Gate‐Tunable van der Waals Photodiodes with an Ultrahigh Peak‐to‐Valley Current Ratio
Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the externa...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 29; pp. e2300010 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible‐near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2) and black phosphorus (BP) is reported. The type‐I and type‐II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520–2000 nm. The built‐in potential at the MoTe2/BP interface can efficiently separate photoexcited electron–hole pairs with a high responsivity of 290 mA W−1, an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.
MoTe2/BP heterojunction photodiodes are demonstrated to show electrically‐tunable carrier transport and broadband photovoltaic performance. The device can realize a strong NDT behavior with a maximum PVCR of over 30. Assist with the built‐in potential, charge carriers can be efficiently separated, enabling a broadband photoresponse from 520 to 2000 nm, a high responsivity of 290 mA W‐1, and an EQE of 70%. |
---|---|
AbstractList | Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible‐near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2) and black phosphorus (BP) is reported. The type‐I and type‐II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520–2000 nm. The built‐in potential at the MoTe2/BP interface can efficiently separate photoexcited electron–hole pairs with a high responsivity of 290 mA W−1, an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.
MoTe2/BP heterojunction photodiodes are demonstrated to show electrically‐tunable carrier transport and broadband photovoltaic performance. The device can realize a strong NDT behavior with a maximum PVCR of over 30. Assist with the built‐in potential, charge carriers can be efficiently separated, enabling a broadband photoresponse from 520 to 2000 nm, a high responsivity of 290 mA W‐1, and an EQE of 70%. Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible‐near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe 2 ) and black phosphorus (BP) is reported. The type‐I and type‐II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520–2000 nm. The built‐in potential at the MoTe 2 /BP interface can efficiently separate photoexcited electron–hole pairs with a high responsivity of 290 mA W −1 , an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias. Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe ) and black phosphorus (BP) is reported. The type-I and type-II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520-2000 nm. The built-in potential at the MoTe /BP interface can efficiently separate photoexcited electron-hole pairs with a high responsivity of 290 mA W , an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias. Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible‐near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2) and black phosphorus (BP) is reported. The type‐I and type‐II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520–2000 nm. The built‐in potential at the MoTe2/BP interface can efficiently separate photoexcited electron–hole pairs with a high responsivity of 290 mA W−1, an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias. Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2 ) and black phosphorus (BP) is reported. The type-I and type-II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520-2000 nm. The built-in potential at the MoTe2 /BP interface can efficiently separate photoexcited electron-hole pairs with a high responsivity of 290 mA W-1 , an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2 ) and black phosphorus (BP) is reported. The type-I and type-II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520-2000 nm. The built-in potential at the MoTe2 /BP interface can efficiently separate photoexcited electron-hole pairs with a high responsivity of 290 mA W-1 , an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias. |
Author | Luo, Min Wei, Wenrui Dai, Fuxing Liu, Yufeng Zubair, Muhammad Fang, Yongzheng Wang, Jinjin Xie, Runzhang Dong, Lixin Fu, Xiao Dong, Yi Li, Yunhai Miao, Jinshui Zhao, Qixiao Kang, Mengyang Duan, Shikun Li, Tangxin Wang, Hailu Xia, Mengjia |
Author_xml | – sequence: 1 givenname: Muhammad surname: Zubair fullname: Zubair, Muhammad organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Hailu orcidid: 0000-0002-6771-7677 surname: Wang fullname: Wang, Hailu organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Qixiao orcidid: 0000-0001-6215-9832 surname: Zhao fullname: Zhao, Qixiao organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Mengyang surname: Kang fullname: Kang, Mengyang organization: Xidian University – sequence: 5 givenname: Mengjia surname: Xia fullname: Xia, Mengjia organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Min surname: Luo fullname: Luo, Min organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Yi surname: Dong fullname: Dong, Yi organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Shikun surname: Duan fullname: Duan, Shikun organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Fuxing surname: Dai fullname: Dai, Fuxing organization: University of Chinese Academy of Sciences – sequence: 10 givenname: Wenrui surname: Wei fullname: Wei, Wenrui organization: University of Chinese Academy of Sciences – sequence: 11 givenname: Yunhai surname: Li fullname: Li, Yunhai organization: Chinese Academy of Sciences – sequence: 12 givenname: Jinjin surname: Wang fullname: Wang, Jinjin organization: University of Chinese Academy of Sciences – sequence: 13 givenname: Tangxin surname: Li fullname: Li, Tangxin organization: University of Chinese Academy of Sciences – sequence: 14 givenname: Yongzheng surname: Fang fullname: Fang, Yongzheng organization: Shanghai Institute of Technology – sequence: 15 givenname: Yufeng surname: Liu fullname: Liu, Yufeng organization: Shanghai Institute of Technology – sequence: 16 givenname: Runzhang surname: Xie fullname: Xie, Runzhang organization: University of Chinese Academy of Sciences – sequence: 17 givenname: Xiao orcidid: 0000-0002-0976-220X surname: Fu fullname: Fu, Xiao organization: University of Chinese Academy of Sciences – sequence: 18 givenname: Lixin orcidid: 0000-0002-8816-4944 surname: Dong fullname: Dong, Lixin email: L.X.Dong@cityu.edu.hk organization: City University of Hong Kong – sequence: 19 givenname: Jinshui orcidid: 0000-0002-3041-1105 surname: Miao fullname: Miao, Jinshui email: jsmiao@mail.sitp.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37058131$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vFCEYh4mpsX_06tGQePGy6wvMDnA0G60ma2y01YMH8s7AuFR2aIGx6c2P4Gf0k8hm25o0MV6AhOd5A7_fIdkb4-gIecpgzgD4y7wJYc6BCwBg8IAcsJaJWau43rs7M9gnhzmfAwjGG_mI7AsJC8UEOyBfj7G43z9_nU4jdsHRHzhS6xL9ghgyPVnHEq2P1mV65cua1tuzUBKu_bc1PXH4vaol1uUzhuCu6XJKyY2FfsTi42PycKhT3JOb_YicvXl9unw7W304frd8tZr1QgqYdW3XWCtk0zVODq1daKWGttWql6pXqIdBgUMJquFdI3rUyAaBDlHYBYLl4oi82M29SPFycrmYjc-9CwFHF6dsuAKmpeZMVvT5PfQ8Tmmsr6uUULoVTOtKPbuhpm7jrLlIfoPp2tzGVoFmB_Qp5pzcYHpftl8eazY-GAZm247ZtmPu2qna_J52O_mfgt4JV76m-x_afHq_Wv11_wBBxKR1 |
CitedBy_id | crossref_primary_10_1002_aelm_202300496 crossref_primary_10_1002_adma_202306290 crossref_primary_10_1038_s41377_025_01756_7 crossref_primary_10_1021_acs_nanolett_4c03263 crossref_primary_10_1002_adom_202402720 crossref_primary_10_1002_adom_202400023 crossref_primary_10_1063_5_0157710 crossref_primary_10_1021_acsami_4c18901 crossref_primary_10_1002_adom_202400776 crossref_primary_10_1021_acsnano_4c10168 crossref_primary_10_1021_acs_nanolett_4c01679 |
Cites_doi | 10.1038/natrevmats.2016.42 10.1038/ncomms12174 10.1002/advs.202000991 10.1002/adma.201702522 10.1093/nsr/nwaa295 10.1038/nnano.2017.208 10.1002/adfm.201905970 10.1038/s41565-018-0102-6 10.1002/advs.201700323 10.1002/adfm.201802011 10.1002/smll.202103963 10.1021/acs.nanolett.6b00144 10.1021/acsnano.9b03342 10.1021/acs.nanolett.0c00741 10.1021/acsnano.6b00980 10.1021/nl501962c 10.1038/ncomms13413 10.1126/sciadv.aav3430 10.1364/OL.39.005130 10.1038/nnano.2014.25 10.1038/ncomms5651 10.1038/s41566-018-0239-8 10.1038/s41928-019-0364-5 10.1038/s41467-021-27195-7 10.1038/nnano.2014.150 10.1109/JSTQE.2013.2257992 10.1063/1.3633103 10.1126/science.1102896 10.1038/nnano.2014.222 10.1038/nmat4703 10.1021/acsnano.9b02817 10.1038/nnano.2014.35 10.1007/s40843-020-1356-3 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202300010 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 37058131 10_1002_smll_202300010 SMLL202300010 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Shanghai Post‐doctoral Excellence Program funderid: 2022669 – fundername: Shanghai Science and Technology Committee funderid: 23YF1455400 – fundername: International Partnership Program of Chinese Academy of Sciences funderid: 181331KYSB20200012 – fundername: Open Research Projects of Zhejiang Lab funderid: 2022NK0AB01 – fundername: National Key Research and Development Program of China funderid: 2021YFA0715602 – fundername: National Natural Science Foundation of China funderid: 62261136552; 62005303; 62134001 – fundername: Shanghai Post-doctoral Excellence Program grantid: 2022669 – fundername: National Natural Science Foundation of China grantid: 62261136552 – fundername: National Natural Science Foundation of China grantid: 62134001 – fundername: International Partnership Program of Chinese Academy of Sciences grantid: 181331KYSB20200012 – fundername: Shanghai Science and Technology Committee grantid: 23YF1455400 – fundername: Open Research Projects of Zhejiang Lab grantid: 2022NK0AB01 – fundername: National Key Research and Development Program of China grantid: 2021YFA0715602 – fundername: National Natural Science Foundation of China grantid: 62005303 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3730-b6b4dd374b4e7f6d5988f6698c78c8a9ff80ea70842b43ca9a1f3aeaa3d5a0d23 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 11:48:16 EDT 2025 Fri Jul 25 12:05:23 EDT 2025 Mon Jul 21 05:55:01 EDT 2025 Tue Jul 01 02:54:30 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Wed Jan 22 16:18:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | negative differential transconductance carrier transport heterostructures 2D materials |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-b6b4dd374b4e7f6d5988f6698c78c8a9ff80ea70842b43ca9a1f3aeaa3d5a0d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6215-9832 0000-0002-8816-4944 0000-0002-6771-7677 0000-0002-0976-220X 0000-0002-3041-1105 |
PMID | 37058131 |
PQID | 2838963199 |
PQPubID | 1046358 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2801979217 proquest_journals_2838963199 pubmed_primary_37058131 crossref_citationtrail_10_1002_smll_202300010 crossref_primary_10_1002_smll_202300010 wiley_primary_10_1002_smll_202300010_SMLL202300010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2018; 28 2019; 5 2017; 4 2020; 20 2020; 63 2019; 13 2016; 10 2011; 99 2017; 29 2004; 306 2016; 16 2013; 19 2020; 7 2016; 7 2014; 5 2016; 1 2020; 3 2021; 12 2020; 30 2017; 16 2017; 12 2014; 14 2014; 39 2014; 9 2018; 12 2022; 18 2018; 13 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 16 start-page: 2580 year: 2016 publication-title: Nano Lett. – volume: 18 year: 2022 publication-title: Small – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 13 start-page: 8193 year: 2019 publication-title: ACS Nano – volume: 9 start-page: 1024 year: 2014 publication-title: Nat. Nanotechnol. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 9 start-page: 262 year: 2014 publication-title: Nat. Nanotechnol. – volume: 63 start-page: 1570 year: 2020 publication-title: Sci. China Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 39 start-page: 5130 year: 2014 publication-title: Opt. Lett. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 2907 year: 2020 publication-title: Nano Lett. – volume: 99 year: 2011 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 404 year: 2018 publication-title: Nat. Nanotechnol. – volume: 8 year: 2021 publication-title: Natl Sci Rev – volume: 12 start-page: 7034 year: 2021 publication-title: Nat. Commun. – volume: 9 start-page: 372 year: 2014 publication-title: Nat. Nanotechnol. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 12 start-page: 601 year: 2018 publication-title: Nat. Photonics – volume: 14 start-page: 4785 year: 2014 publication-title: Nano Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 4651 year: 2014 publication-title: Nat. Commun. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 3 start-page: 106 year: 2020 publication-title: Nat. Electron. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 9 start-page: 676 year: 2014 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 7216 year: 2019 publication-title: ACS Nano – volume: 16 start-page: 170 year: 2017 publication-title: Nat. Mater. – volume: 19 year: 2013 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 10 start-page: 3852 year: 2016 publication-title: ACS Nano – volume: 12 start-page: 1148 year: 2017 publication-title: Nat. Nanotechnol. – ident: e_1_2_9_6_1 doi: 10.1038/natrevmats.2016.42 – ident: e_1_2_9_33_1 doi: 10.1038/ncomms12174 – ident: e_1_2_9_24_1 doi: 10.1002/advs.202000991 – ident: e_1_2_9_10_1 doi: 10.1002/adma.201702522 – ident: e_1_2_9_21_1 doi: 10.1093/nsr/nwaa295 – ident: e_1_2_9_22_1 doi: 10.1038/nnano.2017.208 – ident: e_1_2_9_23_1 doi: 10.1002/adfm.201905970 – ident: e_1_2_9_15_1 doi: 10.1038/s41565-018-0102-6 – ident: e_1_2_9_32_1 doi: 10.1002/advs.201700323 – ident: e_1_2_9_13_1 doi: 10.1002/adfm.201802011 – ident: e_1_2_9_5_1 doi: 10.1002/smll.202103963 – ident: e_1_2_9_26_1 doi: 10.1021/acs.nanolett.6b00144 – ident: e_1_2_9_25_1 doi: 10.1021/acsnano.9b03342 – ident: e_1_2_9_8_1 doi: 10.1021/acs.nanolett.0c00741 – ident: e_1_2_9_12_1 doi: 10.1021/acsnano.6b00980 – ident: e_1_2_9_11_1 doi: 10.1021/nl501962c – ident: e_1_2_9_27_1 doi: 10.1038/ncomms13413 – ident: e_1_2_9_30_1 doi: 10.1126/sciadv.aav3430 – ident: e_1_2_9_19_1 doi: 10.1364/OL.39.005130 – ident: e_1_2_9_3_1 doi: 10.1038/nnano.2014.25 – ident: e_1_2_9_28_1 doi: 10.1038/ncomms5651 – ident: e_1_2_9_17_1 doi: 10.1038/s41566-018-0239-8 – ident: e_1_2_9_29_1 doi: 10.1038/s41928-019-0364-5 – ident: e_1_2_9_16_1 doi: 10.1038/s41467-021-27195-7 – ident: e_1_2_9_4_1 doi: 10.1038/nnano.2014.150 – ident: e_1_2_9_20_1 doi: 10.1109/JSTQE.2013.2257992 – ident: e_1_2_9_18_1 doi: 10.1063/1.3633103 – ident: e_1_2_9_1_1 doi: 10.1126/science.1102896 – ident: e_1_2_9_2_1 doi: 10.1038/nnano.2014.222 – ident: e_1_2_9_7_1 doi: 10.1038/nmat4703 – ident: e_1_2_9_14_1 doi: 10.1021/acsnano.9b02817 – ident: e_1_2_9_31_1 doi: 10.1038/nnano.2014.35 – ident: e_1_2_9_9_1 doi: 10.1007/s40843-020-1356-3 |
SSID | ssj0031247 |
Score | 2.522884 |
Snippet | Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2300010 |
SubjectTerms | 2D materials Bias Carrier transport Electric fields Heterojunction devices heterostructures Infrared detectors Layered materials Molybdenum compounds Nanotechnology negative differential transconductance Photodiodes Photometers Quantum efficiency Tellurides Transconductance |
Title | Gate‐Tunable van der Waals Photodiodes with an Ultrahigh Peak‐to‐Valley Current Ratio |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300010 https://www.ncbi.nlm.nih.gov/pubmed/37058131 https://www.proquest.com/docview/2838963199 https://www.proquest.com/docview/2801979217 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6aeGIP47ZBoCAjIe0pkMZJbD8iRFWhMqGObkh7iBxfxNSuQW36AE_8BH4jv4TjJA1004QEL7nItuLY5_L59h2AA2VDYVUS-9pYigMUGfk8UsZnnCrL0AHqMiTL-bekO4jOruKrF6f4K36IZsLNaUZpr52Cy2x69EwaOv0zcksHCKGD6oyV27DlUFG_4Y-i6LzK6Cros3xHvDVnbQzCo8Xii17pH6i5iFxL19NZATmvdLXjZHg4K7JDdfcXn-N7_moVPtW4lBxXgrQGH8x4HT6-YCvcgF9upu3x_uFyVp63IojBiTYT8lOiCJOL67zI9e9cmylxk7sEUwejAm0ZDv8JWt4hFi1yvPxw4VtuSc0MRfpONj7DoHN6edL169gMvqJoFPwsySKtKYuyyDCb6FhwbpNEcMW44lJYywMjWcCjMIuokkK2LZVGSqpjGeiQfoGlcT42W0Ao41oqBC4Zgjcp8SZclDKuQiUsAlAP_HnfpKomLnfxM0ZpRbkcpq7R0qbRPPja5L-pKDv-m7M17-q0Vt1piniLo1VqC-HBfpOMSudWUuTY5DOXB5ExEzic82CzEpHmU5QFMW_Ttgdh2dGv1CH9ft7rNW_bbym0A8vuudpE3IKlYjIzuwiVimyvVIcn7ZkNgA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvB-BAkZC4pQ2GyexfUSIaoHdCpVdQOIQOX7QqttN1c0e4MRP4DfyS5hxHrAghASXRIltxbE9M5_H9jcAj41PlTdFHlvnOU5QdBbLzLhYSG68QANoQ0iW6X4xnmcv3-f9bkI6C9PyQwwON5KMoK9JwMkhvfuDNXR1sqC1A8TQSThkdZ7CeodZ1cHAIMXRfIX4Kmi1YqLe6nkbk3R3s_ymXfoNbG5i12B89q5A1Ve73XNyvLNuqh3z-RdGx__6r6twuYOm7Gk7lq7BObe8Dpd-Iiy8AR_I2fbty9fZOhy5YgjDmXVn7J3GUcxeH9ZNbY9q61aM_LsMU-eLBtXZ0cdDhsr3GIs2NV7eUgSXT6wjh2IHNDxuwnzv-ezZOO7CM8SGo16Iq6LKrOUiqzInfGFzJaUvCiWNkEZq5b1MnBaJzNIq40YrPfJcO625zXViU34Ltpb10t0BxoW02iB2qRC_aY03RYHKpEmN8ohBI4j7zilNx11OITQWZcu6nJbUaOXQaBE8GfKftqwdf8y53fd12UnvqkTIJVExjZSK4NGQjHJHiyl66eo15UFwLBTO6CK43Y6R4VNcJLkc8VEEaejpv9ShfDOdTIanu_9S6CFcGM-mk3LyYv_VPbhI79s9xduw1Zyt3X1ETk31IMjGd7kGEZs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL2qQKroorSF0rS0daVKrAKZ2IntZVU6omVACBhAYhE5fqjVTCeIySxg1U_oN_IlXCeZlAEhJLpJlNhWHPs-jl_nAnzWLpZOp0lorKM4QFEsFEzbkAuqHUcHaKqQLDu76Vaf_ThJTm6c4q_5IdoJN68Zlb32Cn5m3MY_0tDx76FfOkAIHVVnrOZZGgkv15v7LYEURe9VhVdBpxV65q0pbWMUb8yWn3VLd7DmLHStfE93EdS01vWWk8H6pMzX9eUtQsf_-a0X8LwBpuRLLUkv4YkdvYJnN-gKl-DUT7Vd_fl7OKkOXBEE4cTYc3KsUIbJ3s-iLMyvwtgx8bO7BFP7wxKNGY7_CZreARYtC7wc-fgtF6ShhiL7XjiWod_9dvh1K2yCM4SaolUI8zRnxlDOcma5S00ihXBpKoXmQgslnRORVTwSLM4Z1UqqjqPKKkVNoiIT09cwNypG9g0QyoVRGpFLjuhNKbxJH6ZM6FhLhwg0gHDaN5lumMt9AI1hVnMux5lvtKxttADW2vxnNWfHvTlXp12dNbo7zhBwCTRLHSkD-NQmo9b5pRQ1ssXE50FozCWO5wJYqUWk_RTlUSI6tBNAXHX0A3XIDnZ6vfbp7WMKfYSne5vdrPd9d_sdLPjX9YbiVZgrzyf2PcKmMv9QacY1k9wQUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gate%E2%80%90Tunable+van+der+Waals+Photodiodes+with+an+Ultrahigh+Peak%E2%80%90to%E2%80%90Valley+Current+Ratio&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zubair%2C+Muhammad&rft.au=Wang%2C+Hailu&rft.au=Zhao%2C+Qixiao&rft.au=Kang%2C+Mengyang&rft.date=2023-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=29&rft_id=info:doi/10.1002%2Fsmll.202300010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202300010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |