Achieving Ferroelectricity in a Centrosymmetric High‐Performance Semiconductor by Strain Engineering
Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2O2Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi2O2S...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 22; pp. e2300450 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2O2Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi2O2Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second‐harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first‐principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106. This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics.
In a high‐performance semiconductor Bi2O2Se, a strain‐induced ferroelectric transition is demonstrated by the appearance of butterfly loops and 180° phase switching in the piezoelectric force microscopy measurements, together with the evolution of optical second‐harmonic generation. Materials with paraelectrics at ambient pressure and ferroelectrics under strain are rare. |
---|---|
AbstractList | Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain-induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2 O2 Se) films, a high-performance (HP) semiconductor for next-generation electronics, is presented. Bi2 O2 Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second-harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first-principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106 . This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics.Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain-induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2 O2 Se) films, a high-performance (HP) semiconductor for next-generation electronics, is presented. Bi2 O2 Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second-harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first-principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106 . This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics. Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2O2Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi2O2Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second‐harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first‐principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106. This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics. Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi2O2Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi2O2Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second‐harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first‐principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 106. This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics. In a high‐performance semiconductor Bi2O2Se, a strain‐induced ferroelectric transition is demonstrated by the appearance of butterfly loops and 180° phase switching in the piezoelectric force microscopy measurements, together with the evolution of optical second‐harmonic generation. Materials with paraelectrics at ambient pressure and ferroelectrics under strain are rare. Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE) transition in bismuth oxyselenide (Bi 2 O 2 Se) films, a high‐performance (HP) semiconductor for next‐generation electronics, is presented. Bi 2 O 2 Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second‐harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first‐principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 10 6 . This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics. Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain-induced ferroelectric (FE) transition in bismuth oxyselenide (Bi O Se) films, a high-performance (HP) semiconductor for next-generation electronics, is presented. Bi O Se is not FE at ambient pressure. At a loading force of ≳400 nN, the piezoelectric force responses exhibit butterfly loops in magnitude and 180° phase switching. By carefully ruling out extrinsic factors, these features are attributed to a transition to the FE phase. The transition is further supported by the appearance of a sharp peak in optical second-harmonic generation under uniaxial strain. In general, solids with paraelectrics at ambient pressure and FE under strain are rare. The FE transition is discussed using first-principles calculations and theoretical simulations. The switching of FE polarization acts as a knob for Schottky barrier engineering at contacts and serves as the basis for a memristor with a huge on/off current ratio of 10 . This work adds a new degree of freedom to HP electronic/optoelectronic semiconductors, and the integration of FE and HP semiconductivity paves the way for many exciting functionalities, including HP neuromorphic computing and bulk piezophotovoltaics. |
Author | Zhu, Ziye Zheng, Xiaorui Wu, Mengqi Sun, Tulai Dai, Chen‐Min Li, Wenbin Wang, Tao Wang, Jiaqi Lou, Zhefeng Xu, Zhuokai Lin, Xiao |
Author_xml | – sequence: 1 givenname: Mengqi surname: Wu fullname: Wu, Mengqi organization: School of Engineering, Westlake University – sequence: 2 givenname: Zhefeng surname: Lou fullname: Lou, Zhefeng organization: School of Science, Westlake University – sequence: 3 givenname: Chen‐Min surname: Dai fullname: Dai, Chen‐Min organization: Suzhou University of Science and Technology – sequence: 4 givenname: Tao surname: Wang fullname: Wang, Tao organization: School of Science, Westlake University – sequence: 5 givenname: Jiaqi surname: Wang fullname: Wang, Jiaqi organization: School of Engineering, Westlake University – sequence: 6 givenname: Ziye surname: Zhu fullname: Zhu, Ziye organization: School of Engineering, Westlake University – sequence: 7 givenname: Zhuokai surname: Xu fullname: Xu, Zhuokai organization: School of Engineering, Westlake University – sequence: 8 givenname: Tulai surname: Sun fullname: Sun, Tulai organization: Zhejiang University of Technology – sequence: 9 givenname: Wenbin surname: Li fullname: Li, Wenbin email: liwenbin@westlake.edu.cn organization: School of Engineering, Westlake University – sequence: 10 givenname: Xiaorui surname: Zheng fullname: Zheng, Xiaorui email: zhengxiaorui@westlake.edu.cn organization: School of Engineering, Westlake University – sequence: 11 givenname: Xiao orcidid: 0000-0002-1773-1761 surname: Lin fullname: Lin, Xiao email: linxiao@westlake.edu.cn organization: School of Science, Westlake University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36868783$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKeFLUsUiQ2bDM-Ok9jL0bSlSEUgFdaW8_IydZXYxUlA2fEJfCNfgkfTglQJsbJknXNl33vCjnzwxNhLDmsOIN7adrBrAaIAkCU8YSteCp5L0OURW4EuylxXUh2zk3G8BQBdQfWMHReVqlStihXrNnjj6Jvzu-yCYgzUE07RoZuWzPnMZlvyUwzjMgy0v88u3e7m14-fnyh2IQ7WI2XXNDgMvp1xCjFrlux6ijbJ537nPFFM4c_Z0872I724P0_Zl4vzz9vL_Orju_fbzVWORV1A3pCQyKlARLCEingHJCzXjeSEDYJqqWmsrluqS0621qWqWlnrGi3vSl6csjeH3LsYvs40TmZwI1LfW09hHo1In5ZaCK0S-voRehvm6NPrjFCCi0rWvEzUq3tqbgZqzV10g42LeWgwAfIAYGppjNSZ1J2dXPD7EnrDweyHMvuhzJ-hkrZ-pD0k_1PQB-G762n5D202Zx82f93fkQ-oQA |
CitedBy_id | crossref_primary_10_1039_D3TC03410K crossref_primary_10_1002_smtd_202400312 crossref_primary_10_1002_adfm_202421384 crossref_primary_10_1039_D4DT01212G crossref_primary_10_1002_adma_202409887 crossref_primary_10_1021_acsnano_4c07397 crossref_primary_10_1039_D4TC05326E crossref_primary_10_1016_j_mattod_2024_11_003 crossref_primary_10_1021_acsnano_4c08636 crossref_primary_10_1002_adma_202314145 crossref_primary_10_1002_advs_202406242 crossref_primary_10_1007_s40820_023_01211_5 crossref_primary_10_1088_1674_1056_ad6a0e crossref_primary_10_1021_acs_jpcc_3c07223 crossref_primary_10_1021_acs_nanolett_5c00569 crossref_primary_10_1038_s41586_024_07286_3 crossref_primary_10_1002_adfm_202409281 crossref_primary_10_1002_adma_202406608 crossref_primary_10_1021_acsami_4c02525 crossref_primary_10_1039_D3TC04733D |
Cites_doi | 10.1143/JPSJ.38.183 10.1021/acs.nanolett.7b03020 10.1038/s41467-020-17692-6 10.1002/adfm.202105795 10.1038/s41467-019-08462-0 10.1038/s41565-021-01059-z 10.1063/1.3675630 10.1002/adfm.201807979 10.1063/5.0004532 10.1016/j.cpc.2009.07.007 10.1038/s41928-019-0338-7 10.1063/1.2358855 10.1103/PhysRevB.101.121407 10.1021/acs.nanolett.2c00820 10.1021/acs.nanolett.7b02198 10.1002/adma.202008709 10.1016/j.isci.2019.05.043 10.1038/ncomms12357 10.1038/nnano.2017.43 10.1038/ncomms15217 10.1002/adfm.201905806 10.1021/acs.nanolett.9b02312 10.1021/acs.jpcc.2c01352 10.1038/nature02202 10.1063/1.4927811 10.1073/pnas.2115703118 10.1038/s41467-020-16912-3 10.1038/s41586-018-0336-3 10.1111/j.1551-2916.2011.04740.x 10.1038/s41565-022-01072-w 10.1021/jacs.1c12681 10.1103/PhysRevB.13.5188 10.1038/nnano.2010.279 10.1063/1.4962387 10.1126/science.abm5734 10.1002/adma.201904123 10.1002/adfm.202009999 10.1021/acs.jpclett.8b03654 10.1002/inf2.12177 10.1126/sciadv.aar7720 10.1021/acs.nanolett.5b00491 10.1038/s41566-022-01021-y 10.1002/adma.202210854 10.1007/s12274-022-5046-3 10.1002/adma.201804945 10.1038/s41928-022-00824-9 10.1103/PhysRevB.45.13244 10.1126/science.abd3230 10.1126/science.abe8177 10.1021/acs.nanolett.8b03696 10.1063/1.2818370 10.1126/science.aad8609 10.1038/s41467-022-33617-x 10.1063/1.4999199 10.1038/s41565-022-01252-8 10.1038/s41565-020-0700-y 10.1103/PhysRevLett.120.227601 10.1038/nature02773 10.1038/nmat3687 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202300450 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36868783 10_1002_adma_202300450 ADMA202300450 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars funderid: LR23A040001 – fundername: National Natural Science Foundation of China funderid: 62004172; 62104200 – fundername: National Natural Science Foundation of China grantid: 62004172 – fundername: National Natural Science Foundation of China grantid: 62104200 – fundername: Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars grantid: LR23A040001 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3730-be24c1e3ccc0aec8e1f0e2a19b41ecbc08debba97de751ea79586d4797ca1f513 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 04:15:55 EDT 2025 Fri Jul 25 07:14:58 EDT 2025 Thu Apr 03 07:01:20 EDT 2025 Tue Jul 01 02:33:30 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jan 22 16:22:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | memristors ferroelectric transition strain engineering bismuth oxyselenide |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-be24c1e3ccc0aec8e1f0e2a19b41ecbc08debba97de751ea79586d4797ca1f513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1773-1761 |
PMID | 36868783 |
PQID | 2821264715 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2783492298 proquest_journals_2821264715 pubmed_primary_36868783 crossref_citationtrail_10_1002_adma_202300450 crossref_primary_10_1002_adma_202300450 wiley_primary_10_1002_adma_202300450_ADMA202300450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2023 2023-06-00 2023-Jun 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 120 2018; 560 2022; 376 2017; 7 2007; 102 2017; 8 2023; 35 2016; 109 2019; 10 2019; 16 2019; 19 2020; 15 2020; 11 2022; 22 2018; 9 2021; 31 2018; 4 2021; 33 2013; 12 2021; 118 2016; 353 2019; 29 1992; 45 2022; 126 2015; 15 2012; 100 2021; 3 2019; 31 2023; 18 2009; 180 2019; 2 2023; 16 1975; 38 2020; 101 2020; 32 2004; 427 2011; 6 2022; 144 2004; 430 2016; 7 1976; 13 2006; 89 2017; 17 2022; 5 2017; 12 2011; 94 2022; 13 2020; 116 2021; 372 2015; 118 2022; 16 2022; 17 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 11 start-page: 3846 year: 2020 publication-title: Nat. Commun. – volume: 2 start-page: 580 year: 2019 publication-title: Nat. Electron. – volume: 430 start-page: 758 year: 2004 publication-title: Nature – volume: 17 start-page: 367 year: 2022 publication-title: Nat. Nanotechnol. – volume: 427 start-page: 50 year: 2004 publication-title: Nature – volume: 18 start-page: 36 year: 2023 publication-title: Nat. Nanotechnol. – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 45 year: 1992 publication-title: Phys. Rev. B – volume: 16 start-page: 3224 year: 2023 publication-title: Nano Res. – volume: 118 year: 2015 publication-title: J. Appl. Phys. – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 16 start-page: 368 year: 2019 publication-title: iScience – volume: 12 start-page: 815 year: 2013 publication-title: Nat. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 6309 year: 2017 publication-title: Nano Lett. – volume: 3 start-page: 397 year: 2021 publication-title: InfoMat – volume: 372 start-page: 1462 year: 2021 publication-title: Science – volume: 17 start-page: 5508 year: 2017 publication-title: Nano Lett. – volume: 101 year: 2020 publication-title: Phys. Rev. B – volume: 144 start-page: 4541 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 180 start-page: 2582 year: 2009 publication-title: Comput. Phys. Commun. – volume: 10 start-page: 537 year: 2019 publication-title: Nat. Commun. – volume: 38 start-page: 183 year: 1975 publication-title: J. Phys. Soc. Jpn. – volume: 126 year: 2022 publication-title: J. Phys. Chem. C – volume: 22 start-page: 3770 year: 2022 publication-title: Nano Lett. – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 5703 year: 2019 publication-title: Nano Lett. – volume: 372 start-page: 1458 year: 2021 publication-title: Science – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 5 start-page: 643 year: 2022 publication-title: Nat. Electron. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 17 start-page: 390 year: 2022 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 3141 year: 2020 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 16 start-page: 644 year: 2022 publication-title: Nat. Photonics – volume: 6 start-page: 147 year: 2011 publication-title: Nat. Nanotechnol. – volume: 376 start-page: 973 year: 2022 publication-title: Science – volume: 9 start-page: 7160 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 19 start-page: 197 year: 2019 publication-title: Nano Lett. – volume: 353 start-page: 274 year: 2016 publication-title: Science – volume: 560 start-page: 336 year: 2018 publication-title: Nature – volume: 12 start-page: 530 year: 2017 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 102 year: 2007 publication-title: J. Appl. Phys. – volume: 7 year: 2017 publication-title: AIP Adv. – volume: 94 start-page: 2699 year: 2011 publication-title: J. Am. Ceram. Soc. – volume: 15 start-page: 661 year: 2020 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 5903 year: 2022 publication-title: Nat. Commun. – volume: 15 start-page: 3808 year: 2015 publication-title: Nano Lett. – volume: 89 year: 2006 publication-title: Appl. Phys. Lett. – ident: e_1_2_9_24_1 doi: 10.1143/JPSJ.38.183 – ident: e_1_2_9_33_1 doi: 10.1021/acs.nanolett.7b03020 – ident: e_1_2_9_37_1 doi: 10.1038/s41467-020-17692-6 – ident: e_1_2_9_45_1 doi: 10.1002/adfm.202105795 – ident: e_1_2_9_50_1 doi: 10.1038/s41467-019-08462-0 – ident: e_1_2_9_15_1 doi: 10.1038/s41565-021-01059-z – ident: e_1_2_9_41_1 doi: 10.1063/1.3675630 – ident: e_1_2_9_26_1 doi: 10.1002/adfm.201807979 – ident: e_1_2_9_48_1 doi: 10.1063/5.0004532 – ident: e_1_2_9_58_1 doi: 10.1016/j.cpc.2009.07.007 – ident: e_1_2_9_20_1 doi: 10.1038/s41928-019-0338-7 – ident: e_1_2_9_42_1 doi: 10.1063/1.2358855 – ident: e_1_2_9_39_1 doi: 10.1103/PhysRevB.101.121407 – ident: e_1_2_9_29_1 doi: 10.1021/acs.nanolett.2c00820 – ident: e_1_2_9_10_1 doi: 10.1021/acs.nanolett.7b02198 – ident: e_1_2_9_21_1 doi: 10.1002/adma.202008709 – ident: e_1_2_9_56_1 doi: 10.1016/j.isci.2019.05.043 – ident: e_1_2_9_9_1 doi: 10.1038/ncomms12357 – ident: e_1_2_9_25_1 doi: 10.1038/nnano.2017.43 – ident: e_1_2_9_55_1 doi: 10.1038/ncomms15217 – ident: e_1_2_9_27_1 doi: 10.1002/adfm.201905806 – ident: e_1_2_9_35_1 doi: 10.1021/acs.nanolett.9b02312 – ident: e_1_2_9_40_1 doi: 10.1021/acs.jpcc.2c01352 – ident: e_1_2_9_1_1 doi: 10.1038/nature02202 – ident: e_1_2_9_44_1 doi: 10.1063/1.4927811 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.2115703118 – ident: e_1_2_9_23_1 doi: 10.1038/s41467-020-16912-3 – ident: e_1_2_9_12_1 doi: 10.1038/s41586-018-0336-3 – ident: e_1_2_9_49_1 doi: 10.1111/j.1551-2916.2011.04740.x – ident: e_1_2_9_14_1 doi: 10.1038/s41565-022-01072-w – ident: e_1_2_9_34_1 doi: 10.1021/jacs.1c12681 – ident: e_1_2_9_59_1 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_9_30_1 doi: 10.1038/nnano.2010.279 – ident: e_1_2_9_47_1 doi: 10.1063/1.4962387 – ident: e_1_2_9_16_1 doi: 10.1126/science.abm5734 – ident: e_1_2_9_54_1 doi: 10.1002/adma.201904123 – ident: e_1_2_9_53_1 doi: 10.1002/adfm.202009999 – ident: e_1_2_9_18_1 doi: 10.1021/acs.jpclett.8b03654 – ident: e_1_2_9_2_1 doi: 10.1002/inf2.12177 – ident: e_1_2_9_6_1 doi: 10.1126/sciadv.aar7720 – ident: e_1_2_9_8_1 doi: 10.1021/acs.nanolett.5b00491 – ident: e_1_2_9_3_1 doi: 10.1038/s41566-022-01021-y – ident: e_1_2_9_52_1 doi: 10.1002/adma.202210854 – ident: e_1_2_9_38_1 doi: 10.1007/s12274-022-5046-3 – ident: e_1_2_9_28_1 doi: 10.1002/adma.201804945 – ident: e_1_2_9_32_1 doi: 10.1038/s41928-022-00824-9 – ident: e_1_2_9_57_1 doi: 10.1103/PhysRevB.45.13244 – ident: e_1_2_9_13_1 doi: 10.1126/science.abd3230 – ident: e_1_2_9_19_1 doi: 10.1126/science.abe8177 – ident: e_1_2_9_36_1 doi: 10.1021/acs.nanolett.8b03696 – ident: e_1_2_9_43_1 doi: 10.1063/1.2818370 – ident: e_1_2_9_5_1 doi: 10.1126/science.aad8609 – ident: e_1_2_9_7_1 doi: 10.1038/s41467-022-33617-x – ident: e_1_2_9_46_1 doi: 10.1063/1.4999199 – ident: e_1_2_9_4_1 doi: 10.1038/s41565-022-01252-8 – ident: e_1_2_9_51_1 doi: 10.1038/s41565-020-0700-y – ident: e_1_2_9_11_1 doi: 10.1103/PhysRevLett.120.227601 – ident: e_1_2_9_22_1 doi: 10.1038/nature02773 – ident: e_1_2_9_31_1 doi: 10.1038/nmat3687 |
SSID | ssj0009606 |
Score | 2.5372267 |
Snippet | Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain‐induced ferroelectric (FE)... Phase engineering by strain in 2D semiconductors is of great importance for a variety of applications. Here, a study of the strain-induced ferroelectric (FE)... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2300450 |
SubjectTerms | Bismuth bismuth oxyselenide ferroelectric transition Ferroelectricity Harmonic generations Materials science Mathematical analysis memristors Optoelectronics Piezoelectricity Pressure Semiconductivity Semiconductors strain engineering Switching |
Title | Achieving Ferroelectricity in a Centrosymmetric High‐Performance Semiconductor by Strain Engineering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202300450 https://www.ncbi.nlm.nih.gov/pubmed/36868783 https://www.proquest.com/docview/2821264715 https://www.proquest.com/docview/2783492298 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQJzi00N8UqFypUk-B2HEc57iCrlAlKgRF4hbZk4m6KiTV_hzgxCP0GfskeJzd7G6rqlJ7S2Rbdjwe-xtn5hvG3qscqxoqFwstvYGiBMQuS1wsa43GAaBACnA--6xPr9Sn6-x6JYq_44foL9xIM8J-TQpu3eRoSRpqq8AbJIkyKhjt5LBFqOhiyR9F8DyQ7aVZXGhlFqyNiTxab75-Kv0GNdeRazh6hk-ZXQy68zj5djibukO4_4XP8X--aoc9meNSPugW0i7bwOYZ215hK3zO6gF8HSFdQPAhjsdtl0FnBB7H81HDLQ83xe3k7vaW0nQBJx-Snw8_zpexCfySfPHbhkhm2zF3d_wy5KjgKx29YFfDj1-OT-N5moYYUr8_xA6lAoEpACQWwaCoE5RWFE4JBAeJqdA5W-QV5plAmxeZ0ZXKixysqDORvmSbTdvga8YdkbPa2rncgJK1MIWttXSq8iDR26E6YvFCTCXMOcxpmDdlx74sS5q_sp-_iH3o63_v2Dv-WHN_IfVyrsWT0pujwgPGXGQRe9cXe_2jnyq2wXbm61CmkkLKwkTsVbda-q5SbbTx5RGTQeZ_GUM5ODkb9G9v_qXRHtui586XbZ9tTsczPPCoaereBs14BL55EQE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB-BAkYCcUobOy_nwGHFstrSboVoK_WW2pOJWLVN0D6ElhM_gb_CX-En8Euw89ouCCEh9cAxsRNP7Bl7ZjLzDcDzIKYsx0y7PBLGQAk4ujr0tCvyiKRGJE42wXm0Fw0Pg7dH4dEafGtzYWp8iM7hZiWj2q-tgFuH9NYSNVRlFXCQsJhRodfEVe7Q4pOx2qavtvtmiV8IMXhz8HroNoUFXPQNR7uaRICcfET0FKEknnskFE90wAk1ejIjrVUSZxSHnFSchDLKgjiJUfE85L557yW4bMuIW7j-_vslYpU1CCp4Pz90kyiQLU6kJ7ZW6V09B39Tbld15eqwG9yA7-001TEuJ5vzmd7Ez78gSP5X83gTrjeqN-vVsnIL1qi4DdfOATLegbyHH8ZkfSxsQJNJWRcJGqMxVdi4YIpVzvByujg7s5XIkNkwmR9fvr5bpl-wfZtuUBYWR7ecML1g-1UZDnZuoLtweCEfeg_Wi7KgB8C0xZ9VudaxxEDkXCYqj4QOMqMHG1M7csBt-SLFBqbdknma1gDTIrXrlXbr5cDLrv_HGqDkjz03WjZLm41qmhqLmxudOOahA8-6ZrPF2P9GqqBybvrYYiyJEIl04H7Nnt1QfiQjadodEBWT_YWGtNcf9bqrh__y0FO4MjwY7aa723s7j-CqvV-H7m3A-mwyp8dGSZzpJ5VYMji-aP79Cea4cpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P8TWsBIIE5pY8dxnEMPK5ZVS2lVUSr1ltrORKzaJtX-CC0nHqGPwqv0FXgS7PxtF4SQkHrgmNiJHc-MPTOZ-QbgFY8xy02mfSqYNVA4Nb6OAu2zXKDUxiBFl-C8sys2D_j7w-hwCb63uTA1PkTncHOSUe3XTsDPsnx9Dhqqsgo3iDnIqChowiq3cfbFGm3jja2-pfBrxgbvPr3d9Ju6Ar4JLUP7Ghk3FENjTKDQSKR5gEzRRHOKRptAZqi1SuIM44iiipNIiozHSWwUzSMa2vdeg-tcBIkrFtH_OAescvZAhe4XRn4iuGxhIgO2vjjfxWPwN912UVWuzrrBHbhoV6kOcTlem070mvn6C4Dk_7SMd-F2o3iTXi0p92AJi_tw6xIc4wPIe-bzEJ2HhQxwNCrrEkFDYw0VMiyIIpUrvBzPTk9dHTJDXJDMj2_ne_PkC7Lvkg3KwqHoliOiZ2S_KsJBLg30EA6u5EMfwXJRFvgEiHbosyrXOpaGs5zKROWCaZ5ZLdga2sIDv2WL1DQg7W6aJ2kNL81SR6-0o5cHb7r-ZzU8yR97rrZcljbb1Di19ja1GnFMIw9eds12g3F_jVSB5dT2caVYEsYS6cHjmju7oUIhhbTtHrCKx_4yh7TX3-l1V0__5aEXcGOvP0g_bO1ur8BNd7uO21uF5clois-shjjRzyuhJHB01ez7Ew7IcUM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Ferroelectricity+in+a+Centrosymmetric+High%E2%80%90Performance+Semiconductor+by+Strain+Engineering&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Mengqi&rft.au=Lou%2C+Zhefeng&rft.au=Dai%2C+Chen%E2%80%90Min&rft.au=Wang%2C+Tao&rft.date=2023-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=22&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202300450&rft.externalDBID=10.1002%252Fadma.202300450&rft.externalDocID=ADMA202300450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |