Asymmetric α‐Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts
Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl r...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 17; pp. e202200850 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
19.04.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N‐allylation to α‐C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN2′–SN2′ products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo‐ and enantiocontrol of the pyridoxal catalysts.
A novel bifunctional chiral pyridoxal derivative 1 with a bigger catalytic cavity than that of previous pyridoxal catalysts promoted direct asymmetric α‐C allylation of NH2‐unprotected glycinates with Morita–Baylis–Hillman acetates. In this way, the chemoselectivity for glycinates was switched from intrinsic N‐allylation to α‐C allylation to produce chiral glutamic acid esters with excellent stereoselectivity (up to >20 : 1 dr and 97 % ee). |
---|---|
AbstractList | Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN 2'-SN 2' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts.Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN 2'-SN 2' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts. Owing to the strong nucleophilicity of the NH group, free-NH glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to α-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as S 2'-S 2' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts. Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N‐allylation to α‐C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN2′–SN2′ products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo‐ and enantiocontrol of the pyridoxal catalysts.In memory of Robert H. Grubbs Owing to the strong nucleophilicity of the NH 2 group, free‐NH 2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH 2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N‐allylation to α‐C allylation. The reaction formed chiral multisubstituted glutamic acid esters as S N 2′–S N 2′ products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo‐ and enantiocontrol of the pyridoxal catalysts. Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N-allylation to alpha-C allylation. The reaction formed chiral multisubstituted glutamic acid esters as S(N)2 '-S(N)2 ' products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo- and enantiocontrol of the pyridoxal catalysts. Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence of catalysts. Without protection of the NH2 group, chiral pyridoxal catalysts bearing an amide side chain at the C3 position of the naphthyl ring switched the chemoselectivity of the glycinates from intrinsic N‐allylation to α‐C allylation. The reaction formed chiral multisubstituted glutamic acid esters as SN2′–SN2′ products in good yields with excellent stereoselectivity (up to 86 % yield, >20 : 1 dr, 97 % ee). As compared to pyridoxal catalysts bearing an amide side arm at the C2 position, the pyridoxals in this study have a bigger catalytic cavity to enable effective activation of larger electrophiles, such as MBH acetates and related intermediates. The reaction is proposed to proceed via a cooperative bifunctional catalysis pathway, which accounts for the high level of diastereo‐ and enantiocontrol of the pyridoxal catalysts. A novel bifunctional chiral pyridoxal derivative 1 with a bigger catalytic cavity than that of previous pyridoxal catalysts promoted direct asymmetric α‐C allylation of NH2‐unprotected glycinates with Morita–Baylis–Hillman acetates. In this way, the chemoselectivity for glycinates was switched from intrinsic N‐allylation to α‐C allylation to produce chiral glutamic acid esters with excellent stereoselectivity (up to >20 : 1 dr and 97 % ee). |
ArticleNumber | 202200850 |
Author | Ma, Jiguo Zhang, Ruixin Zhao, Baoguo Wang, Qingfang Song, Guanshui Gao, Bin Ye, Zi Chen, Wen‐Wen |
Author_xml | – sequence: 1 givenname: Jiguo surname: Ma fullname: Ma, Jiguo organization: Shanghai Normal University – sequence: 2 givenname: Bin surname: Gao fullname: Gao, Bin organization: Shanghai Normal University – sequence: 3 givenname: Guanshui surname: Song fullname: Song, Guanshui organization: Shanghai Normal University – sequence: 4 givenname: Ruixin surname: Zhang fullname: Zhang, Ruixin organization: Shanghai Normal University – sequence: 5 givenname: Qingfang surname: Wang fullname: Wang, Qingfang organization: Shanghai Normal University – sequence: 6 givenname: Zi surname: Ye fullname: Ye, Zi organization: Shanghai Normal University – sequence: 7 givenname: Wen‐Wen orcidid: 0000-0002-2723-2843 surname: Chen fullname: Chen, Wen‐Wen email: wenwen@shnu.edu.cn organization: Shanghai Normal University – sequence: 8 givenname: Baoguo orcidid: 0000-0001-7579-6670 surname: Zhao fullname: Zhao, Baoguo email: zhaobg2006@shnu.edu.cn organization: Shanghai Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35182094$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks-K1TAUxoOMOH9061IKbgTpNU2aNlley3UcGFRQ1yVNTrkZ0mRsUscKgo_gq_giPoRPYuq9M8KAaBbJl5zfd3JIzjE6cN4BQg8LvCowJs-kM7AimBCMOcN30FHBSJHTuqYHSZeU5jVnxSE6DuEi8Zzj6h46pKzgBIvyCH1Zh3kYII5GZT--__z6bW3tbGU03mW-z07trIyTEbIrE7fZ2zSrLeis2cLgA1hQ0Xw0cc42TnY2Bbo5a6YQ_WA-p91z009OLcmkzd7Mo9H-U1KNjNLOIYb76G4vbYAH-_UEvX-xede8zM9fn5416_Nc0ZriHGrBNOt00euu7HRFNReM9tCVWicBfDnESuESSg5YK8EIqyWvOp54JugJerLLezn6DxOE2A4mKLBWOvBTaElFsSAVoVVCH99CL_w0pvoXqhREYFKQRD3aU1M3gG4vRzPIcW6vHzYBT3fAFXS-D8qAU3CDYYzrSjBR4WUUieb_Tzcm_v6fxk8uJmu5s6rRhzBC36p9PI7S2LbA7dIo7dIo7U2jJNvqlu36tr8axL5EY2H-B92uX51t_nh_Adkr0dY |
CitedBy_id | crossref_primary_10_1002_ange_202310320 crossref_primary_10_1039_D2QO00705C crossref_primary_10_1039_D3SC01294H crossref_primary_10_1055_s_0041_1737445 crossref_primary_10_1021_acsomega_3c09974 crossref_primary_10_1002_ange_202418910 crossref_primary_10_1021_acscatal_3c01770 crossref_primary_10_1002_ange_202206111 crossref_primary_10_1039_D4GC05739B crossref_primary_10_1002_chem_202301348 crossref_primary_10_1039_D3QO01155K crossref_primary_10_1021_acs_orglett_4c03424 crossref_primary_10_1021_jacs_4c11113 crossref_primary_10_1002_anie_202206111 crossref_primary_10_1016_j_jcat_2022_09_018 crossref_primary_10_1021_acs_accounts_3c00053 crossref_primary_10_1021_jacs_4c09840 crossref_primary_10_1002_anie_202402038 crossref_primary_10_1002_anie_202424843 crossref_primary_10_1021_acs_joc_3c01152 crossref_primary_10_12677_jocr_2024_122021 crossref_primary_10_1055_a_1973_4292 crossref_primary_10_1002_anie_202418910 crossref_primary_10_1002_ange_202424843 crossref_primary_10_1021_acscatal_3c00790 crossref_primary_10_1002_ange_202402038 crossref_primary_10_1038_s41467_022_35062_2 crossref_primary_10_3389_fchem_2024_1347370 crossref_primary_10_1016_j_mcat_2023_113514 crossref_primary_10_1002_anie_202310320 crossref_primary_10_1002_chem_202404209 crossref_primary_10_1038_s41929_022_00875_3 crossref_primary_10_1002_asia_202300731 crossref_primary_10_1007_s11426_023_1578_y crossref_primary_10_1021_acs_joc_2c02329 crossref_primary_10_3390_molecules28073002 crossref_primary_10_1002_ejoc_202300593 |
Cites_doi | 10.1002/anie.201609332 10.1038/s41467-021-25449-y 10.2174/1389201021999201118161155 10.1002/cjoc.201800478 10.1021/ja311363a 10.1002/ange.201204925 10.1002/anie.201707019 10.3184/030823408X338684 10.1021/jacs.6b03930 10.4155/fmc.13.62 10.1021/jacs.7b05460 10.1039/C4CS00507D 10.1021/cr300192h 10.1002/ange.200461381 10.1016/j.drudis.2012.01.013 10.1002/anie.202017306 10.1002/ange.201701455 10.1021/jacs.8b00187 10.1021/acs.accounts.0c00113 10.1002/anie.201607918 10.1021/ar0300625 10.1021/jacs.8b06014 10.1039/C6OB01349J 10.1039/C39880000718 10.1002/ange.200902093 10.1021/ar00051a008 10.1021/acs.orglett.1c03064 10.1039/C9CS00921C 10.1002/ange.202009460 10.1039/c2cs35017c 10.1021/acs.accounts.6b00163 10.1038/s41467-019-10940-4 10.1016/j.chempr.2021.07.013 10.1016/j.tet.2009.07.034 10.1002/ange.201103748 10.1002/anie.200703022 10.1021/cr100212h 10.1002/ange.201814403 10.1016/j.tetlet.2018.06.023 10.1002/ange.200503132 10.1021/ja992754n 10.1002/chem.201402548 10.1002/ange.201204921 10.1002/adsc.200600467 10.1002/ange.202102842 10.1002/anie.201103748 10.1055/s-0040-1707157 10.1039/C3CS60037H 10.1016/j.tetlet.2004.04.135 10.1021/acs.chemrev.8b00081 10.1021/jacs.0c11787 10.1002/anie.201301509 10.1002/ange.201609332 10.1038/s41467-020-19245-3 10.1039/D0SC07052A 10.1002/anie.200461381 10.1016/S0028-3908(98)00122-1 10.1021/ja410707q 10.1007/s11426-018-9345-5 10.1021/ja802422d 10.1039/b926037d 10.1016/S0960-894X(00)00346-2 10.1021/ol016567h 10.1021/jm9911682 10.1021/acs.joc.7b02064 10.1039/c3sc53314j 10.1002/anie.201204921 10.1002/anie.202104031 10.1055/s-0031-1289786 10.1021/acs.orglett.7b02378 10.1016/j.bmc.2012.04.061 10.1002/ange.201301509 10.1002/anie.202009460 10.1021/ol049600j 10.1039/D1CC02861H 10.1021/acs.accounts.0c00697 10.1021/acs.orglett.8b02297 10.1021/jacs.8b06676 10.1002/ange.200703022 10.1002/ange.201707019 10.1021/ja994326n 10.1002/anie.201204925 10.1111/febs.12581 10.1002/anie.201814403 10.1021/ja050340q 10.1021/acs.orglett.5b02895 10.1002/ange.201808700 10.1002/ange.202017306 10.1039/c1ob00017a 10.1021/ol202326j 10.1021/ol900439h 10.1002/ange.202000044 10.1021/ja110795m 10.1002/anie.201701455 10.1016/j.bioorg.2018.03.004 10.1002/anie.200902093 10.1016/j.tetlet.2009.06.051 10.1002/anie.201808700 10.1016/S0040-4039(02)01334-5 10.1021/acs.chemrev.8b00349 10.1021/ja052638m 10.1021/ja303115m 10.1002/anie.202000044 10.1021/cr068057c 10.1002/chem.201102522 10.1002/anie.202102842 10.1021/ja078006c 10.1126/science.aat4210 10.1016/j.chempr.2018.08.011 10.1002/ange.202104031 10.1002/anie.200503132 10.1038/s41557-019-0319-5 10.1002/ejoc.201801363 10.1021/jacs.9b01910 10.1002/chem.201801670 10.1016/S0040-4039(02)02274-8 10.1021/ja020290e 10.1002/adsc.201800986 10.1021/jacs.8b13582 10.1021/cr068373r 10.1039/C1CY00387A 10.1002/ange.201607918 10.1039/d0sc07052a 10.4155/FMC.13.62 10.1039/c9cs00921c 10.1039/c6ob01349j 10.1021/acs.joc.0c00175 10.1039/c4cs00507d 10.1055/s-0028-1088075 10.1039/c1cy00387a 10.1055/s-0031-1290131 10.1039/c3cs60037h 10.1039/d1cc02861h |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM 1KN AHQBO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202200850 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) CrossRef Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35182094 000769596000001 10_1002_anie_202200850 ANIE202200850 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Science and Technology Commission of Shanghai Municipality funderid: 18ZR1447600; 20JC1416800 – fundername: "111" Innovation and Talent Recruitment Base on Photochemical and Energy Materials funderid: D18020 – fundername: Shanghai Engineering Research Center of Green Energy Chemical Engineering funderid: 18DZ2254200 – fundername: National Natural Science Foundation of China funderid: 21871181 – fundername: Shanghai Municipal Education Commission funderid: 2019-01-07-00-02-E00029 – fundername: Shanghai Municipal Committee of Science and Technology; Science & Technology Commission of Shanghai Municipality (STCSM) grantid: 18ZR1447600; 20JC1416800 – fundername: Shanghai Municipal Education Commission; Shanghai Municipal Education Commission (SHMEC) grantid: 2019-01-07-00-02-E00029 – fundername: Shanghai Engineering Research Center of Green Energy Chemical Engineering grantid: 18DZ2254200 – fundername: "111 Innovation and Talent Recruitment Base on Photochemical and Energy Materials grantid: D18020 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21871181 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-e795d5bd1fdb4bd63d8953feb4dd953e84bd60cc04e48e0dc95257a86b8b4b593 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 39 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000769596000001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:44:05 EDT 2025 Fri Jul 25 12:12:28 EDT 2025 Wed Feb 19 02:25:28 EST 2025 Wed Jul 09 18:33:23 EDT 2025 Fri Aug 29 16:02:18 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Tue Jul 01 01:18:17 EDT 2025 Wed Jan 22 16:25:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Vitamin B-6 ACTIVATED ALLYLIC ACETATES Allylic Substitution CONJUGATE ADDITION-ELIMINATION ALDEHYDE CATALYSIS Organocatalysis GLUTAMIC-ACID DERIVATIVES ENANTIOSELECTIVE CONSTRUCTION Carbonyl Catalysis BIOMIMETIC TRANSAMINATION DIPHOSPHINE LIGANDS AMINO-ACIDS SYNERGISTIC CU/PD CATALYSIS BAYLIS-HILLMAN CARBONATES Biomimetic Catalysis Vitamin B6 |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3730-e795d5bd1fdb4bd63d8953feb4dd953e84bd60cc04e48e0dc95257a86b8b4b593 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7579-6670 0000-0002-2723-2843 |
PMID | 35182094 |
PQID | 2649290212 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2649290212 crossref_citationtrail_10_1002_anie_202200850 proquest_miscellaneous_2630926236 webofscience_primary_000769596000001 wiley_primary_10_1002_anie_202200850_ANIE202200850 webofscience_primary_000769596000001CitationCount crossref_primary_10_1002_anie_202200850 pubmed_primary_35182094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 19, 2022 |
PublicationDateYYYYMMDD | 2022-04-19 |
PublicationDate_xml | – month: 04 year: 2022 text: April 19, 2022 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2007; 349 2007; 107 2021; 23 2017; 82 2018; 360 2021; 22 2009 2009; 48 121 2019; 11 2019; 10 2000; 43 2020 2020; 59 132 1999; 121 2004; 6 2011; 13 2012; 17 2020; 11 2011; 17 2013; 5 2008; 2008 2014; 136 2011; 111 2013 2013; 52 125 2014; 20 2009; 11 2014; 5 2012; 134 2019; 62 2018; 4 2020; 53 1995; 28 2020; 52 2009; 50 2012 2012; 51 124 2000; 10 2004; 37 2002; 43 2015; 44 2020; 49 2013; 113 2000; 122 2014; 281 2018; 78 2016; 49 2012; 23 2012; 20 1988 2021; 7 2004 2004; 43 116 2015; 17 2009; 65 2018; 140 2004; 45 2019; 37 2009 2017 2017; 56 129 2021; 143 2019; 141 2018; 20 2016; 14 2019 2019; 58 131 2011; 133 2017; 139 2014; 43 2018; 24 2011; 9 2021; 57 1998; 37 2006 2006; 45 118 2012; 2 2021; 54 2016 2016; 55 128 2021; 12 2010; 46 2020; 31 2018; 118 2002; 124 2005; 127 2007 2007; 46 119 2021 2021; 60 133 2019 2013; 135 2017; 19 2001; 3 2011 2011; 50 123 2016; 138 2009; 109 2008; 130 2018; 59 2012; 41 e_1_2_3_92_3 e_1_2_3_92_2 e_1_2_3_50_1 e_1_2_3_114_2 e_1_2_3_110_2 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_39_2 e_1_2_3_12_1 e_1_2_3_58_1 e_1_2_3_8_2 e_1_2_3_35_3 e_1_2_3_77_2 e_1_2_3_35_2 e_1_2_3_118_2 e_1_2_3_54_2 e_1_2_3_73_2 e_1_2_3_96_2 e_1_2_3_31_2 e_1_2_3_81_2 e_1_2_3_125_2 e_1_2_3_102_1 e_1_2_3_121_2 e_1_2_3_28_2 e_1_2_3_24_2 e_1_2_3_66_2 e_1_2_3_89_2 e_1_2_3_47_1 e_1_2_3_106_2 e_1_2_3_129_2 e_1_2_3_20_2 e_1_2_3_62_2 e_1_2_3_20_3 e_1_2_3_43_1 e_1_2_3_85_1 e_1_2_3_72_2 e_1_2_3_91_1 e_1_2_3_19_2 e_1_2_3_115_1 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_111_1 e_1_2_3_3_2 e_1_2_3_38_3 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_7_2 e_1_2_3_57_2 e_1_2_3_53_1 e_1_2_3_76_1 e_1_2_3_99_1 e_1_2_3_30_2 e_1_2_3_119_2 e_1_2_3_30_3 e_1_2_3_95_2 e_1_2_3_84_1 e_1_2_3_61_2 e_1_2_3_80_2 Wang J. (e_1_2_3_60_2) 2009 e_1_2_3_103_1 e_1_2_3_126_2 e_1_2_3_122_3 e_1_2_3_27_2 e_1_2_3_122_2 e_1_2_3_23_2 e_1_2_3_69_2 e_1_2_3_23_3 e_1_2_3_46_2 e_1_2_3_88_2 e_1_2_3_107_1 e_1_2_3_65_2 e_1_2_3_126_3 e_1_2_3_42_2 e_1_2_3_71_2 e_1_2_3_71_3 e_1_2_3_94_1 e_1_2_3_90_2 e_1_2_3_18_3 e_1_2_3_14_3 e_1_2_3_37_3 e_1_2_3_37_2 e_1_2_3_112_1 e_1_2_3_18_2 e_1_2_3_56_2 e_1_2_3_33_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_79_1 e_1_2_3_52_2 e_1_2_3_75_2 e_1_2_3_98_2 e_1_2_3_116_2 e_1_2_3_10_2 e_1_2_3_83_2 e_1_2_3_127_1 e_1_2_3_104_2 e_1_2_3_26_2 e_1_2_3_49_2 e_1_2_3_26_3 e_1_2_3_123_1 e_1_2_3_100_2 e_1_2_3_22_2 e_1_2_3_45_2 e_1_2_3_68_2 e_1_2_3_87_3 e_1_2_3_41_2 e_1_2_3_87_2 e_1_2_3_108_2 e_1_2_3_41_3 e_1_2_3_64_1 e_1_2_3_93_3 e_1_2_3_93_2 e_1_2_3_70_2 e_1_2_3_1_1 e_1_2_3_113_2 e_1_2_3_5_2 Calcatelli A. (e_1_2_3_2_2) 2020; 52 e_1_2_3_17_2 e_1_2_3_59_2 e_1_2_3_9_1 e_1_2_3_55_2 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_78_2 e_1_2_3_51_2 e_1_2_3_97_2 e_1_2_3_32_1 e_1_2_3_74_2 e_1_2_3_117_2 e_1_2_3_82_2 e_1_2_3_29_3 e_1_2_3_101_2 e_1_2_3_124_2 e_1_2_3_25_3 e_1_2_3_48_2 e_1_2_3_120_1 e_1_2_3_29_2 e_1_2_3_44_2 e_1_2_3_109_2 e_1_2_3_25_2 e_1_2_3_67_2 e_1_2_3_40_3 e_1_2_3_40_2 e_1_2_3_86_2 e_1_2_3_105_2 e_1_2_3_21_2 e_1_2_3_63_2 e_1_2_3_128_2 Wang, XM (WOS:000308399500011) 2012; 51 (000769596000001.33) 2012; 124 Chen, CG (WOS:000265908400008) 2009; 11 Du, YS (WOS:000221936100034) 2004; 45 Chen, P (WOS:000462680700066) 2019; 58 Chen, JF (WOS:000455884800001) 2019; 37 Zhao, BG (WOS:000318107400006) 2013; 52 Hong, L (WOS:000276376000044) 2010; 46 Wang, J (WOS:000266382800023) 2009 (000769596000001.38) 2017; 129 Crugeiras, J (WOS:000289455200057) 2011; 133 Elleuch, H (WOS:000433242100004) 2018; 78 Hu, YM (WOS:000572120700001) 2020; 59 Cui, HL (WOS:000268538100034) 2009; 48 Lindbäck, E (WOS:000342797500003) 2014; 20 Xie, Y (WOS:000351606600002) 2015; 44 Cheong, PHY (WOS:000294699500014) 2011; 111 Gowrisankar, S (WOS:000271345300001) 2009; 65 Liu, TY (WOS:000303999800001) 2012; 41 van Steenis, DJVC (WOS:000244268900002) 2007; 349 Lu, SC (WOS:000474824900001) 2019; 10 Ali, I (WOS:000320826000014) 2013; 5 Zheng, Y (WOS:000417342300024) 2017; 82 Trost, BM (WOS:000176338400002) 2002; 124 Trost, BM (WOS:000086477100038) 2000; 122 Janecka, A (WOS:000305094100006) 2012; 17 Wang, XB (WOS:000394997200034) 2017; 56 Crugeiras, J (WOS:000253100200043) 2008; 130 Chen, P (WOS:000385799200073) 2016; 55 Wang, XM (WOS:000618081800018) 2021; 54 Li, DF (WOS:000259889500003) 2008 Zhong, X (WOS:000635768300010) 2021; 12 Trost, BM (WOS:000229085200036) 2005; 127 Wen, W (WOS:000440877000061) 2018; 140 Wang, GL (WOS:000675837000002) 2021; 22 Bai, XB (WOS:000716793100041) 2021; 23 Chen, WY (WOS:000315080100010) 2013; 135 Cho, CW (WOS:000225869900020) 2004; 43 Gong, LZ (WOS:000456087200002) 2019; 62 Lima, CG (WOS:000305279700001) 2012; 20 Ramachandran, PV (WOS:000232257100004) 2005; 127 di Salvo, ML (WOS:000330591100011) 2014; 281 Shi, LM (WOS:000366152000016) 2015; 17 Teng, HL (WOS:000295817100048) 2011; 13 Serra, M (WOS:000457450900018) 2019; 2019 Wang, XM (WOS:000329586600064) 2014; 136 Hu, YM (WOS:000677434700001) 2021; 57 Lin, HC (WOS:000464769000035) 2019; 141 Kim, JH (WOS:000176637100002) 2002; 43 Caruano, J (WOS:000387902900002) 2016; 14 Rios, R (WOS:000299291000003) 2012; 2 Wang, TL (WOS:000380296400005) 2016; 49 Small, B (WOS:000077219400008) 1998; 37 Chen, L (WOS:000463843700019) 2019; 141 Ma, JG (WOS:000634675000001) 2021; 60 Wei, L (WOS:000537147700010) 2020; 53 Guo, HC (WOS:000448754700002) 2018; 118 Xu, B (WOS:000334492700039) 2014; 5 Wei, L (WOS:000411267800050) 2017; 56 Mao, HB (WOS:000320375800029) 2013; 52 Wei, L (WOS:000455584100005) 2018; 360 Declerck, V (WOS:000262482500001) 2009; 109 Mei, GJ (WOS:000708501600014) 2021; 7 Liu, JW (WOS:000399384700027) 2017; 56 Ghosh, S (WOS:000268508900025) 2009; 50 Wei, Y (WOS:000323301200018) 2013; 113 Taylor, MS (WOS:000235752600004) 2006; 45 (000769596000001.36) 2017; 129 Liu, YE (WOS:000382513300004) 2016; 138 Zampella, A (WOS:000177467500018) 2002; 43 Chen, QQ (WOS:000444527000068) 2018; 20 Cho, CW (WOS:000220709100038) 2004; 6 Furukawa, T (WOS:000296205000034) 2011; 50 (000769596000001.108) 2013; 125 Wen, W (WOS:000586507600011) 2020; 11 Yang, YL (WOS:000289488000035) 2011; 9 Trost, BM (WOS:000084014300008) 1999; 121 Nakoji, M (WOS:000171708000026) 2001; 3 Pedregal, C (WOS:000087223900006) 2000; 43 Chen, JF (WOS:000436598000071) 2018; 360 Cai, WQ (WOS:000738605600001) 2021; 12 Paria, S (WOS:000526405900046) 2020; 85 Lin, AJ (WOS:000298060800008) 2011; 17 Doyle, AG (WOS:000251583300009) 2007; 107 Prabhudas, B (WOS:000251761500032) 2007; 46 O'Donnell, MJ (WOS:000223385800004) 2004; 37 Chen, WW (WOS:000570338800003) 2020; 31 Tang, ST (WOS:000448754700005) 2018; 118 Cheng, AL (WOS:000672900000001) 2021; 60 Falivene, L (WOS:000487584400007) 2019; 11 Yin, Q (WOS:000570357800001) 2020; 49 Huo, XH (WOS:000406649600018) 2017; 139 Yuan, Y (WOS:000411304300049) 2017; 19 Lu, LQ (WOS:000300711600006) 2012 GENET, JP (WOS:A1988N739100017) 1988 Li, SL (WOS:000447354800032) 2018; 140 Zhong, FR (WOS:000305358900063) 2012; 134 Huo, XH (WOS:000425475300024) 2018; 140 Reddy, TN (WOS:000439674000001) 2018; 59 Baker, SR (WOS:000088837600008) 2000; 10 Wang, Q (WOS:000476423300002) 2019; 58 Jiang, YQ (WOS:000256550600018) 2008; 130 BRESLOW, R (WOS:A1995QM79200009) 1995; 28 Ma, J. (000769596000001.1) 1000; 2022 Cai, M (WOS:000612557200059) 2021; 143 Li, S (WOS:000444488400012) 2018; 4 Yang, ZH (WOS:000649206900001) 2021; 60 Chen, P (WOS:000526818900017) 2020; 59 Zhu, Y (WOS:000436245300009) 2018; 24 Raynal, M (WOS:000331188400018) 2014; 43 |
References_xml | – volume: 78 start-page: 24 year: 2018 end-page: 28 publication-title: Bioorg. Chem. – volume: 50 start-page: 4892 year: 2009 end-page: 4895 publication-title: Tetrahedron Lett. – volume: 53 start-page: 1084 year: 2020 end-page: 1100 publication-title: Acc. Chem. Res. – volume: 135 start-page: 2068 year: 2013 end-page: 2071 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 5784 year: 2015 end-page: 5787 publication-title: Org. Lett. – volume: 127 start-page: 7014 year: 2005 end-page: 7024 publication-title: J. Am. Chem. Soc. – volume: 349 start-page: 281 year: 2007 end-page: 286 publication-title: Adv. Synth. Catal. – volume: 48 121 start-page: 5737 5847 year: 2009 2009 end-page: 5740 5850 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 7083 7149 year: 2020 2020 end-page: 7088 7154 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 116 start-page: 6689 6857 year: 2004 2004 end-page: 6691 6859 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 5372 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 3061 year: 2019 publication-title: Nat. Commun. – volume: 130 start-page: 7202 year: 2008 end-page: 7203 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 668 year: 2021 end-page: 684 publication-title: Acc. Chem. Res. – volume: 59 132 start-page: 19820 19992 year: 2020 2020 end-page: 19824 19996 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 3954 year: 2012 end-page: 3971 publication-title: Bioorg. Med. Chem. – volume: 52 start-page: 2922 year: 2020 end-page: 2939 publication-title: Synthesis – start-page: 1744 year: 2009 end-page: 1752 publication-title: Synthesis – volume: 37 start-page: 1261 year: 1998 end-page: 1267 publication-title: Neuropharmacology – volume: 12 start-page: 4353 year: 2021 end-page: 4360 publication-title: Chem. Sci. – volume: 31 start-page: 1543 year: 2020 end-page: 1550 publication-title: Synlett – volume: 58 131 start-page: 6818 6890 year: 2019 2019 end-page: 6825 6897 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 1734 year: 2014 end-page: 1787 publication-title: Chem. Soc. Rev. – volume: 37 start-page: 506 year: 2004 end-page: 517 publication-title: Acc. Chem. Res. – volume: 17 start-page: 561 year: 2012 end-page: 572 publication-title: Drug Discov. Today – volume: 11 start-page: 872 year: 2019 end-page: 879 publication-title: Nat. Chem. – volume: 59 start-page: 2859 year: 2018 end-page: 2875 publication-title: Tetrahedron Lett. – volume: 360 start-page: 1438 year: 2018 end-page: 1442 publication-title: Science – volume: 360 start-page: 4715 year: 2018 end-page: 4719 publication-title: Adv. Synth. Catal. – volume: 37 start-page: 103 year: 2019 end-page: 112 publication-title: Chin. J. Chem. – volume: 60 133 start-page: 20166 20328 year: 2021 2021 end-page: 20172 20334 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 8994 year: 2018 end-page: 8998 publication-title: Chem. Eur. J. – volume: 138 start-page: 10730 year: 2016 end-page: 10733 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 9276 9410 year: 2012 2012 end-page: 9282 9416 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 3173 year: 2011 end-page: 3183 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 9141 year: 2002 end-page: 9146 publication-title: Tetrahedron Lett. – volume: 2 start-page: 267 year: 2012 end-page: 278 publication-title: Catal. Sci. Technol. – volume: 127 start-page: 13450 year: 2005 end-page: 13451 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 10049 year: 2018 end-page: 10293 publication-title: Chem. Rev. – volume: 55 128 start-page: 13316 13510 year: 2016 2016 end-page: 13320 13514 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 1807 year: 2000 end-page: 1810 publication-title: Bioorg. Med. Chem. Lett. – volume: 134 start-page: 10222 year: 2012 end-page: 10227 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 5050 5132 year: 2017 2017 end-page: 5054 5136 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 1958 year: 2000 end-page: 1968 publication-title: J. Med. Chem. – volume: 50 123 start-page: 9684 9858 year: 2011 2011 end-page: 9688 9862 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 118 start-page: 1520 1550 year: 2006 2006 end-page: 1543 1573 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 718 year: 1988 end-page: 719 publication-title: J. Chem. Soc. Chem. Commun. – volume: 141 start-page: 5824 year: 2019 end-page: 5834 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 4744 4844 year: 2013 2013 end-page: 4788 4889 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 119 start-page: 9295 9455 year: 2007 2007 end-page: 9297 9457 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 4896 year: 2017 end-page: 4899 publication-title: Org. Lett. – volume: 143 start-page: 1078 year: 2021 end-page: 1087 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3349 year: 2011 end-page: 3358 publication-title: Org. Biomol. Chem. – volume: 20 start-page: 5380 year: 2018 end-page: 5383 publication-title: Org. Lett. – volume: 23 start-page: 8322 year: 2021 end-page: 8326 publication-title: Org. Lett. – volume: 58 131 start-page: 4036 4076 year: 2019 2019 end-page: 4040 4080 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 12836 year: 2018 end-page: 12843 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 1 year: 2009 end-page: 48 publication-title: Chem. Rev. – volume: 6 start-page: 1337 year: 2004 end-page: 1339 publication-title: Org. Lett. – volume: 60 133 start-page: 10588 10682 year: 2021 2021 end-page: 10592 10686 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 62 start-page: 3 year: 2019 end-page: 4 publication-title: Sci. China Chem. – volume: 20 start-page: 13432 year: 2014 end-page: 13481 publication-title: Chem. Eur. J. – volume: 107 start-page: 5713 year: 2007 end-page: 5743 publication-title: Chem. Rev. – volume: 3 start-page: 3329 year: 2001 end-page: 3331 publication-title: Org. Lett. – start-page: 732 year: 2019 end-page: 741 publication-title: Eur. J. Org. Chem. – volume: 49 start-page: 1369 year: 2016 end-page: 1378 publication-title: Acc. Chem. Res. – volume: 60 133 start-page: 13913 14032 year: 2021 2021 end-page: 13917 14036 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 1740 year: 2015 end-page: 1748 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 8059 year: 2021 end-page: 8062 publication-title: Chem. Commun. – volume: 45 start-page: 4967 year: 2004 end-page: 4971 publication-title: Tetrahedron Lett. – volume: 121 start-page: 10727 year: 1999 end-page: 10737 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 2856 year: 2010 end-page: 2858 publication-title: Chem. Commun. – volume: 13 start-page: 5600 year: 2011 end-page: 5603 publication-title: Org. Lett. – volume: 14 start-page: 10134 year: 2016 end-page: 10156 publication-title: Org. Biomol. Chem. – volume: 17 start-page: 13676 year: 2011 end-page: 13679 publication-title: Chem. Eur. J. – volume: 7 start-page: 2743 year: 2021 end-page: 2757 publication-title: Chem – volume: 65 start-page: 8769 year: 2009 end-page: 8780 publication-title: Tetrahedron – volume: 141 start-page: 5159 year: 2019 end-page: 5163 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 9774 year: 2018 end-page: 9780 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 10393 year: 2018 end-page: 10457 publication-title: Chem. Rev. – volume: 111 start-page: 5042 year: 2011 end-page: 5137 publication-title: Chem. Rev. – volume: 23 start-page: 490 year: 2012 end-page: 508 publication-title: Synlett – volume: 113 start-page: 6659 year: 2013 end-page: 6690 publication-title: Chem. Rev. – volume: 43 start-page: 6163 year: 2002 end-page: 6166 publication-title: Tetrahedron Lett. – volume: 136 start-page: 405 year: 2014 end-page: 411 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 146 year: 1995 end-page: 153 publication-title: Acc. Chem. Res. – volume: 56 129 start-page: 12312 12480 year: 2017 2017 end-page: 12316 12484 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 1116 1136 year: 2017 2017 end-page: 1119 1139 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2008 start-page: 434 year: 2008 end-page: 436 publication-title: J. Chem. Res. – volume: 52 125 start-page: 6288 6408 year: 2013 2013 end-page: 6292 6412 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 2026 year: 2018 end-page: 2028 publication-title: Chem – volume: 140 start-page: 2080 year: 2018 end-page: 2084 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 3534 year: 2000 end-page: 3535 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2073 year: 2009 end-page: 2075 publication-title: Org. Lett. – volume: 139 start-page: 9819 year: 2017 end-page: 9822 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1988 year: 2014 end-page: 1991 publication-title: Chem. Sci. – volume: 281 start-page: 129 year: 2014 end-page: 145 publication-title: FEBS J. – volume: 12 start-page: 5174 year: 2021 publication-title: Nat. Commun. – volume: 49 start-page: 6141 year: 2020 end-page: 6153 publication-title: Chem. Soc. Rev. – volume: 22 start-page: 1404 year: 2021 end-page: 1411 publication-title: Curr. Pharm. Biotechnol. – volume: 82 start-page: 12202 year: 2017 end-page: 12208 publication-title: J. Org. Chem. – volume: 130 start-page: 2041 year: 2008 end-page: 2050 publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 7256 year: 2002 end-page: 7257 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 961 year: 2013 end-page: 978 publication-title: Future Med. Chem. – volume: 41 start-page: 4101 year: 2012 end-page: 4112 publication-title: Chem. Soc. Rev. – ident: e_1_2_3_37_2 doi: 10.1002/anie.201609332 – ident: e_1_2_3_106_2 doi: 10.1038/s41467-021-25449-y – ident: e_1_2_3_77_2 doi: 10.2174/1389201021999201118161155 – ident: e_1_2_3_89_2 doi: 10.1002/cjoc.201800478 – ident: e_1_2_3_69_2 doi: 10.1021/ja311363a – ident: e_1_2_3_35_3 doi: 10.1002/ange.201204925 – ident: e_1_2_3_71_2 doi: 10.1002/anie.201707019 – ident: e_1_2_3_43_1 – ident: e_1_2_3_51_2 doi: 10.3184/030823408X338684 – ident: e_1_2_3_107_1 – ident: e_1_2_3_105_2 doi: 10.1021/jacs.6b03930 – ident: e_1_2_3_78_2 doi: 10.4155/fmc.13.62 – ident: e_1_2_3_12_1 – ident: e_1_2_3_70_2 doi: 10.1021/jacs.7b05460 – ident: e_1_2_3_129_2 doi: 10.1039/C4CS00507D – ident: e_1_2_3_91_1 – ident: e_1_2_3_5_2 doi: 10.1021/cr300192h – ident: e_1_2_3_14_3 doi: 10.1002/ange.200461381 – ident: e_1_2_3_114_2 doi: 10.1016/j.drudis.2012.01.013 – ident: e_1_2_3_93_2 doi: 10.1002/anie.202017306 – ident: e_1_2_3_123_1 – ident: e_1_2_3_38_3 doi: 10.1002/ange.201701455 – ident: e_1_2_3_72_2 doi: 10.1021/jacs.8b00187 – ident: e_1_2_3_48_2 doi: 10.1021/acs.accounts.0c00113 – ident: e_1_2_3_26_2 doi: 10.1002/anie.201607918 – ident: e_1_2_3_49_2 doi: 10.1021/ar0300625 – ident: e_1_2_3_27_2 doi: 10.1021/jacs.8b06014 – ident: e_1_2_3_113_2 doi: 10.1039/C6OB01349J – ident: e_1_2_3_65_2 doi: 10.1039/C39880000718 – ident: e_1_2_3_20_3 doi: 10.1002/ange.200902093 – ident: e_1_2_3_128_2 doi: 10.1021/ar00051a008 – ident: e_1_2_3_42_2 doi: 10.1021/acs.orglett.1c03064 – ident: e_1_2_3_90_2 doi: 10.1039/C9CS00921C – ident: e_1_2_3_30_3 doi: 10.1002/ange.202009460 – ident: e_1_2_3_6_2 doi: 10.1039/c2cs35017c – ident: e_1_2_3_4_2 doi: 10.1021/acs.accounts.6b00163 – ident: e_1_2_3_28_2 doi: 10.1038/s41467-019-10940-4 – ident: e_1_2_3_31_2 doi: 10.1016/j.chempr.2021.07.013 – ident: e_1_2_3_11_2 doi: 10.1016/j.tet.2009.07.034 – ident: e_1_2_3_23_3 doi: 10.1002/ange.201103748 – ident: e_1_2_3_18_2 doi: 10.1002/anie.200703022 – ident: e_1_2_3_99_1 – ident: e_1_2_3_124_2 doi: 10.1021/cr100212h – ident: e_1_2_3_40_3 doi: 10.1002/ange.201814403 – ident: e_1_2_3_46_2 doi: 10.1016/j.tetlet.2018.06.023 – ident: e_1_2_3_122_3 doi: 10.1002/ange.200503132 – ident: e_1_2_3_66_2 doi: 10.1021/ja992754n – ident: e_1_2_3_120_1 – ident: e_1_2_3_110_2 doi: 10.1002/chem.201402548 – ident: e_1_2_3_126_3 doi: 10.1002/ange.201204921 – ident: e_1_2_3_17_2 doi: 10.1002/adsc.200600467 – ident: e_1_2_3_127_1 – ident: e_1_2_3_41_3 doi: 10.1002/ange.202102842 – ident: e_1_2_3_23_2 doi: 10.1002/anie.201103748 – ident: e_1_2_3_117_2 doi: 10.1055/s-0040-1707157 – ident: e_1_2_3_109_2 doi: 10.1039/C3CS60037H – ident: e_1_2_3_16_2 doi: 10.1016/j.tetlet.2004.04.135 – ident: e_1_2_3_3_2 doi: 10.1021/acs.chemrev.8b00081 – ident: e_1_2_3_101_2 doi: 10.1021/jacs.0c11787 – ident: e_1_2_3_111_1 – ident: e_1_2_3_25_2 doi: 10.1002/anie.201301509 – ident: e_1_2_3_37_3 doi: 10.1002/ange.201609332 – ident: e_1_2_3_98_2 doi: 10.1038/s41467-020-19245-3 – ident: e_1_2_3_100_2 doi: 10.1039/D0SC07052A – ident: e_1_2_3_9_1 – ident: e_1_2_3_14_2 doi: 10.1002/anie.200461381 – ident: e_1_2_3_80_2 doi: 10.1016/S0028-3908(98)00122-1 – ident: e_1_2_3_36_2 doi: 10.1021/ja410707q – ident: e_1_2_3_88_2 doi: 10.1007/s11426-018-9345-5 – ident: e_1_2_3_19_2 doi: 10.1021/ja802422d – ident: e_1_2_3_58_1 – ident: e_1_2_3_21_2 doi: 10.1039/b926037d – ident: e_1_2_3_82_2 doi: 10.1016/S0960-894X(00)00346-2 – ident: e_1_2_3_67_2 doi: 10.1021/ol016567h – ident: e_1_2_3_81_2 doi: 10.1021/jm9911682 – ident: e_1_2_3_56_2 doi: 10.1021/acs.joc.7b02064 – ident: e_1_2_3_95_2 doi: 10.1039/c3sc53314j – ident: e_1_2_3_115_1 – ident: e_1_2_3_126_2 doi: 10.1002/anie.201204921 – ident: e_1_2_3_92_2 doi: 10.1002/anie.202104031 – ident: e_1_2_3_125_2 doi: 10.1055/s-0031-1289786 – start-page: 1744 year: 2009 ident: e_1_2_3_60_2 publication-title: Synthesis – ident: e_1_2_3_62_2 doi: 10.1021/acs.orglett.7b02378 – ident: e_1_2_3_44_2 doi: 10.1016/j.bmc.2012.04.061 – ident: e_1_2_3_25_3 doi: 10.1002/ange.201301509 – ident: e_1_2_3_79_1 – ident: e_1_2_3_30_2 doi: 10.1002/anie.202009460 – ident: e_1_2_3_15_2 doi: 10.1021/ol049600j – ident: e_1_2_3_63_2 doi: 10.1039/D1CC02861H – ident: e_1_2_3_50_1 – ident: e_1_2_3_10_2 doi: 10.1021/acs.accounts.0c00697 – ident: e_1_2_3_64_1 – ident: e_1_2_3_57_2 doi: 10.1021/acs.orglett.8b02297 – ident: e_1_2_3_96_2 doi: 10.1021/jacs.8b06676 – ident: e_1_2_3_18_3 doi: 10.1002/ange.200703022 – ident: e_1_2_3_71_3 doi: 10.1002/ange.201707019 – ident: e_1_2_3_33_2 doi: 10.1021/ja994326n – ident: e_1_2_3_35_2 doi: 10.1002/anie.201204925 – ident: e_1_2_3_102_1 doi: 10.1111/febs.12581 – ident: e_1_2_3_40_2 doi: 10.1002/anie.201814403 – ident: e_1_2_3_34_2 doi: 10.1021/ja050340q – ident: e_1_2_3_104_2 doi: 10.1021/acs.orglett.5b02895 – ident: e_1_2_3_87_3 doi: 10.1002/ange.201808700 – ident: e_1_2_3_94_1 – ident: e_1_2_3_93_3 doi: 10.1002/ange.202017306 – ident: e_1_2_3_55_2 doi: 10.1039/c1ob00017a – ident: e_1_2_3_61_2 doi: 10.1021/ol202326j – ident: e_1_2_3_32_1 – ident: e_1_2_3_59_2 doi: 10.1021/ol900439h – ident: e_1_2_3_29_3 doi: 10.1002/ange.202000044 – ident: e_1_2_3_119_2 doi: 10.1021/ja110795m – ident: e_1_2_3_1_1 – ident: e_1_2_3_85_1 – ident: e_1_2_3_38_2 doi: 10.1002/anie.201701455 – ident: e_1_2_3_45_2 doi: 10.1016/j.bioorg.2018.03.004 – ident: e_1_2_3_20_2 doi: 10.1002/anie.200902093 – ident: e_1_2_3_52_2 doi: 10.1016/j.tetlet.2009.06.051 – ident: e_1_2_3_87_2 doi: 10.1002/anie.201808700 – ident: e_1_2_3_83_2 doi: 10.1016/S0040-4039(02)01334-5 – ident: e_1_2_3_76_1 – ident: e_1_2_3_116_2 doi: 10.1021/acs.chemrev.8b00349 – ident: e_1_2_3_54_2 doi: 10.1021/ja052638m – ident: e_1_2_3_112_1 – ident: e_1_2_3_24_2 doi: 10.1021/ja303115m – ident: e_1_2_3_29_2 doi: 10.1002/anie.202000044 – ident: e_1_2_3_53_1 – ident: e_1_2_3_8_2 doi: 10.1021/cr068057c – ident: e_1_2_3_22_2 doi: 10.1002/chem.201102522 – ident: e_1_2_3_41_2 doi: 10.1002/anie.202102842 – ident: e_1_2_3_118_2 doi: 10.1021/ja078006c – ident: e_1_2_3_84_1 doi: 10.1126/science.aat4210 – ident: e_1_2_3_103_1 – ident: e_1_2_3_86_2 doi: 10.1016/j.chempr.2018.08.011 – ident: e_1_2_3_92_3 doi: 10.1002/ange.202104031 – ident: e_1_2_3_122_2 doi: 10.1002/anie.200503132 – ident: e_1_2_3_108_2 doi: 10.1038/s41557-019-0319-5 – ident: e_1_2_3_75_2 doi: 10.1002/ejoc.201801363 – ident: e_1_2_3_97_2 doi: 10.1021/jacs.9b01910 – ident: e_1_2_3_39_2 doi: 10.1002/chem.201801670 – ident: e_1_2_3_13_2 doi: 10.1016/S0040-4039(02)02274-8 – ident: e_1_2_3_68_2 doi: 10.1021/ja020290e – ident: e_1_2_3_73_2 doi: 10.1002/adsc.201800986 – volume: 52 start-page: 2922 year: 2020 ident: e_1_2_3_2_2 publication-title: Synthesis – ident: e_1_2_3_47_1 – ident: e_1_2_3_74_2 doi: 10.1021/jacs.8b13582 – ident: e_1_2_3_121_2 doi: 10.1021/cr068373r – ident: e_1_2_3_7_2 doi: 10.1039/C1CY00387A – ident: e_1_2_3_26_3 doi: 10.1002/ange.201607918 – volume: 118 start-page: 10393 year: 2018 ident: WOS:000448754700005 article-title: 2-Azaallyl Anions, 2-Azaallyl Cations, 2-Azaallyl Radicals, and Azomethine Ylides publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.8b00349 – volume: 53 start-page: 1084 year: 2020 ident: WOS:000537147700010 article-title: Catalytic Asymmetric Reactions with N-Metallated Azomethine Ylides publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.0c00113 – volume: 60 start-page: 10588 year: 2021 ident: WOS:000634675000001 article-title: Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202017306 – volume: 124 start-page: 9410 year: 2012 ident: 000769596000001.33 publication-title: Angew. Chem – volume: 360 start-page: 4715 year: 2018 ident: WOS:000455584100005 article-title: Synergistic Cu/Pd Catalysis for Enantioselective Allylation of Ketimine Esters: The Direct Synthesis of α-Substituted α-Amino Acids and 2H-Pyrrols publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201800986 – volume: 141 start-page: 5824 year: 2019 ident: WOS:000464769000035 article-title: Nucleophile-Dependent Z/E- and Regioselectivity in the Palladium-Catalyzed Asymmetric Allylic C-H Alkylation of 1,4-Dienes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b13582 – volume: 12 start-page: 4353 year: 2021 ident: WOS:000635768300010 article-title: Chiral Lewis acid-bonded picolinaldehyde enables enantiodivergent carbonyl catalysis in the Mannich/condensation reaction of glycine ester publication-title: CHEMICAL SCIENCE doi: 10.1039/d0sc07052a – volume: 349 start-page: 281 year: 2007 ident: WOS:000244268900002 article-title: Construction of adjacent quaternary and tertiary stereocenters via an organocatalytic allylic alkylation of Morita-Baylis-Hillman carbonates publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.200600467 – volume: 143 start-page: 1078 year: 2021 ident: WOS:000612557200059 article-title: Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c11787 – volume: 7 start-page: 2743 year: 2021 ident: WOS:000708501600014 article-title: Rational design and atroposelective synthesis of N-N axially chiral compounds publication-title: CHEM doi: 10.1016/j.chempr.2021.07.013 – volume: 140 start-page: 9774 year: 2018 ident: WOS:000440877000061 article-title: Chiral Aldehyde Catalysis for the Catalytic Asymmetric Activation of Glycine Esters publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b06676 – volume: 5 start-page: 961 year: 2013 ident: WOS:000320826000014 article-title: Glutamic acid and its derivatives: candidates for rational design of anticancer drugs publication-title: FUTURE MEDICINAL CHEMISTRY doi: 10.4155/FMC.13.62 – volume: 11 start-page: 2073 year: 2009 ident: WOS:000265908400008 article-title: Highly Enantioselective Cu-Catalyzed Conjugate Addition-Elimination of Activated Allylic Acetates with Glycine Derivatives publication-title: ORGANIC LETTERS doi: 10.1021/ol900439h – volume: 113 start-page: 6659 year: 2013 ident: WOS:000323301200018 article-title: Recent Advances in Organocatalytic Asymmetric Morita-Baylis-Hillman/aza-Morita-Baylis-Hillman Reactions publication-title: CHEMICAL REVIEWS doi: 10.1021/cr300192h – volume: 17 start-page: 13676 year: 2011 ident: WOS:000298060800008 article-title: Organocatalytic Enantioselective Amination of Morita-Baylis-Hillman Carbonates with Masked Ammonia: A Facile Method for the Synthesis of Unprotected α-Methylene-β-Amino Esters publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201102522 – volume: 49 start-page: 6141 year: 2020 ident: WOS:000570357800001 article-title: Direct catalytic asymmetric synthesis of α-chiral primary amines publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c9cs00921c – volume: 2019 start-page: 732 year: 2019 ident: WOS:000457450900018 article-title: Palladium-Catalyzed Asymmetric Decarboxylative Allylation of Azlactone Enol Carbonates: Fast Access to Enantioenriched α-Allyl Quaternary Amino Acids publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.201801363 – volume: 10 start-page: 1807 year: 2000 ident: WOS:000088837600008 article-title: 4-alkylidenyl glutamic acids, potent and selective GluR5 agonists publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS – volume: 37 start-page: 1261 year: 1998 ident: WOS:000077219400008 article-title: LY339434, a GluR5 kainate receptor agonist publication-title: NEUROPHARMACOLOGY – volume: 46 start-page: 2856 year: 2010 ident: WOS:000276376000044 article-title: Enantioselective construction of allylic phosphine oxides through substitution of Morita-Baylis-Hillman carbonates with phosphine oxides publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b926037d – volume: 20 start-page: 5380 year: 2018 ident: WOS:000444527000068 article-title: Umpolung of o-Hydroxyaryl Azomethine Ylides: Entry to Functionalized γ-Aminobutyric Acid under Phosphine Catalysis publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.8b02297 – volume: 14 start-page: 10134 year: 2016 ident: WOS:000387902900002 article-title: Biologically active γ-lactams: synthesis and natural sources publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c6ob01349j – volume: 41 start-page: 4101 year: 2012 ident: WOS:000303999800001 article-title: Organocatalytic asymmetric transformations of modified Morita-Baylis-Hillman adducts publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c2cs35017c – volume: 48 start-page: 5737 year: 2009 ident: WOS:000268538100034 article-title: Chemoselective Asymmetric N-Allylic Alkylation of Indoles with Morita-Baylis-Hillman Carbonates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200902093 – volume: 52 start-page: 6288 year: 2013 ident: WOS:000320375800029 article-title: Construction of Enantiomerically Enriched Diazo Compounds Using Diazo Esters as Nucleophiles: Chiral Lewis Base Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201301509 – volume: 24 start-page: 8994 year: 2018 ident: WOS:000436245300009 article-title: Palladium-Catalyzed Asymmetric Allylic Alkylations of Colby Pro-Enolates with MBH Carbonates: Enantioselective Access to Quaternary C-F Oxindoles publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201801670 – volume: 17 start-page: 561 year: 2012 ident: WOS:000305094100006 article-title: Natural and synthetic α-methylenelactones and α-methylenelactams with anticancer potential publication-title: DRUG DISCOVERY TODAY – volume: 6 start-page: 1337 year: 2004 ident: WOS:000220709100038 article-title: Phosphine-catalyzed regiospecific allylic amination and dynamic kinetic resolution of Morita-Baylis-Hillman acetates publication-title: ORGANIC LETTERS doi: 10.1021/ol049600j – volume: 118 start-page: 10049 year: 2018 ident: WOS:000448754700002 article-title: Phosphine Organocatalysis publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.8b00081 – volume: 17 start-page: 5784 year: 2015 ident: WOS:000366152000016 article-title: Chiral Pyridoxal-Catalyzed Asymmetric Biomimetic Transamination of α-Keto Acids publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.5b02895 – volume: 28 start-page: 146 year: 1995 ident: WOS:A1995QM79200009 article-title: BIOMIMETIC CHEMISTRY AND ARTIFICIAL ENZYMES - CATALYSIS BY DESIGN publication-title: ACCOUNTS OF CHEMICAL RESEARCH – volume: 60 start-page: 13913 year: 2021 ident: WOS:000649206900001 article-title: A Double Deprotonation Strategy for Cascade Annulations of Palladium-Trimethylenemethanes and Morita-Baylis-Hillman Carbonates to Construct Bicyclo[3.1.0]hexane Frameworks publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202102842 – volume: 62 start-page: 3 year: 2019 ident: WOS:000456087200002 article-title: Chiral aldehyde catalysis: a highly promising concept in asymmetric catalysis publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-018-9345-5 – volume: 85 start-page: 4463 year: 2020 ident: WOS:000526405900046 article-title: Light-Triggered Catalytic Asymmetric Allylic Benzylation with Photogenerated C-Nucleophiles publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.0c00175 – volume: 130 start-page: 2041 year: 2008 ident: WOS:000253100200043 article-title: Glycine enolates:: The effect of formation of iminium ions to simple ketones on α-amino carbon acidity and a comparison with pyridoxal iminium ions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja078006c – volume: 122 start-page: 3534 year: 2000 ident: WOS:000086477100038 article-title: Deracemization of Baylis-Hillman adducts publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 111 start-page: 5042 year: 2011 ident: WOS:000294699500014 article-title: Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities publication-title: CHEMICAL REVIEWS doi: 10.1021/cr100212h – volume: 56 start-page: 1116 year: 2017 ident: WOS:000394997200034 article-title: Palladium-Catalyzed Asymmetric Allylic Allylation of Racemic Morita-Baylis-Hillman Adducts publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201609332 – volume: 140 start-page: 2080 year: 2018 ident: WOS:000425475300024 article-title: Ir/Cu Dual Catalysis: Enantio- and Diastereodivergent Access to α,α-Disubstituted α-Amino Acids Bearing Vicinal Stereocenters publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b00187 – volume: 49 start-page: 1369 year: 2016 ident: WOS:000380296400005 article-title: Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.6b00163 – volume: 13 start-page: 5600 year: 2011 ident: WOS:000295817100048 article-title: A Facile Cu(I)/BINAP-Catalyzed Asymmetric Approach to Functionalized Pyroglutamate Derivatives Bearing a Unique Quaternary Stereogenic Center publication-title: ORGANIC LETTERS doi: 10.1021/ol202326j – start-page: 718 year: 1988 ident: WOS:A1988N739100017 article-title: ENANTIOSELECTIVITY IN ORGANO TRANSITION-METAL CHEMISTRY - AN UNPRECEDENTED LIGAND EFFECT IN PI-ALLYL PALLADIUM CHEMISTRY publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS – volume: 3 start-page: 3329 year: 2001 ident: WOS:000171708000026 article-title: Chiral phosphine-free Pd-mediated asymmetric allylation of prochiral enolate with a chiral phase-transfer catalyst publication-title: ORGANIC LETTERS doi: 10.1021/ol016567h – volume: 107 start-page: 5713 year: 2007 ident: WOS:000251583300009 article-title: Small-molecule H-bond donors in asymmetric catalysis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr068373r – volume: 65 start-page: 8769 year: 2009 ident: WOS:000271345300001 article-title: Recent advances in the Pd-catalyzed chemical transformations of Baylis-Hillman adducts publication-title: TETRAHEDRON doi: 10.1016/j.tet.2009.07.034 – volume: 43 start-page: 4721 year: 2002 ident: WOS:000176637100002 article-title: Synthesis of (+)-hernandulcin and (+)-epihernandulcin publication-title: TETRAHEDRON LETTERS – volume: 23 start-page: 8322 year: 2021 ident: WOS:000716793100041 article-title: Enantioselective Radical SN2-Type Alkylation of Morita-Baylis-Hillman Adducts Using Dual Photoredox/Palladium Catalysis publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.1c03064 – volume: 20 start-page: 3954 year: 2012 ident: WOS:000305279700001 article-title: Morita-Baylis-Hillman adducts: Biological activities and potentialities to the discovery of new cheaper drugs publication-title: BIOORGANIC & MEDICINAL CHEMISTRY doi: 10.1016/j.bmc.2012.04.061 – volume: 360 start-page: 1438 year: 2018 ident: WOS:000436598000071 article-title: Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction publication-title: SCIENCE doi: 10.1126/science.aat4210 – volume: 127 start-page: 7014 year: 2005 ident: WOS:000229085200036 article-title: Development of aliphatic alcohols as nucleophiles for palladium-catalyzed DYKAT reactions: Total synthesis of (+)-hippospongic acid A publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja050340q – volume: 46 start-page: 9295 year: 2007 ident: WOS:000251761500032 article-title: All-carbon intramolecular conjugate displacement reactions: An effective route to carbocycles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200703022 – volume: 121 start-page: 10727 year: 1999 ident: WOS:000084014300008 article-title: Enantioselective allylations of azlactones with unsymmetrical acyclic allyl esters publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 281 start-page: 129 year: 2014 ident: WOS:000330591100011 article-title: On the catalytic mechanism and stereospecificity of Escherichia coli L-threonine aldolase publication-title: FEBS JOURNAL doi: 10.1111/febs.12581 – volume: 138 start-page: 10730 year: 2016 ident: WOS:000382513300004 article-title: Enzyme-Inspired Axially Chiral Pyridoxamines Armed with a Cooperative Lateral Amine Chain for Enantioselective Biomimetic Transamination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b03930 – volume: 51 start-page: 9276 year: 2012 ident: WOS:000308399500011 article-title: Aromatic Spiroketal Bisphosphine Ligands: Palladium-Catalyzed Asymmetric Allylic Amination of Racemic Morita-Baylis-Hillman Adducts publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201204925 – volume: 140 start-page: 12836 year: 2018 ident: WOS:000447354800032 article-title: Atroposelective Catalytic Asymmetric Allylic Alkylation Reaction for Axially Chiral Anilides with Achiral Morita-Baylis-Hillman Carbonates publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b06014 – volume: 10 start-page: ARTN 3061 year: 2019 ident: WOS:000474824900001 article-title: Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-10940-4 – volume: 44 start-page: 1740 year: 2015 ident: WOS:000351606600002 article-title: Progress in asymmetric biomimetic transamination of carbonyl compounds publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00507d – volume: 135 start-page: 2068 year: 2013 ident: WOS:000315080100010 article-title: Control of Diastereoselectivity for Iridium-Catalyzed Allylation of a Prochiral Nucleophile with a Phosphate Counterion publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja311363a – volume: 20 start-page: 13432 year: 2014 ident: WOS:000342797500003 article-title: Substrate-Selective Catalysis publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201402548 – volume: 52 start-page: 4744 year: 2013 ident: WOS:000318107400006 article-title: The N-H Functional Group in Organometallic Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201204921 – volume: 45 start-page: 1520 year: 2006 ident: WOS:000235752600004 article-title: Asymmetric catalysis by chiral hydrogen-bond donors publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200503132 – volume: 58 start-page: 6818 year: 2019 ident: WOS:000476423300002 article-title: Enantioselective Carbonyl Catalysis Enabled by Chiral Aldehydes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201808700 – volume: 37 start-page: 506 year: 2004 ident: WOS:000223385800004 article-title: The enantioselective synthesis of α-amino acids by phase-transfer catalysis with achiral Schiff base esters publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar0300625 – volume: 124 start-page: 7256 year: 2002 ident: WOS:000176338400002 article-title: Synthesis of novel quaternary amino acids using molybdenum-catalyzed asymmetric allylic alkylation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja020290e – volume: 2022 year: 1000 ident: 000769596000001.1 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 872 year: 2019 ident: WOS:000487584400007 article-title: Towards the online computer-aided design of catalytic pockets publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-019-0319-5 – volume: 45 start-page: 4967 year: 2004 ident: WOS:000221936100034 article-title: Alkaloids-catalyzed regio- and enantioselective allylic nucleophilic substitution of tert-butyl carbonate of the Morita-Baylis-Hillman products publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2004.04.135 – volume: 4 start-page: 2026 year: 2018 ident: WOS:000444488400012 article-title: Aldehyde Catalysis: New Options for Asymmetric Organocatalytic Reactions publication-title: CHEM doi: 10.1016/j.chempr.2018.08.011 – volume: 59 start-page: 2859 year: 2018 ident: WOS:000439674000001 article-title: Importance of Baylis-Hillman adducts in modern drug discovery publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2018.06.023 – volume: 59 start-page: 19820 year: 2020 ident: WOS:000572120700001 article-title: Organocatalytic Asymmetric C(sp2)-H Allylic Alkylation: Enantioselective Synthesis of Tetrasubstituted Allenoates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202009460 – volume: 19 start-page: 4896 year: 2017 ident: WOS:000411304300049 article-title: Asymmetric Synthesis of Glutamic Acid Derivatives by Silver-Catalyzed Conjugate Addition-Elimination Reactions publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.7b02378 – volume: 129 start-page: 1136 year: 2017 ident: 000769596000001.36 publication-title: Angew. Chem – volume: 78 start-page: 24 year: 2018 ident: WOS:000433242100004 article-title: Potential antioxidant activity of Morita-Baylis-Hillman adducts publication-title: BIOORGANIC CHEMISTRY doi: 10.1016/j.bioorg.2018.03.004 – volume: 109 start-page: 1 year: 2009 ident: WOS:000262482500001 article-title: aza-Baylis-Hillman Reaction publication-title: CHEMICAL REVIEWS doi: 10.1021/cr068057c – volume: 125 start-page: 4844 year: 2013 ident: 000769596000001.108 publication-title: Angew. Chem – volume: 31 start-page: 1543 year: 2020 ident: WOS:000570338800003 article-title: Decarboxylative Umpolung Synthesis of Amines from Carbonyl Compounds publication-title: SYNLETT doi: 10.1055/s-0040-1707157 – volume: 134 start-page: 10222 year: 2012 ident: WOS:000305358900063 article-title: Highly Enantioselective Regiodivergent Allylic Alkylations of MBH Carbonates with Phthalides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja303115m – volume: 129 start-page: 5132 year: 2017 ident: 000769596000001.38 publication-title: Angew. Chem – volume: 54 start-page: 668 year: 2021 ident: WOS:000618081800018 article-title: A Type of Structurally Adaptable Aromatic Spiroketal Based Chiral Diphosphine Ligands in Asymmetric Catalysis publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.0c00697 – start-page: 1744 year: 2009 ident: WOS:000266382800023 article-title: Highly Diastereoselective Conjugate Addition-Elimination of Chiral Nickel(II) Glycinate with Activated Allylic Acetates for Asymmetric Synthesis of Glutamic Acid Derivatives publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0028-1088075 – volume: 82 start-page: 12202 year: 2017 ident: WOS:000417342300024 article-title: Organocatalytic Asymmetric Allylic Alkylation of Morita-Baylis-Hillman Carbonates with Diethyl 2-Aminomalonate Assisted by In Situ Protection publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.7b02064 – volume: 58 start-page: 4036 year: 2019 ident: WOS:000462680700066 article-title: Auto-Tandem Cooperative Catalysis Using Phosphine/Palladium: Reaction of Morita-Baylis-Hillman Carbonates and Allylic Alcohols publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201814403 – volume: 43 start-page: 1958 year: 2000 ident: WOS:000087223900006 article-title: 4-alkyl- and 4-cinnamylglutamic acid analogues are potent GluR5 kainate receptor agonists publication-title: JOURNAL OF MEDICINAL CHEMISTRY – volume: 2 start-page: 267 year: 2012 ident: WOS:000299291000003 article-title: Organocatalytic enantioselective methodologies using Morita-Baylis-Hillman carbonates and acetates publication-title: CATALYSIS SCIENCE & TECHNOLOGY doi: 10.1039/c1cy00387a – volume: 43 start-page: 6163 year: 2002 ident: WOS:000177467500018 article-title: Isolation of callipeltins A-C and of two new open-chain derivatives of callipeltin A from the marine sponge Latrunculia sp A revision of the stereostructure of callipeltins publication-title: TETRAHEDRON LETTERS – volume: 59 start-page: 7083 year: 2020 ident: WOS:000526818900017 article-title: Pseudo-Stereodivergent Synthesis of Enantioenriched Tetrasubstituted Alkenes by Cascade 1,3-Oxo-Allylation/Cope Rearrangement publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202000044 – volume: 133 start-page: 3173 year: 2011 ident: WOS:000289455200057 article-title: Substituent Effects on Electrophilic Catalysis by the Carbonyl Group: Anatomy of the Rate Acceleration for PLP-Catalyzed Deprotonation of Glycine publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja110795m – start-page: 490 year: 2012 ident: WOS:000300711600006 article-title: Dual Activation in Organocatalysis: Design of Tunable and Bifunctional Organocatalysts and Their Applications in Enantioselective Reactions publication-title: SYNLETT doi: 10.1055/s-0031-1290131 – volume: 5 start-page: 1988 year: 2014 ident: WOS:000334492700039 article-title: Catalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activation publication-title: CHEMICAL SCIENCE doi: 10.1039/c3sc53314j – volume: 130 start-page: 7202 year: 2008 ident: WOS:000256550600018 article-title: Chiral phosphine-catalyzed enantioselective construction of γ-butenolides through substitution of Morita-Baylis-Hillman acetates with 2-trimethylsilyloxy furan publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja802422d – volume: 11 start-page: ARTN 5372 year: 2020 ident: WOS:000586507600011 article-title: Diastereodivergent chiral aldehyde catalysis for asymmetric 1,6-conjugated addition and Mannich reactions publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-19245-3 – volume: 56 start-page: 5050 year: 2017 ident: WOS:000399384700027 article-title: Palladium-Catalyzed Asymmetric Construction of Vicinal Tertiary and All-Carbon Quaternary Stereocenters by Allylation of β-Ketocarbonyls with Morita-Baylis-Hillman Adducts publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201701455 – volume: 9 start-page: 3349 year: 2011 ident: WOS:000289488000035 article-title: Multifunctional chiral phosphines-catalyzed highly diastereoselective and enantioselective substitution of Morita-Baylis-Hillman adducts with oxazolones publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c1ob00017a – volume: 43 start-page: 1734 year: 2014 ident: WOS:000331188400018 article-title: Supramolecular catalysis. Part 2: artificial enzyme mimics publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs60037h – volume: 12 start-page: ARTN 5174 year: 2021 ident: WOS:000738605600001 article-title: Asymmetric biomimetic transamination of α-keto amides to peptides publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-25449-y – volume: 141 start-page: 5159 year: 2019 ident: WOS:000463843700019 article-title: Combining Chiral Aldehyde Catalysis and Transition-Metal Catalysis for Enantioselective α-Allylic Alkylation of Amino Acid Esters publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b01910 – volume: 43 start-page: 6689 year: 2004 ident: WOS:000225869900020 article-title: Regio- and stereoselective construction of γ-butenolides through phosphine-catalyzed substitution of Morita-Baylis-Hillman acetates:: An organocatalytic allylic alkylation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200461381 – volume: 50 start-page: 4892 year: 2009 ident: WOS:000268508900025 article-title: Water-promoted highly regio- and stereoselective synthesis of α-dehydro-β-amino esters and nitriles from Baylis-Hillman acetates publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2009.06.051 – volume: 50 start-page: 9684 year: 2011 ident: WOS:000296205000034 article-title: Asymmetric Allylic Monofluoromethylation and Methylation of Morita-Baylis-Hillman Carbonates with FBSM and BSM by Cooperative Cinchona Alkaloid/FeCl2 Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201103748 – volume: 136 start-page: 405 year: 2014 ident: WOS:000329586600064 article-title: Spiroketal-Based Diphosphine Ligands in Pd-Catalyzed Asymmetric Allylic Amination of Morita-Baylis-Hillman Adducts: Exceptionally High Efficiency and New Mechanism publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja410707q – volume: 22 start-page: 1404 year: 2021 ident: WOS:000675837000002 article-title: Applications and Functions of γ-Poly-Glutamic Acid and its Derivatives in Medicine publication-title: CURRENT PHARMACEUTICAL BIOTECHNOLOGY doi: 10.2174/1389201021999201118161155 – volume: 37 start-page: 103 year: 2019 ident: WOS:000455884800001 article-title: Biomimetic Chiral Pyridoxal and Pyridoxamine Catalysts publication-title: CHINESE JOURNAL OF CHEMISTRY doi: 10.1002/cjoc.201800478 – volume: 60 start-page: 20166 year: 2021 ident: WOS:000672900000001 article-title: Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202104031 – start-page: 434 year: 2008 ident: WOS:000259889500003 article-title: Regio- and stereoselective synthesis of α,β-dehydro-β-amino esters publication-title: JOURNAL OF CHEMICAL RESEARCH doi: 10.3184/030823408X338684 – volume: 56 start-page: 12312 year: 2017 ident: WOS:000411267800050 article-title: Synergistic Cu/Pd Catalysis for Enantioselective Allylic Alkylation of Aldimine Esters: Access to ,-Disubstituted -Amino Acids publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201707019 – volume: 139 start-page: 9819 year: 2017 ident: WOS:000406649600018 article-title: Stereoselective and Site-Specific Allylic Alkylation of Amino Acids and Small Peptides via a Pd/Cu Dual Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b05460 – volume: 57 start-page: 8059 year: 2021 ident: WOS:000677434700001 article-title: Copper/Lewis base cooperatively catalyzed asymmetric allylic alkylation of Morita-Baylis-Hillman carbonates with azomethine ylides publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d1cc02861h – volume: 55 start-page: 13316 year: 2016 ident: WOS:000385799200073 article-title: Phosphine-Catalyzed Asymmetric Umpolung Addition of Trifluoromethyl Ketimines to Morita-Baylis-Hillman Carbonates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201607918 – volume: 127 start-page: 13450 year: 2005 ident: WOS:000232257100004 article-title: Catalytic enantioselective synthesis of glutamic acid derivatives via tandem conjugate addition-elimination of activated allylic acetates under chiral PTC conditions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja052638m |
SSID | ssj0028806 |
Score | 2.5425284 |
Snippet | Owing to the strong nucleophilicity of the NH2 group, free‐NH2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence... Owing to the strong nucleophilicity of the NH 2 group, free‐NH 2 glycinates react with MBH acetates to usually deliver N‐allylated products even in the absence... Owing to the strong nucleophilicity of the NH2 group, free-NH2 glycinates react with MBH acetates to usually deliver N-allylated products even in the absence... Owing to the strong nucleophilicity of the NH group, free-NH glycinates react with MBH acetates to usually deliver N-allylated products even in the absence of... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202200850 |
SubjectTerms | Acetates Acetic acid Allyl compounds Allylic Substitution Amides Biomimetic Catalysis Carbonyl Catalysis Catalysis Catalysts Chemical reactions Chemistry Chemistry, Multidisciplinary Esters Glutamic acid Intermediates Organocatalysis Physical Sciences Pyridoxal Science & Technology Stereoisomerism Stereoselectivity Vitamin B6 |
Title | Asymmetric α‐Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200850 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000769596000001 https://www.ncbi.nlm.nih.gov/pubmed/35182094 https://www.proquest.com/docview/2649290212 https://www.proquest.com/docview/2630926236 |
Volume | 61 |
WOS | 000769596000001 |
WOSCitedRecordID | wos000769596000001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXuDC_09oQUaqxCltEidxfFyiLQWJCgGVeovi2JFW3U1Qk5VIpUo8Aq_Ci_AQPAkzzg_dIgSCS2Qn40R2xvZnj-cbgF3DAxkJHbi4-NC4QIkVGQl9N9B5KSIVirAk5-Q3R_Hhcfj6JDq55MXf80NMG27UM-x4TR08V83-T9JQ8sDG9V0QWNY1HITpwBahoncTf1SAytm7F3HuUhT6kbXRC_Y3i2_OSr9AzSuz0iaQtTPRwS3Ixzr0B1BO99at2ivOr9A7_k8lb8PNAaayWa9Xd-Caqe7C9XSMDncPLmZNt1pROK6Cffv6_fOX2XLZ9efqWF2yl8uuWFSIYxlt9LL3eEXt0IzeUDc29o6NWsHm1ndLM9WxdI1AdLU4x9yLBc23_TYle9udLXT9CVMp7TV1Tdvch-OD-Yf00B1CObgFxzHENUJGOlLaL7UKlY65TlAlSqNCrTFhErrpFYUXmjAxni4ksbTmSawSlI8kfwBbVV2ZR8BEqSTKF7wUfqi5kkL6injpRCR8I4QD7vgrs2LgOadwG8usZ2gOMmrUbGpUB55P8h97ho_fSu6MmpENPb3JEFAiwiSifAeeTY_xZ5DhJa9MvSYZ7hEvI48deNhr1PQpHhGFvgwd2L2sYtNzayuVES40rSHGAf9vxNKh4kRs0DoQWB37Q_Wy2dGr-ZR7_C-FtuEGpcna5ssd2GrP1uYJgrZWPbUd8wc_jTod |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qyqJseD8MBQapiJVbe_wYe8EiuCkJbSMErdSdm_GMpYjEQbUjcCUkPoFf6Y-w4BP4Eu71C1KEQEhdsIn8uEk8nntn7mPmHIAN7fDQE4qbGHwoDFB8SUVC2-RqnApPusJNaXPy_sgfHLovj7yjFThr98LU-BBdwo0soxqvycApIb31AzWUtmBjgMd5BbvWrKvc1eV7jNryZ8Nt7OInnO_0D6KB2RALmImDGm1qEXrKk8pOlXSl8h0V4AOmWrpK4YEO6KKVJJar3UBbKgkJM3Qc-DJAeY_wl3DUv0Q04gTXv_26Q6ziaA71hibHMYn3vsWJtPjW8vMuz4O_OLfn5sFl17ma-3auwtf2rdVLXt5uLgq5mZyeA5T8r17rNbjSeOKsV5vOdVjR2Q1Yi1oCvJvwsZeXsxkxjiXsy9m3T59702lZLx1k85S9mJbJJENXnVEum73BTzQAxegX5nlFL1QRc7B-tT1NMVmyaIG-9mxyimfPJ-RS1JlY9qo8maj5BzyKKJ1W5kV-Cw4vpPW3YTWbZ_ouMJHKEOUTJxW2qxwZitCWBL0nPGFrIQwwW92JkwbKnRhFpnENQs1j6sS460QDnnby72oQk99KrreqGDeDWR6jz4xONHEBGPC4u42dQbWlcabnC5JxLIKedHwD7tQq3P2V4xFLQOgasPGzTnf3q3Jw6GEsXdWaDLD_RixqGk7YDYUBvFLqPzQv7o2G_e7s3r986RGsDQ729-K94Wj3Plym61RctMN1WC1OFvoB-qiFfFiNCgyOL9pevgMC6Jnf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB1VRQJeuF8MBRapiCe39vqy9gMPIRcaClEFVOqbyXrXUkRiV7UjcCUkPoFPgR9B4hf4EmZ8gxQhEFIfeIl8mSRe78zuzM7OOQCb2uGhJxQ3MfhQGKD4kpKEtsnVNBGedIWbUHHy84m_s-8-PfAO1uBTWwtT40N0C25kGdV4TQZ-qJLtH6ChVIGN8R3nFepas61yV5dvMWjLH40H2MMPOB8NX_V3zIZXwIwdVGhTi9BTnlR2oqQrle-oAJ8v0dJVCg90QBetOLZc7QbaUnFIkKHTwJcBynsEv4SD_hnXt0Iiixi86ACrOFpDXc_kOCbR3rcwkRbfXn3e1WnwF9_2xDS46jlXU9_oInxtX1q94-XN1rKQW_HxCTzJ_-mtXoILjR_OerXhXIY1nV6Bc_2W_u4qvO_l5WJBfGMx-_L524ePvfm8rDcOsixhT-ZlPEvRUWe0ks1e4ieqv2L0C1lekQtVtBxsWBWnKSZL1l-ip72YHePZ4xk5FPU6LNsrj2Yqe4dHfVpMK_Mivwb7p9L667CeZqm-CUwkMkT52EmE7SpHhiK0JQHvCU_YWggDzFZ1orgBcic-kXlUQ1DziDox6jrRgIed_GENYfJbyY1WE6NmKMsj9JjRhSYmAAPud7exMyizNE11tiQZxyLgScc34Eatwd1fOR5xBISuAZs_q3R3v0oGhx5G0lWmyQD7b8T6TcMJuaEwgFc6_YfmRb3JeNid3fqXL92Ds3uDUfRsPNm9DefpMmUW7XAD1oujpb6DDmoh71ZjAoPXp20u3wGOnZiO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+%CE%B1-Allylation+of+Glycinate+with+Switched+Chemoselectivity+Enabled+by+Customized+Bifunctional+Pyridoxal+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ma%2C+Jiguo&rft.au=Gao%2C+Bin&rft.au=Song%2C+Guanshui&rft.au=Zhang%2C+Ruixin&rft.date=2022-04-19&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=17&rft.spage=e202200850&rft_id=info:doi/10.1002%2Fanie.202200850&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |