High‐Entropy Photothermal Materials

High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 24; pp. e2400920 - n/a
Main Authors He, Cheng‐Yu, Li, Yang, Zhou, Zhuo‐Hao, Liu, Bao‐Hua, Gao, Xiang‐Hu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300–2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light‐absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications. This review delves into high‐entropy photothermal materials, highlighting their advantages, recent progress, and wide‐ranging applications in energy, environment, and healthcare. Structured to deepen understanding from basic principles to advanced uses, it sheds light on research trends, challenges, and future directions, making it a key resource for researchers across various scientific disciplines.
AbstractList High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.
High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300–2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light‐absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.
High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300–2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light‐absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications. This review delves into high‐entropy photothermal materials, highlighting their advantages, recent progress, and wide‐ranging applications in energy, environment, and healthcare. Structured to deepen understanding from basic principles to advanced uses, it sheds light on research trends, challenges, and future directions, making it a key resource for researchers across various scientific disciplines.
High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.
Author Zhou, Zhuo‐Hao
Gao, Xiang‐Hu
Li, Yang
Liu, Bao‐Hua
He, Cheng‐Yu
Author_xml – sequence: 1
  givenname: Cheng‐Yu
  orcidid: 0000-0003-1999-1054
  surname: He
  fullname: He, Cheng‐Yu
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: Zhejiang University
– sequence: 3
  givenname: Zhuo‐Hao
  surname: Zhou
  fullname: Zhou, Zhuo‐Hao
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Bao‐Hua
  surname: Liu
  fullname: Liu, Bao‐Hua
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Xiang‐Hu
  orcidid: 0000-0001-5827-888X
  surname: Gao
  fullname: Gao, Xiang‐Hu
  email: gaoxh@licp.cas.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38437805$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LwzAYgINM3IdePcpABC-db5M2H8cxpxM29KDnkLapy2ibmXbIbv4Ef6O_xIzNCQORHN7L87x5ebqoVdlKI3QewiAEwDcqK9UAA44ABIYj1AljHAYRiLiFOiBIHAga8Tbq1vUCPEOBnqA24RFhHOIOupqY1_nXx-e4apxdrvtPc9vYZq5dqYr-TDXaGVXUp-g490Of7WYPvdyNn0eTYPp4_zAaToOUMAIBT8IM_MsoJynPYk4xkJBHmpI0UZAyfyKmQCDniutEc8WAKRBMCZpnXJAeut7uXTr7ttJ1I0tTp7ooVKXtqpZYEMYAx5R49PIAXdiVq_x1kgBlGLMQM09d7KhVUupMLp0plVvLnwAeGGyB1Nm6djrfIyHITWG5KSz3hb0QHQipaVRjrA-oTPG3Jrbauyn0-p9P5PB2Nvx1vwE6Bo2S
CitedBy_id crossref_primary_10_1002_advs_202406149
crossref_primary_10_1002_adfm_202504275
crossref_primary_10_1002_ange_202500058
crossref_primary_10_1016_j_desal_2024_118241
crossref_primary_10_1002_advs_202406521
crossref_primary_10_1021_acsami_4c07893
crossref_primary_10_1021_acsami_4c11898
crossref_primary_10_1016_j_cej_2024_157434
crossref_primary_10_1016_j_cej_2024_154985
crossref_primary_10_1002_ece2_70
crossref_primary_10_1002_adfm_202411316
crossref_primary_10_1039_D4MH01168F
crossref_primary_10_1016_j_solmat_2024_113076
crossref_primary_10_1016_j_cej_2024_154905
crossref_primary_10_1016_j_snb_2024_136213
crossref_primary_10_1016_j_nanoen_2024_110288
crossref_primary_10_1002_anie_202500058
crossref_primary_10_1002_cssc_202401517
crossref_primary_10_1039_D4EE04442H
crossref_primary_10_1002_smll_202410819
crossref_primary_10_1021_acsami_4c11817
crossref_primary_10_1039_D4GC05004E
crossref_primary_10_1002_advs_202410537
crossref_primary_10_1016_j_nanoen_2024_110381
crossref_primary_10_1002_adma_202500343
crossref_primary_10_1002_smll_202411977
crossref_primary_10_1039_D5TA00849B
crossref_primary_10_1021_acsnano_4c12538
crossref_primary_10_1002_adma_202415351
crossref_primary_10_1002_advs_202414783
Cites_doi 10.1002/adma.202107351
10.1016/j.jmat.2019.03.002
10.1016/j.jechem.2023.01.009
10.1038/nenergy.2016.153
10.1007/s12598-023-02430-w
10.1002/adfm.202303197
10.1016/j.rser.2005.06.008
10.1039/D0CS00664E
10.1016/j.mtphys.2022.100836
10.1039/c3ee43825b
10.1002/adma.202311151
10.1016/j.apcatb.2021.120896
10.1038/s41578-020-0182-4
10.1016/j.jmat.2021.04.006
10.1016/j.apsusc.2012.08.109
10.1002/advs.202002501
10.1016/j.rser.2020.110277
10.1021/acs.inorgchem.8b02379
10.1016/j.apcatb.2016.04.030
10.1002/adma.202101473
10.1063/5.0007944
10.1021/accountsmr.0c00104
10.1039/C8EE02790K
10.1021/acsaem.2c01985
10.1063/1.1721728
10.1021/acs.nanolett.2c00322
10.1002/advs.201400013
10.1021/acsnano.0c09617
10.1002/solr.202300484
10.1021/acscombsci.8b00055
10.1016/j.scriptamat.2021.113974
10.1021/cr400621z
10.1063/5.0122727
10.1021/acsanm.1c00116
10.1002/aenm.202300937
10.1111/1541-4337.12515
10.1002/adma.202001146
10.1002/adma.202102990
10.1002/adma.201104186
10.1002/cey2.228
10.1039/D1TA03861C
10.1039/D2EE03357G
10.1016/j.matt.2020.07.027
10.1002/adma.201605021
10.1016/j.surfcoat.2005.08.081
10.1016/j.nanoen.2021.106146
10.1016/j.actamat.2022.118338
10.1016/j.solmat.2021.111188
10.1039/D1EE03028K
10.1016/j.jallcom.2019.152209
10.1016/j.jphotochem.2022.114167
10.1002/adfm.202302712
10.1002/adma.201907226
10.1186/s12951-017-0308-z
10.1126/sciadv.abg1600
10.1016/j.apsusc.2022.155809
10.1021/jacs.0c04807
10.1038/s41929-020-00554-1
10.1016/j.cej.2023.146566
10.1103/PhysRevMaterials.3.104416
10.1002/adma.201102306
10.1103/PhysRevLett.104.036806
10.1021/jp070911w
10.1002/adfm.202106715
10.1002/advs.201800518
10.1080/21663831.2018.1554605
10.1002/advs.202303078
10.1016/j.apsusc.2023.156728
10.1016/j.rser.2016.05.064
10.1039/D0TA09601F
10.1016/j.solmat.2017.04.017
10.1016/j.rser.2016.10.042
10.1038/s41467-022-32051-3
10.1038/s41586-023-06509-3
10.1002/ppsc.202100094
10.1016/j.jeurceramsoc.2018.04.063
10.1016/j.matt.2023.03.034
10.1002/advs.202204817
10.1038/s41467-018-05774-5
10.1016/j.nanoen.2017.05.036
10.1016/j.matt.2021.04.014
10.1016/j.jmat.2019.12.012
10.1016/j.mtphys.2024.101363
10.1002/aenm.201903921
10.1038/natrevmats.2017.14
10.1021/jacs.2c06768
10.1038/nmat4281
10.1002/solr.202100752
10.1016/j.nantod.2022.101526
10.1021/acs.jpcc.9b04583
10.1016/j.poly.2018.09.028
10.1038/s41560-018-0260-7
10.1021/acsami.0c23011
10.1002/adma.201603730
10.1016/j.matlet.2020.128817
10.1016/j.nanoen.2022.106996
10.1002/adem.200300567
10.1038/s41598-023-29477-0
10.1038/nrmicro.2017.99
10.1016/S1872-2067(20)63594-X
10.1002/gch2.202000058
10.1002/anie.201907443
10.1016/j.msea.2003.10.257
10.1016/j.actamat.2013.04.058
10.1016/j.nanoen.2019.103947
10.1016/j.applthermaleng.2016.04.069
10.1038/s41565-018-0203-2
10.1126/science.aan5412
10.1021/acsaem.2c02009
10.1007/s40145-021-0477-y
10.1002/anie.201409906
10.1021/acscatal.6b02089
10.1038/s41598-018-26827-1
10.1021/cr9002566
10.1039/C7DT02077E
10.1016/j.mtphys.2022.100690
10.1016/j.jmst.2019.05.030
10.1021/j100243a005
10.1103/PhysRev.87.835
10.1016/j.solmat.2020.110533
10.1126/sciadv.aaz0510
10.1016/j.infrared.2020.103407
10.1126/sciadv.aat0127
10.1007/s12274-022-4705-8
10.1007/s12598-016-0840-2
10.1088/0022-3727/38/15/004
10.1016/j.pmatsci.2009.05.002
10.1016/j.solmat.2017.06.056
10.1126/science.1246913
10.1021/acsaem.1c00918
10.1021/acs.nanolett.2c01147
10.1016/j.jallcom.2023.169248
10.1038/238037a0
10.1021/acs.chemrev.3c00136
10.1016/j.surfin.2021.101062
10.1039/C1CS15172J
10.1016/j.matt.2023.10.020
10.1126/science.abo4940
10.1002/aenm.202203057
10.1016/j.joule.2018.12.023
10.1016/j.solmat.2012.03.021
10.1002/adsu.202200067
10.1016/j.solmat.2019.110187
10.1016/j.optmat.2020.109666
10.1103/PhysRevMaterials.7.115802
10.1016/j.matlet.2022.131659
10.1002/adma.201806236
10.1016/j.ceramint.2023.10.248
10.1016/j.cej.2022.137800
10.1038/s41586-019-1617-1
10.1038/natrevmats.2016.98
10.1039/D1EE00505G
10.1021/acs.chemrev.5b00397
10.1016/j.jeurceramsoc.2022.10.081
10.1016/j.jallcom.2022.167899
10.1016/j.jmst.2021.06.068
10.1038/s41467-023-38889-5
10.1126/science.abn3103
10.1016/j.jallcom.2020.156716
10.1002/adfm.201403478
10.1021/acsami.9b19575
10.1016/j.mtener.2021.100789
10.1039/C8EE01146J
10.1038/s41467-020-15116-z
10.1002/anie.202101406
10.1021/acs.chemrev.8b00400
10.1016/j.jallcom.2022.167965
10.1016/j.jeurceramsoc.2018.04.010
10.1016/j.actamat.2017.12.037
10.1039/D0EE03991H
10.1002/adma.202005074
10.1002/adma.201705980
10.1021/jacs.2c12887
10.1039/D1TA06682J
10.1002/pssr.201600043
10.1038/nmat3013
10.1002/anie.202112520
10.1021/acs.nanolett.3c03462
10.1016/j.surfcoat.2013.01.036
10.1002/solr.201900487
10.1039/C9TA12846H
10.1016/j.matlet.2022.133198
10.1039/C9RA05014K
10.1093/nsr/nwac041
10.1016/j.solmat.2020.110709
10.1016/j.solmat.2017.11.013
10.1016/j.jenvman.2023.118081
10.1002/adma.202302335
10.1021/acs.chemrev.3c00159
10.1021/acsmaterialslett.1c00365
10.1007/s12613-020-1982-7
10.1038/s41467-018-07160-7
10.1021/jacs.1c13616
10.1021/acsami.1c20055
10.1038/nrmicro821
10.1016/j.cej.2022.137893
10.1038/ncomms9485
10.1007/s10853-022-08055-1
10.1016/j.matt.2023.08.005
10.1039/C5CS00113G
10.1016/j.solmat.2018.07.001
10.1002/adma.202211432
10.1103/PhysRevB.57.1390
10.1038/s41467-022-33497-1
10.1021/acs.nanolett.1c00400
10.1016/j.mtphys.2021.100388
10.1021/ar7002804
10.1016/j.solmat.2016.07.018
10.1039/D1CS00684C
10.1038/s41578-019-0170-8
10.1016/j.solmat.2014.12.005
10.1021/acsami.2c15215
10.1016/j.jwpe.2023.103814
10.1039/C7CS00522A
10.1039/D0TA09988K
10.1016/j.pmatsci.2022.101018
10.1038/nenergy.2016.126
10.1002/solr.202000790
10.1016/j.actamat.2013.01.042
10.1126/science.aau1217
10.1021/acsnano.1c00903
10.1038/s41578-019-0121-4
10.1016/j.solmat.2007.11.004
10.1016/j.apcatb.2022.122204
10.1039/C8CS00618K
10.1016/j.pmatsci.2013.10.001
10.1111/jace.13161
10.1016/j.jeurceramsoc.2017.12.058
10.1016/j.jmat.2020.11.010
10.1016/j.actamat.2020.10.043
10.1016/j.corsci.2021.109809
10.1039/D2TC01298G
10.1088/0022-3727/44/20/205405
10.1002/admt.202201137
10.1021/jacs.2c11608
10.1016/j.intermet.2023.107834
10.1080/21663831.2016.1220433
10.1007/s40145-019-0319-3
10.1021/acsnano.1c01590
10.1016/j.solmat.2020.110444
10.1002/adma.201707512
10.1016/j.mser.2021.100644
10.1002/adfm.202207536
10.1039/D3CS00500C
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202400920
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 38437805
10_1002_adma_202400920
ADMA202400920
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: State Key Laboratory of Fluid Power & Mechatronic Systems
  funderid: SKLoFP_ZZ_2314
– fundername: Regional Key Projects of Science and Technology Service Network Program of the Chinese Academy of Sciences
  funderid: KFJ‐STS‐QYZD‐139
– fundername: Key Program of the Lanzhou Institute of Chemical Physics
  funderid: KJZLZD‐4; 20ZD7GF011
– fundername: National Natural Science Foundation of China
  funderid: 52375581
– fundername: Key Program of the Lanzhou Institute of Chemical Physics
  grantid: KJZLZD-4
– fundername: State Key Laboratory of Fluid Power & Mechatronic Systems
  grantid: SKLoFP_ZZ_2314
– fundername: Regional Key Projects of Science and Technology Service Network Program of the Chinese Academy of Sciences
  grantid: KFJ-STS-QYZD-139
– fundername: National Natural Science Foundation of China
  grantid: 52375581
– fundername: Key Program of the Lanzhou Institute of Chemical Physics
  grantid: 20ZD7GF011
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3730-8b1d0d0dd683c8d586203184e63cba0c792026030f8a8ebe8a707a097a96fd893
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:08:39 EDT 2025
Fri Jul 25 03:48:20 EDT 2025
Mon Jul 21 06:02:04 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 00:54:46 EDT 2025
Sun Jul 06 04:45:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords photothermal conversion
photothermal applications
bandgap
high‐entropy materials
stability
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-8b1d0d0dd683c8d586203184e63cba0c792026030f8a8ebe8a707a097a96fd893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1999-1054
0000-0001-5827-888X
PMID 38437805
PQID 3067227127
PQPubID 2045203
PageCount 36
ParticipantIDs proquest_miscellaneous_2937702563
proquest_journals_3067227127
pubmed_primary_38437805
crossref_primary_10_1002_adma_202400920
crossref_citationtrail_10_1002_adma_202400920
wiley_primary_10_1002_adma_202400920_ADMA202400920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 201
2021; 202
2004; 25
2013; 61
2019; 12
2023; 342
2004; 6
2020; 12
2020; 11
2004; 2
2020; 10
2004; 375–377
2020; 19
2017; 72
2015; 134
2017; 167
2012; 24
2014; 97
2019; 31
2020; 41
2020; 142
2022; 95
2019; 35
2016; 10
2013; 221
2023; 324
2020; 32
2021; 50
2007; 11
2016; 6
2016; 1
2015; 115
2018; 359
2022; 4
2022; 5
2022; 6
2019; 48
2022; 9
2020; 27
2008; 41
2021; 60
2012; 41
2010; 55
2023; 35
2023; 33
2016; 109
2017; 46
2020; 59
2014; 61
2020; 8
2014; 1
2020; 6
2020; 5
2020; 4
2020; 3
2023; 23
2019; 64
2017; 37
2021; 230
2020; 134
2014; 7
2020; 815
2021; 9
2023; 10
2021; 8
2021; 7
2015; 6
2023; 13
2021; 5
2021; 87
2021; 4
2023; 14
2021; 2
2023; 16
2024; 50
2020; 100
2017; 29
2008; 92
2020; 109
2022; 433
2022; 312
2017; 15
2007; 111
2024; 42
2022; 303
2018; 57
2022; 450
2023; 79
2010; 104
2019; 203
2023; 622
2022; 24
2021; 283
2022; 22
2024
2022; 27
2018; 47
2020; 209
2018; 9
2018; 8
2018; 176
2018; 3
2018; 5
2018; 4
2024; 7
2022; 34
2016; 157
2023; 612
2010; 110
2020; 217
2018; 30
2020; 211
2022; 32
2022; 449
2023; 619
2022; 329
2018; 38
2018; 37
2019; 8
2018; 186
2023; 53
2019; 7
2023; 52
2019; 9
2019; 4
2019; 3
2023; 58
2019; 5
2012; 102
2021; 146
2015; 54
2018; 20
2023; 42
2023; 43
2023; 156
2022; 12
2022; 13
1983; 87
2022; 14
2022; 15
2022; 10
2022; 104
2019; 574
2018; 13
2017; 5
2022; 376
2021; 24
2021; 21
2017; 2
2023; 6
2023; 7
2023; 8
2023; 145
2011; 10
2023; 944
2019; 123
2019; 363
2022; 378
2021; 38
2022; 240
2021; 31
2021; 33
2023; 131
2015; 44
2021; 192
2023; 935
2019; 119
2023; 934
2011; 23
2016; 193
2005; 38
1998; 57
2012; 263
2015; 14
2018; 146
2023; 123
2022; 45
2017; 171
2014; 114
1972; 238
2021; 14
2022; 144
1952; 87
2021; 13
2021; 15
2015; 25
2021; 10
2021; 850
2005; 200
2021; 18
2018; 156
2016; 63
2011; 44
2023; 478
2014; 343
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_242_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_232_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_244_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_222_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_236_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_237_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_4_1
e_1_2_9_240_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 62
  year: 2021
  publication-title: Nat. Catal.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 217
  year: 2020
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 145
  start-page: 5991
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 7389
  year: 2023
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 2628
  year: 2023
  publication-title: Matter
– volume: 24
  year: 2021
  publication-title: Surf. Interfaces
– volume: 4
  start-page: 4504
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 109
  start-page: 997
  year: 2016
  publication-title: Appl. Therm. Eng.
– volume: 7
  year: 2023
  publication-title: Phys. Rev. Mater.
– volume: 156
  start-page: 257
  year: 2018
  publication-title: Polyhedron
– volume: 123
  start-page: 6891
  year: 2023
  publication-title: Chem. Rev.
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 5
  start-page: 9214
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 9
  year: 2019
  publication-title: RSC Adv.
– volume: 359
  start-page: 1489
  year: 2018
  publication-title: Science
– volume: 10
  start-page: 328
  year: 2016
  publication-title: Phys. Status Solidi Rapid Res. Lett.
– volume: 324
  year: 2023
  publication-title: Appl. Catal., B
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 37
  start-page: 232
  year: 2017
  publication-title: Nano Energy
– volume: 9
  start-page: 663
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 2543
  year: 2005
  publication-title: J. Phys. D: Appl. Phys.
– volume: 131
  year: 2023
  publication-title: Prog. Mater. Sci.
– volume: 850
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 15
  start-page: 1893
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 100
  year: 2020
  publication-title: Opt. Mater.
– volume: 156
  year: 2023
  publication-title: Intermetallics
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 4
  start-page: 246
  year: 2022
  publication-title: ACS Mater. Lett.
– volume: 3
  start-page: 1646
  year: 2020
  publication-title: Matter
– volume: 12
  start-page: 841
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 87
  start-page: 3807
  year: 1983
  publication-title: J. Phys. Chem.
– volume: 450
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 295
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 144
  start-page: 3365
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 203
  year: 2019
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 3
  start-page: 683
  year: 2019
  publication-title: Joule
– volume: 8
  year: 2020
  publication-title: APL Mater.
– year: 2024
  publication-title: Adv. Mater.
– volume: 6
  start-page: 8485
  year: 2015
  publication-title: Nat. Commun.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 87
  start-page: 835
  year: 1952
  publication-title: Phys. Rev.
– volume: 4
  start-page: 2340
  year: 2021
  publication-title: Matter
– volume: 6
  year: 2022
  publication-title: Sol. RRL
– volume: 43
  start-page: 1141
  year: 2023
  publication-title: J. Eur. Ceram. Soc.
– volume: 22
  start-page: 5659
  year: 2022
  publication-title: Nano Lett.
– volume: 95
  year: 2022
  publication-title: Nano Energy
– volume: 2
  start-page: 95
  year: 2004
  publication-title: Nat. Rev. Microbiol.
– volume: 263
  start-page: 58
  year: 2012
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 3400
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 385
  year: 2021
  publication-title: J. Adv. Ceram.
– volume: 5
  year: 2021
  publication-title: Global Challenge
– volume: 109
  year: 2020
  publication-title: Infrared Phys. Technol.
– volume: 47
  start-page: 2280
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 46
  year: 2017
  publication-title: Dalton Trans.
– volume: 14
  start-page: 1771
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 923
  year: 2007
  publication-title: Renewable Sustainable Energy Rev.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 378
  start-page: 78
  year: 2022
  publication-title: Science
– volume: 9
  start-page: 6413
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 634
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  year: 2022
  publication-title: Adv. Sustainable Syst.
– volume: 58
  start-page: 880
  year: 2023
  publication-title: J. Mater. Sci.
– volume: 104
  start-page: 131
  year: 2022
  publication-title: J. Mater. Sci. Technol.
– volume: 38
  start-page: 2318
  year: 2018
  publication-title: J. Eur. Ceram. Soc.
– volume: 342
  year: 2023
  publication-title: J. Environ. Manage
– volume: 146
  start-page: 119
  year: 2018
  publication-title: Acta Mater.
– volume: 50
  start-page: 1564
  year: 2024
  publication-title: Ceram. Int.
– volume: 7
  start-page: 460
  year: 2021
  publication-title: J. Materiomics
– volume: 240
  year: 2022
  publication-title: Acta Mater.
– volume: 45
  year: 2022
  publication-title: Nano Today
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 343
  start-page: 990
  year: 2014
  publication-title: Science
– volume: 97
  start-page: 2705
  year: 2014
  publication-title: J. Am. Ceram. Soc.
– volume: 38
  start-page: 3578
  year: 2018
  publication-title: J. Eur. Ceram. Soc.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 134
  start-page: 373
  year: 2015
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 114
  start-page: 9559
  year: 2014
  publication-title: Chem. Rev.
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 186
  start-page: 300
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 815
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 731
  year: 2022
  publication-title: Carbon Energy
– volume: 230
  year: 2021
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 27
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 19
  start-page: 1397
  year: 2020
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 24
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 50
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 299
  year: 2004
  publication-title: Adv. Eng. Mater.
– volume: 7
  start-page: 60
  year: 2019
  publication-title: Mater. Res. Lett.
– volume: 102
  start-page: 86
  year: 2012
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 6
  start-page: 167
  year: 2020
  publication-title: J. Materiomics
– volume: 41
  start-page: 782
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 110
  start-page: 2783
  year: 2010
  publication-title: Chem. Rev.
– volume: 5
  year: 2021
  publication-title: Sol. RRL
– volume: 944
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 27
  start-page: 1371
  year: 2020
  publication-title: Int. J. Miner., Metall. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 515
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 21
  start-page: 3879
  year: 2021
  publication-title: Nano Lett.
– volume: 6
  start-page: 7485
  year: 2016
  publication-title: ACS Catal.
– volume: 23
  year: 2023
  publication-title: Nano Lett.
– volume: 619
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 18
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 478
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 4980
  year: 2018
  publication-title: Nat. Commun.
– volume: 211
  year: 2020
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 38
  start-page: 4161
  year: 2018
  publication-title: J. Eur. Ceram. Soc.
– volume: 42
  start-page: 3960
  year: 2023
  publication-title: Rare Met.
– volume: 7
  start-page: 140
  year: 2024
  publication-title: Matter
– volume: 14
  start-page: 1950
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 765
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 3808
  year: 2021
  publication-title: ACS Nano
– volume: 433
  year: 2022
  publication-title: J. Photochem. Photobiol. A: Chem.
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 61
  start-page: 1
  year: 2014
  publication-title: Prog. Mater. Sci.
– volume: 10
  start-page: 532
  year: 2011
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1122
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 41
  start-page: 1578
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 312
  year: 2022
  publication-title: Mater. Lett.
– volume: 2
  start-page: 198
  year: 2021
  publication-title: Acc. Mater. Res.
– volume: 193
  start-page: 198
  year: 2016
  publication-title: Appl. Catal., B
– volume: 111
  start-page: 7851
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 3171
  year: 2023
  publication-title: Nat. Commun.
– volume: 14
  start-page: 2883
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2023
  publication-title: Sol. RRL
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 895
  year: 2021
  publication-title: J. Materiomics
– volume: 42
  year: 2024
  publication-title: Mater. Today Phys.
– volume: 209
  year: 2020
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 13
  start-page: 4335
  year: 2022
  publication-title: Nat. Commun.
– volume: 221
  start-page: 118
  year: 2013
  publication-title: Surf. Coat. Technol.
– volume: 50
  start-page: 1111
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 22
  start-page: 6492
  year: 2022
  publication-title: Nano Lett.
– volume: 8
  year: 2023
  publication-title: Adv. Mater. Technol.
– volume: 87
  year: 2021
  publication-title: Nano Energy
– volume: 146
  year: 2021
  publication-title: Mater. Sci. Eng. R: Rep
– volume: 6
  start-page: 1717
  year: 2023
  publication-title: Matter
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 5
  start-page: 337
  year: 2019
  publication-title: J. Materiomics
– volume: 4
  start-page: 8801
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 59
  start-page: 8016
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 2362
  year: 2023
  publication-title: Sci. Rep.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 13
  start-page: 5993
  year: 2022
  publication-title: Nat. Commun.
– volume: 283
  year: 2021
  publication-title: Mater. Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1389
  year: 2020
  publication-title: Nat. Commun.
– volume: 16
  start-page: 1531
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 740
  year: 2017
  publication-title: Nat. Rev. Microbiol.
– volume: 5
  start-page: 388
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 375–377
  start-page: 213
  year: 2004
  publication-title: Mater. Sci. Eng., A
– volume: 176
  start-page: 157
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 12
  start-page: 4123
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 65
  year: 2017
  publication-title: J. Nanobiotechnol.
– volume: 934
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 3
  start-page: 1031
  year: 2018
  publication-title: Nat. Energy
– volume: 192
  year: 2021
  publication-title: Corros. Sci.
– volume: 41
  start-page: 1451
  year: 2020
  publication-title: Chin. J. Catal.
– volume: 574
  start-page: 223
  year: 2019
  publication-title: Nature
– volume: 200
  start-page: 1361
  year: 2005
  publication-title: Surf. Coat. Technol.
– volume: 145
  start-page: 6753
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 167
  start-page: 178
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 61
  start-page: 4887
  year: 2013
  publication-title: Acta Mater.
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 79
  start-page: 581
  year: 2023
  publication-title: J. Energy Chem.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 14
  start-page: 567
  year: 2015
  publication-title: Nat. Mater.
– volume: 363
  start-page: 619
  year: 2019
  publication-title: Science
– volume: 35
  start-page: 2227
  year: 2019
  publication-title: J. Mater. Sci. Technol.
– volume: 7
  start-page: 1615
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 201
  year: 2021
  publication-title: Scr. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 44
  start-page: 5371
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 157
  start-page: 716
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 119
  start-page: 3962
  year: 2019
  publication-title: Chem. Rev.
– volume: 5
  start-page: 102
  year: 2017
  publication-title: Mater. Res. Lett.
– volume: 612
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 9
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 3
  year: 2019
  publication-title: Phys. Rev. Mater.
– volume: 44
  year: 2011
  publication-title: J. Phys. D: Appl. Phys.
– volume: 8
  start-page: 8609
  year: 2018
  publication-title: Sci. Rep.
– volume: 10
  start-page: 9266
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 20
  start-page: 602
  year: 2018
  publication-title: ACS Comb. Sci.
– volume: 134
  year: 2020
  publication-title: Renewable Sustainable Energy Rev.
– volume: 92
  start-page: 495
  year: 2008
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 10
  year: 2022
  publication-title: APL Mater.
– volume: 303
  year: 2022
  publication-title: Appl. Catal., B
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 72
  start-page: 1295
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 38
  year: 2021
  publication-title: Part. Part. Syst. Charact.
– volume: 622
  start-page: 499
  year: 2023
  publication-title: Nature
– volume: 449
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 171
  start-page: 253
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 54
  start-page: 3047
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 4130
  year: 2012
  publication-title: Adv. Mater.
– volume: 61
  start-page: 2628
  year: 2013
  publication-title: Acta Mater.
– volume: 202
  start-page: 1
  year: 2021
  publication-title: Acta Mater.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 57
  start-page: 1390
  year: 1998
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 148
  year: 2019
  publication-title: J. Adv. Ceram.
– volume: 1
  year: 2014
  publication-title: Adv. Sci.
– volume: 935
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 15
  year: 2022
  publication-title: Nano Res.
– volume: 63
  start-page: 593
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 21
  year: 2021
  publication-title: Mater. Today Energy
– volume: 329
  year: 2022
  publication-title: Mater. Lett.
– volume: 123
  start-page: 7081
  year: 2023
  publication-title: Chem. Rev.
– volume: 8
  start-page: 3814
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 25
  start-page: 721
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 57
  year: 2018
  publication-title: Inorg. Chem.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 55
  start-page: 247
  year: 2010
  publication-title: Prog. Mater. Sci.
– volume: 53
  year: 2023
  publication-title: J Water Process Eng
– volume: 376
  year: 2022
  publication-title: Science
– volume: 37
  start-page: 682
  year: 2018
  publication-title: Rare Met.
– volume: 48
  start-page: 2053
  year: 2019
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_9_73_1
  doi: 10.1002/adma.202107351
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jmat.2019.03.002
– ident: e_1_2_9_169_1
  doi: 10.1016/j.jechem.2023.01.009
– ident: e_1_2_9_189_1
  doi: 10.1038/nenergy.2016.153
– ident: e_1_2_9_98_1
  doi: 10.1007/s12598-023-02430-w
– ident: e_1_2_9_45_1
  doi: 10.1002/adfm.202303197
– ident: e_1_2_9_182_1
  doi: 10.1016/j.rser.2005.06.008
– ident: e_1_2_9_10_1
  doi: 10.1039/D0CS00664E
– ident: e_1_2_9_151_1
  doi: 10.1016/j.mtphys.2022.100836
– ident: e_1_2_9_108_1
  doi: 10.1039/c3ee43825b
– ident: e_1_2_9_170_1
  doi: 10.1002/adma.202311151
– ident: e_1_2_9_96_1
  doi: 10.1016/j.apcatb.2021.120896
– ident: e_1_2_9_160_1
  doi: 10.1038/s41578-020-0182-4
– ident: e_1_2_9_133_1
  doi: 10.1016/j.jmat.2021.04.006
– ident: e_1_2_9_32_1
  doi: 10.1016/j.apsusc.2012.08.109
– ident: e_1_2_9_168_1
  doi: 10.1002/advs.202002501
– ident: e_1_2_9_109_1
  doi: 10.1016/j.rser.2020.110277
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.inorgchem.8b02379
– ident: e_1_2_9_191_1
  doi: 10.1016/j.apcatb.2016.04.030
– ident: e_1_2_9_233_1
  doi: 10.1002/adma.202101473
– ident: e_1_2_9_43_1
  doi: 10.1063/5.0007944
– ident: e_1_2_9_92_1
  doi: 10.1021/accountsmr.0c00104
– ident: e_1_2_9_216_1
  doi: 10.1039/C8EE02790K
– ident: e_1_2_9_147_1
  doi: 10.1021/acsaem.2c01985
– ident: e_1_2_9_185_1
  doi: 10.1063/1.1721728
– ident: e_1_2_9_111_1
  doi: 10.1021/acs.nanolett.2c00322
– ident: e_1_2_9_190_1
  doi: 10.1002/advs.201400013
– ident: e_1_2_9_240_1
  doi: 10.1021/acsnano.0c09617
– ident: e_1_2_9_101_1
  doi: 10.1002/solr.202300484
– ident: e_1_2_9_241_1
  doi: 10.1021/acscombsci.8b00055
– ident: e_1_2_9_55_1
  doi: 10.1016/j.scriptamat.2021.113974
– ident: e_1_2_9_193_1
  doi: 10.1021/cr400621z
– ident: e_1_2_9_39_1
  doi: 10.1063/5.0122727
– ident: e_1_2_9_143_1
  doi: 10.1021/acsanm.1c00116
– ident: e_1_2_9_183_1
  doi: 10.1002/aenm.202300937
– ident: e_1_2_9_235_1
  doi: 10.1111/1541-4337.12515
– ident: e_1_2_9_228_1
  doi: 10.1002/adma.202001146
– ident: e_1_2_9_186_1
  doi: 10.1002/adma.202102990
– ident: e_1_2_9_237_1
  doi: 10.1002/adma.201104186
– ident: e_1_2_9_47_1
  doi: 10.1002/cey2.228
– ident: e_1_2_9_17_1
  doi: 10.1039/D1TA03861C
– ident: e_1_2_9_22_1
  doi: 10.1039/D2EE03357G
– ident: e_1_2_9_103_1
  doi: 10.1016/j.matt.2020.07.027
– ident: e_1_2_9_72_1
  doi: 10.1002/adma.201605021
– ident: e_1_2_9_29_1
  doi: 10.1016/j.surfcoat.2005.08.081
– ident: e_1_2_9_165_1
  doi: 10.1016/j.nanoen.2021.106146
– ident: e_1_2_9_19_1
  doi: 10.1016/j.actamat.2022.118338
– ident: e_1_2_9_149_1
  doi: 10.1016/j.solmat.2021.111188
– ident: e_1_2_9_6_1
  doi: 10.1039/D1EE03028K
– ident: e_1_2_9_125_1
  doi: 10.1016/j.jallcom.2019.152209
– ident: e_1_2_9_208_1
  doi: 10.1016/j.jphotochem.2022.114167
– ident: e_1_2_9_80_1
  doi: 10.1002/adfm.202302712
– ident: e_1_2_9_56_1
  doi: 10.1002/adma.201907226
– ident: e_1_2_9_223_1
  doi: 10.1186/s12951-017-0308-z
– ident: e_1_2_9_100_1
  doi: 10.1126/sciadv.abg1600
– ident: e_1_2_9_205_1
  doi: 10.1016/j.apsusc.2022.155809
– ident: e_1_2_9_79_1
  doi: 10.1021/jacs.0c04807
– ident: e_1_2_9_33_1
  doi: 10.1038/s41929-020-00554-1
– ident: e_1_2_9_164_1
  doi: 10.1016/j.cej.2023.146566
– ident: e_1_2_9_67_1
  doi: 10.1103/PhysRevMaterials.3.104416
– ident: e_1_2_9_231_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevLett.104.036806
– ident: e_1_2_9_209_1
  doi: 10.1021/jp070911w
– ident: e_1_2_9_58_1
  doi: 10.1002/adfm.202106715
– ident: e_1_2_9_232_1
  doi: 10.1002/advs.201800518
– ident: e_1_2_9_61_1
  doi: 10.1080/21663831.2018.1554605
– ident: e_1_2_9_226_1
  doi: 10.1002/advs.202303078
– ident: e_1_2_9_95_1
  doi: 10.1016/j.apsusc.2023.156728
– ident: e_1_2_9_5_1
  doi: 10.1016/j.rser.2016.05.064
– ident: e_1_2_9_71_1
  doi: 10.1039/D0TA09601F
– ident: e_1_2_9_124_1
  doi: 10.1016/j.solmat.2017.04.017
– ident: e_1_2_9_184_1
  doi: 10.1016/j.rser.2016.10.042
– ident: e_1_2_9_167_1
  doi: 10.1038/s41467-022-32051-3
– ident: e_1_2_9_7_1
  doi: 10.1038/s41586-023-06509-3
– ident: e_1_2_9_173_1
  doi: 10.1002/ppsc.202100094
– ident: e_1_2_9_59_1
  doi: 10.1016/j.jeurceramsoc.2018.04.063
– ident: e_1_2_9_25_1
  doi: 10.1016/j.matt.2023.03.034
– ident: e_1_2_9_146_1
  doi: 10.1002/advs.202204817
– ident: e_1_2_9_62_1
  doi: 10.1038/s41467-018-05774-5
– ident: e_1_2_9_128_1
  doi: 10.1016/j.nanoen.2017.05.036
– ident: e_1_2_9_53_1
  doi: 10.1016/j.matt.2021.04.014
– ident: e_1_2_9_114_1
  doi: 10.1016/j.jmat.2019.12.012
– ident: e_1_2_9_107_1
  doi: 10.1016/j.mtphys.2024.101363
– ident: e_1_2_9_175_1
  doi: 10.1002/aenm.201903921
– ident: e_1_2_9_220_1
  doi: 10.1038/natrevmats.2017.14
– ident: e_1_2_9_54_1
  doi: 10.1021/jacs.2c06768
– ident: e_1_2_9_74_1
  doi: 10.1038/nmat4281
– ident: e_1_2_9_140_1
  doi: 10.1002/solr.202100752
– ident: e_1_2_9_180_1
  doi: 10.1016/j.nantod.2022.101526
– ident: e_1_2_9_207_1
  doi: 10.1021/acs.jpcc.9b04583
– ident: e_1_2_9_234_1
  doi: 10.1016/j.poly.2018.09.028
– ident: e_1_2_9_8_1
  doi: 10.1038/s41560-018-0260-7
– ident: e_1_2_9_156_1
  doi: 10.1021/acsami.0c23011
– ident: e_1_2_9_76_1
  doi: 10.1002/adma.201603730
– ident: e_1_2_9_212_1
  doi: 10.1016/j.matlet.2020.128817
– ident: e_1_2_9_179_1
  doi: 10.1016/j.nanoen.2022.106996
– ident: e_1_2_9_28_1
  doi: 10.1002/adem.200300567
– ident: e_1_2_9_88_1
  doi: 10.1038/s41598-023-29477-0
– ident: e_1_2_9_239_1
  doi: 10.1038/nrmicro.2017.99
– ident: e_1_2_9_197_1
  doi: 10.1016/S1872-2067(20)63594-X
– ident: e_1_2_9_110_1
  doi: 10.1002/gch2.202000058
– ident: e_1_2_9_217_1
  doi: 10.1002/anie.201907443
– ident: e_1_2_9_49_1
  doi: 10.1016/j.msea.2003.10.257
– ident: e_1_2_9_70_1
  doi: 10.1016/j.actamat.2013.04.058
– ident: e_1_2_9_117_1
  doi: 10.1016/j.nanoen.2019.103947
– ident: e_1_2_9_126_1
  doi: 10.1016/j.applthermaleng.2016.04.069
– ident: e_1_2_9_161_1
  doi: 10.1038/s41565-018-0203-2
– ident: e_1_2_9_99_1
  doi: 10.1126/science.aan5412
– ident: e_1_2_9_142_1
  doi: 10.1021/acsaem.2c02009
– ident: e_1_2_9_27_1
  doi: 10.1007/s40145-021-0477-y
– ident: e_1_2_9_200_1
  doi: 10.1002/anie.201409906
– ident: e_1_2_9_203_1
  doi: 10.1021/acscatal.6b02089
– ident: e_1_2_9_35_1
  doi: 10.1038/s41598-018-26827-1
– ident: e_1_2_9_221_1
  doi: 10.1021/cr9002566
– ident: e_1_2_9_11_1
  doi: 10.1039/C7DT02077E
– ident: e_1_2_9_116_1
  doi: 10.1016/j.mtphys.2022.100690
– ident: e_1_2_9_106_1
  doi: 10.1016/j.jmst.2019.05.030
– ident: e_1_2_9_201_1
  doi: 10.1021/j100243a005
– ident: e_1_2_9_86_1
  doi: 10.1103/PhysRev.87.835
– ident: e_1_2_9_118_1
  doi: 10.1016/j.solmat.2020.110533
– ident: e_1_2_9_104_1
  doi: 10.1126/sciadv.aaz0510
– ident: e_1_2_9_112_1
  doi: 10.1016/j.infrared.2020.103407
– ident: e_1_2_9_244_1
  doi: 10.1126/sciadv.aat0127
– ident: e_1_2_9_192_1
  doi: 10.1007/s12274-022-4705-8
– ident: e_1_2_9_14_1
  doi: 10.1007/s12598-016-0840-2
– ident: e_1_2_9_227_1
  doi: 10.1088/0022-3727/38/15/004
– ident: e_1_2_9_57_1
  doi: 10.1016/j.pmatsci.2009.05.002
– ident: e_1_2_9_122_1
  doi: 10.1016/j.solmat.2017.06.056
– ident: e_1_2_9_199_1
  doi: 10.1126/science.1246913
– ident: e_1_2_9_157_1
  doi: 10.1021/acsaem.1c00918
– ident: e_1_2_9_81_1
  doi: 10.1021/acs.nanolett.2c01147
– ident: e_1_2_9_154_1
  doi: 10.1016/j.jallcom.2023.169248
– ident: e_1_2_9_198_1
  doi: 10.1038/238037a0
– ident: e_1_2_9_2_1
  doi: 10.1021/acs.chemrev.3c00136
– ident: e_1_2_9_158_1
  doi: 10.1016/j.surfin.2021.101062
– ident: e_1_2_9_194_1
  doi: 10.1039/C1CS15172J
– ident: e_1_2_9_13_1
  doi: 10.1016/j.matt.2023.10.020
– ident: e_1_2_9_243_1
  doi: 10.1126/science.abo4940
– ident: e_1_2_9_102_1
  doi: 10.1002/aenm.202203057
– ident: e_1_2_9_78_1
  doi: 10.1016/j.joule.2018.12.023
– ident: e_1_2_9_131_1
  doi: 10.1016/j.solmat.2012.03.021
– ident: e_1_2_9_214_1
  doi: 10.1002/adsu.202200067
– ident: e_1_2_9_119_1
  doi: 10.1016/j.solmat.2019.110187
– ident: e_1_2_9_129_1
  doi: 10.1016/j.optmat.2020.109666
– ident: e_1_2_9_85_1
  doi: 10.1103/PhysRevMaterials.7.115802
– ident: e_1_2_9_224_1
  doi: 10.1016/j.matlet.2022.131659
– ident: e_1_2_9_40_1
  doi: 10.1002/adma.201806236
– ident: e_1_2_9_218_1
  doi: 10.1016/j.ceramint.2023.10.248
– ident: e_1_2_9_89_1
  doi: 10.1016/j.cej.2022.137800
– ident: e_1_2_9_51_1
  doi: 10.1038/s41586-019-1617-1
– ident: e_1_2_9_230_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_9_46_1
  doi: 10.1039/D1EE00505G
– ident: e_1_2_9_1_1
  doi: 10.1021/acs.chemrev.5b00397
– ident: e_1_2_9_105_1
  doi: 10.1016/j.jeurceramsoc.2022.10.081
– ident: e_1_2_9_144_1
  doi: 10.1016/j.jallcom.2022.167899
– ident: e_1_2_9_84_1
  doi: 10.1016/j.jmst.2021.06.068
– ident: e_1_2_9_213_1
  doi: 10.1038/s41467-023-38889-5
– ident: e_1_2_9_26_1
  doi: 10.1126/science.abn3103
– ident: e_1_2_9_211_1
  doi: 10.1016/j.jallcom.2020.156716
– ident: e_1_2_9_238_1
  doi: 10.1002/adfm.201403478
– ident: e_1_2_9_41_1
  doi: 10.1021/acsami.9b19575
– ident: e_1_2_9_141_1
  doi: 10.1016/j.mtener.2021.100789
– ident: e_1_2_9_172_1
  doi: 10.1039/C8EE01146J
– ident: e_1_2_9_113_1
  doi: 10.1038/s41467-020-15116-z
– ident: e_1_2_9_229_1
  doi: 10.1002/anie.202101406
– ident: e_1_2_9_195_1
  doi: 10.1021/acs.chemrev.8b00400
– ident: e_1_2_9_150_1
  doi: 10.1016/j.jallcom.2022.167965
– ident: e_1_2_9_64_1
  doi: 10.1016/j.jeurceramsoc.2018.04.010
– ident: e_1_2_9_63_1
  doi: 10.1016/j.actamat.2017.12.037
– ident: e_1_2_9_163_1
  doi: 10.1039/D0EE03991H
– ident: e_1_2_9_115_1
  doi: 10.1002/adma.202005074
– ident: e_1_2_9_219_1
  doi: 10.1002/adma.201705980
– ident: e_1_2_9_42_1
  doi: 10.1021/jacs.2c12887
– ident: e_1_2_9_139_1
  doi: 10.1039/D1TA06682J
– ident: e_1_2_9_90_1
  doi: 10.1002/pssr.201600043
– ident: e_1_2_9_188_1
  doi: 10.1038/nmat3013
– ident: e_1_2_9_12_1
  doi: 10.1002/anie.202112520
– ident: e_1_2_9_82_1
  doi: 10.1021/acs.nanolett.3c03462
– ident: e_1_2_9_153_1
  doi: 10.1016/j.surfcoat.2013.01.036
– ident: e_1_2_9_204_1
  doi: 10.1002/solr.201900487
– ident: e_1_2_9_16_1
  doi: 10.1039/C9TA12846H
– ident: e_1_2_9_145_1
  doi: 10.1016/j.matlet.2022.133198
– ident: e_1_2_9_120_1
  doi: 10.1039/C9RA05014K
– ident: e_1_2_9_18_1
  doi: 10.1093/nsr/nwac041
– ident: e_1_2_9_132_1
  doi: 10.1016/j.solmat.2020.110709
– ident: e_1_2_9_138_1
  doi: 10.1016/j.solmat.2017.11.013
– ident: e_1_2_9_215_1
  doi: 10.1016/j.jenvman.2023.118081
– ident: e_1_2_9_20_1
  doi: 10.1002/adma.202302335
– ident: e_1_2_9_3_1
  doi: 10.1021/acs.chemrev.3c00159
– ident: e_1_2_9_93_1
  doi: 10.1021/acsmaterialslett.1c00365
– ident: e_1_2_9_148_1
  doi: 10.1007/s12613-020-1982-7
– ident: e_1_2_9_34_1
  doi: 10.1038/s41467-018-07160-7
– ident: e_1_2_9_48_1
  doi: 10.1021/jacs.1c13616
– ident: e_1_2_9_87_1
  doi: 10.1021/acsami.1c20055
– ident: e_1_2_9_236_1
  doi: 10.1038/nrmicro821
– ident: e_1_2_9_171_1
  doi: 10.1016/j.cej.2022.137893
– ident: e_1_2_9_31_1
  doi: 10.1038/ncomms9485
– ident: e_1_2_9_97_1
  doi: 10.1007/s10853-022-08055-1
– ident: e_1_2_9_94_1
  doi: 10.1016/j.matt.2023.08.005
– ident: e_1_2_9_196_1
  doi: 10.1039/C5CS00113G
– ident: e_1_2_9_137_1
  doi: 10.1016/j.solmat.2018.07.001
– ident: e_1_2_9_21_1
  doi: 10.1002/adma.202211432
– ident: e_1_2_9_77_1
  doi: 10.1103/PhysRevB.57.1390
– ident: e_1_2_9_91_1
  doi: 10.1038/s41467-022-33497-1
– ident: e_1_2_9_178_1
  doi: 10.1021/acs.nanolett.1c00400
– ident: e_1_2_9_121_1
  doi: 10.1016/j.mtphys.2021.100388
– ident: e_1_2_9_75_1
  doi: 10.1021/ar7002804
– ident: e_1_2_9_123_1
  doi: 10.1016/j.solmat.2016.07.018
– ident: e_1_2_9_202_1
  doi: 10.1039/D1CS00684C
– ident: e_1_2_9_24_1
  doi: 10.1038/s41578-019-0170-8
– ident: e_1_2_9_127_1
  doi: 10.1016/j.solmat.2014.12.005
– ident: e_1_2_9_187_1
  doi: 10.1021/acsami.2c15215
– ident: e_1_2_9_174_1
  doi: 10.1016/j.jwpe.2023.103814
– ident: e_1_2_9_222_1
  doi: 10.1039/C7CS00522A
– ident: e_1_2_9_155_1
  doi: 10.1039/D0TA09988K
– ident: e_1_2_9_242_1
  doi: 10.1016/j.pmatsci.2022.101018
– ident: e_1_2_9_166_1
  doi: 10.1038/nenergy.2016.126
– ident: e_1_2_9_135_1
  doi: 10.1002/solr.202000790
– ident: e_1_2_9_66_1
  doi: 10.1016/j.actamat.2013.01.042
– ident: e_1_2_9_177_1
  doi: 10.1126/science.aau1217
– ident: e_1_2_9_181_1
  doi: 10.1021/acsnano.1c00903
– ident: e_1_2_9_23_1
  doi: 10.1038/s41578-019-0121-4
– ident: e_1_2_9_130_1
  doi: 10.1016/j.solmat.2007.11.004
– ident: e_1_2_9_206_1
  doi: 10.1016/j.apcatb.2022.122204
– ident: e_1_2_9_9_1
  doi: 10.1039/C8CS00618K
– ident: e_1_2_9_68_1
  doi: 10.1016/j.pmatsci.2013.10.001
– ident: e_1_2_9_83_1
  doi: 10.1111/jace.13161
– ident: e_1_2_9_60_1
  doi: 10.1016/j.jeurceramsoc.2017.12.058
– ident: e_1_2_9_134_1
  doi: 10.1016/j.jmat.2020.11.010
– ident: e_1_2_9_50_1
  doi: 10.1016/j.actamat.2020.10.043
– ident: e_1_2_9_159_1
  doi: 10.1016/j.corsci.2021.109809
– ident: e_1_2_9_136_1
  doi: 10.1039/D2TC01298G
– ident: e_1_2_9_152_1
  doi: 10.1088/0022-3727/44/20/205405
– ident: e_1_2_9_176_1
  doi: 10.1002/admt.202201137
– ident: e_1_2_9_52_1
  doi: 10.1021/jacs.2c11608
– ident: e_1_2_9_225_1
  doi: 10.1016/j.intermet.2023.107834
– ident: e_1_2_9_65_1
  doi: 10.1080/21663831.2016.1220433
– ident: e_1_2_9_38_1
  doi: 10.1007/s40145-019-0319-3
– ident: e_1_2_9_162_1
  doi: 10.1021/acsnano.1c01590
– ident: e_1_2_9_15_1
  doi: 10.1016/j.solmat.2020.110444
– ident: e_1_2_9_30_1
  doi: 10.1002/adma.201707512
– ident: e_1_2_9_210_1
  doi: 10.1016/j.mser.2021.100644
– ident: e_1_2_9_69_1
  doi: 10.1002/adfm.202207536
– ident: e_1_2_9_4_1
  doi: 10.1039/D3CS00500C
SSID ssj0009606
Score 2.6333451
SecondaryResourceType review_article
Snippet High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad...
High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2400920
SubjectTerms bandgap
Biomedical materials
Entropy
high‐entropy materials
Optical properties
photothermal applications
Photothermal conversion
Physical properties
stability
Structural design
Thermal management
Title High‐Entropy Photothermal Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202400920
https://www.ncbi.nlm.nih.gov/pubmed/38437805
https://www.proquest.com/docview/3067227127
https://www.proquest.com/docview/2937702563
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB3Ekx78_ohWqaB4SpvuJrvJsWhLESoiFnoLu5sEQU2LTQ968if4G_0lziRt2ioiKLkkZJfsZnYy721m3wKcKgxBJpCe7WplkKBwZWvRSGzJlBtp7QpjaL6jey06Pfeq7_XnVvEX-hDlhBt5Rv69JgdXelSfiYaqKNcNohzIgBFpp4QtQkW3M_0ogue52B737EC4_lS10WH1xeqLUekb1FxErnnoaa-Dmja6yDh5qI0zXTOvX_Qc_9OrDVib4NJqsxhIm7AUp1uwOqdWuA1nlBPy8fbeouT24Uv15n6Q5eu3nrBiV2XFWN6BXrt1d9GxJ7ss2Iaje9u-bkQOHpHwufEjDykOObobC260cozEdiDp4U7iKx9N7ivpSOUEUgUiiRDu7MJyOkjjfaga5DMR04LJJHGFpxFtCIYhMIkVMs_YscCevuXQTCTIaSeMx7AQT2YhdT8su2_BeVl-WIhv_FiyMjVaOHHCUUhsiDHZYNKCk_I2ug_9E1FpPBiPQkQ7UhLu4xbsFcYuH8V9l9OWDxaw3GS_tCFsXnab5dXBXyodwgqdF6loFVjOnsfxEYKeTB_nA_sT75j1jA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOAAH9iVQoEggTqGpndrJsWJRWYoQAombZTuJkIAWQXqAE5_AN_IlzCRNSkEICZRTEluxM574PWf8BmBL4xRkQ9lwfaMtEhSuXSPqiSuZ9iNjfGEtrXe0z0Tryj--bhTRhLQXJteHKBfcyDOy7zU5OC1I1waqoTrKhIMoCDJkyNrHKK13xqouBgpSBNAzuT3ecEPhB4Vuo8dqw_WH56VvYHMYu2aTz-E0mKLZeczJ7W4vNbv25Yui47_6NQNTfWhabeZjaRZG4s4cTH4SLJyHbQoLeX99O6D49ofn6vlNN822cN1jxbZO8-G8AFeHB5d7LbefaMG1HD3cDUw98vCIRMBtEDWQ5ZCv-7Hg1mjPSmwH8h7uJYEO0OqBlp7UXih1KJIIEc8ijHa6nXgZqhYpTcSMYDJJ0B4GAYdgOAsmsUbyGXsOuMVrVravQk7JMO5Urp_MFHVfld13YKcs_5Drb_xYslJYTfX98EkRIWJM1pl0YLO8jR5Ev0V0J-72nhQCHikJ-nEHlnJrl4_igc8p64MDLLPZL21Qzf12szxb-UulDRhvXbZP1enR2ckqTND1PDKtAqPpYy9eQwyUmvVslH8AW7v5pw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EQfTg-1GfKyie6naTNEmPi-via0VEwVtI0hZB3V20e9CTP8Hf6C9x0u5WVxFB6altQiedmc436eQLwLbGEGQjEfrMaIsJCtW-4bXUF0Sz2BjGrXXzHa0zfnjFjq_D60-r-At-iHLCzXlG_r12Dt6N0-oHaaiOc94gVwMZEUzaxxgPpLPrxsUHgZTD5znbHg39iDM5oG0MSHW4_3BY-oY1h6FrHnua06AHUhclJ7d7vczs2ecvhI7_GdYMTPWBaaVeWNIsjCTtOZj8RFc4DzuuKOTt5fXAVbd3nyrnN50sX8B1jx1bOiuMeQGumgeX-4d-f5sF31L0b1-aWhzgEXNJrYxDzHGcp7OEU2t0YAXKgVkPDVKpJepcahEIHURCRzyNEe8swmi7006WoWIxoYmJ4USkKeOhQbjBCcbANNGYeiaBB_7gLSvb5yB3W2HcqYI9mSg3fFUO34Pdsn23YN_4seXaQGmq74WPyqVDhIgaER5slbfRf9xPEd1OOr1HhXBHCAf8qAdLhbLLR1HJqNvzwQOSq-wXGVS90aqXZyt_6bQJ4-eNpjo9OjtZhQl3uShLW4PR7KGXrCMAysxGbuPvgFL4Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Entropy+Photothermal+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Cheng%E2%80%90Yu&rft.au=Li%2C+Yang&rft.au=Zhou%2C+Zhuo%E2%80%90Hao&rft.au=Liu%2C+Bao%E2%80%90Hua&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202400920&rft.externalDBID=10.1002%252Fadma.202400920&rft.externalDocID=ADMA202400920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon