Achieving Ferroelectricity in a Centrosymmetric High‐Performance Semiconductor by Strain Engineering

Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2O2Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi2O2S...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 22; pp. e2300450 - n/a
Main Authors Wu, Mengqi, Lou, Zhefeng, Dai, Chen‐Min, Wang, Tao, Wang, Jiaqi, Zhu, Ziye, Xu, Zhuokai, Sun, Tulai, Li, Wenbin, Zheng, Xiaorui, Lin, Xiao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2O2Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi2O2Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second‐harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first‐principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106. This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics. In a high‐performance semiconductor Bi2O2Se, a strain‐induced ferroelectric transition is demonstrated by the appearance of butterfly loops and 180° phase switching in the piezoelectric force microscopy measurements, together with the evolution of optical second‐harmonic generation. Materials with paraelectrics at ambient pressure and ferroelectrics under strain are rare.
AbstractList Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain-induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2 O2 Se) films, a high-performance (HP) semiconductor for next-generation electronics, is presented. Bi2 O2 Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second-harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first-principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106 . This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics.Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain-induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2 O2 Se) films, a high-performance (HP) semiconductor for next-generation electronics, is presented. Bi2 O2 Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second-harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first-principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106 . This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics.
Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2O2Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi2O2Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second‐harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first‐principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106. This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics.
Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2O2Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi2O2Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second‐harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first‐principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106. This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics. In a high‐performance semiconductor Bi2O2Se, a strain‐induced ferroelectric transition is demonstrated by the appearance of butterfly loops and 180° phase switching in the piezoelectric force microscopy measurements, together with the evolution of optical second‐harmonic generation. Materials with paraelectrics at ambient pressure and ferroelectrics under strain are rare.
Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi 2 O 2 Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi 2 O 2 Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second‐harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first‐principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 10 6 . This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics.
Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain-induced ferroelectric (FE) transition in bismuth oxyselenide (Bi O Se) films, a high-performance (HP) semiconductor for next-generation electronics, is presented. Bi O Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second-harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first-principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 10 . This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics.
Author Zhu, Ziye
Zheng, Xiaorui
Wu, Mengqi
Sun, Tulai
Dai, Chen‐Min
Li, Wenbin
Wang, Tao
Wang, Jiaqi
Lou, Zhefeng
Xu, Zhuokai
Lin, Xiao
Author_xml – sequence: 1
  givenname: Mengqi
  surname: Wu
  fullname: Wu, Mengqi
  organization: School of Engineering, Westlake University
– sequence: 2
  givenname: Zhefeng
  surname: Lou
  fullname: Lou, Zhefeng
  organization: School of Science, Westlake University
– sequence: 3
  givenname: Chen‐Min
  surname: Dai
  fullname: Dai, Chen‐Min
  organization: Suzhou University of Science and Technology
– sequence: 4
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: School of Science, Westlake University
– sequence: 5
  givenname: Jiaqi
  surname: Wang
  fullname: Wang, Jiaqi
  organization: School of Engineering, Westlake University
– sequence: 6
  givenname: Ziye
  surname: Zhu
  fullname: Zhu, Ziye
  organization: School of Engineering, Westlake University
– sequence: 7
  givenname: Zhuokai
  surname: Xu
  fullname: Xu, Zhuokai
  organization: School of Engineering, Westlake University
– sequence: 8
  givenname: Tulai
  surname: Sun
  fullname: Sun, Tulai
  organization: Zhejiang University of Technology
– sequence: 9
  givenname: Wenbin
  surname: Li
  fullname: Li, Wenbin
  email: liwenbin@westlake.edu.cn
  organization: School of Engineering, Westlake University
– sequence: 10
  givenname: Xiaorui
  surname: Zheng
  fullname: Zheng, Xiaorui
  email: zhengxiaorui@westlake.edu.cn
  organization: School of Engineering, Westlake University
– sequence: 11
  givenname: Xiao
  orcidid: 0000-0002-1773-1761
  surname: Lin
  fullname: Lin, Xiao
  email: linxiao@westlake.edu.cn
  organization: School of Science, Westlake University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36868783$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFLUsUiQ2bDM-Ok9jL0bSlSEUgFdaW8_IydZXYxUlA2fEJfCNfgkfTglQJsbJknXNl33vCjnzwxNhLDmsOIN7adrBrAaIAkCU8YSteCp5L0OURW4EuylxXUh2zk3G8BQBdQfWMHReVqlStihXrNnjj6Jvzu-yCYgzUE07RoZuWzPnMZlvyUwzjMgy0v88u3e7m14-fnyh2IQ7WI2XXNDgMvp1xCjFrlux6ijbJ537nPFFM4c_Z0872I724P0_Zl4vzz9vL_Orju_fbzVWORV1A3pCQyKlARLCEingHJCzXjeSEDYJqqWmsrluqS0621qWqWlnrGi3vSl6csjeH3LsYvs40TmZwI1LfW09hHo1In5ZaCK0S-voRehvm6NPrjFCCi0rWvEzUq3tqbgZqzV10g42LeWgwAfIAYGppjNSZ1J2dXPD7EnrDweyHMvuhzJ-hkrZ-pD0k_1PQB-G762n5D202Zx82f93fkQ-oQA
CitedBy_id crossref_primary_10_1039_D3TC03410K
crossref_primary_10_1002_smtd_202400312
crossref_primary_10_1002_adfm_202421384
crossref_primary_10_1039_D4DT01212G
crossref_primary_10_1002_adma_202409887
crossref_primary_10_1021_acsnano_4c07397
crossref_primary_10_1039_D4TC05326E
crossref_primary_10_1016_j_mattod_2024_11_003
crossref_primary_10_1021_acsnano_4c08636
crossref_primary_10_1002_adma_202314145
crossref_primary_10_1002_advs_202406242
crossref_primary_10_1007_s40820_023_01211_5
crossref_primary_10_1088_1674_1056_ad6a0e
crossref_primary_10_1021_acs_jpcc_3c07223
crossref_primary_10_1021_acs_nanolett_5c00569
crossref_primary_10_1038_s41586_024_07286_3
crossref_primary_10_1002_adfm_202409281
crossref_primary_10_1002_adma_202406608
crossref_primary_10_1021_acsami_4c02525
crossref_primary_10_1039_D3TC04733D
Cites_doi 10.1143/JPSJ.38.183
10.1021/acs.nanolett.7b03020
10.1038/s41467-020-17692-6
10.1002/adfm.202105795
10.1038/s41467-019-08462-0
10.1038/s41565-021-01059-z
10.1063/1.3675630
10.1002/adfm.201807979
10.1063/5.0004532
10.1016/j.cpc.2009.07.007
10.1038/s41928-019-0338-7
10.1063/1.2358855
10.1103/PhysRevB.101.121407
10.1021/acs.nanolett.2c00820
10.1021/acs.nanolett.7b02198
10.1002/adma.202008709
10.1016/j.isci.2019.05.043
10.1038/ncomms12357
10.1038/nnano.2017.43
10.1038/ncomms15217
10.1002/adfm.201905806
10.1021/acs.nanolett.9b02312
10.1021/acs.jpcc.2c01352
10.1038/nature02202
10.1063/1.4927811
10.1073/pnas.2115703118
10.1038/s41467-020-16912-3
10.1038/s41586-018-0336-3
10.1111/j.1551-2916.2011.04740.x
10.1038/s41565-022-01072-w
10.1021/jacs.1c12681
10.1103/PhysRevB.13.5188
10.1038/nnano.2010.279
10.1063/1.4962387
10.1126/science.abm5734
10.1002/adma.201904123
10.1002/adfm.202009999
10.1021/acs.jpclett.8b03654
10.1002/inf2.12177
10.1126/sciadv.aar7720
10.1021/acs.nanolett.5b00491
10.1038/s41566-022-01021-y
10.1002/adma.202210854
10.1007/s12274-022-5046-3
10.1002/adma.201804945
10.1038/s41928-022-00824-9
10.1103/PhysRevB.45.13244
10.1126/science.abd3230
10.1126/science.abe8177
10.1021/acs.nanolett.8b03696
10.1063/1.2818370
10.1126/science.aad8609
10.1038/s41467-022-33617-x
10.1063/1.4999199
10.1038/s41565-022-01252-8
10.1038/s41565-020-0700-y
10.1103/PhysRevLett.120.227601
10.1038/nature02773
10.1038/nmat3687
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202300450
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36868783
10_1002_adma_202300450
ADMA202300450
Genre article
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars
  funderid: LR23A040001
– fundername: National Natural Science Foundation of China
  funderid: 62004172; 62104200
– fundername: National Natural Science Foundation of China
  grantid: 62004172
– fundername: National Natural Science Foundation of China
  grantid: 62104200
– fundername: Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars
  grantid: LR23A040001
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3730-be24c1e3ccc0aec8e1f0e2a19b41ecbc08debba97de751ea79586d4797ca1f513
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 04:15:55 EDT 2025
Fri Jul 25 07:14:58 EDT 2025
Thu Apr 03 07:01:20 EDT 2025
Tue Jul 01 02:33:30 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jan 22 16:22:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords memristors
ferroelectric transition
strain engineering
bismuth oxyselenide
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-be24c1e3ccc0aec8e1f0e2a19b41ecbc08debba97de751ea79586d4797ca1f513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1773-1761
PMID 36868783
PQID 2821264715
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2783492298
proquest_journals_2821264715
pubmed_primary_36868783
crossref_citationtrail_10_1002_adma_202300450
crossref_primary_10_1002_adma_202300450
wiley_primary_10_1002_adma_202300450_ADMA202300450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2023
2023-06-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2018; 560
2022; 376
2017; 7
2007; 102
2017; 8
2023; 35
2016; 109
2019; 10
2019; 16
2019; 19
2020; 15
2020; 11
2022; 22
2018; 9
2021; 31
2018; 4
2021; 33
2013; 12
2021; 118
2016; 353
2019; 29
1992; 45
2022; 126
2015; 15
2012; 100
2021; 3
2019; 31
2023; 18
2009; 180
2019; 2
2023; 16
1975; 38
2020; 101
2020; 32
2004; 427
2011; 6
2022; 144
2004; 430
2016; 7
1976; 13
2006; 89
2017; 17
2022; 5
2017; 12
2011; 94
2022; 13
2020; 116
2021; 372
2015; 118
2022; 16
2022; 17
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 3846
  year: 2020
  publication-title: Nat. Commun.
– volume: 2
  start-page: 580
  year: 2019
  publication-title: Nat. Electron.
– volume: 430
  start-page: 758
  year: 2004
  publication-title: Nature
– volume: 17
  start-page: 367
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 427
  start-page: 50
  year: 2004
  publication-title: Nature
– volume: 18
  start-page: 36
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 45
  year: 1992
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 3224
  year: 2023
  publication-title: Nano Res.
– volume: 118
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 16
  start-page: 368
  year: 2019
  publication-title: iScience
– volume: 12
  start-page: 815
  year: 2013
  publication-title: Nat. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 6309
  year: 2017
  publication-title: Nano Lett.
– volume: 3
  start-page: 397
  year: 2021
  publication-title: InfoMat
– volume: 372
  start-page: 1462
  year: 2021
  publication-title: Science
– volume: 17
  start-page: 5508
  year: 2017
  publication-title: Nano Lett.
– volume: 101
  year: 2020
  publication-title: Phys. Rev. B
– volume: 144
  start-page: 4541
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 180
  start-page: 2582
  year: 2009
  publication-title: Comput. Phys. Commun.
– volume: 10
  start-page: 537
  year: 2019
  publication-title: Nat. Commun.
– volume: 38
  start-page: 183
  year: 1975
  publication-title: J. Phys. Soc. Jpn.
– volume: 126
  year: 2022
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 3770
  year: 2022
  publication-title: Nano Lett.
– volume: 116
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 5703
  year: 2019
  publication-title: Nano Lett.
– volume: 372
  start-page: 1458
  year: 2021
  publication-title: Science
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 5
  start-page: 643
  year: 2022
  publication-title: Nat. Electron.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 390
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 3141
  year: 2020
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 16
  start-page: 644
  year: 2022
  publication-title: Nat. Photonics
– volume: 6
  start-page: 147
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 376
  start-page: 973
  year: 2022
  publication-title: Science
– volume: 9
  start-page: 7160
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 19
  start-page: 197
  year: 2019
  publication-title: Nano Lett.
– volume: 353
  start-page: 274
  year: 2016
  publication-title: Science
– volume: 560
  start-page: 336
  year: 2018
  publication-title: Nature
– volume: 12
  start-page: 530
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 102
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 7
  year: 2017
  publication-title: AIP Adv.
– volume: 94
  start-page: 2699
  year: 2011
  publication-title: J. Am. Ceram. Soc.
– volume: 15
  start-page: 661
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 5903
  year: 2022
  publication-title: Nat. Commun.
– volume: 15
  start-page: 3808
  year: 2015
  publication-title: Nano Lett.
– volume: 89
  year: 2006
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_9_24_1
  doi: 10.1143/JPSJ.38.183
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.nanolett.7b03020
– ident: e_1_2_9_37_1
  doi: 10.1038/s41467-020-17692-6
– ident: e_1_2_9_45_1
  doi: 10.1002/adfm.202105795
– ident: e_1_2_9_50_1
  doi: 10.1038/s41467-019-08462-0
– ident: e_1_2_9_15_1
  doi: 10.1038/s41565-021-01059-z
– ident: e_1_2_9_41_1
  doi: 10.1063/1.3675630
– ident: e_1_2_9_26_1
  doi: 10.1002/adfm.201807979
– ident: e_1_2_9_48_1
  doi: 10.1063/5.0004532
– ident: e_1_2_9_58_1
  doi: 10.1016/j.cpc.2009.07.007
– ident: e_1_2_9_20_1
  doi: 10.1038/s41928-019-0338-7
– ident: e_1_2_9_42_1
  doi: 10.1063/1.2358855
– ident: e_1_2_9_39_1
  doi: 10.1103/PhysRevB.101.121407
– ident: e_1_2_9_29_1
  doi: 10.1021/acs.nanolett.2c00820
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.nanolett.7b02198
– ident: e_1_2_9_21_1
  doi: 10.1002/adma.202008709
– ident: e_1_2_9_56_1
  doi: 10.1016/j.isci.2019.05.043
– ident: e_1_2_9_9_1
  doi: 10.1038/ncomms12357
– ident: e_1_2_9_25_1
  doi: 10.1038/nnano.2017.43
– ident: e_1_2_9_55_1
  doi: 10.1038/ncomms15217
– ident: e_1_2_9_27_1
  doi: 10.1002/adfm.201905806
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.nanolett.9b02312
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.jpcc.2c01352
– ident: e_1_2_9_1_1
  doi: 10.1038/nature02202
– ident: e_1_2_9_44_1
  doi: 10.1063/1.4927811
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.2115703118
– ident: e_1_2_9_23_1
  doi: 10.1038/s41467-020-16912-3
– ident: e_1_2_9_12_1
  doi: 10.1038/s41586-018-0336-3
– ident: e_1_2_9_49_1
  doi: 10.1111/j.1551-2916.2011.04740.x
– ident: e_1_2_9_14_1
  doi: 10.1038/s41565-022-01072-w
– ident: e_1_2_9_34_1
  doi: 10.1021/jacs.1c12681
– ident: e_1_2_9_59_1
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_9_30_1
  doi: 10.1038/nnano.2010.279
– ident: e_1_2_9_47_1
  doi: 10.1063/1.4962387
– ident: e_1_2_9_16_1
  doi: 10.1126/science.abm5734
– ident: e_1_2_9_54_1
  doi: 10.1002/adma.201904123
– ident: e_1_2_9_53_1
  doi: 10.1002/adfm.202009999
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.jpclett.8b03654
– ident: e_1_2_9_2_1
  doi: 10.1002/inf2.12177
– ident: e_1_2_9_6_1
  doi: 10.1126/sciadv.aar7720
– ident: e_1_2_9_8_1
  doi: 10.1021/acs.nanolett.5b00491
– ident: e_1_2_9_3_1
  doi: 10.1038/s41566-022-01021-y
– ident: e_1_2_9_52_1
  doi: 10.1002/adma.202210854
– ident: e_1_2_9_38_1
  doi: 10.1007/s12274-022-5046-3
– ident: e_1_2_9_28_1
  doi: 10.1002/adma.201804945
– ident: e_1_2_9_32_1
  doi: 10.1038/s41928-022-00824-9
– ident: e_1_2_9_57_1
  doi: 10.1103/PhysRevB.45.13244
– ident: e_1_2_9_13_1
  doi: 10.1126/science.abd3230
– ident: e_1_2_9_19_1
  doi: 10.1126/science.abe8177
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.nanolett.8b03696
– ident: e_1_2_9_43_1
  doi: 10.1063/1.2818370
– ident: e_1_2_9_5_1
  doi: 10.1126/science.aad8609
– ident: e_1_2_9_7_1
  doi: 10.1038/s41467-022-33617-x
– ident: e_1_2_9_46_1
  doi: 10.1063/1.4999199
– ident: e_1_2_9_4_1
  doi: 10.1038/s41565-022-01252-8
– ident: e_1_2_9_51_1
  doi: 10.1038/s41565-020-0700-y
– ident: e_1_2_9_11_1
  doi: 10.1103/PhysRevLett.120.227601
– ident: e_1_2_9_22_1
  doi: 10.1038/nature02773
– ident: e_1_2_9_31_1
  doi: 10.1038/nmat3687
SSID ssj0009606
Score 2.5372267
Snippet Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE)...
Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain-induced ferroelectric (FE)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300450
SubjectTerms Bismuth
bismuth oxyselenide
ferroelectric transition
Ferroelectricity
Harmonic generations
Materials science
Mathematical analysis
memristors
Optoelectronics
Piezoelectricity
Pressure
Semiconductivity
Semiconductors
strain engineering
Switching
Title Achieving Ferroelectricity in a Centrosymmetric High‐Performance Semiconductor by Strain Engineering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202300450
https://www.ncbi.nlm.nih.gov/pubmed/36868783
https://www.proquest.com/docview/2821264715
https://www.proquest.com/docview/2783492298
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQJzi00N8UqFypUk-B2HEc57iCrlAlKgRF4hbZk4m6KiTV_hzgxCP0GfskeJzd7G6rqlJ7S2Rbdjwe-xtn5hvG3qscqxoqFwstvYGiBMQuS1wsa43GAaBACnA--6xPr9Sn6-x6JYq_44foL9xIM8J-TQpu3eRoSRpqq8AbJIkyKhjt5LBFqOhiyR9F8DyQ7aVZXGhlFqyNiTxab75-Kv0GNdeRazh6hk-ZXQy68zj5djibukO4_4XP8X--aoc9meNSPugW0i7bwOYZ215hK3zO6gF8HSFdQPAhjsdtl0FnBB7H81HDLQ83xe3k7vaW0nQBJx-Snw8_zpexCfySfPHbhkhm2zF3d_wy5KjgKx29YFfDj1-OT-N5moYYUr8_xA6lAoEpACQWwaCoE5RWFE4JBAeJqdA5W-QV5plAmxeZ0ZXKixysqDORvmSbTdvga8YdkbPa2rncgJK1MIWttXSq8iDR26E6YvFCTCXMOcxpmDdlx74sS5q_sp-_iH3o63_v2Dv-WHN_IfVyrsWT0pujwgPGXGQRe9cXe_2jnyq2wXbm61CmkkLKwkTsVbda-q5SbbTx5RGTQeZ_GUM5ODkb9G9v_qXRHtui586XbZ9tTsczPPCoaereBs14BL55EQE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB-BAkYCcUobOy_nwGHFstrSboVoK_WW2pOJWLVN0D6ElhM_gb_CX-En8Euw89ouCCEh9cAxsRNP7Bl7ZjLzDcDzIKYsx0y7PBLGQAk4ujr0tCvyiKRGJE42wXm0Fw0Pg7dH4dEafGtzYWp8iM7hZiWj2q-tgFuH9NYSNVRlFXCQsJhRodfEVe7Q4pOx2qavtvtmiV8IMXhz8HroNoUFXPQNR7uaRICcfET0FKEknnskFE90wAk1ejIjrVUSZxSHnFSchDLKgjiJUfE85L557yW4bMuIW7j-_vslYpU1CCp4Pz90kyiQLU6kJ7ZW6V09B39Tbld15eqwG9yA7-001TEuJ5vzmd7Ez78gSP5X83gTrjeqN-vVsnIL1qi4DdfOATLegbyHH8ZkfSxsQJNJWRcJGqMxVdi4YIpVzvByujg7s5XIkNkwmR9fvr5bpl-wfZtuUBYWR7ecML1g-1UZDnZuoLtweCEfeg_Wi7KgB8C0xZ9VudaxxEDkXCYqj4QOMqMHG1M7csBt-SLFBqbdknma1gDTIrXrlXbr5cDLrv_HGqDkjz03WjZLm41qmhqLmxudOOahA8-6ZrPF2P9GqqBybvrYYiyJEIl04H7Nnt1QfiQjadodEBWT_YWGtNcf9bqrh__y0FO4MjwY7aa723s7j-CqvV-H7m3A-mwyp8dGSZzpJ5VYMji-aP79Cea4cpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P8TWsBIIE5pY8dxnEMPK5ZVS2lVUSr1ltrORKzaJtX-CC0nHqGPwqv0FXgS7PxtF4SQkHrgmNiJHc-MPTOZ-QbgFY8xy02mfSqYNVA4Nb6OAu2zXKDUxiBFl-C8sys2D_j7w-hwCb63uTA1PkTncHOSUe3XTsDPsnx9Dhqqsgo3iDnIqChowiq3cfbFGm3jja2-pfBrxgbvPr3d9Ju6Ar4JLUP7Ghk3FENjTKDQSKR5gEzRRHOKRptAZqi1SuIM44iiipNIiozHSWwUzSMa2vdeg-tcBIkrFtH_OAescvZAhe4XRn4iuGxhIgO2vjjfxWPwN912UVWuzrrBHbhoV6kOcTlem070mvn6C4Dk_7SMd-F2o3iTXi0p92AJi_tw6xIc4wPIe-bzEJ2HhQxwNCrrEkFDYw0VMiyIIpUrvBzPTk9dHTJDXJDMj2_ne_PkC7Lvkg3KwqHoliOiZ2S_KsJBLg30EA6u5EMfwXJRFvgEiHbosyrXOpaGs5zKROWCaZ5ZLdga2sIDv2WL1DQg7W6aJ2kNL81SR6-0o5cHb7r-ZzU8yR97rrZcljbb1Di19ja1GnFMIw9eds12g3F_jVSB5dT2caVYEsYS6cHjmju7oUIhhbTtHrCKx_4yh7TX3-l1V0__5aEXcGOvP0g_bO1ur8BNd7uO21uF5clois-shjjRzyuhJHB01ez7Ew7IcUM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Ferroelectricity+in+a+Centrosymmetric+High%E2%80%90Performance+Semiconductor+by+Strain+Engineering&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Mengqi&rft.au=Lou%2C+Zhefeng&rft.au=Dai%2C+Chen%E2%80%90Min&rft.au=Wang%2C+Tao&rft.date=2023-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202300450&rft.externalDBID=10.1002%252Fadma.202300450&rft.externalDocID=ADMA202300450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon