Full van der Waals Ambipolar Ferroelectric Configurable Optical Hetero‐Synapses for In‐Sensor Computing
The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufa...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 50; pp. e2401060 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202401060 |
Cover
Abstract | The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three‐terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short‐term and long‐term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR‐10 color image dataset, and the VLC system can achieve high‐speed transmission with an ultra‐low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low‐power multifunctional fusion application tasks such as visual bionics.
This paper proposes an optical synapse based on van der Waals heterojunction. Based on this device, an optical reservoir neural network and a visible light communication system were developed, which successfully imitated the signal preprocessing and data transmission process of the human visual system for color images. This provides new ideas for the development of intelligent imaging systems. |
---|---|
AbstractList | The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three-terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short-term and long-term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR-10 color image dataset, and the VLC system can achieve high-speed transmission with an ultra-low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low-power multifunctional fusion application tasks such as visual bionics. The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three-terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short-term and long-term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR-10 color image dataset, and the VLC system can achieve high-speed transmission with an ultra-low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low-power multifunctional fusion application tasks such as visual bionics.The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three-terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short-term and long-term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR-10 color image dataset, and the VLC system can achieve high-speed transmission with an ultra-low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low-power multifunctional fusion application tasks such as visual bionics. The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment. The main limitation of existing visual neuromorphic hardware is that the realization of complex functions is premised on the increase of manufacturing cost, hardware volume and energy consumption. In this study, we demonstrated an optical synaptic device based on a three‐terminal van der Waals (vdW) heterojunction that can realize the sensing functions of light wavelength and intensity as well as short‐term and long‐term synaptic plasticity. In the image recognition task, we constructed an optical reservoir neural network (ORNN) and a visible light communication system (VLC) composed of this optical synaptic device. The ORNN has a recognition rate of up to 84.9% for 50 000 color images in 10 categories in the CIFAR‐10 color image dataset, and the VLC system can achieve high‐speed transmission with an ultra‐low power consumption of only 0.4 nW. This work shows that through reasonable design, vdW heterojunction structures have great application potential in low‐power multifunctional fusion application tasks such as visual bionics. This paper proposes an optical synapse based on van der Waals heterojunction. Based on this device, an optical reservoir neural network and a visible light communication system were developed, which successfully imitated the signal preprocessing and data transmission process of the human visual system for color images. This provides new ideas for the development of intelligent imaging systems. |
Author | Yang, Zhen He, Dawei Dang, Bingjie Wang, Yongsheng Zhang, Xiaoxian Liu, Keqin Wang, Jiarong Bai, Jinxuan Tao, Yaoyu Yang, Yuchao |
Author_xml | – sequence: 1 givenname: Jinxuan surname: Bai fullname: Bai, Jinxuan organization: Beijing Jiaotong University – sequence: 2 givenname: Dawei surname: He fullname: He, Dawei organization: Beijing Jiaotong University – sequence: 3 givenname: Bingjie surname: Dang fullname: Dang, Bingjie organization: Peking University – sequence: 4 givenname: Keqin surname: Liu fullname: Liu, Keqin organization: Peking University – sequence: 5 givenname: Zhen surname: Yang fullname: Yang, Zhen organization: Peking University – sequence: 6 givenname: Jiarong surname: Wang fullname: Wang, Jiarong organization: Beijing Jiaotong University – sequence: 7 givenname: Xiaoxian surname: Zhang fullname: Zhang, Xiaoxian email: zhxiaoxian@bjtu.edu.cn organization: Beijing Jiaotong University – sequence: 8 givenname: Yongsheng surname: Wang fullname: Wang, Yongsheng email: yshwang@bjtu.edu.cn organization: Beijing Jiaotong University – sequence: 9 givenname: Yaoyu surname: Tao fullname: Tao, Yaoyu email: taoyaoyutyy@pku.edu.cn organization: Peking University – sequence: 10 givenname: Yuchao orcidid: 0000-0003-4674-4059 surname: Yang fullname: Yang, Yuchao email: yuchaoyang@pku.edu.cn organization: Chinese Institute for Brain Research (CIBR), Beijing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39468917$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcuKFDEUhoOMOD2jW5dS4MZNtSeXumTZtLYzMDILFZfhVFUyZEwlZVKl9M5H8Bl9EtP0jMKAuDrh8H0_h_xn5MQHrwl5TmFNAdhrHEZcM2ACKNTwiKxoxWgpQFYnZAWSV6WsRXtKzlK6BQBZQ_2EnHIp6lbSZkW-7Bbnim_oi0HH4jOiS8Vm7OwUHMZip2MM2ul-jrYvtsEbe7NE7JwurqfZ9uiKCz3rGH79-Plh73FKOhUmxOLSHzbap_zehnFaZutvnpLHJufrZ3fznHzavf24vSivrt9dbjdXZc8bDiW2QqA0HLCpjWiGRmreU8qGAWrZgx6kzHuoJLQGqeHIu7pr2WCYQGyZ4efk1TF3iuHrotOsRpt67Rx6HZakOGW0kkw0LKMvH6C3YYk-X5cpwRlktM7Uiztq6UY9qCnaEeNe3X9jBsQR6GNIKWqjejvjbIOfI1qnKKhDW-rQlvrTVtbWD7T75H8K8ih8t07v_0OrzZv3m7_ub4xtqM0 |
CitedBy_id | crossref_primary_10_1002_admt_202402121 crossref_primary_10_1016_j_bgtech_2025_100167 crossref_primary_10_1002_adma_202501833 |
Cites_doi | 10.1002/adfm.202306945 10.1002/adma.202211598 10.1038/s41467-022-34100-3 10.1038/s41586-024-07076-x 10.1038/s41467-022-32790-3 10.1002/smll.201904529 10.1021/acsami.3c00092 10.1038/s44310-024-00003-y 10.1088/1361-6463/ab37b6 10.1038/s41586-023-05973-1 10.1038/s41928-020-00529-x 10.1002/adma.202203481 10.1038/s41928-020-00501-9 10.1038/s41467-019-10738-4 10.1002/advs.202002072 10.1002/aisy.202300026 10.1038/s41563-022-01383-2 10.1038/s41586-023-05797-z 10.1038/s41467-021-21320-2 10.1038/s41928-022-00847-2 10.1021/acsami.2c15497 10.1038/s41467-018-04484-2 10.1038/s41563-023-01676-0 10.1038/ncomms12357 10.1103/PhysRevB.107.235407 10.1002/adma.202107754 10.1038/s41928-020-00473-w 10.1021/acsnano.9b07687 10.1021/acsnano.1c09136 10.1038/s41467-023-39430-4 10.1002/adma.201804690 10.1021/acs.nanolett.7b00636 10.1038/nmat2014 10.1002/adma.202002431 10.1038/s41467-018-07390-9 10.1088/1361-6463/ab7794 10.1038/s41586-020-2861-0 10.1021/acsnano.8b01810 10.1038/s41565-021-01003-1 10.1038/s41467-022-33877-7 10.1002/adma.202109899 10.1038/s41467-022-28502-6 10.1021/acs.nanolett.0c01460 10.1021/acsnano.3c07952 10.1038/s41467-019-09206-w 10.1038/s41586-020-2038-x 10.1002/adfm.202108014 10.1038/s41467-019-08830-w |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202401060 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 39468917 10_1002_adma_202401060 ADMA202401060 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62374014; 61925401; 11974088 – fundername: Beijing Natural Science Foundation funderid: 4222073; L234026 – fundername: National Key Research and Development Program of China funderid: 2023YFA1407200; 2023YFB4502200 – fundername: 111 Project funderid: B18001 – fundername: Beijing Natural Science Foundation grantid: L234026 – fundername: National Key Research and Development Program of China grantid: 2023YFA1407200 – fundername: National Natural Science Foundation of China grantid: 11974088 – fundername: 111 Project grantid: B18001 – fundername: National Key Research and Development Program of China grantid: 2023YFB4502200 – fundername: National Natural Science Foundation of China grantid: 62374014 – fundername: National Natural Science Foundation of China grantid: 61925401 – fundername: Beijing Natural Science Foundation grantid: 4222073 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADMLS ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3730-a844a9f30a76f47d79e3c112dd069c0ed996f405908fa1f3a3b6b82df24aa82f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 11:04:23 EDT 2025 Fri Jul 25 22:21:47 EDT 2025 Thu Apr 03 07:03:51 EDT 2025 Tue Jul 01 00:54:57 EDT 2025 Thu Apr 24 23:06:34 EDT 2025 Sun Jul 06 04:45:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | full van der Waals optical reservoir neural network in‐sensor computing visible light communication Two‐dimensional ferroelectric materials |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-a844a9f30a76f47d79e3c112dd069c0ed996f405908fa1f3a3b6b82df24aa82f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4674-4059 |
PMID | 39468917 |
PQID | 3143201216 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3121592472 proquest_journals_3143201216 pubmed_primary_39468917 crossref_citationtrail_10_1002_adma_202401060 crossref_primary_10_1002_adma_202401060 wiley_primary_10_1002_adma_202401060_ADMA202401060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 35 2023; 14 2021; 4 2023; 11 2023; 17 2020; 20 2019; 52 2023; 5 2023; 15 2019; 10 2024; 627 2019; 16 2020; 14 2020; 587 2022; 21 2020; 32 2023; 107 2024; 19 2018; 9 2021; 16 2016; 7 2020; 3 2023; 22 2021; 12 2021; 11 2020; 53 2020; 31 2022 2017; 17 2022; 5 2022; 34 2022; 13 2022; 35 2007; 6 2022; 14 2020; 579 2023; 616 2024; 1 2022; 32 2020; 21 2018; 12 2023; 618 2018; 31 2022; 16 2022; 17 2009; 18 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Gao G. (e_1_2_8_21_1) 2020; 31 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 Dang B. (e_1_2_8_9_1) 2022 e_1_2_8_39_1 Arici T. (e_1_2_8_7_1) 2009; 18 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 Saxena N. (e_1_2_8_16_1) 2021; 11 Jiang X. (e_1_2_8_29_1) 2021; 16 Yoon C. (e_1_2_8_18_1) 2023; 11 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 12 start-page: 6700 year: 2018 publication-title: ACS Nano – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 5418 year: 2022 publication-title: ACS Nano – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 6111 year: 2021 publication-title: Nature – volume: 21 year: 2020 publication-title: Adv. Science. – volume: 618 start-page: 57 year: 2023 publication-title: Nature – volume: 17 start-page: 3159 year: 2017 publication-title: Nano Lett. – volume: 616 start-page: 66 year: 2023 publication-title: Nat. Commun. – volume: 19 year: 2024 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 810 year: 2007 publication-title: Nat. Mater. – volume: 16 start-page: 5418 year: 2021 publication-title: ACS Appl. Mater. Interfaces. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 9 start-page: 5160 year: 2018 publication-title: Nat. Commun. – volume: 22 start-page: 1499 year: 2023 publication-title: Nat. Materials. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – year: 2022 publication-title: Adv. Mater. – volume: 627 start-page: 295 year: 2024 publication-title: Nature – volume: 13 start-page: 6048 year: 2022 publication-title: Nat. Commun. – volume: 13 start-page: 5223 year: 2022 publication-title: Nat. Commun. – volume: 17 start-page: 27 year: 2022 publication-title: Nat. Nano. – volume: 3 start-page: 638 year: 2020 publication-title: Nat. Electro. – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces. – volume: 11 start-page: 6111 year: 2023 publication-title: Nature – volume: 20 start-page: 5741 year: 2020 publication-title: Nano Lett. – volume: 35 year: 2022 publication-title: Adv. Mater. – volume: 18 start-page: 1921 year: 2009 publication-title: IEEE – volume: 53 year: 2020 publication-title: J. Phys. D: Appl. Phys. – volume: 4 start-page: 98 year: 2021 publication-title: Nat. Electro. – volume: 17 year: 2023 publication-title: ACS Nano – volume: 10 start-page: 3037 year: 2019 publication-title: Nat. Commun. – volume: 13 start-page: 6362 year: 2022 publication-title: Nat. Commun. – volume: 52 year: 2019 publication-title: J. Phys. D: Appl. Phys. – volume: 14 start-page: 746 year: 2020 publication-title: ACS Nano – volume: 31 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 16 year: 2019 publication-title: Small – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 587 start-page: 72 year: 2020 publication-title: Nature – volume: 13 start-page: 909 year: 2022 publication-title: Nat. Commun. – volume: 579 start-page: 62 year: 2020 publication-title: Nature – volume: 1 start-page: 2 year: 2024 publication-title: Npj nanophotonics – volume: 12 start-page: 1109 year: 2021 publication-title: Nat. Commun. – volume: 9 start-page: 2385 year: 2018 publication-title: Nat. Commun. – volume: 107 year: 2023 publication-title: Phys. Rev. B. – volume: 3 start-page: 664 year: 2020 publication-title: Nat. Electron. – volume: 10 start-page: 1086 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 3695 year: 2023 publication-title: Nat. Commun. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 10 start-page: 1294 year: 2019 publication-title: Nat. Commun. – volume: 5 year: 2023 publication-title: Advanced Intelligent Systems – volume: 5 start-page: 761 year: 2022 publication-title: Nat. Electro. – volume: 21 start-page: 1225 year: 2022 publication-title: Nat. Mater. – volume: 3 start-page: 664 year: 2020 publication-title: Nat. Electro. – ident: e_1_2_8_23_1 doi: 10.1002/adfm.202306945 – ident: e_1_2_8_11_1 doi: 10.1002/adma.202211598 – ident: e_1_2_8_53_1 doi: 10.1038/s41467-022-34100-3 – year: 2022 ident: e_1_2_8_9_1 publication-title: Adv. Mater. – ident: e_1_2_8_57_1 doi: 10.1038/s41586-024-07076-x – ident: e_1_2_8_1_1 doi: 10.1038/s41467-022-32790-3 – ident: e_1_2_8_44_1 doi: 10.1002/smll.201904529 – ident: e_1_2_8_26_1 doi: 10.1021/acsami.3c00092 – ident: e_1_2_8_55_1 doi: 10.1038/s44310-024-00003-y – ident: e_1_2_8_15_1 doi: 10.1088/1361-6463/ab37b6 – ident: e_1_2_8_38_1 doi: 10.1038/s41586-023-05973-1 – ident: e_1_2_8_36_1 doi: 10.1038/s41928-020-00529-x – ident: e_1_2_8_20_1 doi: 10.1002/adma.202203481 – ident: e_1_2_8_4_1 doi: 10.1038/s41928-020-00501-9 – ident: e_1_2_8_45_1 doi: 10.1038/s41467-019-10738-4 – ident: e_1_2_8_5_1 doi: 10.1002/advs.202002072 – ident: e_1_2_8_17_1 doi: 10.1002/aisy.202300026 – ident: e_1_2_8_22_1 doi: 10.1038/s41563-022-01383-2 – ident: e_1_2_8_35_1 doi: 10.1038/s41586-023-05797-z – ident: e_1_2_8_40_1 doi: 10.1038/s41467-021-21320-2 – ident: e_1_2_8_10_1 doi: 10.1038/s41928-022-00847-2 – ident: e_1_2_8_46_1 doi: 10.1021/acsami.2c15497 – volume: 11 start-page: 6111 year: 2021 ident: e_1_2_8_16_1 publication-title: Nature – volume: 18 start-page: 1921 year: 2009 ident: e_1_2_8_7_1 publication-title: IEEE – volume: 16 start-page: 5418 year: 2021 ident: e_1_2_8_29_1 publication-title: ACS Appl. Mater. Interfaces. – ident: e_1_2_8_48_1 doi: 10.1038/s41467-018-04484-2 – ident: e_1_2_8_32_1 doi: 10.1038/s41563-023-01676-0 – ident: e_1_2_8_47_1 doi: 10.1038/s41928-020-00501-9 – ident: e_1_2_8_39_1 doi: 10.1038/ncomms12357 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevB.107.235407 – ident: e_1_2_8_43_1 doi: 10.1038/ncomms12357 – ident: e_1_2_8_2_1 doi: 10.1002/adma.202107754 – ident: e_1_2_8_37_1 doi: 10.1038/s41928-020-00473-w – ident: e_1_2_8_25_1 doi: 10.1021/acsnano.9b07687 – ident: e_1_2_8_28_1 doi: 10.1021/acsnano.1c09136 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-023-39430-4 – ident: e_1_2_8_50_1 doi: 10.1002/adma.201804690 – ident: e_1_2_8_6_1 doi: 10.1021/acs.nanolett.7b00636 – ident: e_1_2_8_13_1 doi: 10.1038/nmat2014 – ident: e_1_2_8_34_1 doi: 10.1002/adma.202002431 – ident: e_1_2_8_8_1 doi: 10.1038/s41467-018-07390-9 – ident: e_1_2_8_14_1 doi: 10.1088/1361-6463/ab7794 – ident: e_1_2_8_12_1 doi: 10.1038/s41586-020-2861-0 – volume: 11 start-page: 6111 year: 2023 ident: e_1_2_8_18_1 publication-title: Nature – ident: e_1_2_8_30_1 doi: 10.1021/acsnano.8b01810 – volume: 31 year: 2020 ident: e_1_2_8_21_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_33_1 doi: 10.1038/s41565-021-01003-1 – ident: e_1_2_8_52_1 doi: 10.1038/s41467-022-33877-7 – ident: e_1_2_8_41_1 doi: 10.1002/adma.202109899 – ident: e_1_2_8_54_1 doi: 10.1038/s41467-022-28502-6 – ident: e_1_2_8_42_1 doi: 10.1021/acs.nanolett.0c01460 – ident: e_1_2_8_27_1 doi: 10.1021/acsnano.3c07952 – ident: e_1_2_8_49_1 doi: 10.1038/s41467-019-09206-w – ident: e_1_2_8_3_1 doi: 10.1038/s41586-020-2038-x – ident: e_1_2_8_24_1 doi: 10.1002/adfm.202108014 – ident: e_1_2_8_56_1 doi: 10.1038/s41467-019-08830-w – ident: e_1_2_8_31_1 doi: 10.1021/acsnano.3c07952 |
SSID | ssj0009606 |
Score | 2.491126 |
Snippet | The rapid development of visual neuromorphic hardware can be attributed to their ability to capture, store and process optical signals from the environment.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2401060 |
SubjectTerms | Bionics Color imagery Communications systems Energy consumption Ferroelectricity full van der Waals Hardware Heterojunctions in‐sensor computing Luminous intensity Neural networks Neuromorphic computing optical reservoir neural network Power management Production costs Synapses Two‐dimensional ferroelectric materials visible light communication Visual tasks |
Title | Full van der Waals Ambipolar Ferroelectric Configurable Optical Hetero‐Synapses for In‐Sensor Computing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202401060 https://www.ncbi.nlm.nih.gov/pubmed/39468917 https://www.proquest.com/docview/3143201216 https://www.proquest.com/docview/3121592472 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5CnMYB2ICRAZORkDgZ0th1kmMFq7pJgLSB4BY5toMqWFql7QFO_An8jftL9l7cBjqEJsEtP2zZsf38vs-xvwewJ5S1wricqzCOuUyk4-gVDUcoS6tuMXpFIoonp6p3IX9cta-eneL3-hDNghtZRj1fk4HrfHT4JBqqba0bhB4JWQ2R9pZQJJ5__PNJP4rgeS22J9o8VTKZqTaG0eF89nmv9AJqziPX2vV0V0DPKu13nNwcTMb5gbn_R8_xPV-1CstTXMo6fiB9hAVXfoKlZ2qFa3BDdJUh8mbWVexS48Blnd95f0jsmHVdVQ18UJ2-YXSQsH89qehgFjsb1gvmrEdbbwZ_Hh5_3ZV6OHIjhoiZfS_pCbJpvPYxJrC0dbjofjs_6vFprAZuBE4SXCdS6rQQoY5VIWMbp04YxHLWhio1obPIqwpZR1gvdKsQWuQqTyJbRFLrJCrEBiyWg9JtAlO23VIqV0g8U5mIQrvEuJiU4pVAutoOgM_6KjNTIXOKp3GbeQnmKKNGzJpGDGC_ST_0Eh6vptyedX02NeVRJhBRRqR8pwLYbV6jEdKfFV26wYTSIHJCJhtHAXz2Q6YpSqRSJUiKA4jqjv9PHbLO8Umnufvylkxb8IGu_aabbVgcVxO3g9BpnH-tzeMv3CoPOw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VcGh7APpJKG1dqVJPhhB7neS4gq6WwoJEQe0tcmynWgHZVXb3ACd-Qn8jv4SZeBO6rapK5ZYPW3Zsj-c9x34D8FEoa4VxOVdhHHOZSMfRKxqOUJZW3WL0ikQUB0eqfya_fO80uwnpLIzXh2gX3Mgy6vmaDJwWpLfvVUO1rYWD0CUhrUHWviwRbRD_2ju5V5AigF7L7YkOT5VMGt3GMNpezL_ol_4Am4vYtXY-vVXIm2r7PSfnW7NpvmWuf1N0fNB3rcHKHJqyrh9Lz-CRK5_D018EC1_AOTFWhuCbWVexbxrHLute5sMxEWTWc1U18nF1hobRWcLhj1lFZ7PY8bheM2d92n0zur35-fWq1OOJmzAEzWy_pCdIqPHah5nA0l7CWe_z6W6fz8M1cCNwnuA6kVKnhQh1rAoZ2zh1wiCcszZUqQmdRWpVyDrIeqF3CqFFrvIkskUktU6iQryCpXJUunVgynZ2lMoVcs9UJqLQLjEuJrF4JZCxdgLgTWdlZq5lTiE1LjKvwhxl1IhZ24gBfGrTj72Kx19TbjZ9n82teZIJBJURid-pAD60r9EO6eeKLt1oRmkQPCGZjaMAXvsx0xYlUqkS5MUBRHXP_6MOWXdv0G3vNv4n03t43D8dHGaH-0cHb-AJPfd7cDZhaVrN3FtEUtP8XW0rd9jxE1o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRapgAZRHSV8YCYmV2zT2OMlyRBlNgRYEVHQXOX6gUWkmyswsYNVP6Df2S7g3nkk7IIQEuzxs2bF9fc9x7HMBXghlrTCu5CpOUy4z6Th6RcMRytKqW4pekYji0bEansg3p73TG6f4gz5Et-BGltHO12TgtfV716Kh2ra6QeiRkNUgab8tFcIJgkUfrwWkCJ-3anuix3Mls4VsY5zsLedfdku_Yc1l6Nr6nsF90Itahy0nZ7uzablrfvwi6Pg_n_UA7s2BKeuHkbQGt1z1EO7ekCt8BGfEVxlCb2Zdw75oHLmsf16OaqLHbOCaZhyi6owMo5OEo6-zhk5msfd1u2LOhrT3Znx1cfnpe6XriZswhMzssKInSKfxOgSZwNIew8ng9edXQz4P1sCNwFmC60xKnXsR61R5mdo0d8IgmLM2VrmJnUVi5WUbYt3rfS-0KFWZJdYnUuss8eIJrFTjyj0FpmxvX6lSIfPMZSa8dplxKUnFK4F8tRcBX_RVYeZK5hRQ41sRNJiTghqx6Boxgpdd-jpoePwx5dai64u5LU8KgZAyIek7FcHz7jVaIf1a0ZUbzygNQieksmkSwXoYMl1RIpcqQ1YcQdJ2_F_qUPQPjvrd3ca_ZHoGqx8OBsW7w-O3m3CHHocNOFuwMm1mbhth1LTcaS3lJ4jIEgk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+van+der+Waals+Ambipolar+Ferroelectric+Configurable+Optical+Hetero%E2%80%90Synapses+for+In%E2%80%90Sensor+Computing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Bai%2C+Jinxuan&rft.au=He%2C+Dawei&rft.au=Dang%2C+Bingjie&rft.au=Liu%2C+Keqin&rft.date=2024-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202401060&rft.externalDBID=10.1002%252Fadma.202401060&rft.externalDocID=ADMA202401060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |