π‐Expanded Carbazoles as Hole‐Selective Self‐Assembled Monolayers for High‐Performance Perovskite Solar Cells
Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover,...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 51; pp. e202213560 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
19.12.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole‐derived SAMs, CbzPh and CbzNaph through asymmetric or helical π‐expansion for improved molecular dipole moment and strengthened π‐π interaction. The helical π‐expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π‐scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability.
A molecular design strategy is introduced for carbazole‐derived self‐assembled monolayers (SAM) to facilitate dense assembly and tune the indium tinoxide (ITO) workfunction. Through asymmetric or helical π‐expansion, CbzPh and CbzNaph are obtained as efficient hole‐selective layers (HSL) for inverted perovskite solar cells (PSC). Larger molecular dipoles in CbzPh and CbzNaph can better tune the ITO workfunction, whereas the stronger π‐π interactions ensure more ordered and denser SAM assembly. |
---|---|
AbstractList | Carbazole-derived self-assembled monolayers (SAMs) are promising hole-selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole-derived SAMs, CbzPh and CbzNaph through asymmetric or helical π-expansion for improved molecular dipole moment and strengthened π-π interaction. The helical π-expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π-scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability.Carbazole-derived self-assembled monolayers (SAMs) are promising hole-selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole-derived SAMs, CbzPh and CbzNaph through asymmetric or helical π-expansion for improved molecular dipole moment and strengthened π-π interaction. The helical π-expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π-scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability. Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole‐derived SAMs, CbzPh and CbzNaph through asymmetric or helical π‐expansion for improved molecular dipole moment and strengthened π‐π interaction. The helical π‐expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π‐scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability. Carbazole-derived self-assembled monolayers (SAMs) are promising hole-selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole-derived SAMs, CbzPh and CbzNaph through asymmetric or helical pi-expansion for improved molecular dipole moment and strengthened pi-pi interaction. The helical pi-expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its pi-scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability. Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole‐derived SAMs, CbzPh and CbzNaph through asymmetric or helical π‐expansion for improved molecular dipole moment and strengthened π‐π interaction. The helical π‐expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π‐scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability. A molecular design strategy is introduced for carbazole‐derived self‐assembled monolayers (SAM) to facilitate dense assembly and tune the indium tinoxide (ITO) workfunction. Through asymmetric or helical π‐expansion, CbzPh and CbzNaph are obtained as efficient hole‐selective layers (HSL) for inverted perovskite solar cells (PSC). Larger molecular dipoles in CbzPh and CbzNaph can better tune the ITO workfunction, whereas the stronger π‐π interactions ensure more ordered and denser SAM assembly. |
Author | Li, Mingliang Qi, Feng Lin, Francis R. Jen, Alex K.‐Y. Li, Fengzhu Jiang, Wenlin |
Author_xml | – sequence: 1 givenname: Wenlin orcidid: 0000-0003-2387-1901 surname: Jiang fullname: Jiang, Wenlin organization: City University of Hong Kong – sequence: 2 givenname: Fengzhu surname: Li fullname: Li, Fengzhu organization: City University of Hong Kong – sequence: 3 givenname: Mingliang surname: Li fullname: Li, Mingliang organization: City University of Hong Kong – sequence: 4 givenname: Feng surname: Qi fullname: Qi, Feng organization: City University of Hong Kong – sequence: 5 givenname: Francis R. surname: Lin fullname: Lin, Francis R. organization: City University of Hong Kong – sequence: 6 givenname: Alex K.‐Y. orcidid: 0000-0002-9219-7749 surname: Jen fullname: Jen, Alex K.‐Y. email: alexjen@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36300589$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2O0zAQxyO0iP2AK0cUiQvSKmVs13FyrKKyXWn5kIBz5DgT8JLYxU4K5bSPwJvxDjwJs2op0koITv7b8_uPx-M5TY6cd5gkjxnMGAB_rp3FGQfOmZA53EtOmOQsE0qJI9JzITJVSHacnMZ4TXxRQP4gORa5AJBFeZJsftz8vPm-_LrWrsU2rXRo9DffY0x1TFckKPoWezSj3WBKqqODRYw4ND3xL73zvd5iiGnnQ7qyHz5S_A0G2g3aGUxJ-038ZEdyExrSCvs-Pkzud7qP-Gi_niXvXyzfVavs6vXFZbW4yoxQAjIEkXPByjlKKYpSYNt0koESeWtEXqJscmOUhByllg109MCuA9M0ClrVQiHOkme7vOvgP08Yx3qw0VAF2qGfYs0VLyWTZSkIfXoHvfZTcFQdUVJw6itXRD3ZU1MzYFuvgx102Na_O0rA-Q74go3vorFIXThgAFDQH5R5QQoY0cX_05Ud9Wi9q_zkRrLOdlYTfIwBu4ONQX07G_XtbNSH2SDD_I7B7BOOQdv-77ZyX6LtcfuPS-rFq8vlH-8vqVXP1g |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00667 crossref_primary_10_1002_adfm_202316500 crossref_primary_10_1038_s41586_024_07705_5 crossref_primary_10_1002_anie_202411730 crossref_primary_10_1002_adma_202406872 crossref_primary_10_1088_2752_5724_acbb5a crossref_primary_10_1016_j_dyepig_2024_112464 crossref_primary_10_1002_ifm2_8 crossref_primary_10_1007_s40843_024_3277_8 crossref_primary_10_1021_acsami_4c13977 crossref_primary_10_6023_A24010026 crossref_primary_10_1002_ange_202315281 crossref_primary_10_1002_adma_202311025 crossref_primary_10_1021_acs_langmuir_3c03610 crossref_primary_10_1016_j_cej_2024_155512 crossref_primary_10_1021_acsenergylett_4c01674 crossref_primary_10_1002_adfm_202314039 crossref_primary_10_1016_j_mtener_2024_101549 crossref_primary_10_1021_acs_chemrev_3c00396 crossref_primary_10_1126_science_ade9637 crossref_primary_10_1002_ange_202419375 crossref_primary_10_1038_s41467_024_55653_5 crossref_primary_10_1002_idm2_12145 crossref_primary_10_1016_j_joule_2024_03_009 crossref_primary_10_1002_smll_202500642 crossref_primary_10_1039_D4EE02661F crossref_primary_10_1002_anie_202423206 crossref_primary_10_1039_D4TC02303J crossref_primary_10_1002_ange_202420585 crossref_primary_10_1016_j_dyepig_2023_111913 crossref_primary_10_1039_D4EE02917H crossref_primary_10_1016_j_cej_2024_154011 crossref_primary_10_1039_D3TC03575A crossref_primary_10_1002_adma_202307161 crossref_primary_10_1002_ange_202403068 crossref_primary_10_1021_acsami_4c03383 crossref_primary_10_1021_acsenergylett_4c03228 crossref_primary_10_1016_j_cej_2024_149512 crossref_primary_10_1002_anie_202401518 crossref_primary_10_1038_s41467_024_51760_5 crossref_primary_10_1002_ange_202309831 crossref_primary_10_1002_smll_202500296 crossref_primary_10_1016_j_esci_2024_100329 crossref_primary_10_1039_D4EE02492C crossref_primary_10_1002_ange_202423206 crossref_primary_10_1039_D4EE04029E crossref_primary_10_1002_smll_202403233 crossref_primary_10_1002_ange_202401260 crossref_primary_10_1039_D3SC04668K crossref_primary_10_1002_advs_202410277 crossref_primary_10_1021_prechem_3c00018 crossref_primary_10_1002_ange_202411730 crossref_primary_10_1039_D4EE05849F crossref_primary_10_1002_aenm_202303941 crossref_primary_10_1002_anie_202309831 crossref_primary_10_1007_s40820_023_01131_4 crossref_primary_10_1039_D3SC05485C crossref_primary_10_1002_anie_202419608 crossref_primary_10_1002_chem_202400629 crossref_primary_10_1002_adma_202407032 crossref_primary_10_1002_anie_202401260 crossref_primary_10_1002_anie_202412939 crossref_primary_10_1007_s40843_024_3093_9 crossref_primary_10_1039_D4TA01453G crossref_primary_10_1126_sciadv_adq1150 crossref_primary_10_1002_anie_202315281 crossref_primary_10_1016_j_cej_2025_160931 crossref_primary_10_1039_D3QM00209H crossref_primary_10_1007_s11426_025_2594_8 crossref_primary_10_1002_aenm_202304486 crossref_primary_10_1002_anie_202416188 crossref_primary_10_1002_ange_202401518 crossref_primary_10_1016_j_apmate_2025_100275 crossref_primary_10_1002_advs_202404725 crossref_primary_10_1002_adma_202414576 crossref_primary_10_1002_ange_202419608 crossref_primary_10_3389_fchem_2024_1519166 crossref_primary_10_1016_j_cej_2024_158389 crossref_primary_10_1039_D4TC00266K crossref_primary_10_1016_j_nanoen_2025_110670 crossref_primary_10_1021_jacs_3c00805 crossref_primary_10_1016_j_cej_2024_153253 crossref_primary_10_1002_anie_202403068 crossref_primary_10_1021_acsmaterialslett_3c01166 crossref_primary_10_1039_D3ME00144J crossref_primary_10_1002_adfm_202315604 crossref_primary_10_1002_aenm_202400205 crossref_primary_10_1002_smll_202410990 crossref_primary_10_1002_advs_202307152 crossref_primary_10_1021_acsenergylett_4c00140 crossref_primary_10_1038_s41578_024_00678_x crossref_primary_10_1002_adma_202304415 crossref_primary_10_1002_ange_202416188 crossref_primary_10_1039_D3QM01017A crossref_primary_10_1039_D4EE01960A crossref_primary_10_1002_aenm_202405571 crossref_primary_10_1002_adma_202405630 crossref_primary_10_1002_solr_202400242 crossref_primary_10_1007_s11814_024_00335_7 crossref_primary_10_1016_j_nanoen_2024_110548 crossref_primary_10_1021_acsami_3c02953 crossref_primary_10_1002_cssc_202301508 crossref_primary_10_1021_acsami_4c15688 crossref_primary_10_1002_ange_202412939 crossref_primary_10_1002_adma_202312264 crossref_primary_10_1038_s41467_024_55523_0 crossref_primary_10_3390_molecules29091910 crossref_primary_10_1002_cjoc_202400384 crossref_primary_10_1016_j_cej_2025_161967 crossref_primary_10_1016_j_cjsc_2024_100324 crossref_primary_10_1002_adfm_202418798 crossref_primary_10_1002_adfm_202411922 crossref_primary_10_1039_D3CC04863B crossref_primary_10_1002_smll_202500281 crossref_primary_10_1002_adfm_202408480 crossref_primary_10_1016_j_cej_2024_149035 crossref_primary_10_1002_adfm_202304708 crossref_primary_10_1002_aenm_202405088 crossref_primary_10_1126_science_adj9602 crossref_primary_10_1002_adfm_202316202 crossref_primary_10_1002_adma_202306568 crossref_primary_10_1021_acsami_3c07539 crossref_primary_10_1002_anie_202420585 crossref_primary_10_1002_adfm_202304262 crossref_primary_10_1021_acsaem_3c02946 crossref_primary_10_1021_jacs_2c13566 crossref_primary_10_1063_1674_0068_cjcp2303026 crossref_primary_10_1021_acsenergylett_4c01451 crossref_primary_10_1039_D4NJ00154K crossref_primary_10_1002_cjoc_202300789 crossref_primary_10_1002_ange_202404289 crossref_primary_10_1016_j_surfin_2025_106094 crossref_primary_10_1021_acsenergylett_4c03233 crossref_primary_10_3390_nano14020175 crossref_primary_10_1002_smll_202407769 crossref_primary_10_1016_j_cej_2024_154722 crossref_primary_10_1039_D5EE00380F crossref_primary_10_1021_acssuschemeng_3c03514 crossref_primary_10_1002_aenm_202303742 crossref_primary_10_1002_adma_202500708 crossref_primary_10_1002_adfm_202421576 crossref_primary_10_1021_jacs_4c03917 crossref_primary_10_1002_adfm_202418223 crossref_primary_10_1002_solr_202400182 crossref_primary_10_1016_j_ccr_2025_216500 crossref_primary_10_1002_solr_202300996 crossref_primary_10_1021_acsaem_3c02935 crossref_primary_10_1002_adfm_202402833 crossref_primary_10_1016_j_cej_2024_158870 crossref_primary_10_1002_adma_202401537 crossref_primary_10_1021_acs_jpcc_4c03059 crossref_primary_10_1002_aenm_202400616 crossref_primary_10_1002_solr_202300481 crossref_primary_10_1002_anie_202404289 crossref_primary_10_1002_aenm_202303354 crossref_primary_10_1021_acsami_5c01653 crossref_primary_10_1038_s41566_024_01541_9 crossref_primary_10_1002_anie_202419375 crossref_primary_10_1038_s41467_024_55492_4 |
Cites_doi | 10.1002/adfm.202103847 10.1002/adfm.201909509 10.1038/ncomms3761 10.1126/science.abd4016 10.1021/acs.chemrev.6b00061 10.1002/anie.202203088 10.1002/adfm.200800033 10.1002/anie.202107020 10.1126/science.aaz5074 10.1002/adfm.201401493 10.1002/advs.201903331 10.1126/science.abm5784 10.1021/jacs.8b13091 10.1002/adom.202101361 10.1038/s41566-022-01033-8 10.1002/aenm.201904102 10.1039/D0EE03807E 10.1126/science.1200830 10.1126/science.aap9282 10.1002/advs.202104848 10.1002/adma.202203794 10.1002/adma.201100337 10.1002/adma.200703050 10.1126/science.abf5602 10.1002/adfm.201002035 10.1016/j.joule.2020.04.001 10.1039/B813123F 10.1002/ange.202102131 10.1039/c3cp44425b 10.1002/ange.202203088 10.1002/ange.201201448 10.1016/j.joule.2021.07.016 10.1002/aenm.202002606 10.1038/srep44629 10.1021/ja409771u 10.1021/jacs.0c09845 10.1038/nenergy.2017.102 10.1002/ange.202016085 10.1039/C9EE02268F 10.1039/C6CS00509H 10.1021/jacs.0c00954 10.1021/acsmaterialslett.2c00799 10.1021/acsami.1c03797 10.1126/science.aaz3691 10.1038/ncomms10214 10.1002/adfm.202104369 10.1002/adma.201004762 10.1002/anie.202102131 10.1038/ncomms8747 10.1002/anie.201201448 10.1002/ange.202107020 10.1021/acs.jpcc.6b13016 10.1002/aenm.201801892 10.1021/cm8014622 10.1002/aenm.202103175 10.1002/adma.201800455 10.1107/S2052520616003954 10.1002/anie.202016085 10.1039/C9SC01184F 10.1021/acs.jpcc.8b10070 10.1002/adma.201902762 10.1039/c9ee02268f 10.1016/j.bios.2016.01.056 10.1039/c6cs00509h 10.1039/b813123f 10.1039/d0ee03807e 10.1039/c9sc01184f |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202213560 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36300589 000888096800001 10_1002_anie_202213560 ANIE202213560 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Innovation and Technology Commission - Hong Kong funderid: GHP/018/20SZ and MRP/040/21X – fundername: APRC Grant of the City University of Hong Kong funderid: 9380086 – fundername: Environment and Ecology Bureau of Hong Kong funderid: Green Tech Fund (202020164) – fundername: Research Grants Council of Hong Kong funderid: GRF grant (11307621) – fundername: Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials funderid: 2019B121205002 – fundername: Lee Shau-Kee Chair Professor (Materials Science) – fundername: Guangdong Major Project of Basic and Applied Basic Research funderid: 2019B030302007 – fundername: Guangdong Major Project of Basic and Applied Basic Research grantid: 2019B030302007 – fundername: Innovation and Technology Commission of Hong Kong grantid: GHP/018/20SZ; MRP/040/21X – fundername: Environment and Ecology Bureau of Hong Kong grantid: 202020164 – fundername: Research Grants Council of Hong Kong; Hong Kong Research Grants Council grantid: 11307621; 11316422 – fundername: APRC Grant of the City University of Hong Kong grantid: 9380086 – fundername: Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials grantid: 2019B121205002 – fundername: Research Grants Council of Hong Kong grantid: GRF grant (11307621) – fundername: Environment and Ecology Bureau of Hong Kong grantid: Green Tech Fund (202020164) – fundername: Innovation and Technology Commission - Hong Kong grantid: GHP/018/20SZ and MRP/040/21X |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-e03623194e553893edbf510736dc369e5b6cc7506e5a5b0f028ff0cbb70d7d083 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 202 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000888096800001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:45:35 EDT 2025 Fri Jul 25 10:35:48 EDT 2025 Wed Feb 19 02:26:21 EST 2025 Fri Aug 29 15:49:37 EDT 2025 Wed Jul 09 18:04:19 EDT 2025 Thu Apr 24 22:52:57 EDT 2025 Tue Jul 01 01:46:57 EDT 2025 Wed Jan 22 16:22:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | PHOSPHONIC-ACIDS Perovskite SPIN-CAST Self-Assembled Monolayer Hole-Selective Layer Carbazole Solar Cells EFFICIENCY SURFACES |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3730-e03623194e553893edbf510736dc369e5b6cc7506e5a5b0f028ff0cbb70d7d083 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2387-1901 0000-0002-9219-7749 0000-0002-4651-9145 0000-0001-6022-4055 |
PMID | 36300589 |
PQID | 2753252127 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2753252127 crossref_primary_10_1002_anie_202213560 webofscience_primary_000888096800001 wiley_primary_10_1002_anie_202213560_ANIE202213560 pubmed_primary_36300589 webofscience_primary_000888096800001CitationCount proquest_miscellaneous_2729515993 crossref_citationtrail_10_1002_anie_202213560 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 19, 2022 |
PublicationDateYYYYMMDD | 2022-12-19 |
PublicationDate_xml | – month: 12 year: 2022 text: December 19, 2022 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2022; 376 2017; 7 2021; 5 2015; 6 2017; 2 2013; 4 2018; 360 2019; 31 2020; 142 2019; 10 2010; 39 2008; 18 2019; 12 2017; 46 2014; 24 2016; 72 2020; 367 2020; 10 2019; 141 2014; 136 2011; 331 2019; 123 2021; 14 2020; 7 2021; 13 2016; 7 2022 2022; 61 134 2018; 8 2020; 4 2013; 15 2021; 31 2020; 30 2022; 4 2012 2012; 51 124 2020; 370 2022; 9 2022; 34 2022; 12 2021 2021; 60 133 2011; 21 2018; 30 2011; 23 2021; 372 2016; 116 2022; 10 2008; 20 2017; 121 2022; 16 e_1_2_3_71_2 e_1_2_3_50_1 e_1_2_3_6_1 e_1_2_3_39_1 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_18_1 (e_1_2_3_42_3) 2022; 134 e_1_2_3_2_2 e_1_2_3_56_2 e_1_2_3_58_1 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_33_2 e_1_2_3_14_1 e_1_2_3_35_2 e_1_2_3_52_2 e_1_2_3_75_2 e_1_2_3_77_1 e_1_2_3_54_2 e_1_2_3_73_2 e_1_2_3_10_2 e_1_2_3_31_2 e_1_2_3_60_2 e_1_2_3_49_2 e_1_2_3_28_2 e_1_2_3_49_3 e_1_2_3_22_2 e_1_2_3_45_1 e_1_2_3_24_2 e_1_2_3_66_2 e_1_2_3_26_1 e_1_2_3_47_1 e_1_2_3_68_1 e_1_2_3_41_2 e_1_2_3_20_2 e_1_2_3_62_2 e_1_2_3_20_3 e_1_2_3_43_1 e_1_2_3_64_1 e_1_2_3_72_2 e_1_2_3_70_1 e_1_2_3_1_1 e_1_2_3_19_2 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_15_3 e_1_2_3_17_1 e_1_2_3_3_2 e_1_2_3_59_2 e_1_2_3_59_3 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_9_1 e_1_2_3_55_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_36_1 e_1_2_3_57_2 e_1_2_3_53_1 e_1_2_3_30_2 e_1_2_3_51_2 e_1_2_3_76_2 e_1_2_3_74_1 e_1_2_3_32_1 e_1_2_3_61_1 e_1_2_3_40_1 e_1_2_3_27_2 e_1_2_3_48_2 e_1_2_3_29_2 e_1_2_3_46_1 e_1_2_3_69_1 e_1_2_3_23_2 e_1_2_3_25_1 e_1_2_3_67_2 e_1_2_3_65_1 e_1_2_3_21_1 e_1_2_3_44_1 e_1_2_3_42_2 e_1_2_3_63_2 Rajagopal, A (WOS:000440813300004) 2018; 30 Yang, S (WOS:000464769000030) 2019; 141 Lee, JY (WOS:000713083000001) 2022; 10 Paniagua, SA (WOS:000378585000005) 2016; 116 Rakstys, K (WOS:000476545100017) 2019; 10 Li, EP (WOS:000503157100001) 2020; 30 Wu, WP (WOS:000277035200007) 2010; 39 Zhang (000888096800001.45) 2018 Casalini, S (WOS:000391955700003) 2017; 46 Wu, SF (WOS:000542492800011) 2020; 4 Li, YW (WOS:000369019900004) 2016; 7 Bardecker, JA (WOS:000262290700011) 2008; 18 Yoon, HJ (WOS:000329586600005) 2014; 136 Hou, Y (WOS:000520018400043) 2020; 367 Halik, M (WOS:000291734000021) 2011; 23 Acton, O (WOS:000290547100013) 2011; 23 Cai, N (WOS:000681757200001) 2021; 60 Yoon, HJ (WOS:000303506800028) 2012; 51 Li, EP (WOS:000663868300001) 2021; 31 Docampo, P (WOS:000328023000032) 2013; 4 Luo, DY (WOS:000436598000072) 2018; 360 Xu, JX (WOS:000520018400036) 2020; 367 Acton, O (WOS:000289638500016) 2011; 21 Yip, HL (WOS:000257268500023) 2008; 20 Liu, B (WOS:000526300600037) 2020; 142 Wolff, CM (WOS:000491107000001) 2019; 31 Zheng, XP (WOS:000406499200001) 2017; 2 Al-Ashouri, A (WOS:000494816300007) 2019; 12 Lee, SY (WOS:000314846600028) 2013; 15 Magomedov, A (WOS:000450269900020) 2018; 8 Gao, W (WOS:000668211900001) 2021; 31 Bi, C (WOS:000358858500053) 2015; 6 Chen, CH (WOS:000457067500010) 2019; 123 Ullah, A (WOS:000722179600001) 2022; 12 Sun, XL (WOS:000535992100001) 2020; 7 Sarritzu, V (WOS:000396666100001) 2017; 7 Zhang (000888096800001.47) 2021 Cassella, EJ (WOS:000753298100001) 2022; 9 Lange, I (WOS:000345370900014) 2014; 24 Paramonov, PB (WOS:000258580500005) 2008; 20 Zhang, S (WOS:000854107300001) 2022 Deng (000888096800001.34) 2022; 134 Kim, M (WOS:000288215200043) 2011; 331 Li, FZ (WOS:000595544800046) 2020; 142 Dai, ZH (WOS:000649103500043) 2021; 372 Kim, SY (WOS:000579045800001) 2020; 10 Kim, SY (WOS:000672492800095) 2021; 13 Yoon (000888096800001.49) 2012; 124 Clegg, W. (000888096800001.46) 2015 Alhummiany, H (WOS:000399629000009) 2017; 121 Yang, JW (WOS:000372558500025) 2016; 80 Jost, M (WOS:000529904800001) 2020; 10 Levine, I (WOS:000723010700013) 2021; 5 Deng, X (WOS:000808239700001) 2022; 61 Al-Ashouri, A (WOS:000597271300039) 2020; 370 Jiang, WL (WOS:000631348500001) 2021; 60 Azmi, R (WOS:000780195200029) 2022; 376 Aktas, E (WOS:000652676500001) 2021; 14 Yang, G (WOS:000826792400001) 2022; 16 Sun, XL (WOS:000618968800001) 2021; 60 Yao, YG (WOS:000862095700001) 2022; 34 Jiang (000888096800001.41) 2021; 133 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 370 start-page: 1300 year: 2020 end-page: 1309 publication-title: Science – volume: 51 124 start-page: 4658 4736 year: 2012 2012 end-page: 4661 4739 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 1476 year: 2011 end-page: 1488 publication-title: Adv. Funct. Mater. – volume: 142 start-page: 20134 year: 2020 end-page: 20142 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 7117 year: 2016 end-page: 7158 publication-title: Chem. Rev. – volume: 20 start-page: 2376 year: 2008 end-page: 2382 publication-title: Adv. Mater. – volume: 141 start-page: 5781 year: 2019 end-page: 5787 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7747 year: 2015 publication-title: Nat. Commun. – volume: 60 133 start-page: 10700 10795 year: 2021 2021 end-page: 10708 10803 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 367 start-page: 1135 year: 2020 end-page: 1140 publication-title: Science – volume: 367 start-page: 1097 year: 2020 end-page: 1104 publication-title: Science – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 4 start-page: 2761 year: 2013 publication-title: Nat. Commun. – volume: 24 start-page: 7014 year: 2014 end-page: 7024 publication-title: Adv. Funct. Mater. – volume: 60 133 start-page: 7227 7303 year: 2021 2021 end-page: 7233 7309 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 2915 year: 2021 end-page: 2933 publication-title: Joule – volume: 360 start-page: 1442 year: 2018 end-page: 1446 publication-title: Science – volume: 16 start-page: 588 year: 2022 end-page: 594 publication-title: Nat. Photonics – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 2 start-page: 17102 year: 2017 publication-title: Nat. Energy – volume: 372 start-page: 618 year: 2021 end-page: 622 publication-title: Science – volume: 72 start-page: 171 year: 2016 end-page: 179 publication-title: Acta Crystallogr. Sect. B – volume: 123 start-page: 1602 year: 2019 end-page: 1609 publication-title: J. Phys. Chem. C – volume: 142 start-page: 7092 year: 2020 end-page: 7099 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 3609 year: 2013 end-page: 3617 publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 3976 year: 2021 end-page: 3985 publication-title: Energy Environ. Sci. – volume: 39 start-page: 1489 year: 2010 end-page: 1502 publication-title: Chem. Soc. Rev. – volume: 331 start-page: 1312 year: 2011 end-page: 1315 publication-title: Science – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 1248 year: 2020 end-page: 1262 publication-title: Joule – volume: 23 start-page: 2689 year: 2011 end-page: 2695 publication-title: Adv. Mater. – volume: 60 133 start-page: 20437 20600 year: 2021 2021 end-page: 20442 20605 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 1976 year: 2022 end-page: 1983 publication-title: ACS Mater. Lett. – volume: 7 start-page: 44629 year: 2017 publication-title: Sci. Rep. – volume: 7 start-page: 10214 year: 2016 publication-title: Nat. Commun. – volume: 12 start-page: 3356 year: 2019 end-page: 3369 publication-title: Energy Environ. Sci. – volume: 13 start-page: 31236 year: 2021 end-page: 31247 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 376 start-page: 73 year: 2022 end-page: 77 publication-title: Science – volume: 20 start-page: 5131 year: 2008 end-page: 5133 publication-title: Chem. Mater. – volume: 136 start-page: 16 year: 2014 end-page: 19 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 3964 year: 2008 end-page: 3971 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 121 start-page: 7649 year: 2017 end-page: 7658 publication-title: J. Phys. Chem. C – volume: 23 start-page: 1899 year: 2011 end-page: 1902 publication-title: Adv. Mater. – volume: 10 start-page: 6748 year: 2019 end-page: 6769 publication-title: Chem. Sci. – volume: 46 start-page: 40 year: 2017 end-page: 71 publication-title: Chem. Soc. Rev. – ident: e_1_2_3_18_1 – ident: e_1_2_3_34_2 doi: 10.1002/adfm.202103847 – ident: e_1_2_3_33_2 doi: 10.1002/adfm.201909509 – ident: e_1_2_3_65_1 – ident: e_1_2_3_7_2 doi: 10.1038/ncomms3761 – ident: e_1_2_3_28_2 doi: 10.1126/science.abd4016 – ident: e_1_2_3_63_2 doi: 10.1021/acs.chemrev.6b00061 – ident: e_1_2_3_42_2 doi: 10.1002/anie.202203088 – ident: e_1_2_3_69_1 doi: 10.1002/adfm.200800033 – ident: e_1_2_3_15_2 doi: 10.1002/anie.202107020 – ident: e_1_2_3_55_2 – ident: e_1_2_3_10_2 doi: 10.1126/science.aaz5074 – ident: e_1_2_3_26_1 – ident: e_1_2_3_38_2 doi: 10.1002/adfm.201401493 – ident: e_1_2_3_50_1 – ident: e_1_2_3_17_1 doi: 10.1002/advs.201903331 – ident: e_1_2_3_35_2 doi: 10.1126/science.abm5784 – ident: e_1_2_3_61_1 – ident: e_1_2_3_3_2 doi: 10.1021/jacs.8b13091 – ident: e_1_2_3_24_2 doi: 10.1002/adom.202101361 – ident: e_1_2_3_13_2 doi: 10.1038/s41566-022-01033-8 – ident: e_1_2_3_70_1 – ident: e_1_2_3_12_2 doi: 10.1002/aenm.201904102 – ident: e_1_2_3_41_2 doi: 10.1039/D0EE03807E – ident: e_1_2_3_56_2 – ident: e_1_2_3_32_1 – ident: e_1_2_3_22_2 doi: 10.1126/science.1200830 – ident: e_1_2_3_21_1 – ident: e_1_2_3_5_2 doi: 10.1126/science.aap9282 – ident: e_1_2_3_39_1 doi: 10.1002/advs.202104848 – ident: e_1_2_3_16_2 doi: 10.1002/adma.202203794 – ident: e_1_2_3_1_1 – ident: e_1_2_3_52_2 doi: 10.1002/adma.201100337 – ident: e_1_2_3_37_2 doi: 10.1002/adma.200703050 – ident: e_1_2_3_40_1 – ident: e_1_2_3_30_2 doi: 10.1126/science.abf5602 – ident: e_1_2_3_66_2 doi: 10.1002/adfm.201002035 – ident: e_1_2_3_19_2 doi: 10.1016/j.joule.2020.04.001 – ident: e_1_2_3_48_2 doi: 10.1039/B813123F – ident: e_1_2_3_49_3 doi: 10.1002/ange.202102131 – ident: e_1_2_3_67_2 doi: 10.1039/c3cp44425b – volume: 134 start-page: e202203088 year: 2022 ident: e_1_2_3_42_3 publication-title: Angew. Chem. doi: 10.1002/ange.202203088 – ident: e_1_2_3_59_3 doi: 10.1002/ange.201201448 – ident: e_1_2_3_68_1 doi: 10.1016/j.joule.2021.07.016 – ident: e_1_2_3_29_2 doi: 10.1002/aenm.202002606 – ident: e_1_2_3_75_2 doi: 10.1038/srep44629 – ident: e_1_2_3_60_2 doi: 10.1021/ja409771u – ident: e_1_2_3_77_1 doi: 10.1021/jacs.0c09845 – ident: e_1_2_3_4_2 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_3_20_3 doi: 10.1002/ange.202016085 – ident: e_1_2_3_27_2 doi: 10.1039/C9EE02268F – ident: e_1_2_3_51_2 doi: 10.1039/C6CS00509H – ident: e_1_2_3_45_1 doi: 10.1021/jacs.0c00954 – ident: e_1_2_3_46_1 doi: 10.1021/acsmaterialslett.2c00799 – ident: e_1_2_3_53_1 – ident: e_1_2_3_73_2 doi: 10.1021/acsami.1c03797 – ident: e_1_2_3_11_2 doi: 10.1126/science.aaz3691 – ident: e_1_2_3_57_2 – ident: e_1_2_3_8_2 doi: 10.1038/ncomms10214 – ident: e_1_2_3_36_1 – ident: e_1_2_3_44_1 doi: 10.1002/adfm.202104369 – ident: e_1_2_3_23_2 doi: 10.1002/adma.201004762 – ident: e_1_2_3_14_1 – ident: e_1_2_3_49_2 doi: 10.1002/anie.202102131 – ident: e_1_2_3_72_2 doi: 10.1038/ncomms8747 – ident: e_1_2_3_59_2 doi: 10.1002/anie.201201448 – ident: e_1_2_3_15_3 doi: 10.1002/ange.202107020 – ident: e_1_2_3_64_1 doi: 10.1021/acs.jpcc.6b13016 – ident: e_1_2_3_9_1 – ident: e_1_2_3_6_1 – ident: e_1_2_3_43_1 doi: 10.1002/aenm.201801892 – ident: e_1_2_3_62_2 doi: 10.1021/cm8014622 – ident: e_1_2_3_31_2 doi: 10.1002/aenm.202103175 – ident: e_1_2_3_47_1 – ident: e_1_2_3_74_1 – ident: e_1_2_3_2_2 doi: 10.1002/adma.201800455 – ident: e_1_2_3_54_2 doi: 10.1107/S2052520616003954 – ident: e_1_2_3_58_1 – ident: e_1_2_3_20_2 doi: 10.1002/anie.202016085 – ident: e_1_2_3_25_1 doi: 10.1039/C9SC01184F – ident: e_1_2_3_71_2 doi: 10.1021/acs.jpcc.8b10070 – ident: e_1_2_3_76_2 doi: 10.1002/adma.201902762 – volume: 30 start-page: ARTN 1909509 year: 2020 ident: WOS:000503157100001 article-title: Synergistic Coassembly of Highly Wettable and Uniform Hole-Extraction Monolayers for Scaling-up Perovskite Solar Cells publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201909509 – volume: 31 start-page: ARTN 2103847 year: 2021 ident: WOS:000663868300001 article-title: Bonding Strength Regulates Anchoring-Based Self-Assembly Monolayers for Efficient and Stable Perovskite Solar Cells publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202103847 – volume: 13 start-page: 31236 year: 2021 ident: WOS:000672492800095 article-title: Case Studies on Structure-Property Relations in Perovskite Light-Emitting Diodes via Interfacial Engineering with Self-Assembled Monolayers publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.1c03797 – volume: 12 start-page: 3356 year: 2019 ident: WOS:000494816300007 article-title: Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c9ee02268f – volume: 136 start-page: 16 year: 2014 ident: WOS:000329586600005 article-title: The Rate of Charge Tunneling Is Insensitive to Polar Terminal Groups in Self-Assembled Monolayers in AgTSS(CH2)nM(CH2)mT//Ga2O3/EGaIn Junctions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja409771u – volume: 34 year: 2022 ident: WOS:000862095700001 article-title: Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202203794 – volume: 142 start-page: 20134 year: 2020 ident: WOS:000595544800046 article-title: Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c09845 – volume: 31 start-page: ARTN 1902762 year: 2019 ident: WOS:000491107000001 article-title: Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201902762 – volume: 123 start-page: 1602 year: 2019 ident: WOS:000457067500010 article-title: Thienoisoindigo-Based Dopant-Free Hole Transporting Material for Efficient p-i-n Perovskite Solar Cells with the Grain Size in Micrometer Scale publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/acs.jpcc.8b10070 – volume: 60 start-page: 10700 year: 2021 ident: WOS:000631348500001 article-title: New Synthetic Approaches to N-Aryl and π-Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202102131 – volume: 15 start-page: 3609 year: 2013 ident: WOS:000314846600028 article-title: Growth, solvent effects, and thermal desorption behavior of octylthiocyanate self-assembled monolayers on Au(111) publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/c3cp44425b – volume: 367 start-page: 1097 year: 2020 ident: WOS:000520018400036 article-title: Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems publication-title: SCIENCE doi: 10.1126/science.aaz5074 – volume: 5 start-page: 2915 year: 2021 ident: WOS:000723010700013 article-title: Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells publication-title: JOULE doi: 10.1016/j.joule.2021.07.016 – volume: 80 start-page: 171 year: 2016 ident: WOS:000372558500025 article-title: A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects publication-title: BIOSENSORS & BIOELECTRONICS doi: 10.1016/j.bios.2016.01.056 – volume: 61 start-page: ARTN e202203088 year: 2022 ident: WOS:000808239700001 article-title: Co-assembled Monolayers as Hole-Selective Contact for High-Performance Inverted Perovskite Solar Cells with Optimized Recombination Loss and Long-Term Stability publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202203088 – year: 2018 ident: 000888096800001.45 publication-title: CCDC1845385: Experimental Crystal Structure Determination – volume: 6 start-page: ARTN 7747 year: 2015 ident: WOS:000358858500053 article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms8747 – volume: 51 start-page: 4658 year: 2012 ident: WOS:000303506800028 article-title: The Rate of Charge Tunneling through Self-Assembled Monolayers Is Insensitive to Many Functional Group Substitutions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201201448 – volume: 46 start-page: 40 year: 2017 ident: WOS:000391955700003 article-title: Self-assembled monolayers in organic electronics publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c6cs00509h – volume: 7 start-page: ARTN 10214 year: 2016 ident: WOS:000369019900004 article-title: High-efficiency robust perovskite solar cells on ultrathin flexible substrates publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms10214 – volume: 30 start-page: ARTN 1800455 year: 2018 ident: WOS:000440813300004 article-title: Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201800455 – volume: 133 start-page: 10795 year: 2021 ident: 000888096800001.41 publication-title: Angew. Chem – volume: 10 start-page: ARTN 2101361 year: 2022 ident: WOS:000713083000001 article-title: Small Molecule Approach to Passivate Undercoordinated Ions in Perovskite Light Emitting Diodes: Progress and Challenges publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.202101361 – year: 2021 ident: 000888096800001.47 publication-title: CCDC2098803: Experimental Crystal Structure Determination – volume: 370 start-page: 1300 year: 2020 ident: WOS:000597271300039 article-title: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction publication-title: SCIENCE doi: 10.1126/science.abd4016 – volume: 39 start-page: 1489 year: 2010 ident: WOS:000277035200007 article-title: π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b813123f – volume: 14 start-page: 3976 year: 2021 ident: WOS:000652676500001 article-title: Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p-i-n perovskite solar cells publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/d0ee03807e – volume: 21 start-page: 1476 year: 2011 ident: WOS:000289638500016 article-title: Simultaneous Modification of Bottom-Contact Electrode and Dielectric Surfaces for Organic Thin-Film Transistors Through Single-Component Spin-Cast Monolayers publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201002035 – volume: 331 start-page: 1312 year: 2011 ident: WOS:000288215200043 article-title: Creating Favorable Geometries for Directing Organic Photoreactions in Alkanethiolate Monolayers publication-title: SCIENCE doi: 10.1126/science.1200830 – volume: 142 start-page: 7092 year: 2020 ident: WOS:000526300600037 article-title: Perylene Diimide-Embedded Double [8]Helicenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c00954 – year: 2015 ident: 000888096800001.46 publication-title: CCDC1412957: Experimental Crystal Structure Determination – volume: 9 start-page: ARTN 2104848 year: 2022 ident: WOS:000753298100001 article-title: Gas-Assisted Spray Coating of Perovskite Solar Cells Incorporating Sprayed Self-Assembled Monolayers publication-title: ADVANCED SCIENCE doi: 10.1002/advs.202104848 – volume: 18 start-page: 3964 year: 2008 ident: WOS:000262290700011 article-title: Self-assembled Electroactive Phosphonic Acids on ITO: Maximizing Hole-Injection in Polymer Light-Emitting Diodes publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.200800033 – volume: 134 year: 2022 ident: 000888096800001.34 publication-title: Angew. Chem – volume: 12 start-page: ARTN 2103175 year: 2022 ident: WOS:000722179600001 article-title: Novel Phenothiazine-Based Self-Assembled Monolayer as a Hole Selective Contact for Highly Efficient and Stable p-i-n Perovskite Solar Cells publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202103175 – volume: 124 start-page: 4736 year: 2012 ident: 000888096800001.49 publication-title: Angew. Chem – volume: 7 start-page: ARTN 44629 year: 2017 ident: WOS:000396666100001 article-title: Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites publication-title: SCIENTIFIC REPORTS doi: 10.1038/srep44629 – volume: 2 start-page: ARTN 17102 year: 2017 ident: WOS:000406499200001 article-title: Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations publication-title: NATURE ENERGY doi: 10.1038/nenergy.2017.102 – volume: 360 start-page: 1442 year: 2018 ident: WOS:000436598000072 article-title: Enhanced photovoltage for inverted planar heterojunction perovskite solar cells publication-title: SCIENCE doi: 10.1126/science.aap9282 – volume: 376 start-page: 73 year: 2022 ident: WOS:000780195200029 article-title: Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions publication-title: SCIENCE doi: 10.1126/science.abm5784 – volume: 16 start-page: 588 year: 2022 ident: WOS:000826792400001 article-title: Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells publication-title: NATURE PHOTONICS doi: 10.1038/s41566-022-01033-8 – volume: 60 start-page: 20437 year: 2021 ident: WOS:000681757200001 article-title: Synergistical Dipole-Dipole Interaction Induced Self-Assembly of Phenoxazine-Based Hole-Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202107020 – volume: 141 start-page: 5781 year: 2019 ident: WOS:000464769000030 article-title: Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b13091 – year: 2022 ident: WOS:000854107300001 article-title: Conjugated Self-Assembled Monolayer as Stable Hole-Selective Contact for Inverted Perovskite Solar Cells publication-title: ACS MATERIALS LETTERS doi: 10.1021/acsmaterialslett.2c00799 – volume: 23 start-page: 2689 year: 2011 ident: WOS:000291734000021 article-title: The Potential of Molecular Self-Assembled Monolayers in Organic Electronic Devices publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201100337 – volume: 20 start-page: 2376 year: 2008 ident: WOS:000257268500023 article-title: Polymer solar cells that use self-assembled-monolayer-modified ZnO/Metals as cathodes publication-title: ADVANCED MATERIALS doi: 10.1002/adma.200703050 – volume: 4 start-page: 1248 year: 2020 ident: WOS:000542492800011 article-title: Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells publication-title: JOULE doi: 10.1016/j.joule.2020.04.001 – volume: 20 start-page: 5131 year: 2008 ident: WOS:000258580500005 article-title: Theoretical Characterization of the Indium Tin Oxide Surface and of Its Binding Sites for Adsorption of Phosphonic Acid Monolayers publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/cm8014622 – volume: 8 start-page: ARTN 1801892 year: 2018 ident: WOS:000450269900020 article-title: Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201801892 – volume: 60 start-page: 7227 year: 2021 ident: WOS:000618968800001 article-title: Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202016085 – volume: 372 start-page: 618 year: 2021 ident: WOS:000649103500043 article-title: Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability publication-title: SCIENCE doi: 10.1126/science.abf5602 – volume: 23 start-page: 1899 year: 2011 ident: WOS:000290547100013 article-title: Spin-Cast and Patterned Organophosphonate Self-Assembled Monolayer Dielectrics on Metal-Oxide-Activated Si publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201004762 – volume: 31 start-page: ARTN 2104369 year: 2021 ident: WOS:000668211900001 article-title: Asymmetric Isomer Effects in Benzo[c ][1,2,5]thiadiazole-Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significantly Photovoltaic Performance Enhancement publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202104369 – volume: 4 start-page: ARTN 2761 year: 2013 ident: WOS:000328023000032 article-title: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms3761 – volume: 7 start-page: ARTN 1903331 year: 2020 ident: WOS:000535992100001 article-title: Dopant-Free Crossconjugated Hole-Transporting Polymers for Highly Efficient Perovskite Solar Cells publication-title: ADVANCED SCIENCE doi: 10.1002/advs.201903331 – volume: 10 start-page: ARTN 1904102 year: 2020 ident: WOS:000529904800001 article-title: Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201904102 – volume: 24 start-page: 7014 year: 2014 ident: WOS:000345370900014 article-title: Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Self-Assembled Monolayers publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201401493 – volume: 367 start-page: 1135 year: 2020 ident: WOS:000520018400043 article-title: Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon publication-title: SCIENCE doi: 10.1126/science.aaz3691 – volume: 10 start-page: 6748 year: 2019 ident: WOS:000476545100017 article-title: Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells publication-title: CHEMICAL SCIENCE doi: 10.1039/c9sc01184f – volume: 10 start-page: ARTN 2002606 year: 2020 ident: WOS:000579045800001 article-title: Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202002606 – volume: 121 start-page: 7649 year: 2017 ident: WOS:000399629000009 article-title: XPS Analysis of the Improved Operational Stability of Organic Solar Cells Using a V2O5 and PEDOT:PSS Composite Layer: Effect of Varied Atmospheric Conditions publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/acs.jpcc.6b13016 – volume: 116 start-page: 7117 year: 2016 ident: WOS:000378585000005 article-title: Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00061 |
SSID | ssj0028806 |
Score | 2.6970742 |
Snippet | Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often... Carbazole-derived self-assembled monolayers (SAMs) are promising hole-selective materials for inverted perovskite solar cells (PSCs). However, they often... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202213560 |
SubjectTerms | Carbazole Carbazoles Chemistry Chemistry, Multidisciplinary Crystallization Dipole moments Hole-Selective Layer Monolayers Perovskite Perovskites Photovoltaic cells Physical Sciences Science & Technology Self-Assembled Monolayer Single crystals Solar Cells Substrates |
Title | π‐Expanded Carbazoles as Hole‐Selective Self‐Assembled Monolayers for High‐Performance Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202213560 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000888096800001 https://www.ncbi.nlm.nih.gov/pubmed/36300589 https://www.proquest.com/docview/2753252127 https://www.proquest.com/docview/2729515993 |
Volume | 61 |
WOS | 000888096800001 |
WOSCitedRecordID | wos000888096800001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuAC5Z1SkJEqcXKb2HEexyraaqlEhSiVeov8vLDsVs1uhXrqT-Cf8R_4Jczk1W5RBYKbs55o5Xhm_Nnj-QZgJxSCeMgUl7FJeepMwrXOA3ep1j4RPhSeIrofjrLpSXp4qk5vZPF3_BDjgRtZRuuvycC1afauSUMpAxv3d0IkEldtdMJ0YYtQ0aeRP0qgcnbpRVJyqkI_sDbGYm_99fVV6TeoeWtVWgey7Up08Aj0MIbuAsqX3dXS7NrLW_SO_zPITXjYw1S23-nVY7jn50_gfjVUh3sKFz-ufl59n3w7o0NoxyoKW1wSORTTDZtiA3uP2xo76E4ZtgL-QBHmr2aG8uhKcE9NcJ8hamZ02wT7P15nMTBsLy4aOltmx7T9ZpWfzZpncHIw-VxNeV_DgVuJzoN7WiHRzFOvFGEj70xAN5DLzFmZlV6ZzFpELZlXWpk44JyFEFtj8tjlDvHhc9iYL-b-JTCnVE50-hSKTENqi8I7m1gtEPXY3CYR8GEOa9sTnFOdjVndUTOLmr5mPX7NCN6N8mcdtcedktuDStS9iTe1wI2eoMznPIK3YzfOAkVc9NwvViQjSgKMpYzgRadK419JIjtTRRnBzk3dGvsJnaH-llnRRmAiSP5GrOoHTowGywhEq1x_GF69f_R-Mj5t_ctLr-ABtemeT1Juw8byfOVfI1pbmjetRf4C_n446Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VciiXlt8SKGCkIk5pEyfOz6GHKt1ql7YrRFupt2A7zoV0tyK7LfTUR-BV-iRIPAJPwkz-yhYhEFIP3Lyxk6zj-fOM5xuA1TzihEMmbM9Rvu1nyrWlDHM786U0Ljd5ZCiiuzcM-of-myNxNAeXbS5MjQ_ROdyIMyp5TQxODun1K9RQSsHGDR7nrodquzlXuWM-n-GurdwYbOESv-J8u3eQ9O2msICtPaRo25DYRtrzjRCksE2mcqTN0Asy7QWxESrQGlVpYIQUyslRB-e5o5UKnSzM0GjB596C21RGnOD6t951iFUc2aFOaPI8m-retziRDl-f_b-zevAX4_aaHpw1nSvdt70E39qvVh95-bA2nag1fX4NUPK_-qx3YbGxxNlmzTr3YM6M7sNC0hbAewCnXy--X3zpfTohP3vGEorMnBP-FZMl62MDe_erMkKoMRi2crxAQfRjVeB4lJbjQtKOhuHGgNGBGux_e5WowbA9Pi3Jfc72ycPAElMU5UM4vJFpP4L50XhkHgPLhAipYgBFW_3c11FkMu1qydGw06F2LbBbokl1g-FOpUSKtEaf5imtXtqtngWvu_EnNXrJb0eutDSYNlKsTDnuZTkld4cWvOy6cRUoqCRHZjylMTwmmzj2LFiuabd7lUd4biKKLVj9mZi7fjJAkWHiIKqCTBa4fzMsaSZOoA0TC3hFzX-YXro5HPS6X0_-5aYXsNA_2NtNdwfDnadwh67TsSY3XoH5ycepeYbG6UQ9r8QBg_c3zSg_AC83lYo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgEX_qGGAotUxMmtvfb658ChchIlFKKKUqk3196fC24S4aRAT30EHoU3QbwCT8KM_0qKEAipB24b79jOemd2ZnZ2vgHYMBEnHDJhe07u277KXTvLQmMrP8u0y7WJNEV0X4-D4b7_8kAcrMCXNhemxofoNtxIMqr1mgR8pszWGWgoZWCjf8e566HWbo5V7uhPH9BpK1-MejjDzzgf9N8mQ7upK2BLDxna1rRqI-v5WgjS11rlBlkz9AIlvSDWIg-kRE0aaJGJ3DGogo1xZJ6HjgoV2iz43Etw2Q-cmIpF9N50gFUcpaHOZ_I8m8retzCRDt9a_r_LavAX2_acGly2nCvVN7gB39qPVp94ebe5mOeb8uQcnuT_9FVvwvXGDmfbteDcghU9uQ1Xk7b83R04_nr6_fRz_-OMdtkVSyguc0LoVywr2RAb2LtXFRFCfcGwZfAChdCP8gLpca2cFhn5MwzdAkbHabB_9yxNg2F7elzS5jnbo_0FluiiKO_C_oUM-x6sTqYTvQZMCRFSvQCKtfrGl1GklXRlxtGsk6F0LbBbnkllg-BOhUSKtMae5inNXtrNngXPO_pZjV3yW8r1lgXTZg0rU46eLKfU7tCCp103zgKFlLKJni6IhsdkEceeBfdr1u1e5RGam4hiCzZ-5uWun8xPlJc4iKoQkwXu35AlzcAJsmFuAa-Y-Q_DS7fHo37368G_3PQEruz2Bumr0XjnIVyjy3SmyY3XYXX-fqEfoWU6zx9XiwGDw4uWkx_Em5Q5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CF%80-Expanded+Carbazoles+as+Hole-Selective+Self-Assembled+Monolayers+for+High-Performance+Perovskite+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jiang%2C+Wenlin&rft.au=Li%2C+Fengzhu&rft.au=Li%2C+Mingliang&rft.au=Qi%2C+Feng&rft.date=2022-12-19&rft.pub=Wiley&rft.eissn=1521-3773&rft.volume=61&rft.issue=51&rft_id=info:doi/10.1002%2Fanie.202213560&rft_id=info%3Apmid%2F36300589&rft.externalDBID=n%2Fa&rft.externalDocID=000888096800001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |