Gate‐Tunable van der Waals Photodiodes with an Ultrahigh Peak‐to‐Valley Current Ratio

Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the externa...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 29; pp. e2300010 - n/a
Main Authors Zubair, Muhammad, Wang, Hailu, Zhao, Qixiao, Kang, Mengyang, Xia, Mengjia, Luo, Min, Dong, Yi, Duan, Shikun, Dai, Fuxing, Wei, Wenrui, Li, Yunhai, Wang, Jinjin, Li, Tangxin, Fang, Yongzheng, Liu, Yufeng, Xie, Runzhang, Fu, Xiao, Dong, Lixin, Miao, Jinshui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible‐near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2) and black phosphorus (BP) is reported. The type‐I and type‐II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520–2000 nm. The built‐in potential at the MoTe2/BP interface can efficiently separate photoexcited electron–hole pairs with a high responsivity of 290 mA W−1, an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias. MoTe2/BP heterojunction photodiodes are demonstrated to show electrically‐tunable carrier transport and broadband photovoltaic performance. The device can realize a strong NDT behavior with a maximum PVCR of over 30. Assist with the built‐in potential, charge carriers can be efficiently separated, enabling a broadband photoresponse from 520 to 2000 nm, a high responsivity of 290 mA W‐1, and an EQE of 70%.
AbstractList Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible‐near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2) and black phosphorus (BP) is reported. The type‐I and type‐II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520–2000 nm. The built‐in potential at the MoTe2/BP interface can efficiently separate photoexcited electron–hole pairs with a high responsivity of 290 mA W−1, an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias. MoTe2/BP heterojunction photodiodes are demonstrated to show electrically‐tunable carrier transport and broadband photovoltaic performance. The device can realize a strong NDT behavior with a maximum PVCR of over 30. Assist with the built‐in potential, charge carriers can be efficiently separated, enabling a broadband photoresponse from 520 to 2000 nm, a high responsivity of 290 mA W‐1, and an EQE of 70%.
Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible‐near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe 2 ) and black phosphorus (BP) is reported. The type‐I and type‐II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520–2000 nm. The built‐in potential at the MoTe 2 /BP interface can efficiently separate photoexcited electron–hole pairs with a high responsivity of 290 mA W −1 , an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.
Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe ) and black phosphorus (BP) is reported. The type-I and type-II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520-2000 nm. The built-in potential at the MoTe /BP interface can efficiently separate photoexcited electron-hole pairs with a high responsivity of 290 mA W , an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.
Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost‐effective and lightweight devices. However, the underlying carrier transport across the 2D homo‐ or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible‐near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2) and black phosphorus (BP) is reported. The type‐I and type‐II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520–2000 nm. The built‐in potential at the MoTe2/BP interface can efficiently separate photoexcited electron–hole pairs with a high responsivity of 290 mA W−1, an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.
Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2 ) and black phosphorus (BP) is reported. The type-I and type-II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520-2000 nm. The built-in potential at the MoTe2 /BP interface can efficiently separate photoexcited electron-hole pairs with a high responsivity of 290 mA W-1 , an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2 ) and black phosphorus (BP) is reported. The type-I and type-II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520-2000 nm. The built-in potential at the MoTe2 /BP interface can efficiently separate photoexcited electron-hole pairs with a high responsivity of 290 mA W-1 , an external quantum efficiency of 70%, and a fast photoresponse of 78 µs under zero bias.
Author Luo, Min
Wei, Wenrui
Dai, Fuxing
Liu, Yufeng
Zubair, Muhammad
Fang, Yongzheng
Wang, Jinjin
Xie, Runzhang
Dong, Lixin
Fu, Xiao
Dong, Yi
Li, Yunhai
Miao, Jinshui
Zhao, Qixiao
Kang, Mengyang
Duan, Shikun
Li, Tangxin
Wang, Hailu
Xia, Mengjia
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Zubair
  fullname: Zubair, Muhammad
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Hailu
  orcidid: 0000-0002-6771-7677
  surname: Wang
  fullname: Wang, Hailu
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Qixiao
  orcidid: 0000-0001-6215-9832
  surname: Zhao
  fullname: Zhao, Qixiao
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Mengyang
  surname: Kang
  fullname: Kang, Mengyang
  organization: Xidian University
– sequence: 5
  givenname: Mengjia
  surname: Xia
  fullname: Xia, Mengjia
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Min
  surname: Luo
  fullname: Luo, Min
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Yi
  surname: Dong
  fullname: Dong, Yi
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Shikun
  surname: Duan
  fullname: Duan, Shikun
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Fuxing
  surname: Dai
  fullname: Dai, Fuxing
  organization: University of Chinese Academy of Sciences
– sequence: 10
  givenname: Wenrui
  surname: Wei
  fullname: Wei, Wenrui
  organization: University of Chinese Academy of Sciences
– sequence: 11
  givenname: Yunhai
  surname: Li
  fullname: Li, Yunhai
  organization: Chinese Academy of Sciences
– sequence: 12
  givenname: Jinjin
  surname: Wang
  fullname: Wang, Jinjin
  organization: University of Chinese Academy of Sciences
– sequence: 13
  givenname: Tangxin
  surname: Li
  fullname: Li, Tangxin
  organization: University of Chinese Academy of Sciences
– sequence: 14
  givenname: Yongzheng
  surname: Fang
  fullname: Fang, Yongzheng
  organization: Shanghai Institute of Technology
– sequence: 15
  givenname: Yufeng
  surname: Liu
  fullname: Liu, Yufeng
  organization: Shanghai Institute of Technology
– sequence: 16
  givenname: Runzhang
  surname: Xie
  fullname: Xie, Runzhang
  organization: University of Chinese Academy of Sciences
– sequence: 17
  givenname: Xiao
  orcidid: 0000-0002-0976-220X
  surname: Fu
  fullname: Fu, Xiao
  organization: University of Chinese Academy of Sciences
– sequence: 18
  givenname: Lixin
  orcidid: 0000-0002-8816-4944
  surname: Dong
  fullname: Dong, Lixin
  email: L.X.Dong@cityu.edu.hk
  organization: City University of Hong Kong
– sequence: 19
  givenname: Jinshui
  orcidid: 0000-0002-3041-1105
  surname: Miao
  fullname: Miao, Jinshui
  email: jsmiao@mail.sitp.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37058131$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vFCEYh4mpsX_06tGQePGy6wvMDnA0G60ma2y01YMH8s7AuFR2aIGx6c2P4Gf0k8hm25o0MV6AhOd5A7_fIdkb4-gIecpgzgD4y7wJYc6BCwBg8IAcsJaJWau43rs7M9gnhzmfAwjGG_mI7AsJC8UEOyBfj7G43z9_nU4jdsHRHzhS6xL9ghgyPVnHEq2P1mV65cua1tuzUBKu_bc1PXH4vaol1uUzhuCu6XJKyY2FfsTi42PycKhT3JOb_YicvXl9unw7W304frd8tZr1QgqYdW3XWCtk0zVODq1daKWGttWql6pXqIdBgUMJquFdI3rUyAaBDlHYBYLl4oi82M29SPFycrmYjc-9CwFHF6dsuAKmpeZMVvT5PfQ8Tmmsr6uUULoVTOtKPbuhpm7jrLlIfoPp2tzGVoFmB_Qp5pzcYHpftl8eazY-GAZm247ZtmPu2qna_J52O_mfgt4JV76m-x_afHq_Wv11_wBBxKR1
CitedBy_id crossref_primary_10_1002_aelm_202300496
crossref_primary_10_1002_adma_202306290
crossref_primary_10_1038_s41377_025_01756_7
crossref_primary_10_1021_acs_nanolett_4c03263
crossref_primary_10_1002_adom_202402720
crossref_primary_10_1002_adom_202400023
crossref_primary_10_1063_5_0157710
crossref_primary_10_1021_acsami_4c18901
crossref_primary_10_1002_adom_202400776
crossref_primary_10_1021_acsnano_4c10168
crossref_primary_10_1021_acs_nanolett_4c01679
Cites_doi 10.1038/natrevmats.2016.42
10.1038/ncomms12174
10.1002/advs.202000991
10.1002/adma.201702522
10.1093/nsr/nwaa295
10.1038/nnano.2017.208
10.1002/adfm.201905970
10.1038/s41565-018-0102-6
10.1002/advs.201700323
10.1002/adfm.201802011
10.1002/smll.202103963
10.1021/acs.nanolett.6b00144
10.1021/acsnano.9b03342
10.1021/acs.nanolett.0c00741
10.1021/acsnano.6b00980
10.1021/nl501962c
10.1038/ncomms13413
10.1126/sciadv.aav3430
10.1364/OL.39.005130
10.1038/nnano.2014.25
10.1038/ncomms5651
10.1038/s41566-018-0239-8
10.1038/s41928-019-0364-5
10.1038/s41467-021-27195-7
10.1038/nnano.2014.150
10.1109/JSTQE.2013.2257992
10.1063/1.3633103
10.1126/science.1102896
10.1038/nnano.2014.222
10.1038/nmat4703
10.1021/acsnano.9b02817
10.1038/nnano.2014.35
10.1007/s40843-020-1356-3
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202300010
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 37058131
10_1002_smll_202300010
SMLL202300010
Genre article
Journal Article
GrantInformation_xml – fundername: Shanghai Post‐doctoral Excellence Program
  funderid: 2022669
– fundername: Shanghai Science and Technology Committee
  funderid: 23YF1455400
– fundername: International Partnership Program of Chinese Academy of Sciences
  funderid: 181331KYSB20200012
– fundername: Open Research Projects of Zhejiang Lab
  funderid: 2022NK0AB01
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA0715602
– fundername: National Natural Science Foundation of China
  funderid: 62261136552; 62005303; 62134001
– fundername: Shanghai Post-doctoral Excellence Program
  grantid: 2022669
– fundername: National Natural Science Foundation of China
  grantid: 62261136552
– fundername: National Natural Science Foundation of China
  grantid: 62134001
– fundername: International Partnership Program of Chinese Academy of Sciences
  grantid: 181331KYSB20200012
– fundername: Shanghai Science and Technology Committee
  grantid: 23YF1455400
– fundername: Open Research Projects of Zhejiang Lab
  grantid: 2022NK0AB01
– fundername: National Key Research and Development Program of China
  grantid: 2021YFA0715602
– fundername: National Natural Science Foundation of China
  grantid: 62005303
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3730-b6b4dd374b4e7f6d5988f6698c78c8a9ff80ea70842b43ca9a1f3aeaa3d5a0d23
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:48:16 EDT 2025
Fri Jul 25 12:05:23 EDT 2025
Mon Jul 21 05:55:01 EDT 2025
Tue Jul 01 02:54:30 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Wed Jan 22 16:18:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords negative differential transconductance
carrier transport
heterostructures
2D materials
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-b6b4dd374b4e7f6d5988f6698c78c8a9ff80ea70842b43ca9a1f3aeaa3d5a0d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6215-9832
0000-0002-8816-4944
0000-0002-6771-7677
0000-0002-0976-220X
0000-0002-3041-1105
PMID 37058131
PQID 2838963199
PQPubID 1046358
PageCount 7
ParticipantIDs proquest_miscellaneous_2801979217
proquest_journals_2838963199
pubmed_primary_37058131
crossref_citationtrail_10_1002_smll_202300010
crossref_primary_10_1002_smll_202300010
wiley_primary_10_1002_smll_202300010_SMLL202300010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2018; 28
2019; 5
2017; 4
2020; 20
2020; 63
2019; 13
2016; 10
2011; 99
2017; 29
2004; 306
2016; 16
2013; 19
2020; 7
2016; 7
2014; 5
2016; 1
2020; 3
2021; 12
2020; 30
2017; 16
2017; 12
2014; 14
2014; 39
2014; 9
2018; 12
2022; 18
2018; 13
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 16
  start-page: 2580
  year: 2016
  publication-title: Nano Lett.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 13
  start-page: 8193
  year: 2019
  publication-title: ACS Nano
– volume: 9
  start-page: 1024
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 9
  start-page: 262
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 63
  start-page: 1570
  year: 2020
  publication-title: Sci. China Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 39
  start-page: 5130
  year: 2014
  publication-title: Opt. Lett.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 2907
  year: 2020
  publication-title: Nano Lett.
– volume: 99
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 404
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 8
  year: 2021
  publication-title: Natl Sci Rev
– volume: 12
  start-page: 7034
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 372
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 12
  start-page: 601
  year: 2018
  publication-title: Nat. Photonics
– volume: 14
  start-page: 4785
  year: 2014
  publication-title: Nano Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 4651
  year: 2014
  publication-title: Nat. Commun.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 3
  start-page: 106
  year: 2020
  publication-title: Nat. Electron.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 9
  start-page: 676
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 7216
  year: 2019
  publication-title: ACS Nano
– volume: 16
  start-page: 170
  year: 2017
  publication-title: Nat. Mater.
– volume: 19
  year: 2013
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 10
  start-page: 3852
  year: 2016
  publication-title: ACS Nano
– volume: 12
  start-page: 1148
  year: 2017
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_9_6_1
  doi: 10.1038/natrevmats.2016.42
– ident: e_1_2_9_33_1
  doi: 10.1038/ncomms12174
– ident: e_1_2_9_24_1
  doi: 10.1002/advs.202000991
– ident: e_1_2_9_10_1
  doi: 10.1002/adma.201702522
– ident: e_1_2_9_21_1
  doi: 10.1093/nsr/nwaa295
– ident: e_1_2_9_22_1
  doi: 10.1038/nnano.2017.208
– ident: e_1_2_9_23_1
  doi: 10.1002/adfm.201905970
– ident: e_1_2_9_15_1
  doi: 10.1038/s41565-018-0102-6
– ident: e_1_2_9_32_1
  doi: 10.1002/advs.201700323
– ident: e_1_2_9_13_1
  doi: 10.1002/adfm.201802011
– ident: e_1_2_9_5_1
  doi: 10.1002/smll.202103963
– ident: e_1_2_9_26_1
  doi: 10.1021/acs.nanolett.6b00144
– ident: e_1_2_9_25_1
  doi: 10.1021/acsnano.9b03342
– ident: e_1_2_9_8_1
  doi: 10.1021/acs.nanolett.0c00741
– ident: e_1_2_9_12_1
  doi: 10.1021/acsnano.6b00980
– ident: e_1_2_9_11_1
  doi: 10.1021/nl501962c
– ident: e_1_2_9_27_1
  doi: 10.1038/ncomms13413
– ident: e_1_2_9_30_1
  doi: 10.1126/sciadv.aav3430
– ident: e_1_2_9_19_1
  doi: 10.1364/OL.39.005130
– ident: e_1_2_9_3_1
  doi: 10.1038/nnano.2014.25
– ident: e_1_2_9_28_1
  doi: 10.1038/ncomms5651
– ident: e_1_2_9_17_1
  doi: 10.1038/s41566-018-0239-8
– ident: e_1_2_9_29_1
  doi: 10.1038/s41928-019-0364-5
– ident: e_1_2_9_16_1
  doi: 10.1038/s41467-021-27195-7
– ident: e_1_2_9_4_1
  doi: 10.1038/nnano.2014.150
– ident: e_1_2_9_20_1
  doi: 10.1109/JSTQE.2013.2257992
– ident: e_1_2_9_18_1
  doi: 10.1063/1.3633103
– ident: e_1_2_9_1_1
  doi: 10.1126/science.1102896
– ident: e_1_2_9_2_1
  doi: 10.1038/nnano.2014.222
– ident: e_1_2_9_7_1
  doi: 10.1038/nmat4703
– ident: e_1_2_9_14_1
  doi: 10.1021/acsnano.9b02817
– ident: e_1_2_9_31_1
  doi: 10.1038/nnano.2014.35
– ident: e_1_2_9_9_1
  doi: 10.1007/s40843-020-1356-3
SSID ssj0031247
Score 2.522884
Snippet Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300010
SubjectTerms 2D materials
Bias
Carrier transport
Electric fields
Heterojunction devices
heterostructures
Infrared detectors
Layered materials
Molybdenum compounds
Nanotechnology
negative differential transconductance
Photodiodes
Photometers
Quantum efficiency
Tellurides
Transconductance
Title Gate‐Tunable van der Waals Photodiodes with an Ultrahigh Peak‐to‐Valley Current Ratio
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300010
https://www.ncbi.nlm.nih.gov/pubmed/37058131
https://www.proquest.com/docview/2838963199
https://www.proquest.com/docview/2801979217
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6aeGIP47ZBoCAjIe0pkMZJbD8iRFWhMqGObkh7iBxfxNSuQW36AE_8BH4jv4TjJA1004QEL7nItuLY5_L59h2AA2VDYVUS-9pYigMUGfk8UsZnnCrL0AHqMiTL-bekO4jOruKrF6f4K36IZsLNaUZpr52Cy2x69EwaOv0zcksHCKGD6oyV27DlUFG_4Y-i6LzK6Cros3xHvDVnbQzCo8Xii17pH6i5iFxL19NZATmvdLXjZHg4K7JDdfcXn-N7_moVPtW4lBxXgrQGH8x4HT6-YCvcgF9upu3x_uFyVp63IojBiTYT8lOiCJOL67zI9e9cmylxk7sEUwejAm0ZDv8JWt4hFi1yvPxw4VtuSc0MRfpONj7DoHN6edL169gMvqJoFPwsySKtKYuyyDCb6FhwbpNEcMW44lJYywMjWcCjMIuokkK2LZVGSqpjGeiQfoGlcT42W0Ao41oqBC4Zgjcp8SZclDKuQiUsAlAP_HnfpKomLnfxM0ZpRbkcpq7R0qbRPPja5L-pKDv-m7M17-q0Vt1piniLo1VqC-HBfpOMSudWUuTY5DOXB5ExEzic82CzEpHmU5QFMW_Ttgdh2dGv1CH9ft7rNW_bbym0A8vuudpE3IKlYjIzuwiVimyvVIcn7ZkNgA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvB-BAkZC4pQ2GyexfUSIaoHdCpVdQOIQOX7QqttN1c0e4MRP4DfyS5hxHrAghASXRIltxbE9M5_H9jcAj41PlTdFHlvnOU5QdBbLzLhYSG68QANoQ0iW6X4xnmcv3-f9bkI6C9PyQwwON5KMoK9JwMkhvfuDNXR1sqC1A8TQSThkdZ7CeodZ1cHAIMXRfIX4Kmi1YqLe6nkbk3R3s_ymXfoNbG5i12B89q5A1Ve73XNyvLNuqh3z-RdGx__6r6twuYOm7Gk7lq7BObe8Dpd-Iiy8AR_I2fbty9fZOhy5YgjDmXVn7J3GUcxeH9ZNbY9q61aM_LsMU-eLBtXZ0cdDhsr3GIs2NV7eUgSXT6wjh2IHNDxuwnzv-ezZOO7CM8SGo16Iq6LKrOUiqzInfGFzJaUvCiWNkEZq5b1MnBaJzNIq40YrPfJcO625zXViU34Ltpb10t0BxoW02iB2qRC_aY03RYHKpEmN8ohBI4j7zilNx11OITQWZcu6nJbUaOXQaBE8GfKftqwdf8y53fd12UnvqkTIJVExjZSK4NGQjHJHiyl66eo15UFwLBTO6CK43Y6R4VNcJLkc8VEEaejpv9ShfDOdTIanu_9S6CFcGM-mk3LyYv_VPbhI79s9xduw1Zyt3X1ETk31IMjGd7kGEZs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL2qQKroorSF0rS0daVKrAKZ2IntZVU6omVACBhAYhE5fqjVTCeIySxg1U_oN_IlXCeZlAEhJLpJlNhWHPs-jl_nAnzWLpZOp0lorKM4QFEsFEzbkAuqHUcHaKqQLDu76Vaf_ThJTm6c4q_5IdoJN68Zlb32Cn5m3MY_0tDx76FfOkAIHVVnrOZZGgkv15v7LYEURe9VhVdBpxV65q0pbWMUb8yWn3VLd7DmLHStfE93EdS01vWWk8H6pMzX9eUtQsf_-a0X8LwBpuRLLUkv4YkdvYJnN-gKl-DUT7Vd_fl7OKkOXBEE4cTYc3KsUIbJ3s-iLMyvwtgx8bO7BFP7wxKNGY7_CZreARYtC7wc-fgtF6ShhiL7XjiWod_9dvh1K2yCM4SaolUI8zRnxlDOcma5S00ihXBpKoXmQgslnRORVTwSLM4Z1UqqjqPKKkVNoiIT09cwNypG9g0QyoVRGpFLjuhNKbxJH6ZM6FhLhwg0gHDaN5lumMt9AI1hVnMux5lvtKxttADW2vxnNWfHvTlXp12dNbo7zhBwCTRLHSkD-NQmo9b5pRQ1ssXE50FozCWO5wJYqUWk_RTlUSI6tBNAXHX0A3XIDnZ6vfbp7WMKfYSne5vdrPd9d_sdLPjX9YbiVZgrzyf2PcKmMv9QacY1k9wQUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gate%E2%80%90Tunable+van+der+Waals+Photodiodes+with+an+Ultrahigh+Peak%E2%80%90to%E2%80%90Valley+Current+Ratio&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zubair%2C+Muhammad&rft.au=Wang%2C+Hailu&rft.au=Zhao%2C+Qixiao&rft.au=Kang%2C+Mengyang&rft.date=2023-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=29&rft_id=info:doi/10.1002%2Fsmll.202300010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202300010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon