Corrosion Chemistry of Electrocatalysts
Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 52; pp. e2200840 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure–activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion‐resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond.
Corrosion chemistry of electrocatalysts is reviewed, which may inspire more profound research in functional nanomaterials and energy technologies. |
---|---|
AbstractList | Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond. Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond.Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond. Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure–activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion‐resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond. Corrosion chemistry of electrocatalysts is reviewed, which may inspire more profound research in functional nanomaterials and energy technologies. |
Author | Li, Fu‐Min Huang, Lei Guo, Wei Guo, Xingpeng Zaman, Shahid Liu, Hongfang Xia, Bao Yu |
Author_xml | – sequence: 1 givenname: Fu‐Min surname: Li fullname: Li, Fu‐Min organization: Huazhong University of Science and Technology (HUST) – sequence: 2 givenname: Lei surname: Huang fullname: Huang, Lei organization: Huazhong University of Science and Technology (HUST) – sequence: 3 givenname: Shahid surname: Zaman fullname: Zaman, Shahid organization: Huazhong University of Science and Technology (HUST) – sequence: 4 givenname: Wei surname: Guo fullname: Guo, Wei organization: Huazhong University of Science and Technology (HUST) – sequence: 5 givenname: Hongfang surname: Liu fullname: Liu, Hongfang organization: Huazhong University of Science and Technology (HUST) – sequence: 6 givenname: Xingpeng surname: Guo fullname: Guo, Xingpeng organization: Huazhong University of Science and Technology (HUST) – sequence: 7 givenname: Bao Yu orcidid: 0000-0002-2054-908X surname: Xia fullname: Xia, Bao Yu email: byxia@hust.edu.cn organization: Huazhong University of Science and Technology (HUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35334145$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLw0AURgep2IduXUrBhW5S77ySzLLE-oCKG10Pk2SCKWmmzkyQ_HuntFYoiKu7Od937z1jNGhNqxG6xDDDAOROlWs1I0AIQMrgBI0wJzhiIPgAjUBQHomYpUM0dm4FACKG-AwNKaeUYcZH6CYz1hpXm3aafeh17bztp6aaLhpdeGsK5VXTO-_O0WmlGqcv9nOC3h8Wb9lTtHx9fM7my6igCYUopyIhiiZ5qkBUglZYxJyWLE6YjhUDRmkKwDWDRGnBIS14ydIc8iIGhtOETtDtrndjzWennZfhpkI3jWq16ZwkMWNAQisO6PURujKdbcN1kiQ8TVh4dlt4tae6fK1LubH1Wtle_igIwGwHFMGDs7o6IBjk1rHcOpYHxyHAjgJF7ZUPCr1VdfN3TOxiX3Wj-3-WyPn9y_w3-w1MEYyq |
CitedBy_id | crossref_primary_10_1039_D4EE02365J crossref_primary_10_1002_smll_202307970 crossref_primary_10_1002_adma_202404773 crossref_primary_10_3390_nano13212818 crossref_primary_10_1007_s41062_025_01902_5 crossref_primary_10_3389_fchem_2022_1066958 crossref_primary_10_1039_D3TA02889E crossref_primary_10_1002_ange_202317058 crossref_primary_10_1002_bte2_20220060 crossref_primary_10_1002_smll_202404545 crossref_primary_10_1021_acsnano_4c06675 crossref_primary_10_1039_D5CC00344J crossref_primary_10_1039_D3SE00315A crossref_primary_10_1002_adfm_202302297 crossref_primary_10_1002_aenm_202203113 crossref_primary_10_1039_D2TA07647K crossref_primary_10_1002_adfm_202301565 crossref_primary_10_1021_accountsmr_2c00261 crossref_primary_10_1039_D3TA05325C crossref_primary_10_1002_adma_202211177 crossref_primary_10_1002_advs_202309775 crossref_primary_10_1016_j_jcis_2025_02_066 crossref_primary_10_1021_acssuschemeng_4c05081 crossref_primary_10_1007_s40820_024_01347_y crossref_primary_10_1002_adfm_202405726 crossref_primary_10_1039_D3QM00012E crossref_primary_10_1515_corrrev_2024_0046 crossref_primary_10_1039_D2SE01197B crossref_primary_10_3390_nano13162329 crossref_primary_10_1016_j_cej_2024_156754 crossref_primary_10_1021_acsenergylett_4c00275 crossref_primary_10_1039_D3QM00558E crossref_primary_10_20517_energymater_2023_66 crossref_primary_10_1021_acscatal_4c02696 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1002_cssc_202401881 crossref_primary_10_1039_D4EE00173G crossref_primary_10_1021_acsami_4c18592 crossref_primary_10_1002_smll_202309823 crossref_primary_10_1039_D3GC05033E crossref_primary_10_1021_acs_chemrev_3c00402 crossref_primary_10_3390_ma16186217 crossref_primary_10_1021_acs_chemrev_3c00723 crossref_primary_10_1039_D3EE04023B crossref_primary_10_1002_smll_202204474 crossref_primary_10_1002_adma_202304621 crossref_primary_10_1016_j_jcis_2024_03_132 crossref_primary_10_1002_aenm_202400112 crossref_primary_10_1039_D3YA00434A crossref_primary_10_1002_celc_202400346 crossref_primary_10_1016_j_cej_2024_153193 crossref_primary_10_1039_D2CS00681B crossref_primary_10_1016_j_cej_2024_157275 crossref_primary_10_1002_anie_202317058 crossref_primary_10_1021_acselectrochem_4c00066 crossref_primary_10_1002_cctc_202201100 crossref_primary_10_3390_catal12111470 crossref_primary_10_1021_acs_chemmater_4c00828 crossref_primary_10_1002_adma_202303052 crossref_primary_10_1039_D3CY00364G crossref_primary_10_1002_adsu_202300475 crossref_primary_10_1021_jacs_4c16707 crossref_primary_10_1016_j_conbuildmat_2024_139096 crossref_primary_10_1016_j_nanoen_2023_109149 crossref_primary_10_1021_acsomega_4c01236 crossref_primary_10_1016_j_rechem_2024_101392 crossref_primary_10_1002_adma_202402184 crossref_primary_10_3390_membranes13070669 crossref_primary_10_1007_s12274_022_5006_y crossref_primary_10_1039_D2QI02020C crossref_primary_10_1016_j_apsusc_2024_160128 crossref_primary_10_1039_D3QM01062G crossref_primary_10_1016_j_apcatb_2024_124415 crossref_primary_10_1039_D2CC06688B crossref_primary_10_1016_j_jelechem_2023_117788 |
Cites_doi | 10.1039/D0EE03500A 10.1038/35068529 10.1021/acs.nanolett.5b04636 10.1021/acsenergylett.9b00382 10.1002/adma.201806326 10.1002/ange.202015723 10.1126/science.1249061 10.1021/jacs.7b08071 10.1038/s41929-019-0364-x 10.1038/nchem.623 10.1021/cs500449q 10.1038/natrevmats.2017.59 10.1002/adma.201905744 10.1002/smtd.202000016 10.1002/smsc.202100010 10.1126/science.aad4998 10.1021/jacs.7b02378 10.1039/C9EE01899A 10.1038/s41467-018-05019-5 10.1021/acscatal.5b02920 10.1021/acscatal.9b05292 10.1002/anie.202005248 10.1021/jacs.8b11237 10.1002/smsc.202100030 10.1002/aenm.201602928 10.1039/D1EE02606B 10.1016/j.nanoen.2021.106160 10.1021/acs.accounts.0c00127 10.1126/science.aad8471 10.1126/science.aad8892 10.1126/science.aaa8765 10.1126/science.1134569 10.1126/science.aaf5050 10.1002/adma.202003297 10.1016/j.apcatb.2007.09.047 10.1039/C8TA05710A 10.1002/aenm.201700396 10.1126/science.aaf9050 10.1002/anie.201900402 10.1016/0008-6223(84)90015-0 10.3866/PKU.WHXB202009035 10.1021/ja01539a017 10.1002/anie.201406455 10.1016/j.jechem.2020.07.012 10.1016/j.joule.2019.12.014 10.1002/smtd.202000248 10.1002/adma.201605254 10.1007/s12678-017-0438-y 10.1021/acs.chemrev.9b00466 10.1002/adma.202100745 10.1021/jacs.5b11364 10.1126/science.aaw7493 10.1021/acs.chemrev.0c00594 10.1021/cr100060r 10.1038/s41929-018-0085-6 10.1126/science.1168049 10.1039/C9SC02605C 10.1126/science.abj9980 10.1039/C9SE00074G 10.1002/anie.202112447 10.1039/C8CS00671G 10.1002/anie.202014711 10.1039/C4EE04086D 10.1002/sstr.202000051 10.1021/ja308570c 10.1021/acsaem.9b01562 10.1038/s41467-018-03372-z 10.1021/acscatal.0c00847 10.1039/c2cs35173k 10.1002/anie.202115835 10.1002/adma.200702700 10.1016/0008-6223(92)90036-V 10.1039/C9TA07289F 10.1002/sstr.202000067 10.1038/s41467-019-08323-w 10.1021/acscatal.0c01783 10.1016/j.joule.2020.09.002 10.1039/D1EE00166C 10.1002/anie.201901923 10.1002/adfm.202009032 10.1021/acscatal.0c01641 10.1002/anie.201411544 10.1038/s41929-020-0497-y 10.1002/anie.202104747 10.1002/smsc.202100043 10.1002/anie.201509616 10.1002/anie.202100337 10.1002/smsc.202000059 10.1039/C9EE01000A 10.1016/j.cclet.2019.12.009 10.1021/cr050182l 10.1126/science.aab0801 10.1021/acs.jpcc.9b04305 10.1021/acs.accounts.0c00488 10.1038/nmat3458 10.1002/anie.201909475 10.1021/acsenergylett.0c00305 10.1002/anie.202015060 10.1021/jp2068446 10.1021/jacs.5b09653 10.1038/s41563-020-0735-3 10.1007/b118420 10.1007/s12274-014-0695-5 10.1002/sstr.202000048 10.1021/j100213a020 10.1002/smsc.202000027 10.1007/s100080050145 10.1039/C4EE01564A 10.1002/anie.202111426 10.1021/ja104421t 10.1038/s41560-020-00709-1 10.1021/ja9071496 10.1016/j.nanoen.2016.03.005 10.1016/j.jcis.2020.06.027 10.1021/nn402406k 10.1038/nenergy.2015.6 10.1126/science.aau0630 10.1002/smsc.202100011 10.1515/zpch-2019-1480 10.1039/D0TA02957B 10.1039/D0CS00962H 10.1002/smll.202006805 10.1039/C8SC04589E 10.1016/0008-6223(92)90164-R 10.1038/s41929-017-0017-x 10.1021/acs.accounts.8b00449 10.1038/s41467-017-02479-z 10.1002/smsc.202100015 10.1038/s41467-020-18891-x 10.1002/adma.201802066 10.1038/s41560-021-00824-7 10.1016/j.pmatsci.2020.100770 10.1002/anie.202000657 10.1126/science.aav3506 10.1038/s41929-019-0400-x 10.1021/acs.chemrev.1c00234 10.1021/cs501973j 10.1002/smtd.202101186 10.1016/j.scib.2020.04.022 10.1126/science.aah6133 10.1039/D1CP01989A 10.1002/anie.201207256 10.1002/adma.201907879 10.1016/j.chempr.2018.11.010 10.1002/adma.202000381 10.1002/aenm.202101998 10.1016/j.chempr.2020.06.004 10.1039/C9CS00607A 10.1039/D0EE02800B 10.1021/acscatal.9b04043 10.1126/sciadv.abj1584 10.1002/anie.202110186 10.1002/aenm.202103916 10.1126/science.272.5270.1924 10.1002/smsc.202000028 10.1007/BF03214756 10.1002/anie.202200552 10.1021/jacs.6b13100 10.1021/acscatal.9b03359 10.1021/ja300756y 10.1002/adma.202103266 10.1002/anie.202016977 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202200840 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35334145 10_1002_adma_202200840 ADMA202200840 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2021YFA1600800 – fundername: Innovation and Talent Recruitment Base of New Energy Chemistry and Device funderid: B21003 – fundername: National Key Research and Development Program of China grantid: 2021YFA1600800 – fundername: Innovation and Talent Recruitment Base of New Energy Chemistry and Device grantid: B21003 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3730-b3972a37b8a09f93f19653d4674e6a404338005e407ae9508c5d48b0bc6041873 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:40:34 EDT 2025 Fri Jul 25 08:34:21 EDT 2025 Mon Jul 21 06:02:13 EDT 2025 Tue Jul 01 02:33:15 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 16:19:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | reconstruction corrosion electrocatalysts electrochemical reaction electrolytes |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-b3972a37b8a09f93f19653d4674e6a404338005e407ae9508c5d48b0bc6041873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2054-908X |
PMID | 35334145 |
PQID | 2758749607 |
PQPubID | 2045203 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2644021961 proquest_journals_2758749607 pubmed_primary_35334145 crossref_primary_10_1002_adma_202200840 crossref_citationtrail_10_1002_adma_202200840 wiley_primary_10_1002_adma_202200840_ADMA202200840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2007; 107 2019; 10 2019; 12 2020; 13 2020; 11 2020; 10 2013; 7 2011; 111 2020; 19 2018; 6 2018; 9 2001; 410 2012; 134 2015; 137 2018; 1 2020; 579 2018; 30 2010; 2 2019; 7 2019; 9 2019; 4 2019; 3 2019; 5 2019; 31 2019; 2 2015; 54 2020; 37 2020; 32 2021; 50 2016; 16 2017; 139 1992; 30 2016; 6 2021; 54 2016; 1 2021; 55 2007; 315 2020; 31 2022; 6 1997; 30 2022; 8 2019; 48 2021; 133 2021; 374 2016; 29 2021; 60 2012; 41 2018; 362 2017; 7 2017; 2 2021; 23 2020; 120 1984; 22 2019; 58 2020; 59 2019; 366 2008; 79 2015; 349 2021; 121 2015; 348 2017; 355 2019; 364 2019; 123 2012; 51 2020; 8 2020; 6 2020; 5 2020; 4 2020; 3 2014; 4 2021; 33 2020; 53 2013; 12 2021; 118 2020; 49 2016; 354 2016; 353 2016; 352 1958; 80 2014; 7 2009; 323 2014; 53 2021; 6 2021; 87 2015; 5 2009; 21 2021; 2 2004 1999; 3 2017; 29 2021; 1 2019; 141 2015; 8 2016; 55 2021; 14 2021; 11 2022 2021 2022; 61 1982; 86 2021; 17 1996; 272 2010; 132 2018; 51 2016; 138 2020; 234 2020; 65 2014; 343 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_148_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_144_1 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_151_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 Chen J. (e_1_2_11_23_1) 2021 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_1_1 e_1_2_11_141_1 e_1_2_11_164_1 e_1_2_11_160_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_156_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_133_1 e_1_2_11_152_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_142_1 e_1_2_11_161_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_19_1 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_143_1 e_1_2_11_120_1 e_1_2_11_162_1 e_1_2_11_82_1 Perez N. (e_1_2_11_27_1) 2004 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_158_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_154_1 e_1_2_11_112_1 e_1_2_11_131_1 e_1_2_11_150_1 |
References_xml | – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 4061 year: 2014 publication-title: Energy Environ. Sci. – year: 2022 publication-title: Adv. Energy Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 352 start-page: 73 year: 2016 publication-title: Science – volume: 352 start-page: 974 year: 2016 publication-title: Science – volume: 4 start-page: 987 year: 2019 publication-title: ACS Energy Lett. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 54 start-page: 311 year: 2021 publication-title: Acc. Chem. Res. – volume: 12 start-page: 2820 year: 2019 publication-title: Energy Environ. Sci. – volume: 9 start-page: 153 year: 2018 publication-title: Electrocatalysis – volume: 10 start-page: 2019 year: 2019 publication-title: Chem. Sci. – volume: 374 start-page: 459 year: 2021 publication-title: Science – volume: 30 start-page: 797 year: 1992 publication-title: Carbon – volume: 3 start-page: 1668 year: 2019 publication-title: Sustainable Energy Fuels – volume: 364 year: 2019 publication-title: Science – volume: 30 start-page: 43 year: 1997 publication-title: Gold Bull. – volume: 111 start-page: 7625 year: 2011 publication-title: Chem. Rev. – volume: 139 start-page: 7893 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1011 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 1450 year: 2015 publication-title: Energy Environ. Sci. – volume: 12 start-page: 81 year: 2013 publication-title: Nat. Mater. – volume: 80 start-page: 1339 year: 1958 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 1719 year: 2016 publication-title: Nano Lett. – volume: 14 start-page: 6546 year: 2021 publication-title: Energy Environ. Sci. – volume: 6 start-page: 2257 year: 2020 publication-title: Chem – volume: 22 start-page: 423 year: 1984 publication-title: Carbon – volume: 65 start-page: 1547 year: 2020 publication-title: Sci. Bull. – volume: 49 start-page: 2196 year: 2020 publication-title: Chem. Soc. Rev. – volume: 355 year: 2017 publication-title: Science – volume: 366 start-page: 850 year: 2019 publication-title: Science – volume: 10 start-page: 440 year: 2019 publication-title: Nat. Commun. – volume: 53 start-page: 1111 year: 2020 publication-title: Acc. Chem. Res. – volume: 353 start-page: 1011 year: 2016 publication-title: Science – volume: 3 start-page: 754 year: 2020 publication-title: Nat. Catal. – volume: 41 start-page: 8035 year: 2012 publication-title: Chem. Soc. Rev. – volume: 134 start-page: 8535 year: 2012 publication-title: J. Am. Chem. Soc. – year: 2021 publication-title: Adv. Mater. – volume: 234 start-page: 1115 year: 2020 publication-title: Z. Phys. Chem. – volume: 10 start-page: 743 year: 2019 publication-title: ACS Catal. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 10 start-page: 4640 year: 2020 publication-title: ACS Catal. – volume: 410 start-page: 450 year: 2001 publication-title: Nature – volume: 132 start-page: 596 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2968 year: 2018 publication-title: Acc. Chem. Res. – volume: 30 start-page: 391 year: 1992 publication-title: Carbon – volume: 48 start-page: 3181 year: 2019 publication-title: Chem. Soc. Rev. – volume: 87 year: 2021 publication-title: Nano Energy – volume: 138 start-page: 1575 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 17 year: 2021 publication-title: Small – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 343 start-page: 1339 year: 2014 publication-title: Science – volume: 10 start-page: 7975 year: 2019 publication-title: Chem. Sci. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 418 year: 2015 publication-title: Nano Res. – volume: 5 start-page: 445 year: 2019 publication-title: Chem – volume: 2 start-page: 955 year: 2019 publication-title: Nat. Catal. – volume: 58 start-page: 7273 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 348 start-page: 1230 year: 2015 publication-title: Science – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 year: 2019 publication-title: ACS Catal. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 354 start-page: 1414 year: 2016 publication-title: Science – volume: 7 start-page: 5666 year: 2013 publication-title: ACS Nano – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 2 start-page: 454 year: 2010 publication-title: Nat. Chem. – volume: 21 start-page: 2165 year: 2009 publication-title: Adv. Mater. – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 133 start-page: 7127 year: 2021 publication-title: Angew. Chem. – volume: 6 start-page: 475 year: 2021 publication-title: Nat. Energy – volume: 59 start-page: 1585 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 118 year: 2021 publication-title: Prog. Mater. Sci. – volume: 9 start-page: 145 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 1281 year: 2020 publication-title: ACS Energy Lett. – volume: 19 start-page: 1207 year: 2020 publication-title: Nat. Mater. – volume: 29 start-page: 275 year: 2016 publication-title: Nano Energy – volume: 349 start-page: 412 year: 2015 publication-title: Science – volume: 1 start-page: 508 year: 2018 publication-title: Nat. Catal. – start-page: 412 year: 2004 – volume: 141 start-page: 4624 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2022 publication-title: Small Methods – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 55 year: 2020 publication-title: Nat. Catal. – volume: 31 start-page: 2189 year: 2020 publication-title: Chin. Chem. Lett. – volume: 14 start-page: 2036 year: 2021 publication-title: Energy Environ. Sci. – volume: 139 start-page: 3336 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 7418 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 179 year: 1999 publication-title: J. Solid State Electrochem. – volume: 10 year: 2020 publication-title: ACS Catal. – volume: 5 start-page: 881 year: 2020 publication-title: Nat. Energy – volume: 12 start-page: 2830 year: 2019 publication-title: Energy Environ. Sci. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2184 year: 2015 publication-title: ACS Catal. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 4 start-page: 2258 year: 2014 publication-title: ACS Catal. – volume: 1 start-page: 156 year: 2018 publication-title: Nat. Catal. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 4 start-page: 2237 year: 2020 publication-title: Joule – volume: 60 start-page: 8882 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 1171 year: 2020 publication-title: ACS Catal. – volume: 55 start-page: 693 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 362 start-page: 1276 year: 2018 publication-title: Science – volume: 10 start-page: 7495 year: 2020 publication-title: ACS Catal. – volume: 579 start-page: 152 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 2609 year: 2018 publication-title: Nat. Commun. – volume: 107 start-page: 3904 year: 2007 publication-title: Chem. Rev. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 1 year: 2021 publication-title: Small Sci. – volume: 6 start-page: 2536 year: 2016 publication-title: ACS Catal. – volume: 23 year: 2021 publication-title: Phys. Chem. Chem. Phys. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 115 year: 2011 publication-title: J. Phys. Chem. C – volume: 2 year: 2021 publication-title: Small Struct. – volume: 58 start-page: 2528 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 79 start-page: 89 year: 2008 publication-title: Appl. Catal., B – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 272 start-page: 1924 year: 1996 publication-title: Science – volume: 37 year: 2020 publication-title: Acta Phys.‐Chim. Sin. – volume: 315 start-page: 220 year: 2007 publication-title: Science – volume: 11 start-page: 5075 year: 2020 publication-title: Nat. Commun. – volume: 86 start-page: 3166 year: 1982 publication-title: J. Phys. Chem. – volume: 354 start-page: 1410 year: 2016 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 54 start-page: 3797 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 4536 year: 2020 publication-title: Energy Environ. Sci. – volume: 120 start-page: 2811 year: 2020 publication-title: Chem. Rev. – volume: 55 start-page: 183 year: 2021 publication-title: J. Energy Chem. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 50 start-page: 8428 year: 2021 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 365 year: 2021 publication-title: Energy Environ. Sci. – volume: 3 start-page: 309 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 4 start-page: 45 year: 2020 publication-title: Joule – ident: e_1_2_11_120_1 doi: 10.1039/D0EE03500A – ident: e_1_2_11_148_1 doi: 10.1038/35068529 – ident: e_1_2_11_108_1 doi: 10.1021/acs.nanolett.5b04636 – ident: e_1_2_11_81_1 doi: 10.1021/acsenergylett.9b00382 – ident: e_1_2_11_16_1 doi: 10.1002/adma.201806326 – ident: e_1_2_11_59_1 doi: 10.1002/ange.202015723 – ident: e_1_2_11_141_1 doi: 10.1126/science.1249061 – ident: e_1_2_11_48_1 doi: 10.1021/jacs.7b08071 – ident: e_1_2_11_126_1 doi: 10.1038/s41929-019-0364-x – ident: e_1_2_11_137_1 doi: 10.1038/nchem.623 – ident: e_1_2_11_68_1 doi: 10.1021/cs500449q – ident: e_1_2_11_61_1 doi: 10.1038/natrevmats.2017.59 – ident: e_1_2_11_5_1 doi: 10.1002/adma.201905744 – ident: e_1_2_11_33_1 doi: 10.1002/smtd.202000016 – ident: e_1_2_11_83_1 doi: 10.1002/smsc.202100010 – ident: e_1_2_11_2_1 doi: 10.1126/science.aad4998 – ident: e_1_2_11_129_1 doi: 10.1021/jacs.7b02378 – ident: e_1_2_11_103_1 doi: 10.1039/C9EE01899A – ident: e_1_2_11_155_1 doi: 10.1038/s41467-018-05019-5 – ident: e_1_2_11_39_1 doi: 10.1021/acscatal.5b02920 – ident: e_1_2_11_97_1 doi: 10.1021/acscatal.9b05292 – ident: e_1_2_11_49_1 doi: 10.1002/anie.202005248 – ident: e_1_2_11_75_1 doi: 10.1021/jacs.8b11237 – ident: e_1_2_11_84_1 doi: 10.1002/smsc.202100030 – ident: e_1_2_11_104_1 doi: 10.1002/aenm.201602928 – ident: e_1_2_11_160_1 doi: 10.1039/D1EE02606B – ident: e_1_2_11_60_1 doi: 10.1016/j.nanoen.2021.106160 – ident: e_1_2_11_73_1 doi: 10.1021/acs.accounts.0c00127 – ident: e_1_2_11_130_1 doi: 10.1126/science.aad8471 – ident: e_1_2_11_140_1 doi: 10.1126/science.aad8892 – ident: e_1_2_11_107_1 doi: 10.1126/science.aaa8765 – ident: e_1_2_11_136_1 doi: 10.1126/science.1134569 – ident: e_1_2_11_162_1 doi: 10.1126/science.aaf5050 – ident: e_1_2_11_119_1 doi: 10.1002/adma.202003297 – ident: e_1_2_11_112_1 doi: 10.1016/j.apcatb.2007.09.047 – ident: e_1_2_11_55_1 doi: 10.1039/C8TA05710A – ident: e_1_2_11_65_1 doi: 10.1002/aenm.201700396 – ident: e_1_2_11_101_1 doi: 10.1126/science.aaf9050 – start-page: 2103900 year: 2021 ident: e_1_2_11_23_1 publication-title: Adv. Mater. – ident: e_1_2_11_52_1 – ident: e_1_2_11_66_1 doi: 10.1002/anie.201900402 – ident: e_1_2_11_102_1 doi: 10.1016/0008-6223(84)90015-0 – ident: e_1_2_11_152_1 doi: 10.3866/PKU.WHXB202009035 – ident: e_1_2_11_158_1 doi: 10.1021/ja01539a017 – ident: e_1_2_11_144_1 doi: 10.1002/anie.201406455 – ident: e_1_2_11_106_1 doi: 10.1016/j.jechem.2020.07.012 – ident: e_1_2_11_1_1 doi: 10.1016/j.joule.2019.12.014 – ident: e_1_2_11_12_1 doi: 10.1002/smtd.202000248 – ident: e_1_2_11_154_1 doi: 10.1002/adma.201605254 – ident: e_1_2_11_47_1 doi: 10.1007/s12678-017-0438-y – ident: e_1_2_11_7_1 doi: 10.1021/acs.chemrev.9b00466 – ident: e_1_2_11_86_1 doi: 10.1002/adma.202100745 – ident: e_1_2_11_125_1 doi: 10.1021/jacs.5b11364 – ident: e_1_2_11_150_1 doi: 10.1126/science.aaw7493 – ident: e_1_2_11_36_1 doi: 10.1021/acs.chemrev.0c00594 – ident: e_1_2_11_123_1 doi: 10.1021/cr100060r – ident: e_1_2_11_10_1 doi: 10.1038/s41929-018-0085-6 – ident: e_1_2_11_64_1 doi: 10.1126/science.1168049 – ident: e_1_2_11_92_1 doi: 10.1039/C9SC02605C – ident: e_1_2_11_142_1 doi: 10.1126/science.abj9980 – ident: e_1_2_11_121_1 doi: 10.1039/C9SE00074G – ident: e_1_2_11_88_1 doi: 10.1002/anie.202112447 – ident: e_1_2_11_14_1 doi: 10.1039/C8CS00671G – ident: e_1_2_11_164_1 doi: 10.1002/anie.202014711 – ident: e_1_2_11_128_1 doi: 10.1039/C4EE04086D – ident: e_1_2_11_11_1 doi: 10.1002/sstr.202000051 – ident: e_1_2_11_133_1 doi: 10.1021/ja308570c – ident: e_1_2_11_77_1 doi: 10.1021/acsaem.9b01562 – ident: e_1_2_11_45_1 doi: 10.1038/s41467-018-03372-z – ident: e_1_2_11_80_1 doi: 10.1021/acscatal.0c00847 – ident: e_1_2_11_57_1 doi: 10.1039/c2cs35173k – ident: e_1_2_11_147_1 doi: 10.1002/anie.202115835 – ident: e_1_2_11_153_1 doi: 10.1002/adma.200702700 – ident: e_1_2_11_113_1 doi: 10.1016/0008-6223(92)90036-V – ident: e_1_2_11_78_1 doi: 10.1039/C9TA07289F – ident: e_1_2_11_96_1 doi: 10.1002/sstr.202000067 – ident: e_1_2_11_98_1 doi: 10.1038/s41467-019-08323-w – ident: e_1_2_11_67_1 doi: 10.1021/acscatal.0c01783 – ident: e_1_2_11_4_1 doi: 10.1016/j.joule.2020.09.002 – ident: e_1_2_11_63_1 doi: 10.1039/D1EE00166C – ident: e_1_2_11_19_1 doi: 10.1002/anie.201901923 – ident: e_1_2_11_28_1 doi: 10.1002/adfm.202009032 – ident: e_1_2_11_35_1 doi: 10.1021/acscatal.0c01641 – ident: e_1_2_11_105_1 doi: 10.1002/anie.201411544 – ident: e_1_2_11_43_1 doi: 10.1038/s41929-020-0497-y – ident: e_1_2_11_94_1 doi: 10.1002/anie.202104747 – ident: e_1_2_11_25_1 doi: 10.1002/smsc.202100043 – ident: e_1_2_11_51_1 doi: 10.1002/anie.201509616 – ident: e_1_2_11_32_1 doi: 10.1002/anie.202100337 – ident: e_1_2_11_13_1 doi: 10.1002/smsc.202000059 – ident: e_1_2_11_134_1 doi: 10.1039/C9EE01000A – ident: e_1_2_11_90_1 doi: 10.1016/j.cclet.2019.12.009 – ident: e_1_2_11_34_1 doi: 10.1021/cr050182l – ident: e_1_2_11_151_1 doi: 10.1126/science.aab0801 – ident: e_1_2_11_53_1 doi: 10.1021/acs.jpcc.9b04305 – ident: e_1_2_11_99_1 doi: 10.1021/acs.accounts.0c00488 – ident: e_1_2_11_143_1 doi: 10.1038/nmat3458 – ident: e_1_2_11_70_1 doi: 10.1002/anie.201909475 – ident: e_1_2_11_18_1 doi: 10.1021/acsenergylett.0c00305 – ident: e_1_2_11_87_1 doi: 10.1002/anie.202015060 – ident: e_1_2_11_127_1 doi: 10.1021/jp2068446 – ident: e_1_2_11_132_1 doi: 10.1021/jacs.5b09653 – ident: e_1_2_11_110_1 doi: 10.1038/s41563-020-0735-3 – start-page: 412 volume-title: Electrochemistry and Corrosion Science year: 2004 ident: e_1_2_11_27_1 doi: 10.1007/b118420 – ident: e_1_2_11_124_1 doi: 10.1007/s12274-014-0695-5 – ident: e_1_2_11_31_1 doi: 10.1002/sstr.202000048 – ident: e_1_2_11_40_1 doi: 10.1021/j100213a020 – ident: e_1_2_11_72_1 doi: 10.1002/smsc.202000027 – ident: e_1_2_11_62_1 doi: 10.1007/s100080050145 – ident: e_1_2_11_41_1 doi: 10.1039/C4EE01564A – ident: e_1_2_11_146_1 doi: 10.1002/anie.202111426 – ident: e_1_2_11_38_1 doi: 10.1021/ja104421t – ident: e_1_2_11_93_1 doi: 10.1038/s41560-020-00709-1 – ident: e_1_2_11_42_1 doi: 10.1021/ja9071496 – ident: e_1_2_11_20_1 doi: 10.1016/j.nanoen.2016.03.005 – ident: e_1_2_11_117_1 doi: 10.1016/j.jcis.2020.06.027 – ident: e_1_2_11_149_1 doi: 10.1021/nn402406k – ident: e_1_2_11_115_1 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_11_138_1 doi: 10.1126/science.aau0630 – ident: e_1_2_11_85_1 doi: 10.1002/smsc.202100011 – ident: e_1_2_11_29_1 doi: 10.1515/zpch-2019-1480 – ident: e_1_2_11_122_1 doi: 10.1039/D0TA02957B – ident: e_1_2_11_82_1 doi: 10.1039/D0CS00962H – ident: e_1_2_11_116_1 doi: 10.1002/smll.202006805 – ident: e_1_2_11_161_1 doi: 10.1039/C8SC04589E – ident: e_1_2_11_114_1 doi: 10.1016/0008-6223(92)90164-R – ident: e_1_2_11_157_1 doi: 10.1038/s41929-017-0017-x – ident: e_1_2_11_21_1 doi: 10.1021/acs.accounts.8b00449 – ident: e_1_2_11_159_1 doi: 10.1038/s41467-017-02479-z – ident: e_1_2_11_91_1 doi: 10.1002/smsc.202100015 – ident: e_1_2_11_156_1 doi: 10.1038/s41467-020-18891-x – ident: e_1_2_11_50_1 doi: 10.1002/adma.201802066 – ident: e_1_2_11_3_1 doi: 10.1038/s41560-021-00824-7 – ident: e_1_2_11_6_1 doi: 10.1016/j.pmatsci.2020.100770 – ident: e_1_2_11_135_1 doi: 10.1002/anie.202000657 – ident: e_1_2_11_8_1 doi: 10.1126/science.aav3506 – ident: e_1_2_11_89_1 doi: 10.1038/s41929-019-0400-x – ident: e_1_2_11_22_1 doi: 10.1021/acs.chemrev.1c00234 – ident: e_1_2_11_69_1 doi: 10.1021/cs501973j – ident: e_1_2_11_71_1 doi: 10.1002/smtd.202101186 – ident: e_1_2_11_163_1 doi: 10.1016/j.scib.2020.04.022 – ident: e_1_2_11_139_1 doi: 10.1126/science.aah6133 – ident: e_1_2_11_54_1 doi: 10.1039/D1CP01989A – ident: e_1_2_11_44_1 doi: 10.1002/anie.201207256 – ident: e_1_2_11_95_1 doi: 10.1002/adma.201907879 – ident: e_1_2_11_145_1 doi: 10.1016/j.chempr.2018.11.010 – ident: e_1_2_11_9_1 doi: 10.1002/adma.202000381 – ident: e_1_2_11_30_1 doi: 10.1002/aenm.202101998 – ident: e_1_2_11_46_1 doi: 10.1016/j.chempr.2020.06.004 – ident: e_1_2_11_17_1 doi: 10.1039/C9CS00607A – ident: e_1_2_11_111_1 doi: 10.1039/D0EE02800B – ident: e_1_2_11_74_1 doi: 10.1021/acscatal.9b04043 – ident: e_1_2_11_79_1 doi: 10.1126/sciadv.abj1584 – ident: e_1_2_11_24_1 doi: 10.1002/anie.202110186 – ident: e_1_2_11_56_1 doi: 10.1002/aenm.202103916 – ident: e_1_2_11_37_1 doi: 10.1126/science.272.5270.1924 – ident: e_1_2_11_26_1 doi: 10.1002/smsc.202000028 – ident: e_1_2_11_109_1 doi: 10.1007/BF03214756 – ident: e_1_2_11_131_1 doi: 10.1002/anie.202200552 – ident: e_1_2_11_118_1 doi: 10.1021/jacs.6b13100 – ident: e_1_2_11_76_1 doi: 10.1021/acscatal.9b03359 – ident: e_1_2_11_58_1 doi: 10.1021/ja300756y – ident: e_1_2_11_15_1 doi: 10.1002/adma.202103266 – ident: e_1_2_11_100_1 doi: 10.1002/anie.202016977 |
SSID | ssj0009606 |
Score | 2.6467698 |
SecondaryResourceType | review_article |
Snippet | Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2200840 |
SubjectTerms | Corrosion Corrosion mechanisms Corrosion resistance Electrocatalysts electrochemical reaction electrolytes Energy conversion Energy technology Nanomaterials Performance degradation reconstruction Reliability engineering Structural reliability |
Title | Corrosion Chemistry of Electrocatalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202200840 https://www.ncbi.nlm.nih.gov/pubmed/35334145 https://www.proquest.com/docview/2758749607 https://www.proquest.com/docview/2644021961 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hTjDwfgQKChJSp7Su7TjJWJVWFVIZEJW6RXbiLKAUNekAvx5fXm1BCAm2RDkr9p3P_s6P7wDuiCZMCkmdmHuBw33c3-U0cXjiekxFnkwYXhSePorJjD_M3fnGLf6SH6JZcEPPKMZrdHCpst6aNFTGBW8QxQ18jkE7HthCVPS05o9CeF6Q7THXCQT3a9ZGQnvbxbdnpW9Qcxu5FlPP-ABkXenyxMlLd5WrbvTxhc_xP606hP0Kl9qDsiMdwY5Oj2Fvg63wBDrDxdLU3hjSHtZp4uxFYo_KTDrFQtB7lmenMBuPnocTp8qz4ETMOLijDCahknnKlyRIApYgyyCLMQ-JFhLpd5iBla42sZ_UmDU2cmPuK6IiQXjf99gZtNJFqi_AJolQTMdMxDrhigQmHIslpYpIj5mxkVrg1HoOo4qEHHNhvIYlfTINUQFhowALOo38W0m_8aNkuzZbWLlhFlITDXnc9ALPgtvms1EQ7orIVC9WRsYgQgN0AtG34Lw0d_MrhheV-9y1gBZG-6UO4eB-OmjeLv9S6Ap28bk8MNOGVr5c6WsDe3J1U3TtT1-J9Ig |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOAAH9iVQIEhIPaV1bWc7VqVVgbYH1ErcIjtxLqAEdTnA1-PJVgpCSHBMYivOjMd54-U9gBuiCBOOoFbEXd_iHq7vchpbPLZdJkNXxAwPCg9HTn_C75_scjchnoXJ-SGqCTeMjGy8xgDHCenmkjVURBlxEMUVfK6z9g2U9c6yqsclgxQC9Ixuj9mW73Cv5G0ktLlaf_W_9A1srmLX7OfT2wVZNjvfc_LcWMxlI3z_wuj4r-_ag50CmprtvC_tw5pKDmD7E2HhIdQ76VQ3X_vS7JRKcWYam91cTCebC3qbzWdHMOl1x52-VUgtWCHTMW5JDUuoYK70BPFjn8VINMgilCJRjkAGHqaRpa10-icUCseGdsQ9SWToEN7yXHYM60maqFMwSexIpiLmRCrmkvg6I4sEpZIIl-nhkRpglYYOwoKHHOUwXoKcQZkGaICgMoAB9ar8a87A8WPJWum3oIjEWUB1QuRy3Q1cA66rx9pAuDAiEpUudBkNCjXW8Z2WASe5v6tXMTyr3OK2ATTz2i9tCNq3w3Z1dfaXSlew2R8PB8HgbvRwDlt4P98_U4P1-XShLjQKmsvLrJ9_AMCX-KM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IBNEH75fq1ArCnrplSZq2j2MX5mVDxMHeStImL8o6dnnQX2_Srt2miKCPbROanEvynVy-A3CLJCKccezE1Asc6pv9XYqVQ5XrERF5XBFzUbjXZ90BvR-6w5Vb_Bk_RLHgZjwjHa-Ng49jVVuShvI45Q3CZgOf6qB9kzLkG7tuPS8JpAw-T9n2iOsEjPo5bSPCtfX669PSN6y5Dl3TuaezBzxvdXbk5LU6n4lq9PGF0PE_3dqH3QUwtRuZJR3Ahhwdws4KXeERVJrJRLdea9Ju5nni7ETZ7SyVTroS9D6dTY9h0Gm_NLvOItGCExHt4Y7QoARz4gmfo0AFRBmaQRKbRCSSccO_QzSudKUO_rg0aWMjN6a-QCJiiNZ9j5xAaZSM5BnYSDFBZExYLBUVKNDxWMwxFoh7RA-O2AInl3MYLVjITTKMtzDjT8ahEUBYCMCCSlF-nPFv_FiynKstXPjhNMQ6HPKotgLPgpvisxaQ2RbhI5nMdRkNCTXSCVjdgtNM3cWviLmpXKeuBThV2i9tCButXqN4Ov9LpWvYemp1wse7_sMFbJvX2eGZMpRmk7m81BBoJq5SK_8E5U33Ww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+Chemistry+of+Electrocatalysts&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Fu%E2%80%90Min&rft.au=Huang%2C+Lei&rft.au=Zaman%2C+Shahid&rft.au=Guo%2C+Wei&rft.date=2022-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=52&rft_id=info:doi/10.1002%2Fadma.202200840&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202200840 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |