  year: 2019
  publication-title: Nat. Commun.
– volume: 130
  start-page: 7202
  year: 2008
  end-page: 7203
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 668
  year: 2021
  end-page: 684
  publication-title: Acc. Chem. Res.
– volume: 59 132
  start-page: 19820 19992
  year: 2020 2020
  end-page: 19824 19996
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 3954
  year: 2012
  end-page: 3971
  publication-title: Bioorg. Med. Chem.
– volume: 52
  start-page: 2922
  year: 2020
  end-page: 2939
  publication-title: Synthesis
– start-page: 1744
  year: 2009
  end-page: 1752
  publication-title: Synthesis
– volume: 37
  start-page: 1261
  year: 1998
  end-page: 1267
  publication-title: Neuropharmacology
– volume: 12
  start-page: 4353
  year: 2021
  end-page: 4360
  publication-title: Chem. Sci.
– volume: 31
  start-page: 1543
  year: 2020
  end-page: 1550
  publication-title: Synlett
– volume: 58 131
  start-page: 6818 6890
  year: 2019 2019
  end-page: 6825 6897
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 1734
  year: 2014
  end-page: 1787
  publication-title: Chem. Soc. Rev.
– volume: 37
  start-page: 506
  year: 2004
  end-page: 517
  publication-title: Acc. Chem. Res.
– volume: 17
  start-page: 561
  year: 2012
  end-page: 572
  publication-title: Drug Discov. Today
– volume: 11
  start-page: 872
  year: 2019
  end-page: 879
  publication-title: Nat. Chem.
– volume: 59
  start-page: 2859
  year: 2018
  end-page: 2875
  publication-title: Tetrahedron Lett.
– volume: 360
  start-page: 1438
  year: 2018
  end-page: 1442
  publication-title: Science
– volume: 360
  start-page: 4715
  year: 2018
  end-page: 4719
  publication-title: Adv. Synth. Catal.
– volume: 37
  start-page: 103
  year: 2019
  end-page: 112
  publication-title: Chin. J. Chem.
– volume: 60 133
  start-page: 20166 20328
  year: 2021 2021
  end-page: 20172 20334
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 8994
  year: 2018
  end-page: 8998
  publication-title: Chem. Eur. J.
– volume: 138
  start-page: 10730
  year: 2016
  end-page: 10733
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 9276 9410
  year: 2012 2012
  end-page: 9282 9416
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 133
  start-page: 3173
  year: 2011
  end-page: 3183
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 9141
  year: 2002
  end-page: 9146
  publication-title: Tetrahedron Lett.
– volume: 2
  start-page: 267
  year: 2012
  end-page: 278
  publication-title: Catal. Sci. Technol.
– volume: 127
  start-page: 13450
  year: 2005
  end-page: 13451
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 10049
  year: 2018
  end-page: 10293
  publication-title: Chem. Rev.
– volume: 55 128
  start-page: 13316 13510
  year: 2016 2016
  end-page: 13320 13514
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 1807
  year: 2000
  end-page: 1810
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 134
  start-page: 10222
  year: 2012
  end-page: 10227
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 5050 5132
  year: 2017 2017
  end-page: 5054 5136
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 1958
  year: 2000
  end-page: 1968
  publication-title: J. Med. Chem.
– volume: 50 123
  start-page: 9684 9858
  year: 2011 2011
  end-page: 9688 9862
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45 118
  start-page: 1520 1550
  year: 2006 2006
  end-page: 1543 1573
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 718
  year: 1988
  end-page: 719
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 141
  start-page: 5824
  year: 2019
  end-page: 5834
  publication-title: J. Am. Chem. Soc.
– volume: 52 125
  start-page: 4744 4844
  year: 2013 2013
  end-page: 4788 4889
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46 119
  start-page: 9295 9455
  year: 2007 2007
  end-page: 9297 9457
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 19
  start-page: 4896
  year: 2017
  end-page: 4899
  publication-title: Org. Lett.
– volume: 143
  start-page: 1078
  year: 2021
  end-page: 1087
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3349
  year: 2011
  end-page: 3358
  publication-title: Org. Biomol. Chem.
– volume: 20
  start-page: 5380
  year: 2018
  end-page: 5383
  publication-title: Org. Lett.
– volume: 23
  start-page: 8322
  year: 2021
  end-page: 8326
  publication-title: Org. Lett.
– volume: 58 131
  start-page: 4036 4076
  year: 2019 2019
  end-page: 4040 4080
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 12836
  year: 2018
  end-page: 12843
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 1
  year: 2009
  end-page: 48
  publication-title: Chem. Rev.
– volume: 6
  start-page: 1337
  year: 2004
  end-page: 1339
  publication-title: Org. Lett.
– volume: 60 133
  start-page: 10588 10682
  year: 2021 2021
  end-page: 10592 10686
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 62
  start-page: 3
  year: 2019
  end-page: 4
  publication-title: Sci. China Chem.
– volume: 20
  start-page: 13432
  year: 2014
  end-page: 13481
  publication-title: Chem. Eur. J.
– volume: 107
  start-page: 5713
  year: 2007
  end-page: 5743
  publication-title: Chem. Rev.
– volume: 3
  start-page: 3329
  year: 2001
  end-page: 3331
  publication-title: Org. Lett.
– start-page: 732
  year: 2019
  end-page: 741
  publication-title: Eur. J. Org. Chem.
– volume: 49
  start-page: 1369
  year: 2016
  end-page: 1378
  publication-title: Acc. Chem. Res.
– volume: 60 133
  start-page: 13913 14032
  year: 2021 2021
  end-page: 13917 14036
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 1740
  year: 2015
  end-page: 1748
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 8059
  year: 2021
  end-page: 8062
  publication-title: Chem. Commun.
– volume: 45
  start-page: 4967
  year: 2004
  end-page: 4971
  publication-title: Tetrahedron Lett.
– volume: 121
  start-page: 10727
  year: 1999
  end-page: 10737
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 2856
  year: 2010
  end-page: 2858
  publication-title: Chem. Commun.
– volume: 13
  start-page: 5600
  year: 2011
  end-page: 5603
  publication-title: Org. Lett.
– volume: 14
  start-page: 10134
  year: 2016
  end-page: 10156
  publication-title: Org. Biomol. Chem.
– volume: 17
  start-page: 13676
  year: 2011
  end-page: 13679
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 2743
  year: 2021
  end-page: 2757
  publication-title: Chem
– volume: 65
  start-page: 8769
  year: 2009
  end-page: 8780
  publication-title: Tetrahedron
– volume: 141
  start-page: 5159
  year: 2019
  end-page: 5163
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 9774
  year: 2018
  end-page: 9780
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 10393
  year: 2018
  end-page: 10457
  publication-title: Chem. Rev.
– volume: 111
  start-page: 5042
  year: 2011
  end-page: 5137
  publication-title: Chem. Rev.
– volume: 23
  start-page: 490
  year: 2012
  end-page: 508
  publication-title: Synlett
– volume: 113
  start-page: 6659
  year: 2013
  end-page: 6690
  publication-title: Chem. Rev.
– volume: 43
  start-page: 6163
  year: 2002
  end-page: 6166
  publication-title: Tetrahedron Lett.
– volume: 136
  start-page: 405
  year: 2014
  end-page: 411
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 146
  year: 1995
  end-page: 153
  publication-title: Acc. Chem. Res.
– volume: 56 129
  start-page: 12312 12480
  year: 2017 2017
  end-page: 12316 12484
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 1116 1136
  year: 2017 2017
  end-page: 1119 1139
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2008
  start-page: 434
  year: 2008
  end-page: 436
  publication-title: J. Chem. Res.
– volume: 52 125
  start-page: 6288 6408
  year: 2013 2013
  end-page: 6292 6412
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 2026
  year: 2018
  end-page: 2028
  publication-title: Chem
– volume: 140
  start-page: 2080
  year: 2018
  end-page: 2084
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 3534
  year: 2000
  end-page: 3535
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2073
  year: 2009
  end-page: 2075
  publication-title: Org. Lett.
– volume: 139
  start-page: 9819
  year: 2017
  end-page: 9822
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1988
  year: 2014
  end-page: 1991
  publication-title: Chem. Sci.
– volume: 281
  start-page: 129
  year: 2014
  end-page: 145
  publication-title: FEBS J.
– volume: 12
  start-page: 5174
  year: 2021
  publication-title: Nat. Commun.
– volume: 49
  start-page: 6141
  year: 2020
  end-page: 6153
  publication-title: Chem. Soc. Rev.
– volume: 22
  start-page: 1404
  year: 2021
  end-page: 1411
  publication-title: Curr. Pharm. Biotechnol.
– volume: 82
  start-page: 12202
  year: 2017
  end-page: 12208
  publication-title: J. Org. Chem.
– volume: 130
  start-page: 2041
  year: 2008
  end-page: 2050
  publication-title: J. Am. Chem. Soc.
– volume: 124
  start-page: 7256
  year: 2002
  end-page: 7257
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 961
  year: 2013
  end-page: 978
  publication-title: Future Med. Chem.
– volume: 41
  start-page: 4101
  year: 2012
  end-page: 4112
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_3_37_2
  doi: 10.1002/anie.201609332
– ident: e_1_2_3_106_2
  doi: 10.1038/s41467-021-25449-y
– ident: e_1_2_3_77_2
  doi: 10.2174/1389201021999201118161155
– ident: e_1_2_3_89_2
  doi: 10.1002/cjoc.201800478
– ident: e_1_2_3_69_2
  doi: 10.1021/ja311363a
– ident: e_1_2_3_35_3
  doi: 10.1002/ange.201204925
– ident: e_1_2_3_71_2
  doi: 10.1002/anie.201707019
– ident: e_1_2_3_43_1
– ident: e_1_2_3_51_2
  doi: 10.3184/030823408X338684
– ident: e_1_2_3_107_1
– ident: e_1_2_3_105_2
  doi: 10.1021/jacs.6b03930
– ident: e_1_2_3_78_2
  doi: 10.4155/fmc.13.62
– ident: e_1_2_3_12_1
– ident: e_1_2_3_70_2
  doi: 10.1021/jacs.7b05460
– ident: e_1_2_3_129_2
  doi: 10.1039/C4CS00507D
– ident: e_1_2_3_91_1
– ident: e_1_2_3_5_2
  doi: 10.1021/cr300192h
– ident: e_1_2_3_14_3
  doi: 10.1002/ange.200461381
– ident: e_1_2_3_114_2
  doi: 10.1016/j.drudis.2012.01.013
– ident: e_1_2_3_93_2
  doi: 10.1002/anie.202017306
– ident: e_1_2_3_123_1
– ident: e_1_2_3_38_3
  doi: 10.1002/ange.201701455
– ident: e_1_2_3_72_2
  doi: 10.1021/jacs.8b00187
– ident: e_1_2_3_48_2
  doi: 10.1021/acs.accounts.0c00113
– ident: e_1_2_3_26_2
  doi: 10.1002/anie.201607918
– ident: e_1_2_3_49_2
  doi: 10.1021/ar0300625
– ident: e_1_2_3_27_2
  doi: 10.1021/jacs.8b06014
– ident: e_1_2_3_113_2
  doi: 10.1039/C6OB01349J
– ident: e_1_2_3_65_2
  doi: 10.1039/C39880000718
– ident: e_1_2_3_20_3
  doi: 10.1002/ange.200902093
– ident: e_1_2_3_128_2
  doi: 10.1021/ar00051a008
– ident: e_1_2_3_42_2
  doi: 10.1021/acs.orglett.1c03064
– ident: e_1_2_3_90_2
  doi: 10.1039/C9CS00921C
– ident: e_1_2_3_30_3
  doi: 10.1002/ange.202009460
– ident: e_1_2_3_6_2
  doi: 10.1039/c2cs35017c
– ident: e_1_2_3_4_2
  doi: 10.1021/acs.accounts.6b00163
– ident: e_1_2_3_28_2
  doi: 10.1038/s41467-019-10940-4
– ident: e_1_2_3_31_2
  doi: 10.1016/j.chempr.2021.07.013
– ident: e_1_2_3_11_2
  doi: 10.1016/j.tet.2009.07.034
– ident: e_1_2_3_23_3
  doi: 10.1002/ange.201103748
– ident: e_1_2_3_18_2
  doi: 10.1002/anie.200703022
– ident: e_1_2_3_99_1
– ident: e_1_2_3_124_2
  doi: 10.1021/cr100212h
– ident: e_1_2_3_40_3
  doi: 10.1002/ange.201814403
– ident: e_1_2_3_46_2
  doi: 10.1016/j.tetlet.2018.06.023
– ident: e_1_2_3_122_3
  doi: 10.1002/ange.200503132
– ident: e_1_2_3_66_2
  doi: 10.1021/ja992754n
– ident: e_1_2_3_120_1
– ident: e_1_2_3_110_2
  doi: 10.1002/chem.201402548
– ident: e_1_2_3_126_3
  doi: 10.1002/ange.201204921
– ident: e_1_2_3_17_2
  doi: 10.1002/adsc.200600467
– ident: e_1_2_3_127_1
– ident: e_1_2_3_41_3
  doi: 10.1002/ange.202102842
– ident: e_1_2_3_23_2
  doi: 10.1002/anie.201103748
– ident: e_1_2_3_117_2
  doi: 10.1055/s-0040-1707157
– ident: e_1_2_3_109_2
  doi: 10.1039/C3CS60037H
– ident: e_1_2_3_16_2
  doi: 10.1016/j.tetlet.2004.04.135
– ident: e_1_2_3_3_2
  doi: 10.1021/acs.chemrev.8b00081
– ident: e_1_2_3_101_2
  doi: 10.1021/jacs.0c11787
– ident: e_1_2_3_111_1
– ident: e_1_2_3_25_2
  doi: 10.1002/anie.201301509
– ident: e_1_2_3_37_3
  doi: 10.1002/ange.201609332
– ident: e_1_2_3_98_2
  doi: 10.1038/s41467-020-19245-3
– ident: e_1_2_3_100_2
  doi: 10.1039/D0SC07052A
– ident: e_1_2_3_9_1
– ident: e_1_2_3_14_2
  doi: 10.1002/anie.200461381
– ident: e_1_2_3_80_2
  doi: 10.1016/S0028-3908(98)00122-1
– ident: e_1_2_3_36_2
  doi: 10.1021/ja410707q
– ident: e_1_2_3_88_2
  doi: 10.1007/s11426-018-9345-5
– ident: e_1_2_3_19_2
  doi: 10.1021/ja802422d
– ident: e_1_2_3_58_1
– ident: e_1_2_3_21_2
  doi: 10.1039/b926037d
– ident: e_1_2_3_82_2
  doi: 10.1016/S0960-894X(00)00346-2
– ident: e_1_2_3_67_2
  doi: 10.1021/ol016567h
– ident: e_1_2_3_81_2
  doi: 10.1021/jm9911682
– ident: e_1_2_3_56_2
  doi: 10.1021/acs.joc.7b02064
– ident: e_1_2_3_95_2
  doi: 10.1039/c3sc53314j
– ident: e_1_2_3_115_1
– ident: e_1_2_3_126_2
  doi: 10.1002/anie.201204921
– ident: e_1_2_3_92_2
  doi: 10.1002/anie.202104031
– ident: e_1_2_3_125_2
  doi: 10.1055/s-0031-1289786
– start-page: 1744
  year: 2009
  ident: e_1_2_3_60_2
  publication-title: Synthesis
– ident: e_1_2_3_62_2
  doi: 10.1021/acs.orglett.7b02378
– ident: e_1_2_3_44_2
  doi: 10.1016/j.bmc.2012.04.061
– ident: e_1_2_3_25_3
  doi: 10.1002/ange.201301509
– ident: e_1_2_3_79_1
– ident: e_1_2_3_30_2
  doi: 10.1002/anie.202009460
– ident: e_1_2_3_15_2
  doi: 10.1021/ol049600j
– ident: e_1_2_3_63_2
  doi: 10.1039/D1CC02861H
– ident: e_1_2_3_50_1
– ident: e_1_2_3_10_2
  doi: 10.1021/acs.accounts.0c00697
– ident: e_1_2_3_64_1
– ident: e_1_2_3_57_2
  doi: 10.1021/acs.orglett.8b02297
– ident: e_1_2_3_96_2
  doi: 10.1021/jacs.8b06676
– ident: e_1_2_3_18_3
  doi: 10.1002/ange.200703022
– ident: e_1_2_3_71_3
  doi: 10.1002/ange.201707019
– ident: e_1_2_3_33_2
  doi: 10.1021/ja994326n
– ident: e_1_2_3_35_2
  doi: 10.1002/anie.201204925
– ident: e_1_2_3_102_1
  doi: 10.1111/febs.12581
– ident: e_1_2_3_40_2
  doi: 10.1002/anie.201814403
– ident: e_1_2_3_34_2
  doi: 10.1021/ja050340q
– ident: e_1_2_3_104_2
  doi: 10.1021/acs.orglett.5b02895
– ident: e_1_2_3_87_3
  doi: 10.1002/ange.201808700
– ident: e_1_2_3_94_1
– ident: e_1_2_3_93_3
  doi: 10.1002/ange.202017306
– ident: e_1_2_3_55_2
  doi: 10.1039/c1ob00017a
– ident: e_1_2_3_61_2
  doi: 10.1021/ol202326j
– ident: e_1_2_3_32_1
– ident: e_1_2_3_59_2
  doi: 10.1021/ol900439h
– ident: e_1_2_3_29_3
  doi: 10.1002/ange.202000044
– ident: e_1_2_3_119_2
  doi: 10.1021/ja110795m
– ident: e_1_2_3_1_1
– ident: e_1_2_3_85_1
– ident: e_1_2_3_38_2
  doi: 10.1002/anie.201701455
– ident: e_1_2_3_45_2
  doi: 10.1016/j.bioorg.2018.03.004
– ident: e_1_2_3_20_2
  doi: 10.1002/anie.200902093
– ident: e_1_2_3_52_2
  doi: 10.1016/j.tetlet.2009.06.051
– ident: e_1_2_3_87_2
  doi: 10.1002/anie.201808700
– ident: e_1_2_3_83_2
  doi: 10.1016/S0040-4039(02)01334-5
– ident: e_1_2_3_76_1
– ident: e_1_2_3_116_2
  doi: 10.1021/acs.chemrev.8b00349
– ident: e_1_2_3_54_2
  doi: 10.1021/ja052638m
– ident: e_1_2_3_112_1
– ident: e_1_2_3_24_2
  doi: 10.1021/ja303115m
– ident: e_1_2_3_29_2
  doi: 10.1002/anie.202000044
– ident: e_1_2_3_53_1
– ident: e_1_2_3_8_2
  doi: 10.1021/cr068057c
– ident: e_1_2_3_22_2
  doi: 10.1002/chem.201102522
– ident: e_1_2_3_41_2
  doi: 10.1002/anie.202102842
– ident: e_1_2_3_118_2
  doi: 10.1021/ja078006c
– ident: e_1_2_3_84_1
  doi: 10.1126/science.aat4210
– ident: e_1_2_3_103_1
– ident: e_1_2_3_86_2
  doi: 10.1016/j.chempr.2018.08.011
– ident: e_1_2_3_92_3
  doi: 10.1002/ange.202104031
– ident: e_1_2_3_122_2
  doi: 10.1002/anie.200503132
– ident: e_1_2_3_108_2
  doi: 10.1038/s41557-019-0319-5
– ident: e_1_2_3_75_2
  doi: 10.1002/ejoc.201801363
– ident: e_1_2_3_97_2
  doi: 10.1021/jacs.9b01910
– ident: e_1_2_3_39_2
  doi: 10.1002/chem.201801670
– ident: e_1_2_3_13_2
  doi: 10.1016/S0040-4039(02)02274-8
– ident: e_1_2_3_68_2
  doi: 10.1021/ja020290e
– ident: e_1_2_3_73_2
  doi: 10.1002/adsc.201800986
– volume: 52
  start-page: 2922
  year: 2020
  ident: e_1_2_3_2_2
  publication-title: Synthesis
– ident: e_1_2_3_47_1
– ident: e_1_2_3_74_2
  doi: 10.1021/jacs.8b13582
– ident: e_1_2_3_121_2
  doi: 10.1021/cr068373r
– ident: e_1_2_3_7_2
  doi: 10.1039/C1CY00387A
– ident: e_1_2_3_26_3
  doi: 10.1002/ange.201607918
– volume: 118
  start-page: 10393
  year: 2018
  ident: WOS:000448754700005
  article-title: 2-Azaallyl Anions, 2-Azaallyl Cations, 2-Azaallyl Radicals, and Azomethine Ylides
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.8b00349
– volume: 53
  start-page: 1084
  year: 2020
  ident: WOS:000537147700010
  article-title: Catalytic Asymmetric Reactions with N-Metallated Azomethine Ylides
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.0c00113
– volume: 60
  start-page: 10588
  year: 2021
  ident: WOS:000634675000001
  article-title: Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202017306
– volume: 124
  start-page: 9410
  year: 2012
  ident: 000769596000001.33
  publication-title: Angew. Chem
– volume: 360
  start-page: 4715
  year: 2018
  ident: WOS:000455584100005
  article-title: Synergistic Cu/Pd Catalysis for Enantioselective Allylation of Ketimine Esters: The Direct Synthesis of α-Substituted α-Amino Acids and 2H-Pyrrols
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201800986
– volume: 141
  start-page: 5824
  year: 2019
  ident: WOS:000464769000035
  article-title: Nucleophile-Dependent Z/E- and Regioselectivity in the Palladium-Catalyzed Asymmetric Allylic C-H Alkylation of 1,4-Dienes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b13582
– volume: 12
  start-page: 4353
  year: 2021
  ident: WOS:000635768300010
  article-title: Chiral Lewis acid-bonded picolinaldehyde enables enantiodivergent carbonyl catalysis in the Mannich/condensation reaction of glycine ester
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d0sc07052a
– volume: 349
  start-page: 281
  year: 2007
  ident: WOS:000244268900002
  article-title: Construction of adjacent quaternary and tertiary stereocenters via an organocatalytic allylic alkylation of Morita-Baylis-Hillman carbonates
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.200600467
– volume: 143
  start-page: 1078
  year: 2021
  ident: WOS:000612557200059
  article-title: Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c11787
– volume: 7
  start-page: 2743
  year: 2021
  ident: WOS:000708501600014
  article-title: Rational design and atroposelective synthesis of N-N axially chiral compounds
  publication-title: CHEM
  doi: 10.1016/j.chempr.2021.07.013
– volume: 140
  start-page: 9774
  year: 2018
  ident: WOS:000440877000061
  article-title: Chiral Aldehyde Catalysis for the Catalytic Asymmetric Activation of Glycine Esters
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b06676
– volume: 5
  start-page: 961
  year: 2013
  ident: WOS:000320826000014
  article-title: Glutamic acid and its derivatives: candidates for rational design of anticancer drugs
  publication-title: FUTURE MEDICINAL CHEMISTRY
  doi: 10.4155/FMC.13.62
– volume: 11
  start-page: 2073
  year: 2009
  ident: WOS:000265908400008
  article-title: Highly Enantioselective Cu-Catalyzed Conjugate Addition-Elimination of Activated Allylic Acetates with Glycine Derivatives
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol900439h
– volume: 113
  start-page: 6659
  year: 2013
  ident: WOS:000323301200018
  article-title: Recent Advances in Organocatalytic Asymmetric Morita-Baylis-Hillman/aza-Morita-Baylis-Hillman Reactions
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr300192h
– volume: 17
  start-page: 13676
  year: 2011
  ident: WOS:000298060800008
  article-title: Organocatalytic Enantioselective Amination of Morita-Baylis-Hillman Carbonates with Masked Ammonia: A Facile Method for the Synthesis of Unprotected α-Methylene-β-Amino Esters
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201102522
– volume: 49
  start-page: 6141
  year: 2020
  ident: WOS:000570357800001
  article-title: Direct catalytic asymmetric synthesis of α-chiral primary amines
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c9cs00921c
– volume: 2019
  start-page: 732
  year: 2019
  ident: WOS:000457450900018
  article-title: Palladium-Catalyzed Asymmetric Decarboxylative Allylation of Azlactone Enol Carbonates: Fast Access to Enantioenriched α-Allyl Quaternary Amino Acids
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.201801363
– volume: 10
  start-page: 1807
  year: 2000
  ident: WOS:000088837600008
  article-title: 4-alkylidenyl glutamic acids, potent and selective GluR5 agonists
  publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
– volume: 37
  start-page: 1261
  year: 1998
  ident: WOS:000077219400008
  article-title: LY339434, a GluR5 kainate receptor agonist
  publication-title: NEUROPHARMACOLOGY
– volume: 46
  start-page: 2856
  year: 2010
  ident: WOS:000276376000044
  article-title: Enantioselective construction of allylic phosphine oxides through substitution of Morita-Baylis-Hillman carbonates with phosphine oxides
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/b926037d
– volume: 20
  start-page: 5380
  year: 2018
  ident: WOS:000444527000068
  article-title: Umpolung of o-Hydroxyaryl Azomethine Ylides: Entry to Functionalized γ-Aminobutyric Acid under Phosphine Catalysis
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.8b02297
– volume: 14
  start-page: 10134
  year: 2016
  ident: WOS:000387902900002
  article-title: Biologically active γ-lactams: synthesis and natural sources
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c6ob01349j
– volume: 41
  start-page: 4101
  year: 2012
  ident: WOS:000303999800001
  article-title: Organocatalytic asymmetric transformations of modified Morita-Baylis-Hillman adducts
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c2cs35017c
– volume: 48
  start-page: 5737
  year: 2009
  ident: WOS:000268538100034
  article-title: Chemoselective Asymmetric N-Allylic Alkylation of Indoles with Morita-Baylis-Hillman Carbonates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200902093
– volume: 52
  start-page: 6288
  year: 2013
  ident: WOS:000320375800029
  article-title: Construction of Enantiomerically Enriched Diazo Compounds Using Diazo Esters as Nucleophiles: Chiral Lewis Base Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201301509
– volume: 24
  start-page: 8994
  year: 2018
  ident: WOS:000436245300009
  article-title: Palladium-Catalyzed Asymmetric Allylic Alkylations of Colby Pro-Enolates with MBH Carbonates: Enantioselective Access to Quaternary C-F Oxindoles
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201801670
– volume: 17
  start-page: 561
  year: 2012
  ident: WOS:000305094100006
  article-title: Natural and synthetic α-methylenelactones and α-methylenelactams with anticancer potential
  publication-title: DRUG DISCOVERY TODAY
– volume: 6
  start-page: 1337
  year: 2004
  ident: WOS:000220709100038
  article-title: Phosphine-catalyzed regiospecific allylic amination and dynamic kinetic resolution of Morita-Baylis-Hillman acetates
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol049600j
– volume: 118
  start-page: 10049
  year: 2018
  ident: WOS:000448754700002
  article-title: Phosphine Organocatalysis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.8b00081
– volume: 17
  start-page: 5784
  year: 2015
  ident: WOS:000366152000016
  article-title: Chiral Pyridoxal-Catalyzed Asymmetric Biomimetic Transamination of α-Keto Acids
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.5b02895
– volume: 28
  start-page: 146
  year: 1995
  ident: WOS:A1995QM79200009
  article-title: BIOMIMETIC CHEMISTRY AND ARTIFICIAL ENZYMES - CATALYSIS BY DESIGN
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
– volume: 60
  start-page: 13913
  year: 2021
  ident: WOS:000649206900001
  article-title: A Double Deprotonation Strategy for Cascade Annulations of Palladium-Trimethylenemethanes and Morita-Baylis-Hillman Carbonates to Construct Bicyclo[3.1.0]hexane Frameworks
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202102842
– volume: 62
  start-page: 3
  year: 2019
  ident: WOS:000456087200002
  article-title: Chiral aldehyde catalysis: a highly promising concept in asymmetric catalysis
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-018-9345-5
– volume: 85
  start-page: 4463
  year: 2020
  ident: WOS:000526405900046
  article-title: Light-Triggered Catalytic Asymmetric Allylic Benzylation with Photogenerated C-Nucleophiles
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.0c00175
– volume: 130
  start-page: 2041
  year: 2008
  ident: WOS:000253100200043
  article-title: Glycine enolates:: The effect of formation of iminium ions to simple ketones on α-amino carbon acidity and a comparison with pyridoxal iminium ions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja078006c
– volume: 122
  start-page: 3534
  year: 2000
  ident: WOS:000086477100038
  article-title: Deracemization of Baylis-Hillman adducts
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 111
  start-page: 5042
  year: 2011
  ident: WOS:000294699500014
  article-title: Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr100212h
– volume: 56
  start-page: 1116
  year: 2017
  ident: WOS:000394997200034
  article-title: Palladium-Catalyzed Asymmetric Allylic Allylation of Racemic Morita-Baylis-Hillman Adducts
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201609332
– volume: 140
  start-page: 2080
  year: 2018
  ident: WOS:000425475300024
  article-title: Ir/Cu Dual Catalysis: Enantio- and Diastereodivergent Access to α,α-Disubstituted α-Amino Acids Bearing Vicinal Stereocenters
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b00187
– volume: 49
  start-page: 1369
  year: 2016
  ident: WOS:000380296400005
  article-title: Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.6b00163
– volume: 13
  start-page: 5600
  year: 2011
  ident: WOS:000295817100048
  article-title: A Facile Cu(I)/BINAP-Catalyzed Asymmetric Approach to Functionalized Pyroglutamate Derivatives Bearing a Unique Quaternary Stereogenic Center
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol202326j
– start-page: 718
  year: 1988
  ident: WOS:A1988N739100017
  article-title: ENANTIOSELECTIVITY IN ORGANO TRANSITION-METAL CHEMISTRY - AN UNPRECEDENTED LIGAND EFFECT IN PI-ALLYL PALLADIUM CHEMISTRY
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS
– volume: 3
  start-page: 3329
  year: 2001
  ident: WOS:000171708000026
  article-title: Chiral phosphine-free Pd-mediated asymmetric allylation of prochiral enolate with a chiral phase-transfer catalyst
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol016567h
– volume: 107
  start-page: 5713
  year: 2007
  ident: WOS:000251583300009
  article-title: Small-molecule H-bond donors in asymmetric catalysis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr068373r
– volume: 65
  start-page: 8769
  year: 2009
  ident: WOS:000271345300001
  article-title: Recent advances in the Pd-catalyzed chemical transformations of Baylis-Hillman adducts
  publication-title: TETRAHEDRON
  doi: 10.1016/j.tet.2009.07.034
– volume: 43
  start-page: 4721
  year: 2002
  ident: WOS:000176637100002
  article-title: Synthesis of (+)-hernandulcin and (+)-epihernandulcin
  publication-title: TETRAHEDRON LETTERS
– volume: 23
  start-page: 8322
  year: 2021
  ident: WOS:000716793100041
  article-title: Enantioselective Radical SN2-Type Alkylation of Morita-Baylis-Hillman Adducts Using Dual Photoredox/Palladium Catalysis
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.1c03064
– volume: 20
  start-page: 3954
  year: 2012
  ident: WOS:000305279700001
  article-title: Morita-Baylis-Hillman adducts: Biological activities and potentialities to the discovery of new cheaper drugs
  publication-title: BIOORGANIC & MEDICINAL CHEMISTRY
  doi: 10.1016/j.bmc.2012.04.061
– volume: 360
  start-page: 1438
  year: 2018
  ident: WOS:000436598000071
  article-title: Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction
  publication-title: SCIENCE
  doi: 10.1126/science.aat4210
– volume: 127
  start-page: 7014
  year: 2005
  ident: WOS:000229085200036
  article-title: Development of aliphatic alcohols as nucleophiles for palladium-catalyzed DYKAT reactions: Total synthesis of (+)-hippospongic acid A
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja050340q
– volume: 46
  start-page: 9295
  year: 2007
  ident: WOS:000251761500032
  article-title: All-carbon intramolecular conjugate displacement reactions: An effective route to carbocycles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200703022
– volume: 121
  start-page: 10727
  year: 1999
  ident: WOS:000084014300008
  article-title: Enantioselective allylations of azlactones with unsymmetrical acyclic allyl esters
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 281
  start-page: 129
  year: 2014
  ident: WOS:000330591100011
  article-title: On the catalytic mechanism and stereospecificity of Escherichia coli L-threonine aldolase
  publication-title: FEBS JOURNAL
  doi: 10.1111/febs.12581
– volume: 138
  start-page: 10730
  year: 2016
  ident: WOS:000382513300004
  article-title: Enzyme-Inspired Axially Chiral Pyridoxamines Armed with a Cooperative Lateral Amine Chain for Enantioselective Biomimetic Transamination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b03930
– volume: 51
  start-page: 9276
  year: 2012
  ident: WOS:000308399500011
  article-title: Aromatic Spiroketal Bisphosphine Ligands: Palladium-Catalyzed Asymmetric Allylic Amination of Racemic Morita-Baylis-Hillman Adducts
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201204925
– volume: 140
  start-page: 12836
  year: 2018
  ident: WOS:000447354800032
  article-title: Atroposelective Catalytic Asymmetric Allylic Alkylation Reaction for Axially Chiral Anilides with Achiral Morita-Baylis-Hillman Carbonates
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b06014
– volume: 10
  start-page: ARTN 3061
  year: 2019
  ident: WOS:000474824900001
  article-title: Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-10940-4
– volume: 44
  start-page: 1740
  year: 2015
  ident: WOS:000351606600002
  article-title: Progress in asymmetric biomimetic transamination of carbonyl compounds
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00507d
– volume: 135
  start-page: 2068
  year: 2013
  ident: WOS:000315080100010
  article-title: Control of Diastereoselectivity for Iridium-Catalyzed Allylation of a Prochiral Nucleophile with a Phosphate Counterion
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja311363a
– volume: 20
  start-page: 13432
  year: 2014
  ident: WOS:000342797500003
  article-title: Substrate-Selective Catalysis
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201402548
– volume: 52
  start-page: 4744
  year: 2013
  ident: WOS:000318107400006
  article-title: The N-H Functional Group in Organometallic Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201204921
– volume: 45
  start-page: 1520
  year: 2006
  ident: WOS:000235752600004
  article-title: Asymmetric catalysis by chiral hydrogen-bond donors
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200503132
– volume: 58
  start-page: 6818
  year: 2019
  ident: WOS:000476423300002
  article-title: Enantioselective Carbonyl Catalysis Enabled by Chiral Aldehydes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201808700
– volume: 37
  start-page: 506
  year: 2004
  ident: WOS:000223385800004
  article-title: The enantioselective synthesis of α-amino acids by phase-transfer catalysis with achiral Schiff base esters
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar0300625
– volume: 124
  start-page: 7256
  year: 2002
  ident: WOS:000176338400002
  article-title: Synthesis of novel quaternary amino acids using molybdenum-catalyzed asymmetric allylic alkylation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja020290e
– volume: 2022
  year: 1000
  ident: 000769596000001.1
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 872
  year: 2019
  ident: WOS:000487584400007
  article-title: Towards the online computer-aided design of catalytic pockets
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-019-0319-5
– volume: 45
  start-page: 4967
  year: 2004
  ident: WOS:000221936100034
  article-title: Alkaloids-catalyzed regio- and enantioselective allylic nucleophilic substitution of tert-butyl carbonate of the Morita-Baylis-Hillman products
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2004.04.135
– volume: 4
  start-page: 2026
  year: 2018
  ident: WOS:000444488400012
  article-title: Aldehyde Catalysis: New Options for Asymmetric Organocatalytic Reactions
  publication-title: CHEM
  doi: 10.1016/j.chempr.2018.08.011
– volume: 59
  start-page: 2859
  year: 2018
  ident: WOS:000439674000001
  article-title: Importance of Baylis-Hillman adducts in modern drug discovery
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2018.06.023
– volume: 59
  start-page: 19820
  year: 2020
  ident: WOS:000572120700001
  article-title: Organocatalytic Asymmetric C(sp2)-H Allylic Alkylation: Enantioselective Synthesis of Tetrasubstituted Allenoates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202009460
– volume: 19
  start-page: 4896
  year: 2017
  ident: WOS:000411304300049
  article-title: Asymmetric Synthesis of Glutamic Acid Derivatives by Silver-Catalyzed Conjugate Addition-Elimination Reactions
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.7b02378
– volume: 129
  start-page: 1136
  year: 2017
  ident: 000769596000001.36
  publication-title: Angew. Chem
– volume: 78
  start-page: 24
  year: 2018
  ident: WOS:000433242100004
  article-title: Potential antioxidant activity of Morita-Baylis-Hillman adducts
  publication-title: BIOORGANIC CHEMISTRY
  doi: 10.1016/j.bioorg.2018.03.004
– volume: 109
  start-page: 1
  year: 2009
  ident: WOS:000262482500001
  article-title: aza-Baylis-Hillman Reaction
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr068057c
– volume: 125
  start-page: 4844
  year: 2013
  ident: 000769596000001.108
  publication-title: Angew. Chem
– volume: 31
  start-page: 1543
  year: 2020
  ident: WOS:000570338800003
  article-title: Decarboxylative Umpolung Synthesis of Amines from Carbonyl Compounds
  publication-title: SYNLETT
  doi: 10.1055/s-0040-1707157
– volume: 134
  start-page: 10222
  year: 2012
  ident: WOS:000305358900063
  article-title: Highly Enantioselective Regiodivergent Allylic Alkylations of MBH Carbonates with Phthalides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja303115m
– volume: 129
  start-page: 5132
  year: 2017
  ident: 000769596000001.38
  publication-title: Angew. Chem
– volume: 54
  start-page: 668
  year: 2021
  ident: WOS:000618081800018
  article-title: A Type of Structurally Adaptable Aromatic Spiroketal Based Chiral Diphosphine Ligands in Asymmetric Catalysis
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.0c00697
– start-page: 1744
  year: 2009
  ident: WOS:000266382800023
  article-title: Highly Diastereoselective Conjugate Addition-Elimination of Chiral Nickel(II) Glycinate with Activated Allylic Acetates for Asymmetric Synthesis of Glutamic Acid Derivatives
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/s-0028-1088075
– volume: 82
  start-page: 12202
  year: 2017
  ident: WOS:000417342300024
  article-title: Organocatalytic Asymmetric Allylic Alkylation of Morita-Baylis-Hillman Carbonates with Diethyl 2-Aminomalonate Assisted by In Situ Protection
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.7b02064
– volume: 58
  start-page: 4036
  year: 2019
  ident: WOS:000462680700066
  article-title: Auto-Tandem Cooperative Catalysis Using Phosphine/Palladium: Reaction of Morita-Baylis-Hillman Carbonates and Allylic Alcohols
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201814403
– volume: 43
  start-page: 1958
  year: 2000
  ident: WOS:000087223900006
  article-title: 4-alkyl- and 4-cinnamylglutamic acid analogues are potent GluR5 kainate receptor agonists
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
– volume: 2
  start-page: 267
  year: 2012
  ident: WOS:000299291000003
  article-title: Organocatalytic enantioselective methodologies using Morita-Baylis-Hillman carbonates and acetates
  publication-title: CATALYSIS SCIENCE & TECHNOLOGY
  doi: 10.1039/c1cy00387a
– volume: 43
  start-page: 6163
  year: 2002
  ident: WOS:000177467500018
  article-title: Isolation of callipeltins A-C and of two new open-chain derivatives of callipeltin A from the marine sponge Latrunculia sp A revision of the stereostructure of callipeltins
  publication-title: TETRAHEDRON LETTERS
– volume: 59
  start-page: 7083
  year: 2020
  ident: WOS:000526818900017
  article-title: Pseudo-Stereodivergent Synthesis of Enantioenriched Tetrasubstituted Alkenes by Cascade 1,3-Oxo-Allylation/Cope Rearrangement
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202000044
– volume: 133
  start-page: 3173
  year: 2011
  ident: WOS:000289455200057
  article-title: Substituent Effects on Electrophilic Catalysis by the Carbonyl Group: Anatomy of the Rate Acceleration for PLP-Catalyzed Deprotonation of Glycine
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja110795m
– start-page: 490
  year: 2012
  ident: WOS:000300711600006
  article-title: Dual Activation in Organocatalysis: Design of Tunable and Bifunctional Organocatalysts and Their Applications in Enantioselective Reactions
  publication-title: SYNLETT
  doi: 10.1055/s-0031-1290131
– volume: 5
  start-page: 1988
  year: 2014
  ident: WOS:000334492700039
  article-title: Catalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activation
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c3sc53314j
– volume: 130
  start-page: 7202
  year: 2008
  ident: WOS:000256550600018
  article-title: Chiral phosphine-catalyzed enantioselective construction of γ-butenolides through substitution of Morita-Baylis-Hillman acetates with 2-trimethylsilyloxy furan
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja802422d
– volume: 11
  start-page: ARTN 5372
  year: 2020
  ident: WOS:000586507600011
  article-title: Diastereodivergent chiral aldehyde catalysis for asymmetric 1,6-conjugated addition and Mannich reactions
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-19245-3
– volume: 56
  start-page: 5050
  year: 2017
  ident: WOS:000399384700027
  article-title: Palladium-Catalyzed Asymmetric Construction of Vicinal Tertiary and All-Carbon Quaternary Stereocenters by Allylation of β-Ketocarbonyls with Morita-Baylis-Hillman Adducts
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201701455
– volume: 9
  start-page: 3349
  year: 2011
  ident: WOS:000289488000035
  article-title: Multifunctional chiral phosphines-catalyzed highly diastereoselective and enantioselective substitution of Morita-Baylis-Hillman adducts with oxazolones
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c1ob00017a
– volume: 43
  start-page: 1734
  year: 2014
  ident: WOS:000331188400018
  article-title: Supramolecular catalysis. Part 2: artificial enzyme mimics
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c3cs60037h
– volume: 12
  start-page: ARTN 5174
  year: 2021
  ident: WOS:000738605600001
  article-title: Asymmetric biomimetic transamination of α-keto amides to peptides
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-25449-y
– volume: 141
  start-page: 5159
  year: 2019
  ident: WOS:000463843700019
  article-title: Combining Chiral Aldehyde Catalysis and Transition-Metal Catalysis for Enantioselective α-Allylic Alkylation of Amino Acid Esters
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b01910
– volume: 43
  start-page: 6689
  year: 2004
  ident: WOS:000225869900020
  article-title: Regio- and stereoselective construction of γ-butenolides through phosphine-catalyzed substitution of Morita-Baylis-Hillman acetates:: An organocatalytic allylic alkylation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200461381
– volume: 50
  start-page: 4892
  year: 2009
  ident: WOS:000268508900025
  article-title: Water-promoted highly regio- and stereoselective synthesis of α-dehydro-β-amino esters and nitriles from Baylis-Hillman acetates
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2009.06.051
– volume: 50
  start-page: 9684
  year: 2011
  ident: WOS:000296205000034
  article-title: Asymmetric Allylic Monofluoromethylation and Methylation of Morita-Baylis-Hillman Carbonates with FBSM and BSM by Cooperative Cinchona Alkaloid/FeCl2 Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201103748
– volume: 136
  start-page: 405
  year: 2014
  ident: WOS:000329586600064
  article-title: Spiroketal-Based Diphosphine Ligands in Pd-Catalyzed Asymmetric Allylic Amination of Morita-Baylis-Hillman Adducts: Exceptionally High Efficiency and New Mechanism
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja410707q
– volume: 22
  start-page: 1404
  year: 2021
  ident: WOS:000675837000002
  article-title: Applications and Functions of γ-Poly-Glutamic Acid and its Derivatives in Medicine
  publication-title: CURRENT PHARMACEUTICAL BIOTECHNOLOGY
  doi: 10.2174/1389201021999201118161155
– volume: 37
  start-page: 103
  year: 2019
  ident: WOS:000455884800001
  article-title: Biomimetic Chiral Pyridoxal and Pyridoxamine Catalysts
  publication-title: CHINESE JOURNAL OF CHEMISTRY
  doi: 10.1002/cjoc.201800478
– volume: 60
  start-page: 20166
  year: 2021
  ident: WOS:000672900000001
  article-title: Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202104031
– start-page: 434
  year: 2008
  ident: WOS:000259889500003
  article-title: Regio- and stereoselective synthesis of α,β-dehydro-β-amino esters
  publication-title: JOURNAL OF CHEMICAL RESEARCH
  doi: 10.3184/030823408X338684
– volume: 56
  start-page: 12312
  year: 2017
  ident: WOS:000411267800050
  article-title: Synergistic Cu/Pd Catalysis for Enantioselective Allylic Alkylation of Aldimine Esters: Access to ,-Disubstituted -Amino Acids
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201707019
– volume: 139
  start-page: 9819
  year: 2017
  ident: WOS:000406649600018
  article-title: Stereoselective and Site-Specific Allylic Alkylation of Amino Acids and Small Peptides via a Pd/Cu Dual Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b05460
– volume: 57
  start-page: 8059
  year: 2021
  ident: WOS:000677434700001
  article-title: Copper/Lewis base cooperatively catalyzed asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates with azomethine ylides
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d1cc02861h
– volume: 55
  start-page: 13316
  year: 2016
  ident: WOS:000385799200073
  article-title: Phosphine-Catalyzed Asymmetric Umpolung Addition of Trifluoromethyl Ketimines to Morita-Baylis-Hillman Carbonates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201607918
– volume: 127
  start-page: 13450
  year: 2005
  ident: WOS:000232257100004
  article-title: Catalytic enantioselective synthesis of glutamic acid derivatives via tandem conjugate addition-elimination of activated allylic acetates under chiral PTC conditions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja052638m
SSID ssj0028806
Score 2.5425284
Snippet Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence...
Owing to the strong nucleophilicity of the NH 2 group, free‐NH 2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence...
Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence...
Owing to the strong nucleophilicity of the NH group, free-NH glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202200850
SubjectTerms Acetates
Acetic acid
Allyl compounds
Allylic Substitution
Amides
Biomimetic Catalysis
Carbonyl Catalysis
Catalysis
Catalysts
Chemical reactions
Chemistry
Chemistry, Multidisciplinary
Esters
Glutamic acid
Intermediates
Organocatalysis
Physical Sciences
Pyridoxal
Science & Technology
Stereoisomerism
Stereoselectivity
Vitamin B6
Title Asymmetric α‐Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200850
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000769596000001
https://www.ncbi.nlm.nih.gov/pubmed/35182094
https://www.proquest.com/docview/2649290212
https://www.proquest.com/docview/2630926236
Volume 61
WOS 000769596000001
WOSCitedRecordID wos000769596000001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXuDC_09oQUaqxCltEidxfFyiLQWJCgGVeovi2JFW3U1Qk5VIpUo8Aq_Ci_AQPAkzzg_dIgSCS2Qn40R2xvZnj-cbgF3DAxkJHbi4-NC4QIkVGQl9N9B5KSIVirAk5-Q3R_Hhcfj6JDq55MXf80NMG27UM-x4TR08V83-T9JQ8sDG9V0QWNY1HITpwBahoncTf1SAytm7F3HuUhT6kbXRC_Y3i2_OSr9AzSuz0iaQtTPRwS3Ixzr0B1BO99at2ivOr9A7_k8lb8PNAaayWa9Xd-Caqe7C9XSMDncPLmZNt1pROK6Cffv6_fOX2XLZ9efqWF2yl8uuWFSIYxlt9LL3eEXt0IzeUDc29o6NWsHm1ndLM9WxdI1AdLU4x9yLBc23_TYle9udLXT9CVMp7TV1Tdvch-OD-Yf00B1CObgFxzHENUJGOlLaL7UKlY65TlAlSqNCrTFhErrpFYUXmjAxni4ksbTmSawSlI8kfwBbVV2ZR8BEqSTKF7wUfqi5kkL6injpRCR8I4QD7vgrs2LgOadwG8usZ2gOMmrUbGpUB55P8h97ho_fSu6MmpENPb3JEFAiwiSifAeeTY_xZ5DhJa9MvSYZ7hEvI48deNhr1PQpHhGFvgwd2L2sYtNzayuVES40rSHGAf9vxNKh4kRs0DoQWB37Q_Wy2dGr-ZR7_C-FtuEGpcna5ssd2GrP1uYJgrZWPbUd8wc_jTod
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qyqJseD8MBQapiJVbe_wYe8EiuCkJbSMErdSdm_GMpYjEQbUjcCUkPoFf6Y-w4BP4Eu71C1KEQEhdsIn8uEk8nntn7mPmHIAN7fDQE4qbGHwoDFB8SUVC2-RqnApPusJNaXPy_sgfHLovj7yjFThr98LU-BBdwo0soxqvycApIb31AzWUtmBjgMd5BbvWrKvc1eV7jNryZ8Nt7OInnO_0D6KB2RALmImDGm1qEXrKk8pOlXSl8h0V4AOmWrpK4YEO6KKVJJar3UBbKgkJM3Qc-DJAeY_wl3DUv0Q04gTXv_26Q6ziaA71hibHMYn3vsWJtPjW8vMuz4O_OLfn5sFl17ma-3auwtf2rdVLXt5uLgq5mZyeA5T8r17rNbjSeOKsV5vOdVjR2Q1Yi1oCvJvwsZeXsxkxjiXsy9m3T59702lZLx1k85S9mJbJJENXnVEum73BTzQAxegX5nlFL1QRc7B-tT1NMVmyaIG-9mxyimfPJ-RS1JlY9qo8maj5BzyKKJ1W5kV-Cw4vpPW3YTWbZ_ouMJHKEOUTJxW2qxwZitCWBL0nPGFrIQwwW92JkwbKnRhFpnENQs1j6sS460QDnnby72oQk99KrreqGDeDWR6jz4xONHEBGPC4u42dQbWlcabnC5JxLIKedHwD7tQq3P2V4xFLQOgasPGzTnf3q3Jw6GEsXdWaDLD_RixqGk7YDYUBvFLqPzQv7o2G_e7s3r986RGsDQ729-K94Wj3Plym61RctMN1WC1OFvoB-qiFfFiNCgyOL9pevgMC6Jnf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB1VRQJeuF8MBRapiCe39vqy9gMPIRcaClEFVOqbyXrXUkRiV7UjcCUkPoFPgR9B4hf4EmZ8gxQhEFIfeIl8mSRe78zuzM7OOQCb2uGhJxQ3MfhQGKD4kpKEtsnVNBGedIWbUHHy84m_s-8-PfAO1uBTWwtT40N0C25kGdV4TQZ-qJLtH6ChVIGN8R3nFepas61yV5dvMWjLH40H2MMPOB8NX_V3zIZXwIwdVGhTi9BTnlR2oqQrle-oAJ8v0dJVCg90QBetOLZc7QbaUnFIkKHTwJcBynsEv4SD_hnXt0Iiixi86ACrOFpDXc_kOCbR3rcwkRbfXn3e1WnwF9_2xDS46jlXU9_oInxtX1q94-XN1rKQW_HxCTzJ_-mtXoILjR_OerXhXIY1nV6Bc_2W_u4qvO_l5WJBfGMx-_L524ePvfm8rDcOsixhT-ZlPEvRUWe0ks1e4ieqv2L0C1lekQtVtBxsWBWnKSZL1l-ip72YHePZ4xk5FPU6LNsrj2Yqe4dHfVpMK_Mivwb7p9L667CeZqm-CUwkMkT52EmE7SpHhiK0JQHvCU_YWggDzFZ1orgBcic-kXlUQ1DziDox6jrRgIed_GENYfJbyY1WE6NmKMsj9JjRhSYmAAPud7exMyizNE11tiQZxyLgScc34Eatwd1fOR5xBISuAZs_q3R3v0oGhx5G0lWmyQD7b8T6TcMJuaEwgFc6_YfmRb3JeNid3fqXL92Ds3uDUfRsPNm9DefpMmUW7XAD1oujpb6DDmoh71ZjAoPXp20u3wGOnZiO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+%CE%B1-Allylation+of+Glycinate+with+Switched+Chemoselectivity+Enabled+by+Customized+Bifunctional+Pyridoxal+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ma%2C+Jiguo&rft.au=Gao%2C+Bin&rft.au=Song%2C+Guanshui&rft.au=Zhang%2C+Ruixin&rft.date=2022-04-19&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=17&rft.spage=e202200850&rft_id=info:doi/10.1002%2Fanie.202200850&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon