High‐Entropy Photothermal Materials
High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovat...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 24; pp. e2400920 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300–2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light‐absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.
This review delves into high‐entropy photothermal materials, highlighting their advantages, recent progress, and wide‐ranging applications in energy, environment, and healthcare. Structured to deepen understanding from basic principles to advanced uses, it sheds light on research trends, challenges, and future directions, making it a key resource for researchers across various scientific disciplines. |
---|---|
AbstractList | High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications. High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300–2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light‐absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications. High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300–2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light‐absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications. This review delves into high‐entropy photothermal materials, highlighting their advantages, recent progress, and wide‐ranging applications in energy, environment, and healthcare. Structured to deepen understanding from basic principles to advanced uses, it sheds light on research trends, challenges, and future directions, making it a key resource for researchers across various scientific disciplines. High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300-2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light-absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications. |
Author | Zhou, Zhuo‐Hao Gao, Xiang‐Hu Li, Yang Liu, Bao‐Hua He, Cheng‐Yu |
Author_xml | – sequence: 1 givenname: Cheng‐Yu orcidid: 0000-0003-1999-1054 surname: He fullname: He, Cheng‐Yu organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Yang surname: Li fullname: Li, Yang organization: Zhejiang University – sequence: 3 givenname: Zhuo‐Hao surname: Zhou fullname: Zhou, Zhuo‐Hao organization: Chinese Academy of Sciences – sequence: 4 givenname: Bao‐Hua surname: Liu fullname: Liu, Bao‐Hua organization: Chinese Academy of Sciences – sequence: 5 givenname: Xiang‐Hu orcidid: 0000-0001-5827-888X surname: Gao fullname: Gao, Xiang‐Hu email: gaoxh@licp.cas.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38437805$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LwzAYgINM3IdePcpABC-db5M2H8cxpxM29KDnkLapy2ibmXbIbv4Ef6O_xIzNCQORHN7L87x5ebqoVdlKI3QewiAEwDcqK9UAA44ABIYj1AljHAYRiLiFOiBIHAga8Tbq1vUCPEOBnqA24RFhHOIOupqY1_nXx-e4apxdrvtPc9vYZq5dqYr-TDXaGVXUp-g490Of7WYPvdyNn0eTYPp4_zAaToOUMAIBT8IM_MsoJynPYk4xkJBHmpI0UZAyfyKmQCDniutEc8WAKRBMCZpnXJAeut7uXTr7ttJ1I0tTp7ooVKXtqpZYEMYAx5R49PIAXdiVq_x1kgBlGLMQM09d7KhVUupMLp0plVvLnwAeGGyB1Nm6djrfIyHITWG5KSz3hb0QHQipaVRjrA-oTPG3Jrbauyn0-p9P5PB2Nvx1vwE6Bo2S |
CitedBy_id | crossref_primary_10_1002_advs_202406149 crossref_primary_10_1002_adfm_202504275 crossref_primary_10_1002_ange_202500058 crossref_primary_10_1016_j_desal_2024_118241 crossref_primary_10_1002_advs_202406521 crossref_primary_10_1021_acsami_4c07893 crossref_primary_10_1021_acsami_4c11898 crossref_primary_10_1016_j_cej_2024_157434 crossref_primary_10_1016_j_cej_2024_154985 crossref_primary_10_1002_ece2_70 crossref_primary_10_1002_adfm_202411316 crossref_primary_10_1039_D4MH01168F crossref_primary_10_1016_j_solmat_2024_113076 crossref_primary_10_1016_j_cej_2024_154905 crossref_primary_10_1016_j_snb_2024_136213 crossref_primary_10_1016_j_nanoen_2024_110288 crossref_primary_10_1002_anie_202500058 crossref_primary_10_1002_cssc_202401517 crossref_primary_10_1039_D4EE04442H crossref_primary_10_1002_smll_202410819 crossref_primary_10_1021_acsami_4c11817 crossref_primary_10_1039_D4GC05004E crossref_primary_10_1002_advs_202410537 crossref_primary_10_1016_j_nanoen_2024_110381 crossref_primary_10_1002_adma_202500343 crossref_primary_10_1002_smll_202411977 crossref_primary_10_1039_D5TA00849B crossref_primary_10_1021_acsnano_4c12538 crossref_primary_10_1002_adma_202415351 crossref_primary_10_1002_advs_202414783 |
Cites_doi | 10.1002/adma.202107351 10.1016/j.jmat.2019.03.002 10.1016/j.jechem.2023.01.009 10.1038/nenergy.2016.153 10.1007/s12598-023-02430-w 10.1002/adfm.202303197 10.1016/j.rser.2005.06.008 10.1039/D0CS00664E 10.1016/j.mtphys.2022.100836 10.1039/c3ee43825b 10.1002/adma.202311151 10.1016/j.apcatb.2021.120896 10.1038/s41578-020-0182-4 10.1016/j.jmat.2021.04.006 10.1016/j.apsusc.2012.08.109 10.1002/advs.202002501 10.1016/j.rser.2020.110277 10.1021/acs.inorgchem.8b02379 10.1016/j.apcatb.2016.04.030 10.1002/adma.202101473 10.1063/5.0007944 10.1021/accountsmr.0c00104 10.1039/C8EE02790K 10.1021/acsaem.2c01985 10.1063/1.1721728 10.1021/acs.nanolett.2c00322 10.1002/advs.201400013 10.1021/acsnano.0c09617 10.1002/solr.202300484 10.1021/acscombsci.8b00055 10.1016/j.scriptamat.2021.113974 10.1021/cr400621z 10.1063/5.0122727 10.1021/acsanm.1c00116 10.1002/aenm.202300937 10.1111/1541-4337.12515 10.1002/adma.202001146 10.1002/adma.202102990 10.1002/adma.201104186 10.1002/cey2.228 10.1039/D1TA03861C 10.1039/D2EE03357G 10.1016/j.matt.2020.07.027 10.1002/adma.201605021 10.1016/j.surfcoat.2005.08.081 10.1016/j.nanoen.2021.106146 10.1016/j.actamat.2022.118338 10.1016/j.solmat.2021.111188 10.1039/D1EE03028K 10.1016/j.jallcom.2019.152209 10.1016/j.jphotochem.2022.114167 10.1002/adfm.202302712 10.1002/adma.201907226 10.1186/s12951-017-0308-z 10.1126/sciadv.abg1600 10.1016/j.apsusc.2022.155809 10.1021/jacs.0c04807 10.1038/s41929-020-00554-1 10.1016/j.cej.2023.146566 10.1103/PhysRevMaterials.3.104416 10.1002/adma.201102306 10.1103/PhysRevLett.104.036806 10.1021/jp070911w 10.1002/adfm.202106715 10.1002/advs.201800518 10.1080/21663831.2018.1554605 10.1002/advs.202303078 10.1016/j.apsusc.2023.156728 10.1016/j.rser.2016.05.064 10.1039/D0TA09601F 10.1016/j.solmat.2017.04.017 10.1016/j.rser.2016.10.042 10.1038/s41467-022-32051-3 10.1038/s41586-023-06509-3 10.1002/ppsc.202100094 10.1016/j.jeurceramsoc.2018.04.063 10.1016/j.matt.2023.03.034 10.1002/advs.202204817 10.1038/s41467-018-05774-5 10.1016/j.nanoen.2017.05.036 10.1016/j.matt.2021.04.014 10.1016/j.jmat.2019.12.012 10.1016/j.mtphys.2024.101363 10.1002/aenm.201903921 10.1038/natrevmats.2017.14 10.1021/jacs.2c06768 10.1038/nmat4281 10.1002/solr.202100752 10.1016/j.nantod.2022.101526 10.1021/acs.jpcc.9b04583 10.1016/j.poly.2018.09.028 10.1038/s41560-018-0260-7 10.1021/acsami.0c23011 10.1002/adma.201603730 10.1016/j.matlet.2020.128817 10.1016/j.nanoen.2022.106996 10.1002/adem.200300567 10.1038/s41598-023-29477-0 10.1038/nrmicro.2017.99 10.1016/S1872-2067(20)63594-X 10.1002/gch2.202000058 10.1002/anie.201907443 10.1016/j.msea.2003.10.257 10.1016/j.actamat.2013.04.058 10.1016/j.nanoen.2019.103947 10.1016/j.applthermaleng.2016.04.069 10.1038/s41565-018-0203-2 10.1126/science.aan5412 10.1021/acsaem.2c02009 10.1007/s40145-021-0477-y 10.1002/anie.201409906 10.1021/acscatal.6b02089 10.1038/s41598-018-26827-1 10.1021/cr9002566 10.1039/C7DT02077E 10.1016/j.mtphys.2022.100690 10.1016/j.jmst.2019.05.030 10.1021/j100243a005 10.1103/PhysRev.87.835 10.1016/j.solmat.2020.110533 10.1126/sciadv.aaz0510 10.1016/j.infrared.2020.103407 10.1126/sciadv.aat0127 10.1007/s12274-022-4705-8 10.1007/s12598-016-0840-2 10.1088/0022-3727/38/15/004 10.1016/j.pmatsci.2009.05.002 10.1016/j.solmat.2017.06.056 10.1126/science.1246913 10.1021/acsaem.1c00918 10.1021/acs.nanolett.2c01147 10.1016/j.jallcom.2023.169248 10.1038/238037a0 10.1021/acs.chemrev.3c00136 10.1016/j.surfin.2021.101062 10.1039/C1CS15172J 10.1016/j.matt.2023.10.020 10.1126/science.abo4940 10.1002/aenm.202203057 10.1016/j.joule.2018.12.023 10.1016/j.solmat.2012.03.021 10.1002/adsu.202200067 10.1016/j.solmat.2019.110187 10.1016/j.optmat.2020.109666 10.1103/PhysRevMaterials.7.115802 10.1016/j.matlet.2022.131659 10.1002/adma.201806236 10.1016/j.ceramint.2023.10.248 10.1016/j.cej.2022.137800 10.1038/s41586-019-1617-1 10.1038/natrevmats.2016.98 10.1039/D1EE00505G 10.1021/acs.chemrev.5b00397 10.1016/j.jeurceramsoc.2022.10.081 10.1016/j.jallcom.2022.167899 10.1016/j.jmst.2021.06.068 10.1038/s41467-023-38889-5 10.1126/science.abn3103 10.1016/j.jallcom.2020.156716 10.1002/adfm.201403478 10.1021/acsami.9b19575 10.1016/j.mtener.2021.100789 10.1039/C8EE01146J 10.1038/s41467-020-15116-z 10.1002/anie.202101406 10.1021/acs.chemrev.8b00400 10.1016/j.jallcom.2022.167965 10.1016/j.jeurceramsoc.2018.04.010 10.1016/j.actamat.2017.12.037 10.1039/D0EE03991H 10.1002/adma.202005074 10.1002/adma.201705980 10.1021/jacs.2c12887 10.1039/D1TA06682J 10.1002/pssr.201600043 10.1038/nmat3013 10.1002/anie.202112520 10.1021/acs.nanolett.3c03462 10.1016/j.surfcoat.2013.01.036 10.1002/solr.201900487 10.1039/C9TA12846H 10.1016/j.matlet.2022.133198 10.1039/C9RA05014K 10.1093/nsr/nwac041 10.1016/j.solmat.2020.110709 10.1016/j.solmat.2017.11.013 10.1016/j.jenvman.2023.118081 10.1002/adma.202302335 10.1021/acs.chemrev.3c00159 10.1021/acsmaterialslett.1c00365 10.1007/s12613-020-1982-7 10.1038/s41467-018-07160-7 10.1021/jacs.1c13616 10.1021/acsami.1c20055 10.1038/nrmicro821 10.1016/j.cej.2022.137893 10.1038/ncomms9485 10.1007/s10853-022-08055-1 10.1016/j.matt.2023.08.005 10.1039/C5CS00113G 10.1016/j.solmat.2018.07.001 10.1002/adma.202211432 10.1103/PhysRevB.57.1390 10.1038/s41467-022-33497-1 10.1021/acs.nanolett.1c00400 10.1016/j.mtphys.2021.100388 10.1021/ar7002804 10.1016/j.solmat.2016.07.018 10.1039/D1CS00684C 10.1038/s41578-019-0170-8 10.1016/j.solmat.2014.12.005 10.1021/acsami.2c15215 10.1016/j.jwpe.2023.103814 10.1039/C7CS00522A 10.1039/D0TA09988K 10.1016/j.pmatsci.2022.101018 10.1038/nenergy.2016.126 10.1002/solr.202000790 10.1016/j.actamat.2013.01.042 10.1126/science.aau1217 10.1021/acsnano.1c00903 10.1038/s41578-019-0121-4 10.1016/j.solmat.2007.11.004 10.1016/j.apcatb.2022.122204 10.1039/C8CS00618K 10.1016/j.pmatsci.2013.10.001 10.1111/jace.13161 10.1016/j.jeurceramsoc.2017.12.058 10.1016/j.jmat.2020.11.010 10.1016/j.actamat.2020.10.043 10.1016/j.corsci.2021.109809 10.1039/D2TC01298G 10.1088/0022-3727/44/20/205405 10.1002/admt.202201137 10.1021/jacs.2c11608 10.1016/j.intermet.2023.107834 10.1080/21663831.2016.1220433 10.1007/s40145-019-0319-3 10.1021/acsnano.1c01590 10.1016/j.solmat.2020.110444 10.1002/adma.201707512 10.1016/j.mser.2021.100644 10.1002/adfm.202207536 10.1039/D3CS00500C |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202400920 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 38437805 10_1002_adma_202400920 ADMA202400920 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: State Key Laboratory of Fluid Power & Mechatronic Systems funderid: SKLoFP_ZZ_2314 – fundername: Regional Key Projects of Science and Technology Service Network Program of the Chinese Academy of Sciences funderid: KFJ‐STS‐QYZD‐139 – fundername: Key Program of the Lanzhou Institute of Chemical Physics funderid: KJZLZD‐4; 20ZD7GF011 – fundername: National Natural Science Foundation of China funderid: 52375581 – fundername: Key Program of the Lanzhou Institute of Chemical Physics grantid: KJZLZD-4 – fundername: State Key Laboratory of Fluid Power & Mechatronic Systems grantid: SKLoFP_ZZ_2314 – fundername: Regional Key Projects of Science and Technology Service Network Program of the Chinese Academy of Sciences grantid: KFJ-STS-QYZD-139 – fundername: National Natural Science Foundation of China grantid: 52375581 – fundername: Key Program of the Lanzhou Institute of Chemical Physics grantid: 20ZD7GF011 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3730-8b1d0d0dd683c8d586203184e63cba0c792026030f8a8ebe8a707a097a96fd893 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 11:08:39 EDT 2025 Fri Jul 25 03:48:20 EDT 2025 Mon Jul 21 06:02:04 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 00:54:46 EDT 2025 Sun Jul 06 04:45:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | photothermal conversion photothermal applications bandgap high‐entropy materials stability |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-8b1d0d0dd683c8d586203184e63cba0c792026030f8a8ebe8a707a097a96fd893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1999-1054 0000-0001-5827-888X |
PMID | 38437805 |
PQID | 3067227127 |
PQPubID | 2045203 |
PageCount | 36 |
ParticipantIDs | proquest_miscellaneous_2937702563 proquest_journals_3067227127 pubmed_primary_38437805 crossref_primary_10_1002_adma_202400920 crossref_citationtrail_10_1002_adma_202400920 wiley_primary_10_1002_adma_202400920_ADMA202400920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 201 2021; 202 2004; 25 2013; 61 2019; 12 2023; 342 2004; 6 2020; 12 2020; 11 2004; 2 2020; 10 2004; 375–377 2020; 19 2017; 72 2015; 134 2017; 167 2012; 24 2014; 97 2019; 31 2020; 41 2020; 142 2022; 95 2019; 35 2016; 10 2013; 221 2023; 324 2020; 32 2021; 50 2007; 11 2016; 6 2016; 1 2015; 115 2018; 359 2022; 4 2022; 5 2022; 6 2019; 48 2022; 9 2020; 27 2008; 41 2021; 60 2012; 41 2010; 55 2023; 35 2023; 33 2016; 109 2017; 46 2020; 59 2014; 61 2020; 8 2014; 1 2020; 6 2020; 5 2020; 4 2020; 3 2023; 23 2019; 64 2017; 37 2021; 230 2020; 134 2014; 7 2020; 815 2021; 9 2023; 10 2021; 8 2021; 7 2015; 6 2023; 13 2021; 5 2021; 87 2021; 4 2023; 14 2021; 2 2023; 16 2024; 50 2020; 100 2017; 29 2008; 92 2020; 109 2022; 433 2022; 312 2017; 15 2007; 111 2024; 42 2022; 303 2018; 57 2022; 450 2023; 79 2010; 104 2019; 203 2023; 622 2022; 24 2021; 283 2022; 22 2024 2022; 27 2018; 47 2020; 209 2018; 9 2018; 8 2018; 176 2018; 3 2018; 5 2018; 4 2024; 7 2022; 34 2016; 157 2023; 612 2010; 110 2020; 217 2018; 30 2020; 211 2022; 32 2022; 449 2023; 619 2022; 329 2018; 38 2018; 37 2019; 8 2018; 186 2023; 53 2019; 7 2023; 52 2019; 9 2019; 4 2019; 3 2023; 58 2019; 5 2012; 102 2021; 146 2015; 54 2018; 20 2023; 42 2023; 43 2023; 156 2022; 12 2022; 13 1983; 87 2022; 14 2022; 15 2022; 10 2022; 104 2019; 574 2018; 13 2017; 5 2022; 376 2021; 24 2021; 21 2017; 2 2023; 6 2023; 7 2023; 8 2023; 145 2011; 10 2023; 944 2019; 123 2019; 363 2022; 378 2021; 38 2022; 240 2021; 31 2021; 33 2023; 131 2015; 44 2021; 192 2023; 935 2019; 119 2023; 934 2011; 23 2016; 193 2005; 38 1998; 57 2012; 263 2015; 14 2018; 146 2023; 123 2022; 45 2017; 171 2014; 114 1972; 238 2021; 14 2022; 144 1952; 87 2021; 13 2021; 15 2015; 25 2021; 10 2021; 850 2005; 200 2021; 18 2018; 156 2016; 63 2011; 44 2023; 478 2014; 343 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_242_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_232_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_244_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_222_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_236_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_237_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_4_1 e_1_2_9_240_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 62 year: 2021 publication-title: Nat. Catal. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 217 year: 2020 publication-title: Sol. Energy Mater. Sol. Cells – volume: 145 start-page: 5991 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 7389 year: 2023 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 2628 year: 2023 publication-title: Matter – volume: 24 year: 2021 publication-title: Surf. Interfaces – volume: 4 start-page: 4504 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 109 start-page: 997 year: 2016 publication-title: Appl. Therm. Eng. – volume: 7 year: 2023 publication-title: Phys. Rev. Mater. – volume: 156 start-page: 257 year: 2018 publication-title: Polyhedron – volume: 123 start-page: 6891 year: 2023 publication-title: Chem. Rev. – volume: 238 start-page: 37 year: 1972 publication-title: Nature – volume: 5 start-page: 9214 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 9 year: 2019 publication-title: RSC Adv. – volume: 359 start-page: 1489 year: 2018 publication-title: Science – volume: 10 start-page: 328 year: 2016 publication-title: Phys. Status Solidi Rapid Res. Lett. – volume: 324 year: 2023 publication-title: Appl. Catal., B – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 37 start-page: 232 year: 2017 publication-title: Nano Energy – volume: 9 start-page: 663 year: 2021 publication-title: J. Mater. Chem. A – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 38 start-page: 2543 year: 2005 publication-title: J. Phys. D: Appl. Phys. – volume: 131 year: 2023 publication-title: Prog. Mater. Sci. – volume: 850 year: 2021 publication-title: J. Alloys Compd. – volume: 15 start-page: 1893 year: 2022 publication-title: Energy Environ. Sci. – volume: 100 year: 2020 publication-title: Opt. Mater. – volume: 156 year: 2023 publication-title: Intermetallics – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 4 start-page: 246 year: 2022 publication-title: ACS Mater. Lett. – volume: 3 start-page: 1646 year: 2020 publication-title: Matter – volume: 12 start-page: 841 year: 2019 publication-title: Energy Environ. Sci. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 87 start-page: 3807 year: 1983 publication-title: J. Phys. Chem. – volume: 450 year: 2022 publication-title: Chem. Eng. J. – volume: 5 start-page: 295 year: 2020 publication-title: Nat. Rev. Mater. – volume: 144 start-page: 3365 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 203 year: 2019 publication-title: Sol. Energy Mater. Sol. Cells – volume: 3 start-page: 683 year: 2019 publication-title: Joule – volume: 8 year: 2020 publication-title: APL Mater. – year: 2024 publication-title: Adv. Mater. – volume: 6 start-page: 8485 year: 2015 publication-title: Nat. Commun. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 87 start-page: 835 year: 1952 publication-title: Phys. Rev. – volume: 4 start-page: 2340 year: 2021 publication-title: Matter – volume: 6 year: 2022 publication-title: Sol. RRL – volume: 43 start-page: 1141 year: 2023 publication-title: J. Eur. Ceram. Soc. – volume: 22 start-page: 5659 year: 2022 publication-title: Nano Lett. – volume: 95 year: 2022 publication-title: Nano Energy – volume: 2 start-page: 95 year: 2004 publication-title: Nat. Rev. Microbiol. – volume: 263 start-page: 58 year: 2012 publication-title: Appl. Surf. Sci. – volume: 9 start-page: 3400 year: 2018 publication-title: Nat. Commun. – volume: 10 start-page: 385 year: 2021 publication-title: J. Adv. Ceram. – volume: 5 year: 2021 publication-title: Global Challenge – volume: 109 year: 2020 publication-title: Infrared Phys. Technol. – volume: 47 start-page: 2280 year: 2018 publication-title: Chem. Soc. Rev. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 46 year: 2017 publication-title: Dalton Trans. – volume: 14 start-page: 1771 year: 2021 publication-title: Energy Environ. Sci. – volume: 11 start-page: 923 year: 2007 publication-title: Renewable Sustainable Energy Rev. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 378 start-page: 78 year: 2022 publication-title: Science – volume: 9 start-page: 6413 year: 2021 publication-title: J. Mater. Chem. A – volume: 13 start-page: 634 year: 2018 publication-title: Nat. Nanotechnol. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 6 year: 2022 publication-title: Adv. Sustainable Syst. – volume: 58 start-page: 880 year: 2023 publication-title: J. Mater. Sci. – volume: 104 start-page: 131 year: 2022 publication-title: J. Mater. Sci. Technol. – volume: 38 start-page: 2318 year: 2018 publication-title: J. Eur. Ceram. Soc. – volume: 342 year: 2023 publication-title: J. Environ. Manage – volume: 146 start-page: 119 year: 2018 publication-title: Acta Mater. – volume: 50 start-page: 1564 year: 2024 publication-title: Ceram. Int. – volume: 7 start-page: 460 year: 2021 publication-title: J. Materiomics – volume: 240 year: 2022 publication-title: Acta Mater. – volume: 45 year: 2022 publication-title: Nano Today – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 343 start-page: 990 year: 2014 publication-title: Science – volume: 97 start-page: 2705 year: 2014 publication-title: J. Am. Ceram. Soc. – volume: 38 start-page: 3578 year: 2018 publication-title: J. Eur. Ceram. Soc. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 134 start-page: 373 year: 2015 publication-title: Sol. Energy Mater. Sol. Cells – volume: 114 start-page: 9559 year: 2014 publication-title: Chem. Rev. – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 186 start-page: 300 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 815 year: 2020 publication-title: J. Alloys Compd. – volume: 4 start-page: 731 year: 2022 publication-title: Carbon Energy – volume: 230 year: 2021 publication-title: Sol. Energy Mater. Sol. Cells – volume: 27 year: 2022 publication-title: Mater. Today Phys. – volume: 19 start-page: 1397 year: 2020 publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 24 year: 2022 publication-title: Mater. Today Phys. – volume: 50 year: 2021 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 299 year: 2004 publication-title: Adv. Eng. Mater. – volume: 7 start-page: 60 year: 2019 publication-title: Mater. Res. Lett. – volume: 102 start-page: 86 year: 2012 publication-title: Sol. Energy Mater. Sol. Cells – volume: 6 start-page: 167 year: 2020 publication-title: J. Materiomics – volume: 41 start-page: 782 year: 2012 publication-title: Chem. Soc. Rev. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 110 start-page: 2783 year: 2010 publication-title: Chem. Rev. – volume: 5 year: 2021 publication-title: Sol. RRL – volume: 944 year: 2023 publication-title: J. Alloys Compd. – volume: 27 start-page: 1371 year: 2020 publication-title: Int. J. Miner., Metall. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 4 start-page: 515 year: 2019 publication-title: Nat. Rev. Mater. – volume: 21 start-page: 3879 year: 2021 publication-title: Nano Lett. – volume: 6 start-page: 7485 year: 2016 publication-title: ACS Catal. – volume: 23 year: 2023 publication-title: Nano Lett. – volume: 619 year: 2023 publication-title: Appl. Surf. Sci. – volume: 18 year: 2021 publication-title: Mater. Today Phys. – volume: 478 year: 2023 publication-title: Chem. Eng. J. – volume: 9 start-page: 4980 year: 2018 publication-title: Nat. Commun. – volume: 211 year: 2020 publication-title: Sol. Energy Mater. Sol. Cells – volume: 38 start-page: 4161 year: 2018 publication-title: J. Eur. Ceram. Soc. – volume: 42 start-page: 3960 year: 2023 publication-title: Rare Met. – volume: 7 start-page: 140 year: 2024 publication-title: Matter – volume: 14 start-page: 1950 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 765 year: 2004 publication-title: J. Appl. Phys. – volume: 15 start-page: 3808 year: 2021 publication-title: ACS Nano – volume: 433 year: 2022 publication-title: J. Photochem. Photobiol. A: Chem. – volume: 64 year: 2019 publication-title: Nano Energy – volume: 61 start-page: 1 year: 2014 publication-title: Prog. Mater. Sci. – volume: 10 start-page: 532 year: 2011 publication-title: Nat. Mater. – volume: 12 start-page: 1122 year: 2019 publication-title: Energy Environ. Sci. – volume: 41 start-page: 1578 year: 2008 publication-title: Acc. Chem. Res. – volume: 312 year: 2022 publication-title: Mater. Lett. – volume: 2 start-page: 198 year: 2021 publication-title: Acc. Mater. Res. – volume: 193 start-page: 198 year: 2016 publication-title: Appl. Catal., B – volume: 111 start-page: 7851 year: 2007 publication-title: J. Phys. Chem. C – volume: 14 start-page: 3171 year: 2023 publication-title: Nat. Commun. – volume: 14 start-page: 2883 year: 2021 publication-title: Energy Environ. Sci. – volume: 7 year: 2023 publication-title: Sol. RRL – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 895 year: 2021 publication-title: J. Materiomics – volume: 42 year: 2024 publication-title: Mater. Today Phys. – volume: 209 year: 2020 publication-title: Sol. Energy Mater. Sol. Cells – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 13 start-page: 4335 year: 2022 publication-title: Nat. Commun. – volume: 221 start-page: 118 year: 2013 publication-title: Surf. Coat. Technol. – volume: 50 start-page: 1111 year: 2021 publication-title: Chem. Soc. Rev. – volume: 22 start-page: 6492 year: 2022 publication-title: Nano Lett. – volume: 8 year: 2023 publication-title: Adv. Mater. Technol. – volume: 87 year: 2021 publication-title: Nano Energy – volume: 146 year: 2021 publication-title: Mater. Sci. Eng. R: Rep – volume: 6 start-page: 1717 year: 2023 publication-title: Matter – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 5 start-page: 337 year: 2019 publication-title: J. Materiomics – volume: 4 start-page: 8801 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 59 start-page: 8016 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 2362 year: 2023 publication-title: Sci. Rep. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 13 start-page: 5993 year: 2022 publication-title: Nat. Commun. – volume: 283 year: 2021 publication-title: Mater. Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1389 year: 2020 publication-title: Nat. Commun. – volume: 16 start-page: 1531 year: 2023 publication-title: Energy Environ. Sci. – volume: 15 start-page: 740 year: 2017 publication-title: Nat. Rev. Microbiol. – volume: 5 start-page: 388 year: 2020 publication-title: Nat. Rev. Mater. – volume: 375–377 start-page: 213 year: 2004 publication-title: Mater. Sci. Eng., A – volume: 176 start-page: 157 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 12 start-page: 4123 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 65 year: 2017 publication-title: J. Nanobiotechnol. – volume: 934 year: 2023 publication-title: J. Alloys Compd. – volume: 3 start-page: 1031 year: 2018 publication-title: Nat. Energy – volume: 192 year: 2021 publication-title: Corros. Sci. – volume: 41 start-page: 1451 year: 2020 publication-title: Chin. J. Catal. – volume: 574 start-page: 223 year: 2019 publication-title: Nature – volume: 200 start-page: 1361 year: 2005 publication-title: Surf. Coat. Technol. – volume: 145 start-page: 6753 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 167 start-page: 178 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 61 start-page: 4887 year: 2013 publication-title: Acta Mater. – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 79 start-page: 581 year: 2023 publication-title: J. Energy Chem. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 14 start-page: 567 year: 2015 publication-title: Nat. Mater. – volume: 363 start-page: 619 year: 2019 publication-title: Science – volume: 35 start-page: 2227 year: 2019 publication-title: J. Mater. Sci. Technol. – volume: 7 start-page: 1615 year: 2014 publication-title: Energy Environ. Sci. – volume: 201 year: 2021 publication-title: Scr. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 44 start-page: 5371 year: 2015 publication-title: Chem. Soc. Rev. – volume: 157 start-page: 716 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 119 start-page: 3962 year: 2019 publication-title: Chem. Rev. – volume: 5 start-page: 102 year: 2017 publication-title: Mater. Res. Lett. – volume: 612 year: 2023 publication-title: Appl. Surf. Sci. – volume: 9 year: 2022 publication-title: Natl. Sci. Rev. – volume: 3 year: 2019 publication-title: Phys. Rev. Mater. – volume: 44 year: 2011 publication-title: J. Phys. D: Appl. Phys. – volume: 8 start-page: 8609 year: 2018 publication-title: Sci. Rep. – volume: 10 start-page: 9266 year: 2022 publication-title: J. Mater. Chem. C – volume: 20 start-page: 602 year: 2018 publication-title: ACS Comb. Sci. – volume: 134 year: 2020 publication-title: Renewable Sustainable Energy Rev. – volume: 92 start-page: 495 year: 2008 publication-title: Sol. Energy Mater. Sol. Cells – volume: 10 year: 2022 publication-title: APL Mater. – volume: 303 year: 2022 publication-title: Appl. Catal., B – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 72 start-page: 1295 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 38 year: 2021 publication-title: Part. Part. Syst. Charact. – volume: 622 start-page: 499 year: 2023 publication-title: Nature – volume: 449 year: 2022 publication-title: Chem. Eng. J. – volume: 171 start-page: 253 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 54 start-page: 3047 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 4130 year: 2012 publication-title: Adv. Mater. – volume: 61 start-page: 2628 year: 2013 publication-title: Acta Mater. – volume: 202 start-page: 1 year: 2021 publication-title: Acta Mater. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 57 start-page: 1390 year: 1998 publication-title: Phys. Rev. B – volume: 8 start-page: 148 year: 2019 publication-title: J. Adv. Ceram. – volume: 1 year: 2014 publication-title: Adv. Sci. – volume: 935 year: 2023 publication-title: J. Alloys Compd. – volume: 15 year: 2022 publication-title: Nano Res. – volume: 63 start-page: 593 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 21 year: 2021 publication-title: Mater. Today Energy – volume: 329 year: 2022 publication-title: Mater. Lett. – volume: 123 start-page: 7081 year: 2023 publication-title: Chem. Rev. – volume: 8 start-page: 3814 year: 2020 publication-title: J. Mater. Chem. A – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 25 start-page: 721 year: 2015 publication-title: Adv. Funct. Mater. – volume: 57 year: 2018 publication-title: Inorg. Chem. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 55 start-page: 247 year: 2010 publication-title: Prog. Mater. Sci. – volume: 53 year: 2023 publication-title: J Water Process Eng – volume: 376 year: 2022 publication-title: Science – volume: 37 start-page: 682 year: 2018 publication-title: Rare Met. – volume: 48 start-page: 2053 year: 2019 publication-title: Chem. Soc. Rev. – ident: e_1_2_9_73_1 doi: 10.1002/adma.202107351 – ident: e_1_2_9_37_1 doi: 10.1016/j.jmat.2019.03.002 – ident: e_1_2_9_169_1 doi: 10.1016/j.jechem.2023.01.009 – ident: e_1_2_9_189_1 doi: 10.1038/nenergy.2016.153 – ident: e_1_2_9_98_1 doi: 10.1007/s12598-023-02430-w – ident: e_1_2_9_45_1 doi: 10.1002/adfm.202303197 – ident: e_1_2_9_182_1 doi: 10.1016/j.rser.2005.06.008 – ident: e_1_2_9_10_1 doi: 10.1039/D0CS00664E – ident: e_1_2_9_151_1 doi: 10.1016/j.mtphys.2022.100836 – ident: e_1_2_9_108_1 doi: 10.1039/c3ee43825b – ident: e_1_2_9_170_1 doi: 10.1002/adma.202311151 – ident: e_1_2_9_96_1 doi: 10.1016/j.apcatb.2021.120896 – ident: e_1_2_9_160_1 doi: 10.1038/s41578-020-0182-4 – ident: e_1_2_9_133_1 doi: 10.1016/j.jmat.2021.04.006 – ident: e_1_2_9_32_1 doi: 10.1016/j.apsusc.2012.08.109 – ident: e_1_2_9_168_1 doi: 10.1002/advs.202002501 – ident: e_1_2_9_109_1 doi: 10.1016/j.rser.2020.110277 – ident: e_1_2_9_36_1 doi: 10.1021/acs.inorgchem.8b02379 – ident: e_1_2_9_191_1 doi: 10.1016/j.apcatb.2016.04.030 – ident: e_1_2_9_233_1 doi: 10.1002/adma.202101473 – ident: e_1_2_9_43_1 doi: 10.1063/5.0007944 – ident: e_1_2_9_92_1 doi: 10.1021/accountsmr.0c00104 – ident: e_1_2_9_216_1 doi: 10.1039/C8EE02790K – ident: e_1_2_9_147_1 doi: 10.1021/acsaem.2c01985 – ident: e_1_2_9_185_1 doi: 10.1063/1.1721728 – ident: e_1_2_9_111_1 doi: 10.1021/acs.nanolett.2c00322 – ident: e_1_2_9_190_1 doi: 10.1002/advs.201400013 – ident: e_1_2_9_240_1 doi: 10.1021/acsnano.0c09617 – ident: e_1_2_9_101_1 doi: 10.1002/solr.202300484 – ident: e_1_2_9_241_1 doi: 10.1021/acscombsci.8b00055 – ident: e_1_2_9_55_1 doi: 10.1016/j.scriptamat.2021.113974 – ident: e_1_2_9_193_1 doi: 10.1021/cr400621z – ident: e_1_2_9_39_1 doi: 10.1063/5.0122727 – ident: e_1_2_9_143_1 doi: 10.1021/acsanm.1c00116 – ident: e_1_2_9_183_1 doi: 10.1002/aenm.202300937 – ident: e_1_2_9_235_1 doi: 10.1111/1541-4337.12515 – ident: e_1_2_9_228_1 doi: 10.1002/adma.202001146 – ident: e_1_2_9_186_1 doi: 10.1002/adma.202102990 – ident: e_1_2_9_237_1 doi: 10.1002/adma.201104186 – ident: e_1_2_9_47_1 doi: 10.1002/cey2.228 – ident: e_1_2_9_17_1 doi: 10.1039/D1TA03861C – ident: e_1_2_9_22_1 doi: 10.1039/D2EE03357G – ident: e_1_2_9_103_1 doi: 10.1016/j.matt.2020.07.027 – ident: e_1_2_9_72_1 doi: 10.1002/adma.201605021 – ident: e_1_2_9_29_1 doi: 10.1016/j.surfcoat.2005.08.081 – ident: e_1_2_9_165_1 doi: 10.1016/j.nanoen.2021.106146 – ident: e_1_2_9_19_1 doi: 10.1016/j.actamat.2022.118338 – ident: e_1_2_9_149_1 doi: 10.1016/j.solmat.2021.111188 – ident: e_1_2_9_6_1 doi: 10.1039/D1EE03028K – ident: e_1_2_9_125_1 doi: 10.1016/j.jallcom.2019.152209 – ident: e_1_2_9_208_1 doi: 10.1016/j.jphotochem.2022.114167 – ident: e_1_2_9_80_1 doi: 10.1002/adfm.202302712 – ident: e_1_2_9_56_1 doi: 10.1002/adma.201907226 – ident: e_1_2_9_223_1 doi: 10.1186/s12951-017-0308-z – ident: e_1_2_9_100_1 doi: 10.1126/sciadv.abg1600 – ident: e_1_2_9_205_1 doi: 10.1016/j.apsusc.2022.155809 – ident: e_1_2_9_79_1 doi: 10.1021/jacs.0c04807 – ident: e_1_2_9_33_1 doi: 10.1038/s41929-020-00554-1 – ident: e_1_2_9_164_1 doi: 10.1016/j.cej.2023.146566 – ident: e_1_2_9_67_1 doi: 10.1103/PhysRevMaterials.3.104416 – ident: e_1_2_9_231_1 doi: 10.1002/adma.201102306 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevLett.104.036806 – ident: e_1_2_9_209_1 doi: 10.1021/jp070911w – ident: e_1_2_9_58_1 doi: 10.1002/adfm.202106715 – ident: e_1_2_9_232_1 doi: 10.1002/advs.201800518 – ident: e_1_2_9_61_1 doi: 10.1080/21663831.2018.1554605 – ident: e_1_2_9_226_1 doi: 10.1002/advs.202303078 – ident: e_1_2_9_95_1 doi: 10.1016/j.apsusc.2023.156728 – ident: e_1_2_9_5_1 doi: 10.1016/j.rser.2016.05.064 – ident: e_1_2_9_71_1 doi: 10.1039/D0TA09601F – ident: e_1_2_9_124_1 doi: 10.1016/j.solmat.2017.04.017 – ident: e_1_2_9_184_1 doi: 10.1016/j.rser.2016.10.042 – ident: e_1_2_9_167_1 doi: 10.1038/s41467-022-32051-3 – ident: e_1_2_9_7_1 doi: 10.1038/s41586-023-06509-3 – ident: e_1_2_9_173_1 doi: 10.1002/ppsc.202100094 – ident: e_1_2_9_59_1 doi: 10.1016/j.jeurceramsoc.2018.04.063 – ident: e_1_2_9_25_1 doi: 10.1016/j.matt.2023.03.034 – ident: e_1_2_9_146_1 doi: 10.1002/advs.202204817 – ident: e_1_2_9_62_1 doi: 10.1038/s41467-018-05774-5 – ident: e_1_2_9_128_1 doi: 10.1016/j.nanoen.2017.05.036 – ident: e_1_2_9_53_1 doi: 10.1016/j.matt.2021.04.014 – ident: e_1_2_9_114_1 doi: 10.1016/j.jmat.2019.12.012 – ident: e_1_2_9_107_1 doi: 10.1016/j.mtphys.2024.101363 – ident: e_1_2_9_175_1 doi: 10.1002/aenm.201903921 – ident: e_1_2_9_220_1 doi: 10.1038/natrevmats.2017.14 – ident: e_1_2_9_54_1 doi: 10.1021/jacs.2c06768 – ident: e_1_2_9_74_1 doi: 10.1038/nmat4281 – ident: e_1_2_9_140_1 doi: 10.1002/solr.202100752 – ident: e_1_2_9_180_1 doi: 10.1016/j.nantod.2022.101526 – ident: e_1_2_9_207_1 doi: 10.1021/acs.jpcc.9b04583 – ident: e_1_2_9_234_1 doi: 10.1016/j.poly.2018.09.028 – ident: e_1_2_9_8_1 doi: 10.1038/s41560-018-0260-7 – ident: e_1_2_9_156_1 doi: 10.1021/acsami.0c23011 – ident: e_1_2_9_76_1 doi: 10.1002/adma.201603730 – ident: e_1_2_9_212_1 doi: 10.1016/j.matlet.2020.128817 – ident: e_1_2_9_179_1 doi: 10.1016/j.nanoen.2022.106996 – ident: e_1_2_9_28_1 doi: 10.1002/adem.200300567 – ident: e_1_2_9_88_1 doi: 10.1038/s41598-023-29477-0 – ident: e_1_2_9_239_1 doi: 10.1038/nrmicro.2017.99 – ident: e_1_2_9_197_1 doi: 10.1016/S1872-2067(20)63594-X – ident: e_1_2_9_110_1 doi: 10.1002/gch2.202000058 – ident: e_1_2_9_217_1 doi: 10.1002/anie.201907443 – ident: e_1_2_9_49_1 doi: 10.1016/j.msea.2003.10.257 – ident: e_1_2_9_70_1 doi: 10.1016/j.actamat.2013.04.058 – ident: e_1_2_9_117_1 doi: 10.1016/j.nanoen.2019.103947 – ident: e_1_2_9_126_1 doi: 10.1016/j.applthermaleng.2016.04.069 – ident: e_1_2_9_161_1 doi: 10.1038/s41565-018-0203-2 – ident: e_1_2_9_99_1 doi: 10.1126/science.aan5412 – ident: e_1_2_9_142_1 doi: 10.1021/acsaem.2c02009 – ident: e_1_2_9_27_1 doi: 10.1007/s40145-021-0477-y – ident: e_1_2_9_200_1 doi: 10.1002/anie.201409906 – ident: e_1_2_9_203_1 doi: 10.1021/acscatal.6b02089 – ident: e_1_2_9_35_1 doi: 10.1038/s41598-018-26827-1 – ident: e_1_2_9_221_1 doi: 10.1021/cr9002566 – ident: e_1_2_9_11_1 doi: 10.1039/C7DT02077E – ident: e_1_2_9_116_1 doi: 10.1016/j.mtphys.2022.100690 – ident: e_1_2_9_106_1 doi: 10.1016/j.jmst.2019.05.030 – ident: e_1_2_9_201_1 doi: 10.1021/j100243a005 – ident: e_1_2_9_86_1 doi: 10.1103/PhysRev.87.835 – ident: e_1_2_9_118_1 doi: 10.1016/j.solmat.2020.110533 – ident: e_1_2_9_104_1 doi: 10.1126/sciadv.aaz0510 – ident: e_1_2_9_112_1 doi: 10.1016/j.infrared.2020.103407 – ident: e_1_2_9_244_1 doi: 10.1126/sciadv.aat0127 – ident: e_1_2_9_192_1 doi: 10.1007/s12274-022-4705-8 – ident: e_1_2_9_14_1 doi: 10.1007/s12598-016-0840-2 – ident: e_1_2_9_227_1 doi: 10.1088/0022-3727/38/15/004 – ident: e_1_2_9_57_1 doi: 10.1016/j.pmatsci.2009.05.002 – ident: e_1_2_9_122_1 doi: 10.1016/j.solmat.2017.06.056 – ident: e_1_2_9_199_1 doi: 10.1126/science.1246913 – ident: e_1_2_9_157_1 doi: 10.1021/acsaem.1c00918 – ident: e_1_2_9_81_1 doi: 10.1021/acs.nanolett.2c01147 – ident: e_1_2_9_154_1 doi: 10.1016/j.jallcom.2023.169248 – ident: e_1_2_9_198_1 doi: 10.1038/238037a0 – ident: e_1_2_9_2_1 doi: 10.1021/acs.chemrev.3c00136 – ident: e_1_2_9_158_1 doi: 10.1016/j.surfin.2021.101062 – ident: e_1_2_9_194_1 doi: 10.1039/C1CS15172J – ident: e_1_2_9_13_1 doi: 10.1016/j.matt.2023.10.020 – ident: e_1_2_9_243_1 doi: 10.1126/science.abo4940 – ident: e_1_2_9_102_1 doi: 10.1002/aenm.202203057 – ident: e_1_2_9_78_1 doi: 10.1016/j.joule.2018.12.023 – ident: e_1_2_9_131_1 doi: 10.1016/j.solmat.2012.03.021 – ident: e_1_2_9_214_1 doi: 10.1002/adsu.202200067 – ident: e_1_2_9_119_1 doi: 10.1016/j.solmat.2019.110187 – ident: e_1_2_9_129_1 doi: 10.1016/j.optmat.2020.109666 – ident: e_1_2_9_85_1 doi: 10.1103/PhysRevMaterials.7.115802 – ident: e_1_2_9_224_1 doi: 10.1016/j.matlet.2022.131659 – ident: e_1_2_9_40_1 doi: 10.1002/adma.201806236 – ident: e_1_2_9_218_1 doi: 10.1016/j.ceramint.2023.10.248 – ident: e_1_2_9_89_1 doi: 10.1016/j.cej.2022.137800 – ident: e_1_2_9_51_1 doi: 10.1038/s41586-019-1617-1 – ident: e_1_2_9_230_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_9_46_1 doi: 10.1039/D1EE00505G – ident: e_1_2_9_1_1 doi: 10.1021/acs.chemrev.5b00397 – ident: e_1_2_9_105_1 doi: 10.1016/j.jeurceramsoc.2022.10.081 – ident: e_1_2_9_144_1 doi: 10.1016/j.jallcom.2022.167899 – ident: e_1_2_9_84_1 doi: 10.1016/j.jmst.2021.06.068 – ident: e_1_2_9_213_1 doi: 10.1038/s41467-023-38889-5 – ident: e_1_2_9_26_1 doi: 10.1126/science.abn3103 – ident: e_1_2_9_211_1 doi: 10.1016/j.jallcom.2020.156716 – ident: e_1_2_9_238_1 doi: 10.1002/adfm.201403478 – ident: e_1_2_9_41_1 doi: 10.1021/acsami.9b19575 – ident: e_1_2_9_141_1 doi: 10.1016/j.mtener.2021.100789 – ident: e_1_2_9_172_1 doi: 10.1039/C8EE01146J – ident: e_1_2_9_113_1 doi: 10.1038/s41467-020-15116-z – ident: e_1_2_9_229_1 doi: 10.1002/anie.202101406 – ident: e_1_2_9_195_1 doi: 10.1021/acs.chemrev.8b00400 – ident: e_1_2_9_150_1 doi: 10.1016/j.jallcom.2022.167965 – ident: e_1_2_9_64_1 doi: 10.1016/j.jeurceramsoc.2018.04.010 – ident: e_1_2_9_63_1 doi: 10.1016/j.actamat.2017.12.037 – ident: e_1_2_9_163_1 doi: 10.1039/D0EE03991H – ident: e_1_2_9_115_1 doi: 10.1002/adma.202005074 – ident: e_1_2_9_219_1 doi: 10.1002/adma.201705980 – ident: e_1_2_9_42_1 doi: 10.1021/jacs.2c12887 – ident: e_1_2_9_139_1 doi: 10.1039/D1TA06682J – ident: e_1_2_9_90_1 doi: 10.1002/pssr.201600043 – ident: e_1_2_9_188_1 doi: 10.1038/nmat3013 – ident: e_1_2_9_12_1 doi: 10.1002/anie.202112520 – ident: e_1_2_9_82_1 doi: 10.1021/acs.nanolett.3c03462 – ident: e_1_2_9_153_1 doi: 10.1016/j.surfcoat.2013.01.036 – ident: e_1_2_9_204_1 doi: 10.1002/solr.201900487 – ident: e_1_2_9_16_1 doi: 10.1039/C9TA12846H – ident: e_1_2_9_145_1 doi: 10.1016/j.matlet.2022.133198 – ident: e_1_2_9_120_1 doi: 10.1039/C9RA05014K – ident: e_1_2_9_18_1 doi: 10.1093/nsr/nwac041 – ident: e_1_2_9_132_1 doi: 10.1016/j.solmat.2020.110709 – ident: e_1_2_9_138_1 doi: 10.1016/j.solmat.2017.11.013 – ident: e_1_2_9_215_1 doi: 10.1016/j.jenvman.2023.118081 – ident: e_1_2_9_20_1 doi: 10.1002/adma.202302335 – ident: e_1_2_9_3_1 doi: 10.1021/acs.chemrev.3c00159 – ident: e_1_2_9_93_1 doi: 10.1021/acsmaterialslett.1c00365 – ident: e_1_2_9_148_1 doi: 10.1007/s12613-020-1982-7 – ident: e_1_2_9_34_1 doi: 10.1038/s41467-018-07160-7 – ident: e_1_2_9_48_1 doi: 10.1021/jacs.1c13616 – ident: e_1_2_9_87_1 doi: 10.1021/acsami.1c20055 – ident: e_1_2_9_236_1 doi: 10.1038/nrmicro821 – ident: e_1_2_9_171_1 doi: 10.1016/j.cej.2022.137893 – ident: e_1_2_9_31_1 doi: 10.1038/ncomms9485 – ident: e_1_2_9_97_1 doi: 10.1007/s10853-022-08055-1 – ident: e_1_2_9_94_1 doi: 10.1016/j.matt.2023.08.005 – ident: e_1_2_9_196_1 doi: 10.1039/C5CS00113G – ident: e_1_2_9_137_1 doi: 10.1016/j.solmat.2018.07.001 – ident: e_1_2_9_21_1 doi: 10.1002/adma.202211432 – ident: e_1_2_9_77_1 doi: 10.1103/PhysRevB.57.1390 – ident: e_1_2_9_91_1 doi: 10.1038/s41467-022-33497-1 – ident: e_1_2_9_178_1 doi: 10.1021/acs.nanolett.1c00400 – ident: e_1_2_9_121_1 doi: 10.1016/j.mtphys.2021.100388 – ident: e_1_2_9_75_1 doi: 10.1021/ar7002804 – ident: e_1_2_9_123_1 doi: 10.1016/j.solmat.2016.07.018 – ident: e_1_2_9_202_1 doi: 10.1039/D1CS00684C – ident: e_1_2_9_24_1 doi: 10.1038/s41578-019-0170-8 – ident: e_1_2_9_127_1 doi: 10.1016/j.solmat.2014.12.005 – ident: e_1_2_9_187_1 doi: 10.1021/acsami.2c15215 – ident: e_1_2_9_174_1 doi: 10.1016/j.jwpe.2023.103814 – ident: e_1_2_9_222_1 doi: 10.1039/C7CS00522A – ident: e_1_2_9_155_1 doi: 10.1039/D0TA09988K – ident: e_1_2_9_242_1 doi: 10.1016/j.pmatsci.2022.101018 – ident: e_1_2_9_166_1 doi: 10.1038/nenergy.2016.126 – ident: e_1_2_9_135_1 doi: 10.1002/solr.202000790 – ident: e_1_2_9_66_1 doi: 10.1016/j.actamat.2013.01.042 – ident: e_1_2_9_177_1 doi: 10.1126/science.aau1217 – ident: e_1_2_9_181_1 doi: 10.1021/acsnano.1c00903 – ident: e_1_2_9_23_1 doi: 10.1038/s41578-019-0121-4 – ident: e_1_2_9_130_1 doi: 10.1016/j.solmat.2007.11.004 – ident: e_1_2_9_206_1 doi: 10.1016/j.apcatb.2022.122204 – ident: e_1_2_9_9_1 doi: 10.1039/C8CS00618K – ident: e_1_2_9_68_1 doi: 10.1016/j.pmatsci.2013.10.001 – ident: e_1_2_9_83_1 doi: 10.1111/jace.13161 – ident: e_1_2_9_60_1 doi: 10.1016/j.jeurceramsoc.2017.12.058 – ident: e_1_2_9_134_1 doi: 10.1016/j.jmat.2020.11.010 – ident: e_1_2_9_50_1 doi: 10.1016/j.actamat.2020.10.043 – ident: e_1_2_9_159_1 doi: 10.1016/j.corsci.2021.109809 – ident: e_1_2_9_136_1 doi: 10.1039/D2TC01298G – ident: e_1_2_9_152_1 doi: 10.1088/0022-3727/44/20/205405 – ident: e_1_2_9_176_1 doi: 10.1002/admt.202201137 – ident: e_1_2_9_52_1 doi: 10.1021/jacs.2c11608 – ident: e_1_2_9_225_1 doi: 10.1016/j.intermet.2023.107834 – ident: e_1_2_9_65_1 doi: 10.1080/21663831.2016.1220433 – ident: e_1_2_9_38_1 doi: 10.1007/s40145-019-0319-3 – ident: e_1_2_9_162_1 doi: 10.1021/acsnano.1c01590 – ident: e_1_2_9_15_1 doi: 10.1016/j.solmat.2020.110444 – ident: e_1_2_9_30_1 doi: 10.1002/adma.201707512 – ident: e_1_2_9_210_1 doi: 10.1016/j.mser.2021.100644 – ident: e_1_2_9_69_1 doi: 10.1002/adfm.202207536 – ident: e_1_2_9_4_1 doi: 10.1039/D3CS00500C |
SSID | ssj0009606 |
Score | 2.6333451 |
SecondaryResourceType | review_article |
Snippet | High‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad... High-entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2400920 |
SubjectTerms | bandgap Biomedical materials Entropy high‐entropy materials Optical properties photothermal applications Photothermal conversion Physical properties stability Structural design Thermal management |
Title | High‐Entropy Photothermal Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202400920 https://www.ncbi.nlm.nih.gov/pubmed/38437805 https://www.proquest.com/docview/3067227127 https://www.proquest.com/docview/2937702563 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB3Ekx78_ohWqaB4SpvuJrvJsWhLESoiFnoLu5sEQU2LTQ968if4G_0lziRt2ioiKLkkZJfsZnYy721m3wKcKgxBJpCe7WplkKBwZWvRSGzJlBtp7QpjaL6jey06Pfeq7_XnVvEX-hDlhBt5Rv69JgdXelSfiYaqKNcNohzIgBFpp4QtQkW3M_0ogue52B737EC4_lS10WH1xeqLUekb1FxErnnoaa-Dmja6yDh5qI0zXTOvX_Qc_9OrDVib4NJqsxhIm7AUp1uwOqdWuA1nlBPy8fbeouT24Uv15n6Q5eu3nrBiV2XFWN6BXrt1d9GxJ7ss2Iaje9u-bkQOHpHwufEjDykOObobC260cozEdiDp4U7iKx9N7ivpSOUEUgUiiRDu7MJyOkjjfaga5DMR04LJJHGFpxFtCIYhMIkVMs_YscCevuXQTCTIaSeMx7AQT2YhdT8su2_BeVl-WIhv_FiyMjVaOHHCUUhsiDHZYNKCk_I2ug_9E1FpPBiPQkQ7UhLu4xbsFcYuH8V9l9OWDxaw3GS_tCFsXnab5dXBXyodwgqdF6loFVjOnsfxEYKeTB_nA_sT75j1jA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOAAH9iVQoEggTqGpndrJsWJRWYoQAombZTuJkIAWQXqAE5_AN_IlzCRNSkEICZRTEluxM574PWf8BmBL4xRkQ9lwfaMtEhSuXSPqiSuZ9iNjfGEtrXe0z0Tryj--bhTRhLQXJteHKBfcyDOy7zU5OC1I1waqoTrKhIMoCDJkyNrHKK13xqouBgpSBNAzuT3ecEPhB4Vuo8dqw_WH56VvYHMYu2aTz-E0mKLZeczJ7W4vNbv25Yui47_6NQNTfWhabeZjaRZG4s4cTH4SLJyHbQoLeX99O6D49ofn6vlNN822cN1jxbZO8-G8AFeHB5d7LbefaMG1HD3cDUw98vCIRMBtEDWQ5ZCv-7Hg1mjPSmwH8h7uJYEO0OqBlp7UXih1KJIIEc8ijHa6nXgZqhYpTcSMYDJJ0B4GAYdgOAsmsUbyGXsOuMVrVravQk7JMO5Urp_MFHVfld13YKcs_5Drb_xYslJYTfX98EkRIWJM1pl0YLO8jR5Ev0V0J-72nhQCHikJ-nEHlnJrl4_igc8p64MDLLPZL21Qzf12szxb-UulDRhvXbZP1enR2ckqTND1PDKtAqPpYy9eQwyUmvVslH8AW7v5pw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EQfTg-1GfKyie6naTNEmPi-via0VEwVtI0hZB3V20e9CTP8Hf6C9x0u5WVxFB6altQiedmc436eQLwLbGEGQjEfrMaIsJCtW-4bXUF0Sz2BjGrXXzHa0zfnjFjq_D60-r-At-iHLCzXlG_r12Dt6N0-oHaaiOc94gVwMZEUzaxxgPpLPrxsUHgZTD5znbHg39iDM5oG0MSHW4_3BY-oY1h6FrHnua06AHUhclJ7d7vczs2ecvhI7_GdYMTPWBaaVeWNIsjCTtOZj8RFc4DzuuKOTt5fXAVbd3nyrnN50sX8B1jx1bOiuMeQGumgeX-4d-f5sF31L0b1-aWhzgEXNJrYxDzHGcp7OEU2t0YAXKgVkPDVKpJepcahEIHURCRzyNEe8swmi7006WoWIxoYmJ4USkKeOhQbjBCcbANNGYeiaBB_7gLSvb5yB3W2HcqYI9mSg3fFUO34Pdsn23YN_4seXaQGmq74WPyqVDhIgaER5slbfRf9xPEd1OOr1HhXBHCAf8qAdLhbLLR1HJqNvzwQOSq-wXGVS90aqXZyt_6bQJ4-eNpjo9OjtZhQl3uShLW4PR7KGXrCMAysxGbuPvgFL4Xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Entropy+Photothermal+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Cheng%E2%80%90Yu&rft.au=Li%2C+Yang&rft.au=Zhou%2C+Zhuo%E2%80%90Hao&rft.au=Liu%2C+Bao%E2%80%90Hua&rft.date=2024-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202400920&rft.externalDBID=10.1002%252Fadma.202400920&rft.externalDocID=ADMA202400920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |