Corrosion Chemistry of Electrocatalysts

Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 52; pp. e2200840 - n/a
Main Authors Li, Fu‐Min, Huang, Lei, Zaman, Shahid, Guo, Wei, Liu, Hongfang, Guo, Xingpeng, Xia, Bao Yu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure–activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion‐resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond. Corrosion chemistry of electrocatalysts is reviewed, which may inspire more profound research in functional nanomaterials and energy technologies.
AbstractList Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond.
Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond.Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond.
Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure–activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion‐resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond. Corrosion chemistry of electrocatalysts is reviewed, which may inspire more profound research in functional nanomaterials and energy technologies.
Author Li, Fu‐Min
Huang, Lei
Guo, Wei
Guo, Xingpeng
Zaman, Shahid
Liu, Hongfang
Xia, Bao Yu
Author_xml – sequence: 1
  givenname: Fu‐Min
  surname: Li
  fullname: Li, Fu‐Min
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 2
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 3
  givenname: Shahid
  surname: Zaman
  fullname: Zaman, Shahid
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 4
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 5
  givenname: Hongfang
  surname: Liu
  fullname: Liu, Hongfang
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 6
  givenname: Xingpeng
  surname: Guo
  fullname: Guo, Xingpeng
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 7
  givenname: Bao Yu
  orcidid: 0000-0002-2054-908X
  surname: Xia
  fullname: Xia, Bao Yu
  email: byxia@hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35334145$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLw0AURgep2IduXUrBhW5S77ySzLLE-oCKG10Pk2SCKWmmzkyQ_HuntFYoiKu7Od937z1jNGhNqxG6xDDDAOROlWs1I0AIQMrgBI0wJzhiIPgAjUBQHomYpUM0dm4FACKG-AwNKaeUYcZH6CYz1hpXm3aafeh17bztp6aaLhpdeGsK5VXTO-_O0WmlGqcv9nOC3h8Wb9lTtHx9fM7my6igCYUopyIhiiZ5qkBUglZYxJyWLE6YjhUDRmkKwDWDRGnBIS14ydIc8iIGhtOETtDtrndjzWennZfhpkI3jWq16ZwkMWNAQisO6PURujKdbcN1kiQ8TVh4dlt4tae6fK1LubH1Wtle_igIwGwHFMGDs7o6IBjk1rHcOpYHxyHAjgJF7ZUPCr1VdfN3TOxiX3Wj-3-WyPn9y_w3-w1MEYyq
CitedBy_id crossref_primary_10_1039_D4EE02365J
crossref_primary_10_1002_smll_202307970
crossref_primary_10_1002_adma_202404773
crossref_primary_10_3390_nano13212818
crossref_primary_10_1007_s41062_025_01902_5
crossref_primary_10_3389_fchem_2022_1066958
crossref_primary_10_1039_D3TA02889E
crossref_primary_10_1002_ange_202317058
crossref_primary_10_1002_bte2_20220060
crossref_primary_10_1002_smll_202404545
crossref_primary_10_1021_acsnano_4c06675
crossref_primary_10_1039_D5CC00344J
crossref_primary_10_1039_D3SE00315A
crossref_primary_10_1002_adfm_202302297
crossref_primary_10_1002_aenm_202203113
crossref_primary_10_1039_D2TA07647K
crossref_primary_10_1002_adfm_202301565
crossref_primary_10_1021_accountsmr_2c00261
crossref_primary_10_1039_D3TA05325C
crossref_primary_10_1002_adma_202211177
crossref_primary_10_1002_advs_202309775
crossref_primary_10_1016_j_jcis_2025_02_066
crossref_primary_10_1021_acssuschemeng_4c05081
crossref_primary_10_1007_s40820_024_01347_y
crossref_primary_10_1002_adfm_202405726
crossref_primary_10_1039_D3QM00012E
crossref_primary_10_1515_corrrev_2024_0046
crossref_primary_10_1039_D2SE01197B
crossref_primary_10_3390_nano13162329
crossref_primary_10_1016_j_cej_2024_156754
crossref_primary_10_1021_acsenergylett_4c00275
crossref_primary_10_1039_D3QM00558E
crossref_primary_10_20517_energymater_2023_66
crossref_primary_10_1021_acscatal_4c02696
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1002_cssc_202401881
crossref_primary_10_1039_D4EE00173G
crossref_primary_10_1021_acsami_4c18592
crossref_primary_10_1002_smll_202309823
crossref_primary_10_1039_D3GC05033E
crossref_primary_10_1021_acs_chemrev_3c00402
crossref_primary_10_3390_ma16186217
crossref_primary_10_1021_acs_chemrev_3c00723
crossref_primary_10_1039_D3EE04023B
crossref_primary_10_1002_smll_202204474
crossref_primary_10_1002_adma_202304621
crossref_primary_10_1016_j_jcis_2024_03_132
crossref_primary_10_1002_aenm_202400112
crossref_primary_10_1039_D3YA00434A
crossref_primary_10_1002_celc_202400346
crossref_primary_10_1016_j_cej_2024_153193
crossref_primary_10_1039_D2CS00681B
crossref_primary_10_1016_j_cej_2024_157275
crossref_primary_10_1002_anie_202317058
crossref_primary_10_1021_acselectrochem_4c00066
crossref_primary_10_1002_cctc_202201100
crossref_primary_10_3390_catal12111470
crossref_primary_10_1021_acs_chemmater_4c00828
crossref_primary_10_1002_adma_202303052
crossref_primary_10_1039_D3CY00364G
crossref_primary_10_1002_adsu_202300475
crossref_primary_10_1021_jacs_4c16707
crossref_primary_10_1016_j_conbuildmat_2024_139096
crossref_primary_10_1016_j_nanoen_2023_109149
crossref_primary_10_1021_acsomega_4c01236
crossref_primary_10_1016_j_rechem_2024_101392
crossref_primary_10_1002_adma_202402184
crossref_primary_10_3390_membranes13070669
crossref_primary_10_1007_s12274_022_5006_y
crossref_primary_10_1039_D2QI02020C
crossref_primary_10_1016_j_apsusc_2024_160128
crossref_primary_10_1039_D3QM01062G
crossref_primary_10_1016_j_apcatb_2024_124415
crossref_primary_10_1039_D2CC06688B
crossref_primary_10_1016_j_jelechem_2023_117788
Cites_doi 10.1039/D0EE03500A
10.1038/35068529
10.1021/acs.nanolett.5b04636
10.1021/acsenergylett.9b00382
10.1002/adma.201806326
10.1002/ange.202015723
10.1126/science.1249061
10.1021/jacs.7b08071
10.1038/s41929-019-0364-x
10.1038/nchem.623
10.1021/cs500449q
10.1038/natrevmats.2017.59
10.1002/adma.201905744
10.1002/smtd.202000016
10.1002/smsc.202100010
10.1126/science.aad4998
10.1021/jacs.7b02378
10.1039/C9EE01899A
10.1038/s41467-018-05019-5
10.1021/acscatal.5b02920
10.1021/acscatal.9b05292
10.1002/anie.202005248
10.1021/jacs.8b11237
10.1002/smsc.202100030
10.1002/aenm.201602928
10.1039/D1EE02606B
10.1016/j.nanoen.2021.106160
10.1021/acs.accounts.0c00127
10.1126/science.aad8471
10.1126/science.aad8892
10.1126/science.aaa8765
10.1126/science.1134569
10.1126/science.aaf5050
10.1002/adma.202003297
10.1016/j.apcatb.2007.09.047
10.1039/C8TA05710A
10.1002/aenm.201700396
10.1126/science.aaf9050
10.1002/anie.201900402
10.1016/0008-6223(84)90015-0
10.3866/PKU.WHXB202009035
10.1021/ja01539a017
10.1002/anie.201406455
10.1016/j.jechem.2020.07.012
10.1016/j.joule.2019.12.014
10.1002/smtd.202000248
10.1002/adma.201605254
10.1007/s12678-017-0438-y
10.1021/acs.chemrev.9b00466
10.1002/adma.202100745
10.1021/jacs.5b11364
10.1126/science.aaw7493
10.1021/acs.chemrev.0c00594
10.1021/cr100060r
10.1038/s41929-018-0085-6
10.1126/science.1168049
10.1039/C9SC02605C
10.1126/science.abj9980
10.1039/C9SE00074G
10.1002/anie.202112447
10.1039/C8CS00671G
10.1002/anie.202014711
10.1039/C4EE04086D
10.1002/sstr.202000051
10.1021/ja308570c
10.1021/acsaem.9b01562
10.1038/s41467-018-03372-z
10.1021/acscatal.0c00847
10.1039/c2cs35173k
10.1002/anie.202115835
10.1002/adma.200702700
10.1016/0008-6223(92)90036-V
10.1039/C9TA07289F
10.1002/sstr.202000067
10.1038/s41467-019-08323-w
10.1021/acscatal.0c01783
10.1016/j.joule.2020.09.002
10.1039/D1EE00166C
10.1002/anie.201901923
10.1002/adfm.202009032
10.1021/acscatal.0c01641
10.1002/anie.201411544
10.1038/s41929-020-0497-y
10.1002/anie.202104747
10.1002/smsc.202100043
10.1002/anie.201509616
10.1002/anie.202100337
10.1002/smsc.202000059
10.1039/C9EE01000A
10.1016/j.cclet.2019.12.009
10.1021/cr050182l
10.1126/science.aab0801
10.1021/acs.jpcc.9b04305
10.1021/acs.accounts.0c00488
10.1038/nmat3458
10.1002/anie.201909475
10.1021/acsenergylett.0c00305
10.1002/anie.202015060
10.1021/jp2068446
10.1021/jacs.5b09653
10.1038/s41563-020-0735-3
10.1007/b118420
10.1007/s12274-014-0695-5
10.1002/sstr.202000048
10.1021/j100213a020
10.1002/smsc.202000027
10.1007/s100080050145
10.1039/C4EE01564A
10.1002/anie.202111426
10.1021/ja104421t
10.1038/s41560-020-00709-1
10.1021/ja9071496
10.1016/j.nanoen.2016.03.005
10.1016/j.jcis.2020.06.027
10.1021/nn402406k
10.1038/nenergy.2015.6
10.1126/science.aau0630
10.1002/smsc.202100011
10.1515/zpch-2019-1480
10.1039/D0TA02957B
10.1039/D0CS00962H
10.1002/smll.202006805
10.1039/C8SC04589E
10.1016/0008-6223(92)90164-R
10.1038/s41929-017-0017-x
10.1021/acs.accounts.8b00449
10.1038/s41467-017-02479-z
10.1002/smsc.202100015
10.1038/s41467-020-18891-x
10.1002/adma.201802066
10.1038/s41560-021-00824-7
10.1016/j.pmatsci.2020.100770
10.1002/anie.202000657
10.1126/science.aav3506
10.1038/s41929-019-0400-x
10.1021/acs.chemrev.1c00234
10.1021/cs501973j
10.1002/smtd.202101186
10.1016/j.scib.2020.04.022
10.1126/science.aah6133
10.1039/D1CP01989A
10.1002/anie.201207256
10.1002/adma.201907879
10.1016/j.chempr.2018.11.010
10.1002/adma.202000381
10.1002/aenm.202101998
10.1016/j.chempr.2020.06.004
10.1039/C9CS00607A
10.1039/D0EE02800B
10.1021/acscatal.9b04043
10.1126/sciadv.abj1584
10.1002/anie.202110186
10.1002/aenm.202103916
10.1126/science.272.5270.1924
10.1002/smsc.202000028
10.1007/BF03214756
10.1002/anie.202200552
10.1021/jacs.6b13100
10.1021/acscatal.9b03359
10.1021/ja300756y
10.1002/adma.202103266
10.1002/anie.202016977
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202200840
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35334145
10_1002_adma_202200840
ADMA202200840
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2021YFA1600800
– fundername: Innovation and Talent Recruitment Base of New Energy Chemistry and Device
  funderid: B21003
– fundername: National Key Research and Development Program of China
  grantid: 2021YFA1600800
– fundername: Innovation and Talent Recruitment Base of New Energy Chemistry and Device
  grantid: B21003
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3730-b3972a37b8a09f93f19653d4674e6a404338005e407ae9508c5d48b0bc6041873
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:40:34 EDT 2025
Fri Jul 25 08:34:21 EDT 2025
Mon Jul 21 06:02:13 EDT 2025
Tue Jul 01 02:33:15 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 16:19:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords reconstruction
corrosion
electrocatalysts
electrochemical reaction
electrolytes
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-b3972a37b8a09f93f19653d4674e6a404338005e407ae9508c5d48b0bc6041873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2054-908X
PMID 35334145
PQID 2758749607
PQPubID 2045203
PageCount 20
ParticipantIDs proquest_miscellaneous_2644021961
proquest_journals_2758749607
pubmed_primary_35334145
crossref_primary_10_1002_adma_202200840
crossref_citationtrail_10_1002_adma_202200840
wiley_primary_10_1002_adma_202200840_ADMA202200840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2007; 107
2019; 10
2019; 12
2020; 13
2020; 11
2020; 10
2013; 7
2011; 111
2020; 19
2018; 6
2018; 9
2001; 410
2012; 134
2015; 137
2018; 1
2020; 579
2018; 30
2010; 2
2019; 7
2019; 9
2019; 4
2019; 3
2019; 5
2019; 31
2019; 2
2015; 54
2020; 37
2020; 32
2021; 50
2016; 16
2017; 139
1992; 30
2016; 6
2021; 54
2016; 1
2021; 55
2007; 315
2020; 31
2022; 6
1997; 30
2022; 8
2019; 48
2021; 133
2021; 374
2016; 29
2021; 60
2012; 41
2018; 362
2017; 7
2017; 2
2021; 23
2020; 120
1984; 22
2019; 58
2020; 59
2019; 366
2008; 79
2015; 349
2021; 121
2015; 348
2017; 355
2019; 364
2019; 123
2012; 51
2020; 8
2020; 6
2020; 5
2020; 4
2020; 3
2014; 4
2021; 33
2020; 53
2013; 12
2021; 118
2020; 49
2016; 354
2016; 353
2016; 352
1958; 80
2014; 7
2009; 323
2014; 53
2021; 6
2021; 87
2015; 5
2009; 21
2021; 2
2004
1999; 3
2017; 29
2021; 1
2019; 141
2015; 8
2016; 55
2021; 14
2021; 11
2022
2021
2022; 61
1982; 86
2021; 17
1996; 272
2010; 132
2018; 51
2016; 138
2020; 234
2020; 65
2014; 343
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_148_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_144_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_151_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
Chen J. (e_1_2_11_23_1) 2021
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_1_1
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_156_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
e_1_2_11_152_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_142_1
e_1_2_11_161_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_19_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_143_1
e_1_2_11_120_1
e_1_2_11_162_1
e_1_2_11_82_1
Perez N. (e_1_2_11_27_1) 2004
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_154_1
e_1_2_11_112_1
e_1_2_11_131_1
e_1_2_11_150_1
References_xml – volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 4061
  year: 2014
  publication-title: Energy Environ. Sci.
– year: 2022
  publication-title: Adv. Energy Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 352
  start-page: 73
  year: 2016
  publication-title: Science
– volume: 352
  start-page: 974
  year: 2016
  publication-title: Science
– volume: 4
  start-page: 987
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 54
  start-page: 311
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 2820
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 153
  year: 2018
  publication-title: Electrocatalysis
– volume: 10
  start-page: 2019
  year: 2019
  publication-title: Chem. Sci.
– volume: 374
  start-page: 459
  year: 2021
  publication-title: Science
– volume: 30
  start-page: 797
  year: 1992
  publication-title: Carbon
– volume: 3
  start-page: 1668
  year: 2019
  publication-title: Sustainable Energy Fuels
– volume: 364
  year: 2019
  publication-title: Science
– volume: 30
  start-page: 43
  year: 1997
  publication-title: Gold Bull.
– volume: 111
  start-page: 7625
  year: 2011
  publication-title: Chem. Rev.
– volume: 139
  start-page: 7893
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1011
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1450
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 81
  year: 2013
  publication-title: Nat. Mater.
– volume: 80
  start-page: 1339
  year: 1958
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 1719
  year: 2016
  publication-title: Nano Lett.
– volume: 14
  start-page: 6546
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 2257
  year: 2020
  publication-title: Chem
– volume: 22
  start-page: 423
  year: 1984
  publication-title: Carbon
– volume: 65
  start-page: 1547
  year: 2020
  publication-title: Sci. Bull.
– volume: 49
  start-page: 2196
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 366
  start-page: 850
  year: 2019
  publication-title: Science
– volume: 10
  start-page: 440
  year: 2019
  publication-title: Nat. Commun.
– volume: 53
  start-page: 1111
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 353
  start-page: 1011
  year: 2016
  publication-title: Science
– volume: 3
  start-page: 754
  year: 2020
  publication-title: Nat. Catal.
– volume: 41
  start-page: 8035
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 134
  start-page: 8535
  year: 2012
  publication-title: J. Am. Chem. Soc.
– year: 2021
  publication-title: Adv. Mater.
– volume: 234
  start-page: 1115
  year: 2020
  publication-title: Z. Phys. Chem.
– volume: 10
  start-page: 743
  year: 2019
  publication-title: ACS Catal.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 4640
  year: 2020
  publication-title: ACS Catal.
– volume: 410
  start-page: 450
  year: 2001
  publication-title: Nature
– volume: 132
  start-page: 596
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2968
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 30
  start-page: 391
  year: 1992
  publication-title: Carbon
– volume: 48
  start-page: 3181
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 87
  year: 2021
  publication-title: Nano Energy
– volume: 138
  start-page: 1575
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 343
  start-page: 1339
  year: 2014
  publication-title: Science
– volume: 10
  start-page: 7975
  year: 2019
  publication-title: Chem. Sci.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 418
  year: 2015
  publication-title: Nano Res.
– volume: 5
  start-page: 445
  year: 2019
  publication-title: Chem
– volume: 2
  start-page: 955
  year: 2019
  publication-title: Nat. Catal.
– volume: 58
  start-page: 7273
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 348
  start-page: 1230
  year: 2015
  publication-title: Science
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2019
  publication-title: ACS Catal.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 354
  start-page: 1414
  year: 2016
  publication-title: Science
– volume: 7
  start-page: 5666
  year: 2013
  publication-title: ACS Nano
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 2
  start-page: 454
  year: 2010
  publication-title: Nat. Chem.
– volume: 21
  start-page: 2165
  year: 2009
  publication-title: Adv. Mater.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 133
  start-page: 7127
  year: 2021
  publication-title: Angew. Chem.
– volume: 6
  start-page: 475
  year: 2021
  publication-title: Nat. Energy
– volume: 59
  start-page: 1585
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 118
  year: 2021
  publication-title: Prog. Mater. Sci.
– volume: 9
  start-page: 145
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1281
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 19
  start-page: 1207
  year: 2020
  publication-title: Nat. Mater.
– volume: 29
  start-page: 275
  year: 2016
  publication-title: Nano Energy
– volume: 349
  start-page: 412
  year: 2015
  publication-title: Science
– volume: 1
  start-page: 508
  year: 2018
  publication-title: Nat. Catal.
– start-page: 412
  year: 2004
– volume: 141
  start-page: 4624
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 55
  year: 2020
  publication-title: Nat. Catal.
– volume: 31
  start-page: 2189
  year: 2020
  publication-title: Chin. Chem. Lett.
– volume: 14
  start-page: 2036
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 3336
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 7418
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 179
  year: 1999
  publication-title: J. Solid State Electrochem.
– volume: 10
  year: 2020
  publication-title: ACS Catal.
– volume: 5
  start-page: 881
  year: 2020
  publication-title: Nat. Energy
– volume: 12
  start-page: 2830
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2184
  year: 2015
  publication-title: ACS Catal.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 2258
  year: 2014
  publication-title: ACS Catal.
– volume: 1
  start-page: 156
  year: 2018
  publication-title: Nat. Catal.
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 4
  start-page: 2237
  year: 2020
  publication-title: Joule
– volume: 60
  start-page: 8882
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 1171
  year: 2020
  publication-title: ACS Catal.
– volume: 55
  start-page: 693
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 362
  start-page: 1276
  year: 2018
  publication-title: Science
– volume: 10
  start-page: 7495
  year: 2020
  publication-title: ACS Catal.
– volume: 579
  start-page: 152
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 2609
  year: 2018
  publication-title: Nat. Commun.
– volume: 107
  start-page: 3904
  year: 2007
  publication-title: Chem. Rev.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 6
  start-page: 2536
  year: 2016
  publication-title: ACS Catal.
– volume: 23
  year: 2021
  publication-title: Phys. Chem. Chem. Phys.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 115
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 58
  start-page: 2528
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 79
  start-page: 89
  year: 2008
  publication-title: Appl. Catal., B
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 272
  start-page: 1924
  year: 1996
  publication-title: Science
– volume: 37
  year: 2020
  publication-title: Acta Phys.‐Chim. Sin.
– volume: 315
  start-page: 220
  year: 2007
  publication-title: Science
– volume: 11
  start-page: 5075
  year: 2020
  publication-title: Nat. Commun.
– volume: 86
  start-page: 3166
  year: 1982
  publication-title: J. Phys. Chem.
– volume: 354
  start-page: 1410
  year: 2016
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 54
  start-page: 3797
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 4536
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 120
  start-page: 2811
  year: 2020
  publication-title: Chem. Rev.
– volume: 55
  start-page: 183
  year: 2021
  publication-title: J. Energy Chem.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 8428
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 365
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 309
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 45
  year: 2020
  publication-title: Joule
– ident: e_1_2_11_120_1
  doi: 10.1039/D0EE03500A
– ident: e_1_2_11_148_1
  doi: 10.1038/35068529
– ident: e_1_2_11_108_1
  doi: 10.1021/acs.nanolett.5b04636
– ident: e_1_2_11_81_1
  doi: 10.1021/acsenergylett.9b00382
– ident: e_1_2_11_16_1
  doi: 10.1002/adma.201806326
– ident: e_1_2_11_59_1
  doi: 10.1002/ange.202015723
– ident: e_1_2_11_141_1
  doi: 10.1126/science.1249061
– ident: e_1_2_11_48_1
  doi: 10.1021/jacs.7b08071
– ident: e_1_2_11_126_1
  doi: 10.1038/s41929-019-0364-x
– ident: e_1_2_11_137_1
  doi: 10.1038/nchem.623
– ident: e_1_2_11_68_1
  doi: 10.1021/cs500449q
– ident: e_1_2_11_61_1
  doi: 10.1038/natrevmats.2017.59
– ident: e_1_2_11_5_1
  doi: 10.1002/adma.201905744
– ident: e_1_2_11_33_1
  doi: 10.1002/smtd.202000016
– ident: e_1_2_11_83_1
  doi: 10.1002/smsc.202100010
– ident: e_1_2_11_2_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_11_129_1
  doi: 10.1021/jacs.7b02378
– ident: e_1_2_11_103_1
  doi: 10.1039/C9EE01899A
– ident: e_1_2_11_155_1
  doi: 10.1038/s41467-018-05019-5
– ident: e_1_2_11_39_1
  doi: 10.1021/acscatal.5b02920
– ident: e_1_2_11_97_1
  doi: 10.1021/acscatal.9b05292
– ident: e_1_2_11_49_1
  doi: 10.1002/anie.202005248
– ident: e_1_2_11_75_1
  doi: 10.1021/jacs.8b11237
– ident: e_1_2_11_84_1
  doi: 10.1002/smsc.202100030
– ident: e_1_2_11_104_1
  doi: 10.1002/aenm.201602928
– ident: e_1_2_11_160_1
  doi: 10.1039/D1EE02606B
– ident: e_1_2_11_60_1
  doi: 10.1016/j.nanoen.2021.106160
– ident: e_1_2_11_73_1
  doi: 10.1021/acs.accounts.0c00127
– ident: e_1_2_11_130_1
  doi: 10.1126/science.aad8471
– ident: e_1_2_11_140_1
  doi: 10.1126/science.aad8892
– ident: e_1_2_11_107_1
  doi: 10.1126/science.aaa8765
– ident: e_1_2_11_136_1
  doi: 10.1126/science.1134569
– ident: e_1_2_11_162_1
  doi: 10.1126/science.aaf5050
– ident: e_1_2_11_119_1
  doi: 10.1002/adma.202003297
– ident: e_1_2_11_112_1
  doi: 10.1016/j.apcatb.2007.09.047
– ident: e_1_2_11_55_1
  doi: 10.1039/C8TA05710A
– ident: e_1_2_11_65_1
  doi: 10.1002/aenm.201700396
– ident: e_1_2_11_101_1
  doi: 10.1126/science.aaf9050
– start-page: 2103900
  year: 2021
  ident: e_1_2_11_23_1
  publication-title: Adv. Mater.
– ident: e_1_2_11_52_1
– ident: e_1_2_11_66_1
  doi: 10.1002/anie.201900402
– ident: e_1_2_11_102_1
  doi: 10.1016/0008-6223(84)90015-0
– ident: e_1_2_11_152_1
  doi: 10.3866/PKU.WHXB202009035
– ident: e_1_2_11_158_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_11_144_1
  doi: 10.1002/anie.201406455
– ident: e_1_2_11_106_1
  doi: 10.1016/j.jechem.2020.07.012
– ident: e_1_2_11_1_1
  doi: 10.1016/j.joule.2019.12.014
– ident: e_1_2_11_12_1
  doi: 10.1002/smtd.202000248
– ident: e_1_2_11_154_1
  doi: 10.1002/adma.201605254
– ident: e_1_2_11_47_1
  doi: 10.1007/s12678-017-0438-y
– ident: e_1_2_11_7_1
  doi: 10.1021/acs.chemrev.9b00466
– ident: e_1_2_11_86_1
  doi: 10.1002/adma.202100745
– ident: e_1_2_11_125_1
  doi: 10.1021/jacs.5b11364
– ident: e_1_2_11_150_1
  doi: 10.1126/science.aaw7493
– ident: e_1_2_11_36_1
  doi: 10.1021/acs.chemrev.0c00594
– ident: e_1_2_11_123_1
  doi: 10.1021/cr100060r
– ident: e_1_2_11_10_1
  doi: 10.1038/s41929-018-0085-6
– ident: e_1_2_11_64_1
  doi: 10.1126/science.1168049
– ident: e_1_2_11_92_1
  doi: 10.1039/C9SC02605C
– ident: e_1_2_11_142_1
  doi: 10.1126/science.abj9980
– ident: e_1_2_11_121_1
  doi: 10.1039/C9SE00074G
– ident: e_1_2_11_88_1
  doi: 10.1002/anie.202112447
– ident: e_1_2_11_14_1
  doi: 10.1039/C8CS00671G
– ident: e_1_2_11_164_1
  doi: 10.1002/anie.202014711
– ident: e_1_2_11_128_1
  doi: 10.1039/C4EE04086D
– ident: e_1_2_11_11_1
  doi: 10.1002/sstr.202000051
– ident: e_1_2_11_133_1
  doi: 10.1021/ja308570c
– ident: e_1_2_11_77_1
  doi: 10.1021/acsaem.9b01562
– ident: e_1_2_11_45_1
  doi: 10.1038/s41467-018-03372-z
– ident: e_1_2_11_80_1
  doi: 10.1021/acscatal.0c00847
– ident: e_1_2_11_57_1
  doi: 10.1039/c2cs35173k
– ident: e_1_2_11_147_1
  doi: 10.1002/anie.202115835
– ident: e_1_2_11_153_1
  doi: 10.1002/adma.200702700
– ident: e_1_2_11_113_1
  doi: 10.1016/0008-6223(92)90036-V
– ident: e_1_2_11_78_1
  doi: 10.1039/C9TA07289F
– ident: e_1_2_11_96_1
  doi: 10.1002/sstr.202000067
– ident: e_1_2_11_98_1
  doi: 10.1038/s41467-019-08323-w
– ident: e_1_2_11_67_1
  doi: 10.1021/acscatal.0c01783
– ident: e_1_2_11_4_1
  doi: 10.1016/j.joule.2020.09.002
– ident: e_1_2_11_63_1
  doi: 10.1039/D1EE00166C
– ident: e_1_2_11_19_1
  doi: 10.1002/anie.201901923
– ident: e_1_2_11_28_1
  doi: 10.1002/adfm.202009032
– ident: e_1_2_11_35_1
  doi: 10.1021/acscatal.0c01641
– ident: e_1_2_11_105_1
  doi: 10.1002/anie.201411544
– ident: e_1_2_11_43_1
  doi: 10.1038/s41929-020-0497-y
– ident: e_1_2_11_94_1
  doi: 10.1002/anie.202104747
– ident: e_1_2_11_25_1
  doi: 10.1002/smsc.202100043
– ident: e_1_2_11_51_1
  doi: 10.1002/anie.201509616
– ident: e_1_2_11_32_1
  doi: 10.1002/anie.202100337
– ident: e_1_2_11_13_1
  doi: 10.1002/smsc.202000059
– ident: e_1_2_11_134_1
  doi: 10.1039/C9EE01000A
– ident: e_1_2_11_90_1
  doi: 10.1016/j.cclet.2019.12.009
– ident: e_1_2_11_34_1
  doi: 10.1021/cr050182l
– ident: e_1_2_11_151_1
  doi: 10.1126/science.aab0801
– ident: e_1_2_11_53_1
  doi: 10.1021/acs.jpcc.9b04305
– ident: e_1_2_11_99_1
  doi: 10.1021/acs.accounts.0c00488
– ident: e_1_2_11_143_1
  doi: 10.1038/nmat3458
– ident: e_1_2_11_70_1
  doi: 10.1002/anie.201909475
– ident: e_1_2_11_18_1
  doi: 10.1021/acsenergylett.0c00305
– ident: e_1_2_11_87_1
  doi: 10.1002/anie.202015060
– ident: e_1_2_11_127_1
  doi: 10.1021/jp2068446
– ident: e_1_2_11_132_1
  doi: 10.1021/jacs.5b09653
– ident: e_1_2_11_110_1
  doi: 10.1038/s41563-020-0735-3
– start-page: 412
  volume-title: Electrochemistry and Corrosion Science
  year: 2004
  ident: e_1_2_11_27_1
  doi: 10.1007/b118420
– ident: e_1_2_11_124_1
  doi: 10.1007/s12274-014-0695-5
– ident: e_1_2_11_31_1
  doi: 10.1002/sstr.202000048
– ident: e_1_2_11_40_1
  doi: 10.1021/j100213a020
– ident: e_1_2_11_72_1
  doi: 10.1002/smsc.202000027
– ident: e_1_2_11_62_1
  doi: 10.1007/s100080050145
– ident: e_1_2_11_41_1
  doi: 10.1039/C4EE01564A
– ident: e_1_2_11_146_1
  doi: 10.1002/anie.202111426
– ident: e_1_2_11_38_1
  doi: 10.1021/ja104421t
– ident: e_1_2_11_93_1
  doi: 10.1038/s41560-020-00709-1
– ident: e_1_2_11_42_1
  doi: 10.1021/ja9071496
– ident: e_1_2_11_20_1
  doi: 10.1016/j.nanoen.2016.03.005
– ident: e_1_2_11_117_1
  doi: 10.1016/j.jcis.2020.06.027
– ident: e_1_2_11_149_1
  doi: 10.1021/nn402406k
– ident: e_1_2_11_115_1
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_11_138_1
  doi: 10.1126/science.aau0630
– ident: e_1_2_11_85_1
  doi: 10.1002/smsc.202100011
– ident: e_1_2_11_29_1
  doi: 10.1515/zpch-2019-1480
– ident: e_1_2_11_122_1
  doi: 10.1039/D0TA02957B
– ident: e_1_2_11_82_1
  doi: 10.1039/D0CS00962H
– ident: e_1_2_11_116_1
  doi: 10.1002/smll.202006805
– ident: e_1_2_11_161_1
  doi: 10.1039/C8SC04589E
– ident: e_1_2_11_114_1
  doi: 10.1016/0008-6223(92)90164-R
– ident: e_1_2_11_157_1
  doi: 10.1038/s41929-017-0017-x
– ident: e_1_2_11_21_1
  doi: 10.1021/acs.accounts.8b00449
– ident: e_1_2_11_159_1
  doi: 10.1038/s41467-017-02479-z
– ident: e_1_2_11_91_1
  doi: 10.1002/smsc.202100015
– ident: e_1_2_11_156_1
  doi: 10.1038/s41467-020-18891-x
– ident: e_1_2_11_50_1
  doi: 10.1002/adma.201802066
– ident: e_1_2_11_3_1
  doi: 10.1038/s41560-021-00824-7
– ident: e_1_2_11_6_1
  doi: 10.1016/j.pmatsci.2020.100770
– ident: e_1_2_11_135_1
  doi: 10.1002/anie.202000657
– ident: e_1_2_11_8_1
  doi: 10.1126/science.aav3506
– ident: e_1_2_11_89_1
  doi: 10.1038/s41929-019-0400-x
– ident: e_1_2_11_22_1
  doi: 10.1021/acs.chemrev.1c00234
– ident: e_1_2_11_69_1
  doi: 10.1021/cs501973j
– ident: e_1_2_11_71_1
  doi: 10.1002/smtd.202101186
– ident: e_1_2_11_163_1
  doi: 10.1016/j.scib.2020.04.022
– ident: e_1_2_11_139_1
  doi: 10.1126/science.aah6133
– ident: e_1_2_11_54_1
  doi: 10.1039/D1CP01989A
– ident: e_1_2_11_44_1
  doi: 10.1002/anie.201207256
– ident: e_1_2_11_95_1
  doi: 10.1002/adma.201907879
– ident: e_1_2_11_145_1
  doi: 10.1016/j.chempr.2018.11.010
– ident: e_1_2_11_9_1
  doi: 10.1002/adma.202000381
– ident: e_1_2_11_30_1
  doi: 10.1002/aenm.202101998
– ident: e_1_2_11_46_1
  doi: 10.1016/j.chempr.2020.06.004
– ident: e_1_2_11_17_1
  doi: 10.1039/C9CS00607A
– ident: e_1_2_11_111_1
  doi: 10.1039/D0EE02800B
– ident: e_1_2_11_74_1
  doi: 10.1021/acscatal.9b04043
– ident: e_1_2_11_79_1
  doi: 10.1126/sciadv.abj1584
– ident: e_1_2_11_24_1
  doi: 10.1002/anie.202110186
– ident: e_1_2_11_56_1
  doi: 10.1002/aenm.202103916
– ident: e_1_2_11_37_1
  doi: 10.1126/science.272.5270.1924
– ident: e_1_2_11_26_1
  doi: 10.1002/smsc.202000028
– ident: e_1_2_11_109_1
  doi: 10.1007/BF03214756
– ident: e_1_2_11_131_1
  doi: 10.1002/anie.202200552
– ident: e_1_2_11_118_1
  doi: 10.1021/jacs.6b13100
– ident: e_1_2_11_76_1
  doi: 10.1021/acscatal.9b03359
– ident: e_1_2_11_58_1
  doi: 10.1021/ja300756y
– ident: e_1_2_11_15_1
  doi: 10.1002/adma.202103266
– ident: e_1_2_11_100_1
  doi: 10.1002/anie.202016977
SSID ssj0009606
Score 2.6467698
SecondaryResourceType review_article
Snippet Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200840
SubjectTerms Corrosion
Corrosion mechanisms
Corrosion resistance
Electrocatalysts
electrochemical reaction
electrolytes
Energy conversion
Energy technology
Nanomaterials
Performance degradation
reconstruction
Reliability engineering
Structural reliability
Title Corrosion Chemistry of Electrocatalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202200840
https://www.ncbi.nlm.nih.gov/pubmed/35334145
https://www.proquest.com/docview/2758749607
https://www.proquest.com/docview/2644021961
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hTjDwfgQKChJSp7Su7TjJWJVWFVIZEJW6RXbiLKAUNekAvx5fXm1BCAm2RDkr9p3P_s6P7wDuiCZMCkmdmHuBw33c3-U0cXjiekxFnkwYXhSePorJjD_M3fnGLf6SH6JZcEPPKMZrdHCpst6aNFTGBW8QxQ18jkE7HthCVPS05o9CeF6Q7THXCQT3a9ZGQnvbxbdnpW9Qcxu5FlPP-ABkXenyxMlLd5WrbvTxhc_xP606hP0Kl9qDsiMdwY5Oj2Fvg63wBDrDxdLU3hjSHtZp4uxFYo_KTDrFQtB7lmenMBuPnocTp8qz4ETMOLijDCahknnKlyRIApYgyyCLMQ-JFhLpd5iBla42sZ_UmDU2cmPuK6IiQXjf99gZtNJFqi_AJolQTMdMxDrhigQmHIslpYpIj5mxkVrg1HoOo4qEHHNhvIYlfTINUQFhowALOo38W0m_8aNkuzZbWLlhFlITDXnc9ALPgtvms1EQ7orIVC9WRsYgQgN0AtG34Lw0d_MrhheV-9y1gBZG-6UO4eB-OmjeLv9S6Ap28bk8MNOGVr5c6WsDe3J1U3TtT1-J9Ig
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOAAH9iVQIEhIPaV1bWc7VqVVgbYH1ErcIjtxLqAEdTnA1-PJVgpCSHBMYivOjMd54-U9gBuiCBOOoFbEXd_iHq7vchpbPLZdJkNXxAwPCg9HTn_C75_scjchnoXJ-SGqCTeMjGy8xgDHCenmkjVURBlxEMUVfK6z9g2U9c6yqsclgxQC9Ixuj9mW73Cv5G0ktLlaf_W_9A1srmLX7OfT2wVZNjvfc_LcWMxlI3z_wuj4r-_ag50CmprtvC_tw5pKDmD7E2HhIdQ76VQ3X_vS7JRKcWYam91cTCebC3qbzWdHMOl1x52-VUgtWCHTMW5JDUuoYK70BPFjn8VINMgilCJRjkAGHqaRpa10-icUCseGdsQ9SWToEN7yXHYM60maqFMwSexIpiLmRCrmkvg6I4sEpZIIl-nhkRpglYYOwoKHHOUwXoKcQZkGaICgMoAB9ar8a87A8WPJWum3oIjEWUB1QuRy3Q1cA66rx9pAuDAiEpUudBkNCjXW8Z2WASe5v6tXMTyr3OK2ATTz2i9tCNq3w3Z1dfaXSlew2R8PB8HgbvRwDlt4P98_U4P1-XShLjQKmsvLrJ9_AMCX-KM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7IBNEH75fq1ArCnrplSZq2j2MX5mVDxMHeStImL8o6dnnQX2_Srt2miKCPbROanEvynVy-A3CLJCKccezE1Asc6pv9XYqVQ5XrERF5XBFzUbjXZ90BvR-6w5Vb_Bk_RLHgZjwjHa-Ng49jVVuShvI45Q3CZgOf6qB9kzLkG7tuPS8JpAw-T9n2iOsEjPo5bSPCtfX669PSN6y5Dl3TuaezBzxvdXbk5LU6n4lq9PGF0PE_3dqH3QUwtRuZJR3Ahhwdws4KXeERVJrJRLdea9Ju5nni7ETZ7SyVTroS9D6dTY9h0Gm_NLvOItGCExHt4Y7QoARz4gmfo0AFRBmaQRKbRCSSccO_QzSudKUO_rg0aWMjN6a-QCJiiNZ9j5xAaZSM5BnYSDFBZExYLBUVKNDxWMwxFoh7RA-O2AInl3MYLVjITTKMtzDjT8ahEUBYCMCCSlF-nPFv_FiynKstXPjhNMQ6HPKotgLPgpvisxaQ2RbhI5nMdRkNCTXSCVjdgtNM3cWviLmpXKeuBThV2i9tCButXqN4Ov9LpWvYemp1wse7_sMFbJvX2eGZMpRmk7m81BBoJq5SK_8E5U33Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+Chemistry+of+Electrocatalysts&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Fu%E2%80%90Min&rft.au=Huang%2C+Lei&rft.au=Zaman%2C+Shahid&rft.au=Guo%2C+Wei&rft.date=2022-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=52&rft_id=info:doi/10.1002%2Fadma.202200840&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202200840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon