π‐Expanded Carbazoles as Hole‐Selective Self‐Assembled Monolayers for High‐Performance Perovskite Solar Cells

Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover,...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 51; pp. e202213560 - n/a
Main Authors Jiang, Wenlin, Li, Fengzhu, Li, Mingliang, Qi, Feng, Lin, Francis R., Jen, Alex K.‐Y.
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 19.12.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole‐derived SAMs, CbzPh and CbzNaph through asymmetric or helical π‐expansion for improved molecular dipole moment and strengthened π‐π interaction. The helical π‐expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π‐scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability. A molecular design strategy is introduced for carbazole‐derived self‐assembled monolayers (SAM) to facilitate dense assembly and tune the indium tinoxide (ITO) workfunction. Through asymmetric or helical π‐expansion, CbzPh and CbzNaph are obtained as efficient hole‐selective layers (HSL) for inverted perovskite solar cells (PSC). Larger molecular dipoles in CbzPh and CbzNaph can better tune the ITO workfunction, whereas the stronger π‐π interactions ensure more ordered and denser SAM assembly.
AbstractList Carbazole-derived self-assembled monolayers (SAMs) are promising hole-selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole-derived SAMs, CbzPh and CbzNaph through asymmetric or helical π-expansion for improved molecular dipole moment and strengthened π-π interaction. The helical π-expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π-scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability.Carbazole-derived self-assembled monolayers (SAMs) are promising hole-selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole-derived SAMs, CbzPh and CbzNaph through asymmetric or helical π-expansion for improved molecular dipole moment and strengthened π-π interaction. The helical π-expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π-scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability.
Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole‐derived SAMs, CbzPh and CbzNaph through asymmetric or helical π‐expansion for improved molecular dipole moment and strengthened π‐π interaction. The helical π‐expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π‐scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability.
Carbazole-derived self-assembled monolayers (SAMs) are promising hole-selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole-derived SAMs, CbzPh and CbzNaph through asymmetric or helical pi-expansion for improved molecular dipole moment and strengthened pi-pi interaction. The helical pi-expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its pi-scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability.
Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole‐derived SAMs, CbzPh and CbzNaph through asymmetric or helical π‐expansion for improved molecular dipole moment and strengthened π‐π interaction. The helical π‐expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π‐scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability. A molecular design strategy is introduced for carbazole‐derived self‐assembled monolayers (SAM) to facilitate dense assembly and tune the indium tinoxide (ITO) workfunction. Through asymmetric or helical π‐expansion, CbzPh and CbzNaph are obtained as efficient hole‐selective layers (HSL) for inverted perovskite solar cells (PSC). Larger molecular dipoles in CbzPh and CbzNaph can better tune the ITO workfunction, whereas the stronger π‐π interactions ensure more ordered and denser SAM assembly.
Author Li, Mingliang
Qi, Feng
Lin, Francis R.
Jen, Alex K.‐Y.
Li, Fengzhu
Jiang, Wenlin
Author_xml – sequence: 1
  givenname: Wenlin
  orcidid: 0000-0003-2387-1901
  surname: Jiang
  fullname: Jiang, Wenlin
  organization: City University of Hong Kong
– sequence: 2
  givenname: Fengzhu
  surname: Li
  fullname: Li, Fengzhu
  organization: City University of Hong Kong
– sequence: 3
  givenname: Mingliang
  surname: Li
  fullname: Li, Mingliang
  organization: City University of Hong Kong
– sequence: 4
  givenname: Feng
  surname: Qi
  fullname: Qi, Feng
  organization: City University of Hong Kong
– sequence: 5
  givenname: Francis R.
  surname: Lin
  fullname: Lin, Francis R.
  organization: City University of Hong Kong
– sequence: 6
  givenname: Alex K.‐Y.
  orcidid: 0000-0002-9219-7749
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  email: alexjen@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36300589$$D View this record in MEDLINE/PubMed
BookMark eNqNks2O0zAQxyO0iP2AK0cUiQvSKmVs13FyrKKyXWn5kIBz5DgT8JLYxU4K5bSPwJvxDjwJs2op0koITv7b8_uPx-M5TY6cd5gkjxnMGAB_rp3FGQfOmZA53EtOmOQsE0qJI9JzITJVSHacnMZ4TXxRQP4gORa5AJBFeZJsftz8vPm-_LrWrsU2rXRo9DffY0x1TFckKPoWezSj3WBKqqODRYw4ND3xL73zvd5iiGnnQ7qyHz5S_A0G2g3aGUxJ-038ZEdyExrSCvs-Pkzud7qP-Gi_niXvXyzfVavs6vXFZbW4yoxQAjIEkXPByjlKKYpSYNt0koESeWtEXqJscmOUhByllg109MCuA9M0ClrVQiHOkme7vOvgP08Yx3qw0VAF2qGfYs0VLyWTZSkIfXoHvfZTcFQdUVJw6itXRD3ZU1MzYFuvgx102Na_O0rA-Q74go3vorFIXThgAFDQH5R5QQoY0cX_05Ud9Wi9q_zkRrLOdlYTfIwBu4ONQX07G_XtbNSH2SDD_I7B7BOOQdv-77ZyX6LtcfuPS-rFq8vlH-8vqVXP1g
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00667
crossref_primary_10_1002_adfm_202316500
crossref_primary_10_1038_s41586_024_07705_5
crossref_primary_10_1002_anie_202411730
crossref_primary_10_1002_adma_202406872
crossref_primary_10_1088_2752_5724_acbb5a
crossref_primary_10_1016_j_dyepig_2024_112464
crossref_primary_10_1002_ifm2_8
crossref_primary_10_1007_s40843_024_3277_8
crossref_primary_10_1021_acsami_4c13977
crossref_primary_10_6023_A24010026
crossref_primary_10_1002_ange_202315281
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1021_acs_langmuir_3c03610
crossref_primary_10_1016_j_cej_2024_155512
crossref_primary_10_1021_acsenergylett_4c01674
crossref_primary_10_1002_adfm_202314039
crossref_primary_10_1016_j_mtener_2024_101549
crossref_primary_10_1021_acs_chemrev_3c00396
crossref_primary_10_1126_science_ade9637
crossref_primary_10_1002_ange_202419375
crossref_primary_10_1038_s41467_024_55653_5
crossref_primary_10_1002_idm2_12145
crossref_primary_10_1016_j_joule_2024_03_009
crossref_primary_10_1002_smll_202500642
crossref_primary_10_1039_D4EE02661F
crossref_primary_10_1002_anie_202423206
crossref_primary_10_1039_D4TC02303J
crossref_primary_10_1002_ange_202420585
crossref_primary_10_1016_j_dyepig_2023_111913
crossref_primary_10_1039_D4EE02917H
crossref_primary_10_1016_j_cej_2024_154011
crossref_primary_10_1039_D3TC03575A
crossref_primary_10_1002_adma_202307161
crossref_primary_10_1002_ange_202403068
crossref_primary_10_1021_acsami_4c03383
crossref_primary_10_1021_acsenergylett_4c03228
crossref_primary_10_1016_j_cej_2024_149512
crossref_primary_10_1002_anie_202401518
crossref_primary_10_1038_s41467_024_51760_5
crossref_primary_10_1002_ange_202309831
crossref_primary_10_1002_smll_202500296
crossref_primary_10_1016_j_esci_2024_100329
crossref_primary_10_1039_D4EE02492C
crossref_primary_10_1002_ange_202423206
crossref_primary_10_1039_D4EE04029E
crossref_primary_10_1002_smll_202403233
crossref_primary_10_1002_ange_202401260
crossref_primary_10_1039_D3SC04668K
crossref_primary_10_1002_advs_202410277
crossref_primary_10_1021_prechem_3c00018
crossref_primary_10_1002_ange_202411730
crossref_primary_10_1039_D4EE05849F
crossref_primary_10_1002_aenm_202303941
crossref_primary_10_1002_anie_202309831
crossref_primary_10_1007_s40820_023_01131_4
crossref_primary_10_1039_D3SC05485C
crossref_primary_10_1002_anie_202419608
crossref_primary_10_1002_chem_202400629
crossref_primary_10_1002_adma_202407032
crossref_primary_10_1002_anie_202401260
crossref_primary_10_1002_anie_202412939
crossref_primary_10_1007_s40843_024_3093_9
crossref_primary_10_1039_D4TA01453G
crossref_primary_10_1126_sciadv_adq1150
crossref_primary_10_1002_anie_202315281
crossref_primary_10_1016_j_cej_2025_160931
crossref_primary_10_1039_D3QM00209H
crossref_primary_10_1007_s11426_025_2594_8
crossref_primary_10_1002_aenm_202304486
crossref_primary_10_1002_anie_202416188
crossref_primary_10_1002_ange_202401518
crossref_primary_10_1016_j_apmate_2025_100275
crossref_primary_10_1002_advs_202404725
crossref_primary_10_1002_adma_202414576
crossref_primary_10_1002_ange_202419608
crossref_primary_10_3389_fchem_2024_1519166
crossref_primary_10_1016_j_cej_2024_158389
crossref_primary_10_1039_D4TC00266K
crossref_primary_10_1016_j_nanoen_2025_110670
crossref_primary_10_1021_jacs_3c00805
crossref_primary_10_1016_j_cej_2024_153253
crossref_primary_10_1002_anie_202403068
crossref_primary_10_1021_acsmaterialslett_3c01166
crossref_primary_10_1039_D3ME00144J
crossref_primary_10_1002_adfm_202315604
crossref_primary_10_1002_aenm_202400205
crossref_primary_10_1002_smll_202410990
crossref_primary_10_1002_advs_202307152
crossref_primary_10_1021_acsenergylett_4c00140
crossref_primary_10_1038_s41578_024_00678_x
crossref_primary_10_1002_adma_202304415
crossref_primary_10_1002_ange_202416188
crossref_primary_10_1039_D3QM01017A
crossref_primary_10_1039_D4EE01960A
crossref_primary_10_1002_aenm_202405571
crossref_primary_10_1002_adma_202405630
crossref_primary_10_1002_solr_202400242
crossref_primary_10_1007_s11814_024_00335_7
crossref_primary_10_1016_j_nanoen_2024_110548
crossref_primary_10_1021_acsami_3c02953
crossref_primary_10_1002_cssc_202301508
crossref_primary_10_1021_acsami_4c15688
crossref_primary_10_1002_ange_202412939
crossref_primary_10_1002_adma_202312264
crossref_primary_10_1038_s41467_024_55523_0
crossref_primary_10_3390_molecules29091910
crossref_primary_10_1002_cjoc_202400384
crossref_primary_10_1016_j_cej_2025_161967
crossref_primary_10_1016_j_cjsc_2024_100324
crossref_primary_10_1002_adfm_202418798
crossref_primary_10_1002_adfm_202411922
crossref_primary_10_1039_D3CC04863B
crossref_primary_10_1002_smll_202500281
crossref_primary_10_1002_adfm_202408480
crossref_primary_10_1016_j_cej_2024_149035
crossref_primary_10_1002_adfm_202304708
crossref_primary_10_1002_aenm_202405088
crossref_primary_10_1126_science_adj9602
crossref_primary_10_1002_adfm_202316202
crossref_primary_10_1002_adma_202306568
crossref_primary_10_1021_acsami_3c07539
crossref_primary_10_1002_anie_202420585
crossref_primary_10_1002_adfm_202304262
crossref_primary_10_1021_acsaem_3c02946
crossref_primary_10_1021_jacs_2c13566
crossref_primary_10_1063_1674_0068_cjcp2303026
crossref_primary_10_1021_acsenergylett_4c01451
crossref_primary_10_1039_D4NJ00154K
crossref_primary_10_1002_cjoc_202300789
crossref_primary_10_1002_ange_202404289
crossref_primary_10_1016_j_surfin_2025_106094
crossref_primary_10_1021_acsenergylett_4c03233
crossref_primary_10_3390_nano14020175
crossref_primary_10_1002_smll_202407769
crossref_primary_10_1016_j_cej_2024_154722
crossref_primary_10_1039_D5EE00380F
crossref_primary_10_1021_acssuschemeng_3c03514
crossref_primary_10_1002_aenm_202303742
crossref_primary_10_1002_adma_202500708
crossref_primary_10_1002_adfm_202421576
crossref_primary_10_1021_jacs_4c03917
crossref_primary_10_1002_adfm_202418223
crossref_primary_10_1002_solr_202400182
crossref_primary_10_1016_j_ccr_2025_216500
crossref_primary_10_1002_solr_202300996
crossref_primary_10_1021_acsaem_3c02935
crossref_primary_10_1002_adfm_202402833
crossref_primary_10_1016_j_cej_2024_158870
crossref_primary_10_1002_adma_202401537
crossref_primary_10_1021_acs_jpcc_4c03059
crossref_primary_10_1002_aenm_202400616
crossref_primary_10_1002_solr_202300481
crossref_primary_10_1002_anie_202404289
crossref_primary_10_1002_aenm_202303354
crossref_primary_10_1021_acsami_5c01653
crossref_primary_10_1038_s41566_024_01541_9
crossref_primary_10_1002_anie_202419375
crossref_primary_10_1038_s41467_024_55492_4
Cites_doi 10.1002/adfm.202103847
10.1002/adfm.201909509
10.1038/ncomms3761
10.1126/science.abd4016
10.1021/acs.chemrev.6b00061
10.1002/anie.202203088
10.1002/adfm.200800033
10.1002/anie.202107020
10.1126/science.aaz5074
10.1002/adfm.201401493
10.1002/advs.201903331
10.1126/science.abm5784
10.1021/jacs.8b13091
10.1002/adom.202101361
10.1038/s41566-022-01033-8
10.1002/aenm.201904102
10.1039/D0EE03807E
10.1126/science.1200830
10.1126/science.aap9282
10.1002/advs.202104848
10.1002/adma.202203794
10.1002/adma.201100337
10.1002/adma.200703050
10.1126/science.abf5602
10.1002/adfm.201002035
10.1016/j.joule.2020.04.001
10.1039/B813123F
10.1002/ange.202102131
10.1039/c3cp44425b
10.1002/ange.202203088
10.1002/ange.201201448
10.1016/j.joule.2021.07.016
10.1002/aenm.202002606
10.1038/srep44629
10.1021/ja409771u
10.1021/jacs.0c09845
10.1038/nenergy.2017.102
10.1002/ange.202016085
10.1039/C9EE02268F
10.1039/C6CS00509H
10.1021/jacs.0c00954
10.1021/acsmaterialslett.2c00799
10.1021/acsami.1c03797
10.1126/science.aaz3691
10.1038/ncomms10214
10.1002/adfm.202104369
10.1002/adma.201004762
10.1002/anie.202102131
10.1038/ncomms8747
10.1002/anie.201201448
10.1002/ange.202107020
10.1021/acs.jpcc.6b13016
10.1002/aenm.201801892
10.1021/cm8014622
10.1002/aenm.202103175
10.1002/adma.201800455
10.1107/S2052520616003954
10.1002/anie.202016085
10.1039/C9SC01184F
10.1021/acs.jpcc.8b10070
10.1002/adma.201902762
10.1039/c9ee02268f
10.1016/j.bios.2016.01.056
10.1039/c6cs00509h
10.1039/b813123f
10.1039/d0ee03807e
10.1039/c9sc01184f
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202213560
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed
Web of Science

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36300589
000888096800001
10_1002_anie_202213560
ANIE202213560
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Innovation and Technology Commission - Hong Kong
  funderid: GHP/018/20SZ and MRP/040/21X
– fundername: APRC Grant of the City University of Hong Kong
  funderid: 9380086
– fundername: Environment and Ecology Bureau of Hong Kong
  funderid: Green Tech Fund (202020164)
– fundername: Research Grants Council of Hong Kong
  funderid: GRF grant (11307621)
– fundername: Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials
  funderid: 2019B121205002
– fundername: Lee Shau-Kee Chair Professor (Materials Science)
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  funderid: 2019B030302007
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  grantid: 2019B030302007
– fundername: Innovation and Technology Commission of Hong Kong
  grantid: GHP/018/20SZ; MRP/040/21X
– fundername: Environment and Ecology Bureau of Hong Kong
  grantid: 202020164
– fundername: Research Grants Council of Hong Kong; Hong Kong Research Grants Council
  grantid: 11307621; 11316422
– fundername: APRC Grant of the City University of Hong Kong
  grantid: 9380086
– fundername: Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials
  grantid: 2019B121205002
– fundername: Research Grants Council of Hong Kong
  grantid: GRF grant (11307621)
– fundername: Environment and Ecology Bureau of Hong Kong
  grantid: Green Tech Fund (202020164)
– fundername: Innovation and Technology Commission - Hong Kong
  grantid: GHP/018/20SZ and MRP/040/21X
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3730-e03623194e553893edbf510736dc369e5b6cc7506e5a5b0f028ff0cbb70d7d083
IEDL.DBID DR2
ISICitedReferencesCount 202
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000888096800001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:45:35 EDT 2025
Fri Jul 25 10:35:48 EDT 2025
Wed Feb 19 02:26:21 EST 2025
Fri Aug 29 15:49:37 EDT 2025
Wed Jul 09 18:04:19 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Tue Jul 01 01:46:57 EDT 2025
Wed Jan 22 16:22:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords PHOSPHONIC-ACIDS
Perovskite
SPIN-CAST
Self-Assembled Monolayer
Hole-Selective Layer
Carbazole
Solar Cells
EFFICIENCY
SURFACES
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3730-e03623194e553893edbf510736dc369e5b6cc7506e5a5b0f028ff0cbb70d7d083
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2387-1901
0000-0002-9219-7749
0000-0002-4651-9145
0000-0001-6022-4055
PMID 36300589
PQID 2753252127
PQPubID 946352
PageCount 6
ParticipantIDs proquest_journals_2753252127
crossref_primary_10_1002_anie_202213560
webofscience_primary_000888096800001
wiley_primary_10_1002_anie_202213560_ANIE202213560
pubmed_primary_36300589
webofscience_primary_000888096800001CitationCount
proquest_miscellaneous_2729515993
crossref_citationtrail_10_1002_anie_202213560
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 19, 2022
PublicationDateYYYYMMDD 2022-12-19
PublicationDate_xml – month: 12
  year: 2022
  text: December 19, 2022
  day: 19
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2022; 376
2017; 7
2021; 5
2015; 6
2017; 2
2013; 4
2018; 360
2019; 31
2020; 142
2019; 10
2010; 39
2008; 18
2019; 12
2017; 46
2014; 24
2016; 72
2020; 367
2020; 10
2019; 141
2014; 136
2011; 331
2019; 123
2021; 14
2020; 7
2021; 13
2016; 7
2022 2022; 61 134
2018; 8
2020; 4
2013; 15
2021; 31
2020; 30
2022; 4
2012 2012; 51 124
2020; 370
2022; 9
2022; 34
2022; 12
2021 2021; 60 133
2011; 21
2018; 30
2011; 23
2021; 372
2016; 116
2022; 10
2008; 20
2017; 121
2022; 16
e_1_2_3_71_2
e_1_2_3_50_1
e_1_2_3_6_1
e_1_2_3_39_1
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_18_1
(e_1_2_3_42_3) 2022; 134
e_1_2_3_2_2
e_1_2_3_56_2
e_1_2_3_58_1
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_33_2
e_1_2_3_14_1
e_1_2_3_35_2
e_1_2_3_52_2
e_1_2_3_75_2
e_1_2_3_77_1
e_1_2_3_54_2
e_1_2_3_73_2
e_1_2_3_10_2
e_1_2_3_31_2
e_1_2_3_60_2
e_1_2_3_49_2
e_1_2_3_28_2
e_1_2_3_49_3
e_1_2_3_22_2
e_1_2_3_45_1
e_1_2_3_24_2
e_1_2_3_66_2
e_1_2_3_26_1
e_1_2_3_47_1
e_1_2_3_68_1
e_1_2_3_41_2
e_1_2_3_20_2
e_1_2_3_62_2
e_1_2_3_20_3
e_1_2_3_43_1
e_1_2_3_64_1
e_1_2_3_72_2
e_1_2_3_70_1
e_1_2_3_1_1
e_1_2_3_19_2
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_15_3
e_1_2_3_17_1
e_1_2_3_3_2
e_1_2_3_59_2
e_1_2_3_59_3
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_9_1
e_1_2_3_55_2
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_36_1
e_1_2_3_57_2
e_1_2_3_53_1
e_1_2_3_30_2
e_1_2_3_51_2
e_1_2_3_76_2
e_1_2_3_74_1
e_1_2_3_32_1
e_1_2_3_61_1
e_1_2_3_40_1
e_1_2_3_27_2
e_1_2_3_48_2
e_1_2_3_29_2
e_1_2_3_46_1
e_1_2_3_69_1
e_1_2_3_23_2
e_1_2_3_25_1
e_1_2_3_67_2
e_1_2_3_65_1
e_1_2_3_21_1
e_1_2_3_44_1
e_1_2_3_42_2
e_1_2_3_63_2
Rajagopal, A (WOS:000440813300004) 2018; 30
Yang, S (WOS:000464769000030) 2019; 141
Lee, JY (WOS:000713083000001) 2022; 10
Paniagua, SA (WOS:000378585000005) 2016; 116
Rakstys, K (WOS:000476545100017) 2019; 10
Li, EP (WOS:000503157100001) 2020; 30
Wu, WP (WOS:000277035200007) 2010; 39
Zhang (000888096800001.45) 2018
Casalini, S (WOS:000391955700003) 2017; 46
Wu, SF (WOS:000542492800011) 2020; 4
Li, YW (WOS:000369019900004) 2016; 7
Bardecker, JA (WOS:000262290700011) 2008; 18
Yoon, HJ (WOS:000329586600005) 2014; 136
Hou, Y (WOS:000520018400043) 2020; 367
Halik, M (WOS:000291734000021) 2011; 23
Acton, O (WOS:000290547100013) 2011; 23
Cai, N (WOS:000681757200001) 2021; 60
Yoon, HJ (WOS:000303506800028) 2012; 51
Li, EP (WOS:000663868300001) 2021; 31
Docampo, P (WOS:000328023000032) 2013; 4
Luo, DY (WOS:000436598000072) 2018; 360
Xu, JX (WOS:000520018400036) 2020; 367
Acton, O (WOS:000289638500016) 2011; 21
Yip, HL (WOS:000257268500023) 2008; 20
Liu, B (WOS:000526300600037) 2020; 142
Wolff, CM (WOS:000491107000001) 2019; 31
Zheng, XP (WOS:000406499200001) 2017; 2
Al-Ashouri, A (WOS:000494816300007) 2019; 12
Lee, SY (WOS:000314846600028) 2013; 15
Magomedov, A (WOS:000450269900020) 2018; 8
Gao, W (WOS:000668211900001) 2021; 31
Bi, C (WOS:000358858500053) 2015; 6
Chen, CH (WOS:000457067500010) 2019; 123
Ullah, A (WOS:000722179600001) 2022; 12
Sun, XL (WOS:000535992100001) 2020; 7
Sarritzu, V (WOS:000396666100001) 2017; 7
Zhang (000888096800001.47) 2021
Cassella, EJ (WOS:000753298100001) 2022; 9
Lange, I (WOS:000345370900014) 2014; 24
Paramonov, PB (WOS:000258580500005) 2008; 20
Zhang, S (WOS:000854107300001) 2022
Deng (000888096800001.34) 2022; 134
Kim, M (WOS:000288215200043) 2011; 331
Li, FZ (WOS:000595544800046) 2020; 142
Dai, ZH (WOS:000649103500043) 2021; 372
Kim, SY (WOS:000579045800001) 2020; 10
Kim, SY (WOS:000672492800095) 2021; 13
Yoon (000888096800001.49) 2012; 124
Clegg, W. (000888096800001.46) 2015
Alhummiany, H (WOS:000399629000009) 2017; 121
Yang, JW (WOS:000372558500025) 2016; 80
Jost, M (WOS:000529904800001) 2020; 10
Levine, I (WOS:000723010700013) 2021; 5
Deng, X (WOS:000808239700001) 2022; 61
Al-Ashouri, A (WOS:000597271300039) 2020; 370
Jiang, WL (WOS:000631348500001) 2021; 60
Azmi, R (WOS:000780195200029) 2022; 376
Aktas, E (WOS:000652676500001) 2021; 14
Yang, G (WOS:000826792400001) 2022; 16
Sun, XL (WOS:000618968800001) 2021; 60
Yao, YG (WOS:000862095700001) 2022; 34
Jiang (000888096800001.41) 2021; 133
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 370
  start-page: 1300
  year: 2020
  end-page: 1309
  publication-title: Science
– volume: 51 124
  start-page: 4658 4736
  year: 2012 2012
  end-page: 4661 4739
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 1476
  year: 2011
  end-page: 1488
  publication-title: Adv. Funct. Mater.
– volume: 142
  start-page: 20134
  year: 2020
  end-page: 20142
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 7117
  year: 2016
  end-page: 7158
  publication-title: Chem. Rev.
– volume: 20
  start-page: 2376
  year: 2008
  end-page: 2382
  publication-title: Adv. Mater.
– volume: 141
  start-page: 5781
  year: 2019
  end-page: 5787
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7747
  year: 2015
  publication-title: Nat. Commun.
– volume: 60 133
  start-page: 10700 10795
  year: 2021 2021
  end-page: 10708 10803
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 367
  start-page: 1135
  year: 2020
  end-page: 1140
  publication-title: Science
– volume: 367
  start-page: 1097
  year: 2020
  end-page: 1104
  publication-title: Science
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 4
  start-page: 2761
  year: 2013
  publication-title: Nat. Commun.
– volume: 24
  start-page: 7014
  year: 2014
  end-page: 7024
  publication-title: Adv. Funct. Mater.
– volume: 60 133
  start-page: 7227 7303
  year: 2021 2021
  end-page: 7233 7309
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 2915
  year: 2021
  end-page: 2933
  publication-title: Joule
– volume: 360
  start-page: 1442
  year: 2018
  end-page: 1446
  publication-title: Science
– volume: 16
  start-page: 588
  year: 2022
  end-page: 594
  publication-title: Nat. Photonics
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 17102
  year: 2017
  publication-title: Nat. Energy
– volume: 372
  start-page: 618
  year: 2021
  end-page: 622
  publication-title: Science
– volume: 72
  start-page: 171
  year: 2016
  end-page: 179
  publication-title: Acta Crystallogr. Sect. B
– volume: 123
  start-page: 1602
  year: 2019
  end-page: 1609
  publication-title: J. Phys. Chem. C
– volume: 142
  start-page: 7092
  year: 2020
  end-page: 7099
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 3609
  year: 2013
  end-page: 3617
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 3976
  year: 2021
  end-page: 3985
  publication-title: Energy Environ. Sci.
– volume: 39
  start-page: 1489
  year: 2010
  end-page: 1502
  publication-title: Chem. Soc. Rev.
– volume: 331
  start-page: 1312
  year: 2011
  end-page: 1315
  publication-title: Science
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 1248
  year: 2020
  end-page: 1262
  publication-title: Joule
– volume: 23
  start-page: 2689
  year: 2011
  end-page: 2695
  publication-title: Adv. Mater.
– volume: 60 133
  start-page: 20437 20600
  year: 2021 2021
  end-page: 20442 20605
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 1976
  year: 2022
  end-page: 1983
  publication-title: ACS Mater. Lett.
– volume: 7
  start-page: 44629
  year: 2017
  publication-title: Sci. Rep.
– volume: 7
  start-page: 10214
  year: 2016
  publication-title: Nat. Commun.
– volume: 12
  start-page: 3356
  year: 2019
  end-page: 3369
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 31236
  year: 2021
  end-page: 31247
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 376
  start-page: 73
  year: 2022
  end-page: 77
  publication-title: Science
– volume: 20
  start-page: 5131
  year: 2008
  end-page: 5133
  publication-title: Chem. Mater.
– volume: 136
  start-page: 16
  year: 2014
  end-page: 19
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 3964
  year: 2008
  end-page: 3971
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 121
  start-page: 7649
  year: 2017
  end-page: 7658
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 1899
  year: 2011
  end-page: 1902
  publication-title: Adv. Mater.
– volume: 10
  start-page: 6748
  year: 2019
  end-page: 6769
  publication-title: Chem. Sci.
– volume: 46
  start-page: 40
  year: 2017
  end-page: 71
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_3_18_1
– ident: e_1_2_3_34_2
  doi: 10.1002/adfm.202103847
– ident: e_1_2_3_33_2
  doi: 10.1002/adfm.201909509
– ident: e_1_2_3_65_1
– ident: e_1_2_3_7_2
  doi: 10.1038/ncomms3761
– ident: e_1_2_3_28_2
  doi: 10.1126/science.abd4016
– ident: e_1_2_3_63_2
  doi: 10.1021/acs.chemrev.6b00061
– ident: e_1_2_3_42_2
  doi: 10.1002/anie.202203088
– ident: e_1_2_3_69_1
  doi: 10.1002/adfm.200800033
– ident: e_1_2_3_15_2
  doi: 10.1002/anie.202107020
– ident: e_1_2_3_55_2
– ident: e_1_2_3_10_2
  doi: 10.1126/science.aaz5074
– ident: e_1_2_3_26_1
– ident: e_1_2_3_38_2
  doi: 10.1002/adfm.201401493
– ident: e_1_2_3_50_1
– ident: e_1_2_3_17_1
  doi: 10.1002/advs.201903331
– ident: e_1_2_3_35_2
  doi: 10.1126/science.abm5784
– ident: e_1_2_3_61_1
– ident: e_1_2_3_3_2
  doi: 10.1021/jacs.8b13091
– ident: e_1_2_3_24_2
  doi: 10.1002/adom.202101361
– ident: e_1_2_3_13_2
  doi: 10.1038/s41566-022-01033-8
– ident: e_1_2_3_70_1
– ident: e_1_2_3_12_2
  doi: 10.1002/aenm.201904102
– ident: e_1_2_3_41_2
  doi: 10.1039/D0EE03807E
– ident: e_1_2_3_56_2
– ident: e_1_2_3_32_1
– ident: e_1_2_3_22_2
  doi: 10.1126/science.1200830
– ident: e_1_2_3_21_1
– ident: e_1_2_3_5_2
  doi: 10.1126/science.aap9282
– ident: e_1_2_3_39_1
  doi: 10.1002/advs.202104848
– ident: e_1_2_3_16_2
  doi: 10.1002/adma.202203794
– ident: e_1_2_3_1_1
– ident: e_1_2_3_52_2
  doi: 10.1002/adma.201100337
– ident: e_1_2_3_37_2
  doi: 10.1002/adma.200703050
– ident: e_1_2_3_40_1
– ident: e_1_2_3_30_2
  doi: 10.1126/science.abf5602
– ident: e_1_2_3_66_2
  doi: 10.1002/adfm.201002035
– ident: e_1_2_3_19_2
  doi: 10.1016/j.joule.2020.04.001
– ident: e_1_2_3_48_2
  doi: 10.1039/B813123F
– ident: e_1_2_3_49_3
  doi: 10.1002/ange.202102131
– ident: e_1_2_3_67_2
  doi: 10.1039/c3cp44425b
– volume: 134
  start-page: e202203088
  year: 2022
  ident: e_1_2_3_42_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202203088
– ident: e_1_2_3_59_3
  doi: 10.1002/ange.201201448
– ident: e_1_2_3_68_1
  doi: 10.1016/j.joule.2021.07.016
– ident: e_1_2_3_29_2
  doi: 10.1002/aenm.202002606
– ident: e_1_2_3_75_2
  doi: 10.1038/srep44629
– ident: e_1_2_3_60_2
  doi: 10.1021/ja409771u
– ident: e_1_2_3_77_1
  doi: 10.1021/jacs.0c09845
– ident: e_1_2_3_4_2
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_3_20_3
  doi: 10.1002/ange.202016085
– ident: e_1_2_3_27_2
  doi: 10.1039/C9EE02268F
– ident: e_1_2_3_51_2
  doi: 10.1039/C6CS00509H
– ident: e_1_2_3_45_1
  doi: 10.1021/jacs.0c00954
– ident: e_1_2_3_46_1
  doi: 10.1021/acsmaterialslett.2c00799
– ident: e_1_2_3_53_1
– ident: e_1_2_3_73_2
  doi: 10.1021/acsami.1c03797
– ident: e_1_2_3_11_2
  doi: 10.1126/science.aaz3691
– ident: e_1_2_3_57_2
– ident: e_1_2_3_8_2
  doi: 10.1038/ncomms10214
– ident: e_1_2_3_36_1
– ident: e_1_2_3_44_1
  doi: 10.1002/adfm.202104369
– ident: e_1_2_3_23_2
  doi: 10.1002/adma.201004762
– ident: e_1_2_3_14_1
– ident: e_1_2_3_49_2
  doi: 10.1002/anie.202102131
– ident: e_1_2_3_72_2
  doi: 10.1038/ncomms8747
– ident: e_1_2_3_59_2
  doi: 10.1002/anie.201201448
– ident: e_1_2_3_15_3
  doi: 10.1002/ange.202107020
– ident: e_1_2_3_64_1
  doi: 10.1021/acs.jpcc.6b13016
– ident: e_1_2_3_9_1
– ident: e_1_2_3_6_1
– ident: e_1_2_3_43_1
  doi: 10.1002/aenm.201801892
– ident: e_1_2_3_62_2
  doi: 10.1021/cm8014622
– ident: e_1_2_3_31_2
  doi: 10.1002/aenm.202103175
– ident: e_1_2_3_47_1
– ident: e_1_2_3_74_1
– ident: e_1_2_3_2_2
  doi: 10.1002/adma.201800455
– ident: e_1_2_3_54_2
  doi: 10.1107/S2052520616003954
– ident: e_1_2_3_58_1
– ident: e_1_2_3_20_2
  doi: 10.1002/anie.202016085
– ident: e_1_2_3_25_1
  doi: 10.1039/C9SC01184F
– ident: e_1_2_3_71_2
  doi: 10.1021/acs.jpcc.8b10070
– ident: e_1_2_3_76_2
  doi: 10.1002/adma.201902762
– volume: 30
  start-page: ARTN 1909509
  year: 2020
  ident: WOS:000503157100001
  article-title: Synergistic Coassembly of Highly Wettable and Uniform Hole-Extraction Monolayers for Scaling-up Perovskite Solar Cells
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201909509
– volume: 31
  start-page: ARTN 2103847
  year: 2021
  ident: WOS:000663868300001
  article-title: Bonding Strength Regulates Anchoring-Based Self-Assembly Monolayers for Efficient and Stable Perovskite Solar Cells
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202103847
– volume: 13
  start-page: 31236
  year: 2021
  ident: WOS:000672492800095
  article-title: Case Studies on Structure-Property Relations in Perovskite Light-Emitting Diodes via Interfacial Engineering with Self-Assembled Monolayers
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.1c03797
– volume: 12
  start-page: 3356
  year: 2019
  ident: WOS:000494816300007
  article-title: Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/c9ee02268f
– volume: 136
  start-page: 16
  year: 2014
  ident: WOS:000329586600005
  article-title: The Rate of Charge Tunneling Is Insensitive to Polar Terminal Groups in Self-Assembled Monolayers in AgTSS(CH2)nM(CH2)mT//Ga2O3/EGaIn Junctions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja409771u
– volume: 34
  year: 2022
  ident: WOS:000862095700001
  article-title: Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202203794
– volume: 142
  start-page: 20134
  year: 2020
  ident: WOS:000595544800046
  article-title: Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c09845
– volume: 31
  start-page: ARTN 1902762
  year: 2019
  ident: WOS:000491107000001
  article-title: Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201902762
– volume: 123
  start-page: 1602
  year: 2019
  ident: WOS:000457067500010
  article-title: Thienoisoindigo-Based Dopant-Free Hole Transporting Material for Efficient p-i-n Perovskite Solar Cells with the Grain Size in Micrometer Scale
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY C
  doi: 10.1021/acs.jpcc.8b10070
– volume: 60
  start-page: 10700
  year: 2021
  ident: WOS:000631348500001
  article-title: New Synthetic Approaches to N-Aryl and π-Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202102131
– volume: 15
  start-page: 3609
  year: 2013
  ident: WOS:000314846600028
  article-title: Growth, solvent effects, and thermal desorption behavior of octylthiocyanate self-assembled monolayers on Au(111)
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  doi: 10.1039/c3cp44425b
– volume: 367
  start-page: 1097
  year: 2020
  ident: WOS:000520018400036
  article-title: Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems
  publication-title: SCIENCE
  doi: 10.1126/science.aaz5074
– volume: 5
  start-page: 2915
  year: 2021
  ident: WOS:000723010700013
  article-title: Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells
  publication-title: JOULE
  doi: 10.1016/j.joule.2021.07.016
– volume: 80
  start-page: 171
  year: 2016
  ident: WOS:000372558500025
  article-title: A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects
  publication-title: BIOSENSORS & BIOELECTRONICS
  doi: 10.1016/j.bios.2016.01.056
– volume: 61
  start-page: ARTN e202203088
  year: 2022
  ident: WOS:000808239700001
  article-title: Co-assembled Monolayers as Hole-Selective Contact for High-Performance Inverted Perovskite Solar Cells with Optimized Recombination Loss and Long-Term Stability
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202203088
– year: 2018
  ident: 000888096800001.45
  publication-title: CCDC1845385: Experimental Crystal Structure Determination
– volume: 6
  start-page: ARTN 7747
  year: 2015
  ident: WOS:000358858500053
  article-title: Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms8747
– volume: 51
  start-page: 4658
  year: 2012
  ident: WOS:000303506800028
  article-title: The Rate of Charge Tunneling through Self-Assembled Monolayers Is Insensitive to Many Functional Group Substitutions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201201448
– volume: 46
  start-page: 40
  year: 2017
  ident: WOS:000391955700003
  article-title: Self-assembled monolayers in organic electronics
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c6cs00509h
– volume: 7
  start-page: ARTN 10214
  year: 2016
  ident: WOS:000369019900004
  article-title: High-efficiency robust perovskite solar cells on ultrathin flexible substrates
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms10214
– volume: 30
  start-page: ARTN 1800455
  year: 2018
  ident: WOS:000440813300004
  article-title: Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201800455
– volume: 133
  start-page: 10795
  year: 2021
  ident: 000888096800001.41
  publication-title: Angew. Chem
– volume: 10
  start-page: ARTN 2101361
  year: 2022
  ident: WOS:000713083000001
  article-title: Small Molecule Approach to Passivate Undercoordinated Ions in Perovskite Light Emitting Diodes: Progress and Challenges
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.202101361
– year: 2021
  ident: 000888096800001.47
  publication-title: CCDC2098803: Experimental Crystal Structure Determination
– volume: 370
  start-page: 1300
  year: 2020
  ident: WOS:000597271300039
  article-title: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
  publication-title: SCIENCE
  doi: 10.1126/science.abd4016
– volume: 39
  start-page: 1489
  year: 2010
  ident: WOS:000277035200007
  article-title: π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/b813123f
– volume: 14
  start-page: 3976
  year: 2021
  ident: WOS:000652676500001
  article-title: Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p-i-n perovskite solar cells
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/d0ee03807e
– volume: 21
  start-page: 1476
  year: 2011
  ident: WOS:000289638500016
  article-title: Simultaneous Modification of Bottom-Contact Electrode and Dielectric Surfaces for Organic Thin-Film Transistors Through Single-Component Spin-Cast Monolayers
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201002035
– volume: 331
  start-page: 1312
  year: 2011
  ident: WOS:000288215200043
  article-title: Creating Favorable Geometries for Directing Organic Photoreactions in Alkanethiolate Monolayers
  publication-title: SCIENCE
  doi: 10.1126/science.1200830
– volume: 142
  start-page: 7092
  year: 2020
  ident: WOS:000526300600037
  article-title: Perylene Diimide-Embedded Double [8]Helicenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c00954
– year: 2015
  ident: 000888096800001.46
  publication-title: CCDC1412957: Experimental Crystal Structure Determination
– volume: 9
  start-page: ARTN 2104848
  year: 2022
  ident: WOS:000753298100001
  article-title: Gas-Assisted Spray Coating of Perovskite Solar Cells Incorporating Sprayed Self-Assembled Monolayers
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.202104848
– volume: 18
  start-page: 3964
  year: 2008
  ident: WOS:000262290700011
  article-title: Self-assembled Electroactive Phosphonic Acids on ITO: Maximizing Hole-Injection in Polymer Light-Emitting Diodes
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.200800033
– volume: 134
  year: 2022
  ident: 000888096800001.34
  publication-title: Angew. Chem
– volume: 12
  start-page: ARTN 2103175
  year: 2022
  ident: WOS:000722179600001
  article-title: Novel Phenothiazine-Based Self-Assembled Monolayer as a Hole Selective Contact for Highly Efficient and Stable p-i-n Perovskite Solar Cells
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202103175
– volume: 124
  start-page: 4736
  year: 2012
  ident: 000888096800001.49
  publication-title: Angew. Chem
– volume: 7
  start-page: ARTN 44629
  year: 2017
  ident: WOS:000396666100001
  article-title: Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/srep44629
– volume: 2
  start-page: ARTN 17102
  year: 2017
  ident: WOS:000406499200001
  article-title: Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations
  publication-title: NATURE ENERGY
  doi: 10.1038/nenergy.2017.102
– volume: 360
  start-page: 1442
  year: 2018
  ident: WOS:000436598000072
  article-title: Enhanced photovoltage for inverted planar heterojunction perovskite solar cells
  publication-title: SCIENCE
  doi: 10.1126/science.aap9282
– volume: 376
  start-page: 73
  year: 2022
  ident: WOS:000780195200029
  article-title: Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions
  publication-title: SCIENCE
  doi: 10.1126/science.abm5784
– volume: 16
  start-page: 588
  year: 2022
  ident: WOS:000826792400001
  article-title: Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-022-01033-8
– volume: 60
  start-page: 20437
  year: 2021
  ident: WOS:000681757200001
  article-title: Synergistical Dipole-Dipole Interaction Induced Self-Assembly of Phenoxazine-Based Hole-Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202107020
– volume: 141
  start-page: 5781
  year: 2019
  ident: WOS:000464769000030
  article-title: Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b13091
– year: 2022
  ident: WOS:000854107300001
  article-title: Conjugated Self-Assembled Monolayer as Stable Hole-Selective Contact for Inverted Perovskite Solar Cells
  publication-title: ACS MATERIALS LETTERS
  doi: 10.1021/acsmaterialslett.2c00799
– volume: 23
  start-page: 2689
  year: 2011
  ident: WOS:000291734000021
  article-title: The Potential of Molecular Self-Assembled Monolayers in Organic Electronic Devices
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201100337
– volume: 20
  start-page: 2376
  year: 2008
  ident: WOS:000257268500023
  article-title: Polymer solar cells that use self-assembled-monolayer-modified ZnO/Metals as cathodes
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.200703050
– volume: 4
  start-page: 1248
  year: 2020
  ident: WOS:000542492800011
  article-title: Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells
  publication-title: JOULE
  doi: 10.1016/j.joule.2020.04.001
– volume: 20
  start-page: 5131
  year: 2008
  ident: WOS:000258580500005
  article-title: Theoretical Characterization of the Indium Tin Oxide Surface and of Its Binding Sites for Adsorption of Phosphonic Acid Monolayers
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/cm8014622
– volume: 8
  start-page: ARTN 1801892
  year: 2018
  ident: WOS:000450269900020
  article-title: Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201801892
– volume: 60
  start-page: 7227
  year: 2021
  ident: WOS:000618968800001
  article-title: Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridine-Based Dopant-Free Polymer Semiconductor
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202016085
– volume: 372
  start-page: 618
  year: 2021
  ident: WOS:000649103500043
  article-title: Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability
  publication-title: SCIENCE
  doi: 10.1126/science.abf5602
– volume: 23
  start-page: 1899
  year: 2011
  ident: WOS:000290547100013
  article-title: Spin-Cast and Patterned Organophosphonate Self-Assembled Monolayer Dielectrics on Metal-Oxide-Activated Si
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201004762
– volume: 31
  start-page: ARTN 2104369
  year: 2021
  ident: WOS:000668211900001
  article-title: Asymmetric Isomer Effects in Benzo[c ][1,2,5]thiadiazole-Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significantly Photovoltaic Performance Enhancement
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202104369
– volume: 4
  start-page: ARTN 2761
  year: 2013
  ident: WOS:000328023000032
  article-title: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms3761
– volume: 7
  start-page: ARTN 1903331
  year: 2020
  ident: WOS:000535992100001
  article-title: Dopant-Free Crossconjugated Hole-Transporting Polymers for Highly Efficient Perovskite Solar Cells
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.201903331
– volume: 10
  start-page: ARTN 1904102
  year: 2020
  ident: WOS:000529904800001
  article-title: Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201904102
– volume: 24
  start-page: 7014
  year: 2014
  ident: WOS:000345370900014
  article-title: Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Self-Assembled Monolayers
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201401493
– volume: 367
  start-page: 1135
  year: 2020
  ident: WOS:000520018400043
  article-title: Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon
  publication-title: SCIENCE
  doi: 10.1126/science.aaz3691
– volume: 10
  start-page: 6748
  year: 2019
  ident: WOS:000476545100017
  article-title: Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c9sc01184f
– volume: 10
  start-page: ARTN 2002606
  year: 2020
  ident: WOS:000579045800001
  article-title: Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202002606
– volume: 121
  start-page: 7649
  year: 2017
  ident: WOS:000399629000009
  article-title: XPS Analysis of the Improved Operational Stability of Organic Solar Cells Using a V2O5 and PEDOT:PSS Composite Layer: Effect of Varied Atmospheric Conditions
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY C
  doi: 10.1021/acs.jpcc.6b13016
– volume: 116
  start-page: 7117
  year: 2016
  ident: WOS:000378585000005
  article-title: Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00061
SSID ssj0028806
Score 2.6970742
Snippet Carbazole‐derived self‐assembled monolayers (SAMs) are promising hole‐selective materials for inverted perovskite solar cells (PSCs). However, they often...
Carbazole-derived self-assembled monolayers (SAMs) are promising hole-selective materials for inverted perovskite solar cells (PSCs). However, they often...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202213560
SubjectTerms Carbazole
Carbazoles
Chemistry
Chemistry, Multidisciplinary
Crystallization
Dipole moments
Hole-Selective Layer
Monolayers
Perovskite
Perovskites
Photovoltaic cells
Physical Sciences
Science & Technology
Self-Assembled Monolayer
Single crystals
Solar Cells
Substrates
Title π‐Expanded Carbazoles as Hole‐Selective Self‐Assembled Monolayers for High‐Performance Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202213560
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000888096800001
https://www.ncbi.nlm.nih.gov/pubmed/36300589
https://www.proquest.com/docview/2753252127
https://www.proquest.com/docview/2729515993
Volume 61
WOS 000888096800001
WOSCitedRecordID wos000888096800001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuAC5Z1SkJEqcXKb2HEexyraaqlEhSiVeov8vLDsVs1uhXrqT-Cf8R_4Jczk1W5RBYKbs55o5Xhm_Nnj-QZgJxSCeMgUl7FJeepMwrXOA3ep1j4RPhSeIrofjrLpSXp4qk5vZPF3_BDjgRtZRuuvycC1afauSUMpAxv3d0IkEldtdMJ0YYtQ0aeRP0qgcnbpRVJyqkI_sDbGYm_99fVV6TeoeWtVWgey7Up08Aj0MIbuAsqX3dXS7NrLW_SO_zPITXjYw1S23-nVY7jn50_gfjVUh3sKFz-ufl59n3w7o0NoxyoKW1wSORTTDZtiA3uP2xo76E4ZtgL-QBHmr2aG8uhKcE9NcJ8hamZ02wT7P15nMTBsLy4aOltmx7T9ZpWfzZpncHIw-VxNeV_DgVuJzoN7WiHRzFOvFGEj70xAN5DLzFmZlV6ZzFpELZlXWpk44JyFEFtj8tjlDvHhc9iYL-b-JTCnVE50-hSKTENqi8I7m1gtEPXY3CYR8GEOa9sTnFOdjVndUTOLmr5mPX7NCN6N8mcdtcedktuDStS9iTe1wI2eoMznPIK3YzfOAkVc9NwvViQjSgKMpYzgRadK419JIjtTRRnBzk3dGvsJnaH-llnRRmAiSP5GrOoHTowGywhEq1x_GF69f_R-Mj5t_ctLr-ABtemeT1Juw8byfOVfI1pbmjetRf4C_n446Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VciiXlt8SKGCkIk5pEyfOz6GHKt1ql7YrRFupt2A7zoV0tyK7LfTUR-BV-iRIPAJPwkz-yhYhEFIP3Lyxk6zj-fOM5xuA1TzihEMmbM9Rvu1nyrWlDHM786U0Ljd5ZCiiuzcM-of-myNxNAeXbS5MjQ_ROdyIMyp5TQxODun1K9RQSsHGDR7nrodquzlXuWM-n-GurdwYbOESv-J8u3eQ9O2msICtPaRo25DYRtrzjRCksE2mcqTN0Asy7QWxESrQGlVpYIQUyslRB-e5o5UKnSzM0GjB596C21RGnOD6t951iFUc2aFOaPI8m-retziRDl-f_b-zevAX4_aaHpw1nSvdt70E39qvVh95-bA2nag1fX4NUPK_-qx3YbGxxNlmzTr3YM6M7sNC0hbAewCnXy--X3zpfTohP3vGEorMnBP-FZMl62MDe_erMkKoMRi2crxAQfRjVeB4lJbjQtKOhuHGgNGBGux_e5WowbA9Pi3Jfc72ycPAElMU5UM4vJFpP4L50XhkHgPLhAipYgBFW_3c11FkMu1qydGw06F2LbBbokl1g-FOpUSKtEaf5imtXtqtngWvu_EnNXrJb0eutDSYNlKsTDnuZTkld4cWvOy6cRUoqCRHZjylMTwmmzj2LFiuabd7lUd4biKKLVj9mZi7fjJAkWHiIKqCTBa4fzMsaSZOoA0TC3hFzX-YXro5HPS6X0_-5aYXsNA_2NtNdwfDnadwh67TsSY3XoH5ycepeYbG6UQ9r8QBg_c3zSg_AC83lYo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgEX_qGGAotUxMmtvfb658ChchIlFKKKUqk3196fC24S4aRAT30EHoU3QbwCT8KM_0qKEAipB24b79jOemd2ZnZ2vgHYMBEnHDJhe07u277KXTvLQmMrP8u0y7WJNEV0X4-D4b7_8kAcrMCXNhemxofoNtxIMqr1mgR8pszWGWgoZWCjf8e566HWbo5V7uhPH9BpK1-MejjDzzgf9N8mQ7upK2BLDxna1rRqI-v5WgjS11rlBlkz9AIlvSDWIg-kRE0aaJGJ3DGogo1xZJ6HjgoV2iz43Etw2Q-cmIpF9N50gFUcpaHOZ_I8m8retzCRDt9a_r_LavAX2_acGly2nCvVN7gB39qPVp94ebe5mOeb8uQcnuT_9FVvwvXGDmfbteDcghU9uQ1Xk7b83R04_nr6_fRz_-OMdtkVSyguc0LoVywr2RAb2LtXFRFCfcGwZfAChdCP8gLpca2cFhn5MwzdAkbHabB_9yxNg2F7elzS5jnbo_0FluiiKO_C_oUM-x6sTqYTvQZMCRFSvQCKtfrGl1GklXRlxtGsk6F0LbBbnkllg-BOhUSKtMae5inNXtrNngXPO_pZjV3yW8r1lgXTZg0rU46eLKfU7tCCp103zgKFlLKJni6IhsdkEceeBfdr1u1e5RGam4hiCzZ-5uWun8xPlJc4iKoQkwXu35AlzcAJsmFuAa-Y-Q_DS7fHo37368G_3PQEruz2Bumr0XjnIVyjy3SmyY3XYXX-fqEfoWU6zx9XiwGDw4uWkx_Em5Q5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CF%80-Expanded+Carbazoles+as+Hole-Selective+Self-Assembled+Monolayers+for+High-Performance+Perovskite+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jiang%2C+Wenlin&rft.au=Li%2C+Fengzhu&rft.au=Li%2C+Mingliang&rft.au=Qi%2C+Feng&rft.date=2022-12-19&rft.pub=Wiley&rft.eissn=1521-3773&rft.volume=61&rft.issue=51&rft_id=info:doi/10.1002%2Fanie.202213560&rft_id=info%3Apmid%2F36300589&rft.externalDBID=n%2Fa&rft.externalDocID=000888096800001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon