Full van der Waals Ambipolar Ferroelectric Configurable Optical Hetero‐Synapses for In‐Sensor Computing

The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufa...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 50; pp. e2401060 - n/a
Main Authors Bai, Jinxuan, He, Dawei, Dang, Bingjie, Liu, Keqin, Yang, Zhen, Wang, Jiarong, Zhang, Xiaoxian, Wang, Yongsheng, Tao, Yaoyu, Yang, Yuchao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202401060

Cover

Abstract The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three‐terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short‐term and long‐term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR‐10 color image dataset, and the VLC system can achieve high‐speed transmission with an ultra‐low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low‐power multifunctional fusion application tasks such as visual bionics. This paper proposes an optical synapse based on van der Waals heterojunction. Based on this device, an optical reservoir neural network and a visible light communication system were developed, which successfully imitated the signal preprocessing and data transmission process of the human visual system for color images. This provides new ideas for the development of intelligent imaging systems.
AbstractList The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three-terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short-term and long-term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR-10 color image dataset, and the VLC system can achieve high-speed transmission with an ultra-low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low-power multifunctional fusion application tasks such as visual bionics.
The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three-terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short-term and long-term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR-10 color image dataset, and the VLC system can achieve high-speed transmission with an ultra-low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low-power multifunctional fusion application tasks such as visual bionics.The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three-terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short-term and long-term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR-10 color image dataset, and the VLC system can achieve high-speed transmission with an ultra-low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low-power multifunctional fusion application tasks such as visual bionics.
The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three‐terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short‐term and long‐term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR‐10 color image dataset, and the VLC system can achieve high‐speed transmission with an ultra‐low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low‐power multifunctional fusion application tasks such as visual bionics. This paper proposes an optical synapse based on van der Waals heterojunction. Based on this device, an optical reservoir neural network and a visible light communication system were developed, which successfully imitated the signal preprocessing and data transmission process of the human visual system for color images. This provides new ideas for the development of intelligent imaging systems.
Author Yang, Zhen
He, Dawei
Dang, Bingjie
Wang, Yongsheng
Zhang, Xiaoxian
Liu, Keqin
Wang, Jiarong
Bai, Jinxuan
Tao, Yaoyu
Yang, Yuchao
Author_xml – sequence: 1
  givenname: Jinxuan
  surname: Bai
  fullname: Bai, Jinxuan
  organization: Beijing Jiaotong University
– sequence: 2
  givenname: Dawei
  surname: He
  fullname: He, Dawei
  organization: Beijing Jiaotong University
– sequence: 3
  givenname: Bingjie
  surname: Dang
  fullname: Dang, Bingjie
  organization: Peking University
– sequence: 4
  givenname: Keqin
  surname: Liu
  fullname: Liu, Keqin
  organization: Peking University
– sequence: 5
  givenname: Zhen
  surname: Yang
  fullname: Yang, Zhen
  organization: Peking University
– sequence: 6
  givenname: Jiarong
  surname: Wang
  fullname: Wang, Jiarong
  organization: Beijing Jiaotong University
– sequence: 7
  givenname: Xiaoxian
  surname: Zhang
  fullname: Zhang, Xiaoxian
  email: zhxiaoxian@bjtu.edu.cn
  organization: Beijing Jiaotong University
– sequence: 8
  givenname: Yongsheng
  surname: Wang
  fullname: Wang, Yongsheng
  email: yshwang@bjtu.edu.cn
  organization: Beijing Jiaotong University
– sequence: 9
  givenname: Yaoyu
  surname: Tao
  fullname: Tao, Yaoyu
  email: taoyaoyutyy@pku.edu.cn
  organization: Peking University
– sequence: 10
  givenname: Yuchao
  orcidid: 0000-0003-4674-4059
  surname: Yang
  fullname: Yang, Yuchao
  email: yuchaoyang@pku.edu.cn
  organization: Chinese Institute for Brain Research (CIBR), Beijing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39468917$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuKFDEUhoOMOD2jW5dS4MZNtSeXumTZtLYzMDILFZfhVFUyZEwlZVKl9M5H8Bl9EtP0jMKAuDrh8H0_h_xn5MQHrwl5TmFNAdhrHEZcM2ACKNTwiKxoxWgpQFYnZAWSV6WsRXtKzlK6BQBZQ_2EnHIp6lbSZkW-7Bbnim_oi0HH4jOiS8Vm7OwUHMZip2MM2ul-jrYvtsEbe7NE7JwurqfZ9uiKCz3rGH79-Plh73FKOhUmxOLSHzbap_zehnFaZutvnpLHJufrZ3fznHzavf24vSivrt9dbjdXZc8bDiW2QqA0HLCpjWiGRmreU8qGAWrZgx6kzHuoJLQGqeHIu7pr2WCYQGyZ4efk1TF3iuHrotOsRpt67Rx6HZakOGW0kkw0LKMvH6C3YYk-X5cpwRlktM7Uiztq6UY9qCnaEeNe3X9jBsQR6GNIKWqjejvjbIOfI1qnKKhDW-rQlvrTVtbWD7T75H8K8ih8t07v_0OrzZv3m7_ub4xtqM0
CitedBy_id crossref_primary_10_1002_admt_202402121
crossref_primary_10_1016_j_bgtech_2025_100167
crossref_primary_10_1002_adma_202501833
Cites_doi 10.1002/adfm.202306945
10.1002/adma.202211598
10.1038/s41467-022-34100-3
10.1038/s41586-024-07076-x
10.1038/s41467-022-32790-3
10.1002/smll.201904529
10.1021/acsami.3c00092
10.1038/s44310-024-00003-y
10.1088/1361-6463/ab37b6
10.1038/s41586-023-05973-1
10.1038/s41928-020-00529-x
10.1002/adma.202203481
10.1038/s41928-020-00501-9
10.1038/s41467-019-10738-4
10.1002/advs.202002072
10.1002/aisy.202300026
10.1038/s41563-022-01383-2
10.1038/s41586-023-05797-z
10.1038/s41467-021-21320-2
10.1038/s41928-022-00847-2
10.1021/acsami.2c15497
10.1038/s41467-018-04484-2
10.1038/s41563-023-01676-0
10.1038/ncomms12357
10.1103/PhysRevB.107.235407
10.1002/adma.202107754
10.1038/s41928-020-00473-w
10.1021/acsnano.9b07687
10.1021/acsnano.1c09136
10.1038/s41467-023-39430-4
10.1002/adma.201804690
10.1021/acs.nanolett.7b00636
10.1038/nmat2014
10.1002/adma.202002431
10.1038/s41467-018-07390-9
10.1088/1361-6463/ab7794
10.1038/s41586-020-2861-0
10.1021/acsnano.8b01810
10.1038/s41565-021-01003-1
10.1038/s41467-022-33877-7
10.1002/adma.202109899
10.1038/s41467-022-28502-6
10.1021/acs.nanolett.0c01460
10.1021/acsnano.3c07952
10.1038/s41467-019-09206-w
10.1038/s41586-020-2038-x
10.1002/adfm.202108014
10.1038/s41467-019-08830-w
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202401060
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39468917
10_1002_adma_202401060
ADMA202401060
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62374014; 61925401; 11974088
– fundername: Beijing Natural Science Foundation
  funderid: 4222073; L234026
– fundername: National Key Research and Development Program of China
  funderid: 2023YFA1407200; 2023YFB4502200
– fundername: 111 Project
  funderid: B18001
– fundername: Beijing Natural Science Foundation
  grantid: L234026
– fundername: National Key Research and Development Program of China
  grantid: 2023YFA1407200
– fundername: National Natural Science Foundation of China
  grantid: 11974088
– fundername: 111 Project
  grantid: B18001
– fundername: National Key Research and Development Program of China
  grantid: 2023YFB4502200
– fundername: National Natural Science Foundation of China
  grantid: 62374014
– fundername: National Natural Science Foundation of China
  grantid: 61925401
– fundername: Beijing Natural Science Foundation
  grantid: 4222073
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3730-a844a9f30a76f47d79e3c112dd069c0ed996f405908fa1f3a3b6b82df24aa82f3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:04:23 EDT 2025
Fri Jul 25 22:21:47 EDT 2025
Thu Apr 03 07:03:51 EDT 2025
Tue Jul 01 00:54:57 EDT 2025
Thu Apr 24 23:06:34 EDT 2025
Sun Jul 06 04:45:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords full van der Waals
optical reservoir neural network
in‐sensor computing
visible light communication
Two‐dimensional ferroelectric materials
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-a844a9f30a76f47d79e3c112dd069c0ed996f405908fa1f3a3b6b82df24aa82f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4674-4059
PMID 39468917
PQID 3143201216
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_3121592472
proquest_journals_3143201216
pubmed_primary_39468917
crossref_citationtrail_10_1002_adma_202401060
crossref_primary_10_1002_adma_202401060
wiley_primary_10_1002_adma_202401060_ADMA202401060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 35
2023; 14
2021; 4
2023; 11
2023; 17
2020; 20
2019; 52
2023; 5
2023; 15
2019; 10
2024; 627
2019; 16
2020; 14
2020; 587
2022; 21
2020; 32
2023; 107
2024; 19
2018; 9
2021; 16
2016; 7
2020; 3
2023; 22
2021; 12
2021; 11
2020; 53
2020; 31
2022
2017; 17
2022; 5
2022; 34
2022; 13
2022; 35
2007; 6
2022; 14
2020; 579
2023; 616
2024; 1
2022; 32
2020; 21
2018; 12
2023; 618
2018; 31
2022; 16
2022; 17
2009; 18
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Gao G. (e_1_2_8_21_1) 2020; 31
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
Dang B. (e_1_2_8_9_1) 2022
e_1_2_8_39_1
Arici T. (e_1_2_8_7_1) 2009; 18
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
Saxena N. (e_1_2_8_16_1) 2021; 11
Jiang X. (e_1_2_8_29_1) 2021; 16
Yoon C. (e_1_2_8_18_1) 2023; 11
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 12
  start-page: 6700
  year: 2018
  publication-title: ACS Nano
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 5418
  year: 2022
  publication-title: ACS Nano
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 6111
  year: 2021
  publication-title: Nature
– volume: 21
  year: 2020
  publication-title: Adv. Science.
– volume: 618
  start-page: 57
  year: 2023
  publication-title: Nature
– volume: 17
  start-page: 3159
  year: 2017
  publication-title: Nano Lett.
– volume: 616
  start-page: 66
  year: 2023
  publication-title: Nat. Commun.
– volume: 19
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 810
  year: 2007
  publication-title: Nat. Mater.
– volume: 16
  start-page: 5418
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 9
  start-page: 5160
  year: 2018
  publication-title: Nat. Commun.
– volume: 22
  start-page: 1499
  year: 2023
  publication-title: Nat. Materials.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– year: 2022
  publication-title: Adv. Mater.
– volume: 627
  start-page: 295
  year: 2024
  publication-title: Nature
– volume: 13
  start-page: 6048
  year: 2022
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5223
  year: 2022
  publication-title: Nat. Commun.
– volume: 17
  start-page: 27
  year: 2022
  publication-title: Nat. Nano.
– volume: 3
  start-page: 638
  year: 2020
  publication-title: Nat. Electro.
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 11
  start-page: 6111
  year: 2023
  publication-title: Nature
– volume: 20
  start-page: 5741
  year: 2020
  publication-title: Nano Lett.
– volume: 35
  year: 2022
  publication-title: Adv. Mater.
– volume: 18
  start-page: 1921
  year: 2009
  publication-title: IEEE
– volume: 53
  year: 2020
  publication-title: J. Phys. D: Appl. Phys.
– volume: 4
  start-page: 98
  year: 2021
  publication-title: Nat. Electro.
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 10
  start-page: 3037
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  start-page: 6362
  year: 2022
  publication-title: Nat. Commun.
– volume: 52
  year: 2019
  publication-title: J. Phys. D: Appl. Phys.
– volume: 14
  start-page: 746
  year: 2020
  publication-title: ACS Nano
– volume: 31
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 16
  year: 2019
  publication-title: Small
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 587
  start-page: 72
  year: 2020
  publication-title: Nature
– volume: 13
  start-page: 909
  year: 2022
  publication-title: Nat. Commun.
– volume: 579
  start-page: 62
  year: 2020
  publication-title: Nature
– volume: 1
  start-page: 2
  year: 2024
  publication-title: Npj nanophotonics
– volume: 12
  start-page: 1109
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2385
  year: 2018
  publication-title: Nat. Commun.
– volume: 107
  year: 2023
  publication-title: Phys. Rev. B.
– volume: 3
  start-page: 664
  year: 2020
  publication-title: Nat. Electron.
– volume: 10
  start-page: 1086
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 3695
  year: 2023
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1294
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  year: 2023
  publication-title: Advanced Intelligent Systems
– volume: 5
  start-page: 761
  year: 2022
  publication-title: Nat. Electro.
– volume: 21
  start-page: 1225
  year: 2022
  publication-title: Nat. Mater.
– volume: 3
  start-page: 664
  year: 2020
  publication-title: Nat. Electro.
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202306945
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.202211598
– ident: e_1_2_8_53_1
  doi: 10.1038/s41467-022-34100-3
– year: 2022
  ident: e_1_2_8_9_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_57_1
  doi: 10.1038/s41586-024-07076-x
– ident: e_1_2_8_1_1
  doi: 10.1038/s41467-022-32790-3
– ident: e_1_2_8_44_1
  doi: 10.1002/smll.201904529
– ident: e_1_2_8_26_1
  doi: 10.1021/acsami.3c00092
– ident: e_1_2_8_55_1
  doi: 10.1038/s44310-024-00003-y
– ident: e_1_2_8_15_1
  doi: 10.1088/1361-6463/ab37b6
– ident: e_1_2_8_38_1
  doi: 10.1038/s41586-023-05973-1
– ident: e_1_2_8_36_1
  doi: 10.1038/s41928-020-00529-x
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.202203481
– ident: e_1_2_8_4_1
  doi: 10.1038/s41928-020-00501-9
– ident: e_1_2_8_45_1
  doi: 10.1038/s41467-019-10738-4
– ident: e_1_2_8_5_1
  doi: 10.1002/advs.202002072
– ident: e_1_2_8_17_1
  doi: 10.1002/aisy.202300026
– ident: e_1_2_8_22_1
  doi: 10.1038/s41563-022-01383-2
– ident: e_1_2_8_35_1
  doi: 10.1038/s41586-023-05797-z
– ident: e_1_2_8_40_1
  doi: 10.1038/s41467-021-21320-2
– ident: e_1_2_8_10_1
  doi: 10.1038/s41928-022-00847-2
– ident: e_1_2_8_46_1
  doi: 10.1021/acsami.2c15497
– volume: 11
  start-page: 6111
  year: 2021
  ident: e_1_2_8_16_1
  publication-title: Nature
– volume: 18
  start-page: 1921
  year: 2009
  ident: e_1_2_8_7_1
  publication-title: IEEE
– volume: 16
  start-page: 5418
  year: 2021
  ident: e_1_2_8_29_1
  publication-title: ACS Appl. Mater. Interfaces.
– ident: e_1_2_8_48_1
  doi: 10.1038/s41467-018-04484-2
– ident: e_1_2_8_32_1
  doi: 10.1038/s41563-023-01676-0
– ident: e_1_2_8_47_1
  doi: 10.1038/s41928-020-00501-9
– ident: e_1_2_8_39_1
  doi: 10.1038/ncomms12357
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevB.107.235407
– ident: e_1_2_8_43_1
  doi: 10.1038/ncomms12357
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.202107754
– ident: e_1_2_8_37_1
  doi: 10.1038/s41928-020-00473-w
– ident: e_1_2_8_25_1
  doi: 10.1021/acsnano.9b07687
– ident: e_1_2_8_28_1
  doi: 10.1021/acsnano.1c09136
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-023-39430-4
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.201804690
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.nanolett.7b00636
– ident: e_1_2_8_13_1
  doi: 10.1038/nmat2014
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.202002431
– ident: e_1_2_8_8_1
  doi: 10.1038/s41467-018-07390-9
– ident: e_1_2_8_14_1
  doi: 10.1088/1361-6463/ab7794
– ident: e_1_2_8_12_1
  doi: 10.1038/s41586-020-2861-0
– volume: 11
  start-page: 6111
  year: 2023
  ident: e_1_2_8_18_1
  publication-title: Nature
– ident: e_1_2_8_30_1
  doi: 10.1021/acsnano.8b01810
– volume: 31
  year: 2020
  ident: e_1_2_8_21_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_33_1
  doi: 10.1038/s41565-021-01003-1
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-022-33877-7
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.202109899
– ident: e_1_2_8_54_1
  doi: 10.1038/s41467-022-28502-6
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.nanolett.0c01460
– ident: e_1_2_8_27_1
  doi: 10.1021/acsnano.3c07952
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-019-09206-w
– ident: e_1_2_8_3_1
  doi: 10.1038/s41586-020-2038-x
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.202108014
– ident: e_1_2_8_56_1
  doi: 10.1038/s41467-019-08830-w
– ident: e_1_2_8_31_1
  doi: 10.1021/acsnano.3c07952
SSID ssj0009606
Score 2.491126
Snippet The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2401060
SubjectTerms Bionics
Color imagery
Communications systems
Energy consumption
Ferroelectricity
full van der Waals
Hardware
Heterojunctions
in‐sensor computing
Luminous intensity
Neural networks
Neuromorphic computing
optical reservoir neural network
Power management
Production costs
Synapses
Two‐dimensional ferroelectric materials
visible light communication
Visual tasks
Title Full van der Waals Ambipolar Ferroelectric Configurable Optical Hetero‐Synapses for In‐Sensor Computing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202401060
https://www.ncbi.nlm.nih.gov/pubmed/39468917
https://www.proquest.com/docview/3143201216
https://www.proquest.com/docview/3121592472
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5CnMYB2ICRAZORkDgZ0th1kmMFq7pJgLSB4BY5toMqWFql7QFO_An8jftL9l7cBjqEJsEtP2zZsf38vs-xvwewJ5S1wricqzCOuUyk4-gVDUcoS6tuMXpFIoonp6p3IX9cta-eneL3-hDNghtZRj1fk4HrfHT4JBqqba0bhB4JWQ2R9pZQJJ5__PNJP4rgeS22J9o8VTKZqTaG0eF89nmv9AJqziPX2vV0V0DPKu13nNwcTMb5gbn_R8_xPV-1CstTXMo6fiB9hAVXfoKlZ2qFa3BDdJUh8mbWVexS48Blnd95f0jsmHVdVQ18UJ2-YXSQsH89qehgFjsb1gvmrEdbbwZ_Hh5_3ZV6OHIjhoiZfS_pCbJpvPYxJrC0dbjofjs_6vFprAZuBE4SXCdS6rQQoY5VIWMbp04YxHLWhio1obPIqwpZR1gvdKsQWuQqTyJbRFLrJCrEBiyWg9JtAlO23VIqV0g8U5mIQrvEuJiU4pVAutoOgM_6KjNTIXOKp3GbeQnmKKNGzJpGDGC_ST_0Eh6vptyedX02NeVRJhBRRqR8pwLYbV6jEdKfFV26wYTSIHJCJhtHAXz2Q6YpSqRSJUiKA4jqjv9PHbLO8Umnufvylkxb8IGu_aabbVgcVxO3g9BpnH-tzeMv3CoPOw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VcGh7APpJKG1dqVJPhhB7neS4gq6WwoJEQe0tcmynWgHZVXb3ACd-Qn8jv4SZeBO6rapK5ZYPW3Zsj-c9x34D8FEoa4VxOVdhHHOZSMfRKxqOUJZW3WL0ikQUB0eqfya_fO80uwnpLIzXh2gX3Mgy6vmaDJwWpLfvVUO1rYWD0CUhrUHWviwRbRD_2ju5V5AigF7L7YkOT5VMGt3GMNpezL_ol_4Am4vYtXY-vVXIm2r7PSfnW7NpvmWuf1N0fNB3rcHKHJqyrh9Lz-CRK5_D018EC1_AOTFWhuCbWVexbxrHLute5sMxEWTWc1U18nF1hobRWcLhj1lFZ7PY8bheM2d92n0zur35-fWq1OOJmzAEzWy_pCdIqPHah5nA0l7CWe_z6W6fz8M1cCNwnuA6kVKnhQh1rAoZ2zh1wiCcszZUqQmdRWpVyDrIeqF3CqFFrvIkskUktU6iQryCpXJUunVgynZ2lMoVcs9UJqLQLjEuJrF4JZCxdgLgTWdlZq5lTiE1LjKvwhxl1IhZ24gBfGrTj72Kx19TbjZ9n82teZIJBJURid-pAD60r9EO6eeKLt1oRmkQPCGZjaMAXvsx0xYlUqkS5MUBRHXP_6MOWXdv0G3vNv4n03t43D8dHGaH-0cHb-AJPfd7cDZhaVrN3FtEUtP8XW0rd9jxE1o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRapgAZRHSV8YCYmV2zT2OMlyRBlNgRYEVHQXOX6gUWkmyswsYNVP6Df2S7g3nkk7IIQEuzxs2bF9fc9x7HMBXghlrTCu5CpOUy4z6Th6RcMRytKqW4pekYji0bEansg3p73TG6f4gz5Et-BGltHO12TgtfV716Kh2ra6QeiRkNUgab8tFcIJgkUfrwWkCJ-3anuix3Mls4VsY5zsLedfdku_Yc1l6Nr6nsF90Itahy0nZ7uzablrfvwi6Pg_n_UA7s2BKeuHkbQGt1z1EO7ekCt8BGfEVxlCb2Zdw75oHLmsf16OaqLHbOCaZhyi6owMo5OEo6-zhk5msfd1u2LOhrT3Znx1cfnpe6XriZswhMzssKInSKfxOgSZwNIew8ng9edXQz4P1sCNwFmC60xKnXsR61R5mdo0d8IgmLM2VrmJnUVi5WUbYt3rfS-0KFWZJdYnUuss8eIJrFTjyj0FpmxvX6lSIfPMZSa8dplxKUnFK4F8tRcBX_RVYeZK5hRQ41sRNJiTghqx6Boxgpdd-jpoePwx5dai64u5LU8KgZAyIek7FcHz7jVaIf1a0ZUbzygNQieksmkSwXoYMl1RIpcqQ1YcQdJ2_F_qUPQPjvrd3ca_ZHoGqx8OBsW7w-O3m3CHHocNOFuwMm1mbhth1LTcaS3lJ4jIEgk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+van+der+Waals+Ambipolar+Ferroelectric+Configurable+Optical+Hetero%E2%80%90Synapses+for+In%E2%80%90Sensor+Computing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Bai%2C+Jinxuan&rft.au=He%2C+Dawei&rft.au=Dang%2C+Bingjie&rft.au=Liu%2C+Keqin&rft.date=2024-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202401060&rft.externalDBID=10.1002%252Fadma.202401060&rft.externalDocID=ADMA202401060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon