Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione

The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large‐scale synthesis of biomimetic m...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 15; pp. e202115820 - n/a
Main Authors Wu, Wen‐Tao, Chen, Xi, Jiao, Yu‐Ting, Fan, Wen‐Ting, Liu, Yan‐Ling, Huang, Wei‐Hua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.04.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large‐scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs‐poly(3,4‐ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real‐time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time. Versatile and large‐scale synthesis of biomimetic molecular catalyst modified nanowires provides an innovative perspective for simple and stable construction of functionalized electrochemical nanosensors. Such nanosensors enable the sensitive and selective detection of diverse biomolecules, and for the first time achieve real‐time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells.
AbstractList The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.
The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.
The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large‐scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs‐poly(3,4‐ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real‐time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time. Versatile and large‐scale synthesis of biomimetic molecular catalyst modified nanowires provides an innovative perspective for simple and stable construction of functionalized electrochemical nanosensors. Such nanosensors enable the sensitive and selective detection of diverse biomolecules, and for the first time achieve real‐time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells.
Author Chen, Xi
Jiao, Yu‐Ting
Huang, Wei‐Hua
Liu, Yan‐Ling
Fan, Wen‐Ting
Wu, Wen‐Tao
Author_xml – sequence: 1
  givenname: Wen‐Tao
  surname: Wu
  fullname: Wu, Wen‐Tao
  organization: Wuhan University
– sequence: 2
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: Wuhan University
– sequence: 3
  givenname: Yu‐Ting
  surname: Jiao
  fullname: Jiao, Yu‐Ting
  organization: Wuhan University
– sequence: 4
  givenname: Wen‐Ting
  surname: Fan
  fullname: Fan, Wen‐Ting
  organization: Wuhan University
– sequence: 5
  givenname: Yan‐Ling
  surname: Liu
  fullname: Liu, Yan‐Ling
  organization: Wuhan University
– sequence: 6
  givenname: Wei‐Hua
  orcidid: 0000-0001-8951-075X
  surname: Huang
  fullname: Huang, Wei‐Hua
  email: whhuang@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35134265$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPHDEURq2IKDxCS4lGSpNmNn6MPZ6SrBZYiZAmobW8nmsw8thgexTx7_FqgUhIUSq7OOfq3u87RHshBkDohOAFwZh-08HBgmJKCJcUf0AHhFPSsr5ne_XfMdb2kpN9dJjzfeWlxOIT2mecsI4KfoD8DaSsi_PQLGPIJc2muBiaaJvvLk5uguJMc61DzBByTLmxMTUrD6akaO5gckb75kcMrsTkwu1WXIeStAHvZ69Tc-HnostdHQqf0UerfYbjl_cI_T5f_Vpetlc_L9bLs6vWsJ7htjejNkNv-ShGKbnuB8rtSGAQG0Eox1KyAcaNtbzD2Bq2EQOzxFIYLJYjl-wIfd3NfUjxcYZc1OTydiEdIM5ZUUH7GgDjQ0W_vEPv45xC3a5SHZOCdlxU6vSFmjcTjOohuUmnJ_WaYwW6HWBSzDmBVcbVq-vRNQrnFcFqW5fa1qXe6qra4p32OvmfwrAT_tTGnv5Dq7Pr9eqv-wzqKqkC
CitedBy_id crossref_primary_10_1002_ange_202313612
crossref_primary_10_1016_j_bios_2024_116688
crossref_primary_10_1021_jacs_3c07814
crossref_primary_10_1002_ange_202300083
crossref_primary_10_1080_00032719_2024_2354390
crossref_primary_10_1016_j_saa_2024_125280
crossref_primary_10_1021_acs_analchem_2c05679
crossref_primary_10_1021_acs_analchem_3c02340
crossref_primary_10_1039_D4AN00511B
crossref_primary_10_1002_adma_202305917
crossref_primary_10_1021_acs_analchem_4c05482
crossref_primary_10_1039_D3QM00167A
crossref_primary_10_1021_acs_analchem_3c04415
crossref_primary_10_1016_j_foodchem_2025_143337
crossref_primary_10_1021_acs_chemmater_2c02707
crossref_primary_10_1021_acssensors_3c00082
crossref_primary_10_1016_j_cej_2023_146491
crossref_primary_10_1039_D3CC06231G
crossref_primary_10_1002_anie_202300083
crossref_primary_10_1016_j_snb_2024_135597
crossref_primary_10_3390_life12081142
crossref_primary_10_1039_D2CC06557F
crossref_primary_10_1021_acs_analchem_2c01722
crossref_primary_10_1360_TB_2023_0214
crossref_primary_10_1002_anie_202313612
crossref_primary_10_1002_ange_202410815
crossref_primary_10_1002_anie_202410815
crossref_primary_10_1002_smll_202406796
crossref_primary_10_1021_acs_analchem_4c05627
crossref_primary_10_1021_acs_analchem_4c01542
crossref_primary_10_31393_reports_vnmedical_2023_27_4__25
crossref_primary_10_1021_acs_nanolett_3c04520
crossref_primary_10_1039_D3CC04657E
Cites_doi 10.1002/ange.202106251
10.1016/S0956-5663(97)85338-9
10.1016/j.cell.2010.04.033
10.1021/acs.analchem.0c04361
10.1016/j.trac.2016.01.018
10.1002/anie.202100882
10.1038/ncomms16087
10.1002/ange.201404744
10.1080/10408347.2020.1806702
10.1039/C9CC01280J
10.1021/cr068062g
10.1002/celc.201600390
10.1016/j.electacta.2009.08.048
10.1007/s11426-020-9719-9
10.3390/solids2020014
10.1038/nature09232
10.1039/C7SC00433H
10.1039/C9SC05538J
10.1002/anie.202106251
10.1016/S0022-0728(03)00309-7
10.1021/jacs.7b12106
10.1002/ange.202100882
10.1073/pnas.1201552109
10.1016/j.coelec.2020.05.008
10.1039/C9NR01997A
10.1007/s11426-020-9715-x
10.1016/j.electacta.2017.12.111
10.1021/acs.analchem.9b04139
10.1021/jacs.1c02532
10.1007/s00216-020-02899-9
10.1002/ange.201504839
10.1002/ange.201702114
10.1021/ac403816h
10.1002/elan.201200306
10.1002/aoc.5540
10.1016/j.isci.2020.101852
10.1039/D0SC02889D
10.1002/ange.201707187
10.1039/D0TA10451E
10.1021/acs.analchem.0c00931
10.1038/nchem.2648
10.1007/s00216-006-1053-6
10.1038/nprot.2015.109
10.1002/anie.201504839
10.1021/cs200171u
10.1039/c4tb00313f
10.1021/cr4000072
10.1002/anie.201702114
10.1002/anie.201404744
10.1002/anie.201707187
10.1016/j.trac.2020.115886
10.3390/nano10091673
10.1039/C1CS15265C
10.1021/jacs.9b13796
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202115820
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35134265
10_1002_anie_202115820
ANIE202115820
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Major Research Plan
  funderid: 22090050, 22090051
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 21721005
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  funderid: 21725504
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3730-7cdac97f5d6d885a7925fd1e96b612508839edbff5400fc3b693f1f2e9f08d583
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:35:14 EDT 2025
Fri Jul 25 11:55:22 EDT 2025
Thu Apr 03 07:08:17 EDT 2025
Tue Jul 01 01:18:16 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Wed Jan 22 16:32:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Biomimetic Molecular Catalysts
Single Cell
Nanoelectrode Functionalization
Nanosensor
Glutathione
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-7cdac97f5d6d885a7925fd1e96b612508839edbff5400fc3b693f1f2e9f08d583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8951-075X
PMID 35134265
PQID 2643862456
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2627134359
proquest_journals_2643862456
pubmed_primary_35134265
crossref_citationtrail_10_1002_anie_202115820
crossref_primary_10_1002_anie_202115820
wiley_primary_10_1002_anie_202115820_ANIE202115820
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 4, 2022
PublicationDateYYYYMMDD 2022-04-04
PublicationDate_xml – month: 04
  year: 2022
  text: April 4, 2022
  day: 04
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2021; 9
2007; 387
2017; 8
2013; 25
2018; 140
2018; 261
2011; 1
2021; 2
2020; 63
2020; 142
2019; 11
2019; 55
2010; 465
2015; 10
2020; 127
2008; 108
2010; 141
2020; 34
2020; 11
2017 2017; 56 129
2021; 143
2020; 10
2021; 93
2003; 553
2017; 9
2016; 79
2012; 109
2014; 86
2009; 55
2016; 3
2014; 2
2020
2020; 92
2021; 413
1997; 12
2021 2021; 60 133
2015 2015; 54 127
2013; 113
2020; 23
2020; 22
2012; 41
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_17_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_1
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_49_3
e_1_2_7_50_2
e_1_2_7_50_1
e_1_2_7_52_2
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_31_3
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_40_1
e_1_2_7_14_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_3
e_1_2_7_34_1
e_1_2_7_20_2
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_2
References_xml – volume: 127
  year: 2020
  publication-title: TrAC Trends Anal. Chem.
– volume: 55
  start-page: 3461
  year: 2019
  end-page: 3464
  publication-title: Chem. Commun.
– volume: 113
  start-page: 8152
  year: 2013
  end-page: 8191
  publication-title: Chem. Rev.
– volume: 63
  start-page: 1004
  year: 2020
  end-page: 1011
  publication-title: Sci. China Chem.
– volume: 8
  start-page: 16087
  year: 2017
  publication-title: Nat. Commun.
– volume: 54 127
  start-page: 11978 12146
  year: 2015 2015
  end-page: 11982 12150
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 8547
  year: 2021
  end-page: 8551
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 5812 5906
  year: 2017 2017
  end-page: 5816 5910
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 465
  start-page: 736
  year: 2010
  end-page: 745
  publication-title: Nature
– volume: 8
  start-page: 3338
  year: 2017
  end-page: 3348
  publication-title: Chem. Sci.
– volume: 9
  start-page: 4150
  year: 2021
  end-page: 4158
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1742
  year: 2015
  end-page: 1754
  publication-title: Nat. Protoc.
– volume: 11
  start-page: 8495
  year: 2020
  end-page: 8501
  publication-title: Chem. Sci.
– volume: 41
  start-page: 2061
  year: 2012
  end-page: 2071
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 279
  year: 2017
  end-page: 286
  publication-title: Nat. Chem.
– volume: 413
  start-page: 17
  year: 2021
  end-page: 24
  publication-title: Anal. Bioanal. Chem.
– volume: 1
  start-page: 1090
  year: 2011
  end-page: 1118
  publication-title: ACS Catal.
– volume: 553
  start-page: 147
  year: 2003
  end-page: 156
  publication-title: J. Electroanal. Chem.
– year: 2020
  publication-title: Crit. Rev. Anal. Chem.
– volume: 92
  start-page: 2543
  year: 2020
  end-page: 2549
  publication-title: Anal. Chem.
– volume: 53 126
  start-page: 12456 12664
  year: 2014 2014
  end-page: 12460 12668
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 109
  start-page: 11534
  year: 2012
  end-page: 11539
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 86
  start-page: 2849
  year: 2014
  end-page: 2852
  publication-title: Anal. Chem.
– volume: 2
  start-page: 212
  year: 2021
  end-page: 231
  publication-title: Solids
– volume: 79
  start-page: 46
  year: 2016
  end-page: 59
  publication-title: TrAC Trends Anal. Chem.
– volume: 142
  start-page: 5778
  year: 2020
  end-page: 5784
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2125
  year: 2016
  end-page: 2129
  publication-title: ChemElectroChem
– volume: 261
  start-page: 206
  year: 2018
  end-page: 213
  publication-title: Electrochim. Acta
– volume: 92
  start-page: 5621
  year: 2020
  end-page: 5644
  publication-title: Anal. Chem.
– volume: 34
  year: 2020
  publication-title: Appl. Organomet. Chem.
– volume: 60 133
  start-page: 19337 19486
  year: 2021 2021
  end-page: 19343 19492
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55
  start-page: 265
  year: 2009
  end-page: 270
  publication-title: Electrochim. Acta
– volume: 60 133
  start-page: 15803 15937
  year: 2021 2021
  end-page: 15808 15942
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 5385
  year: 2018
  end-page: 5392
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 12997 13177
  year: 2017 2017
  end-page: 13000 13180
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 4324
  year: 2014
  end-page: 4330
  publication-title: J. Mater. Chem. B
– volume: 93
  start-page: 41
  year: 2021
  end-page: 71
  publication-title: Anal. Chem.
– volume: 387
  start-page: 1891
  year: 2007
  end-page: 1897
  publication-title: Anal. Bioanal. Chem.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 10
  start-page: 1673
  year: 2020
  publication-title: Nanomaterials
– volume: 25
  start-page: 587
  year: 2013
  end-page: 600
  publication-title: Electroanalysis
– volume: 11
  start-page: 778
  year: 2020
  end-page: 785
  publication-title: Chem. Sci.
– volume: 11
  start-page: 10702
  year: 2019
  end-page: 10708
  publication-title: Nanoscale
– volume: 141
  start-page: 559
  year: 2010
  end-page: 563
  publication-title: Cell
– volume: 108
  start-page: 2585
  year: 2008
  end-page: 2621
  publication-title: Chem. Rev.
– volume: 63
  start-page: 564
  year: 2020
  end-page: 588
  publication-title: Sci. China Chem.
– volume: 22
  start-page: 94
  year: 2020
  end-page: 101
  publication-title: Curr. Opin. Electrochem.
– volume: 12
  start-page: 205
  year: 1997
  end-page: 212
  publication-title: Biosens. Bioelectron.
– ident: e_1_2_7_50_2
  doi: 10.1002/ange.202106251
– ident: e_1_2_7_57_2
  doi: 10.1016/S0956-5663(97)85338-9
– ident: e_1_2_7_8_2
  doi: 10.1016/j.cell.2010.04.033
– ident: e_1_2_7_4_2
  doi: 10.1021/acs.analchem.0c04361
– ident: e_1_2_7_13_2
  doi: 10.1016/j.trac.2016.01.018
– ident: e_1_2_7_31_2
  doi: 10.1002/anie.202100882
– ident: e_1_2_7_51_1
– ident: e_1_2_7_48_2
  doi: 10.1038/ncomms16087
– ident: e_1_2_7_16_3
  doi: 10.1002/ange.201404744
– ident: e_1_2_7_56_1
– ident: e_1_2_7_43_2
  doi: 10.1080/10408347.2020.1806702
– ident: e_1_2_7_25_1
– ident: e_1_2_7_34_1
  doi: 10.1039/C9CC01280J
– ident: e_1_2_7_9_2
  doi: 10.1021/cr068062g
– ident: e_1_2_7_26_2
  doi: 10.1002/celc.201600390
– ident: e_1_2_7_27_2
  doi: 10.1016/j.electacta.2009.08.048
– ident: e_1_2_7_5_2
  doi: 10.1007/s11426-020-9719-9
– ident: e_1_2_7_42_2
  doi: 10.3390/solids2020014
– ident: e_1_2_7_7_2
  doi: 10.1038/nature09232
– ident: e_1_2_7_10_1
– ident: e_1_2_7_11_2
  doi: 10.1039/C7SC00433H
– ident: e_1_2_7_17_2
  doi: 10.1039/C9SC05538J
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.202106251
– ident: e_1_2_7_59_1
  doi: 10.1016/S0022-0728(03)00309-7
– ident: e_1_2_7_21_2
  doi: 10.1021/jacs.7b12106
– ident: e_1_2_7_31_3
  doi: 10.1002/ange.202100882
– ident: e_1_2_7_19_2
  doi: 10.1073/pnas.1201552109
– ident: e_1_2_7_14_2
  doi: 10.1016/j.coelec.2020.05.008
– ident: e_1_2_7_35_1
– ident: e_1_2_7_30_2
  doi: 10.1039/C9NR01997A
– ident: e_1_2_7_54_1
  doi: 10.1007/s11426-020-9715-x
– ident: e_1_2_7_55_1
  doi: 10.1016/j.electacta.2017.12.111
– ident: e_1_2_7_32_2
  doi: 10.1021/acs.analchem.9b04139
– ident: e_1_2_7_28_2
  doi: 10.1021/jacs.1c02532
– ident: e_1_2_7_24_1
  doi: 10.1007/s00216-020-02899-9
– ident: e_1_2_7_20_3
  doi: 10.1002/ange.201504839
– ident: e_1_2_7_49_3
  doi: 10.1002/ange.201702114
– ident: e_1_2_7_33_2
  doi: 10.1021/ac403816h
– ident: e_1_2_7_58_2
  doi: 10.1002/elan.201200306
– ident: e_1_2_7_29_1
– ident: e_1_2_7_38_2
  doi: 10.1002/aoc.5540
– ident: e_1_2_7_39_2
  doi: 10.1016/j.isci.2020.101852
– ident: e_1_2_7_45_1
– ident: e_1_2_7_60_1
  doi: 10.1039/D0SC02889D
– ident: e_1_2_7_40_1
– ident: e_1_2_7_22_3
  doi: 10.1002/ange.201707187
– ident: e_1_2_7_53_2
  doi: 10.1039/D0TA10451E
– ident: e_1_2_7_12_2
  doi: 10.1021/acs.analchem.0c00931
– ident: e_1_2_7_46_2
  doi: 10.1038/nchem.2648
– ident: e_1_2_7_41_2
  doi: 10.1007/s00216-006-1053-6
– ident: e_1_2_7_1_1
– ident: e_1_2_7_47_2
  doi: 10.1038/nprot.2015.109
– ident: e_1_2_7_20_2
  doi: 10.1002/anie.201504839
– ident: e_1_2_7_36_2
  doi: 10.1021/cs200171u
– ident: e_1_2_7_44_2
  doi: 10.1039/c4tb00313f
– ident: e_1_2_7_37_2
  doi: 10.1021/cr4000072
– ident: e_1_2_7_49_2
  doi: 10.1002/anie.201702114
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.201404744
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.201707187
– ident: e_1_2_7_3_2
  doi: 10.1016/j.trac.2020.115886
– ident: e_1_2_7_18_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_52_2
  doi: 10.3390/nano10091673
– ident: e_1_2_7_2_2
  doi: 10.1039/C1CS15265C
– ident: e_1_2_7_15_1
– ident: e_1_2_7_23_2
  doi: 10.1021/jacs.9b13796
SSID ssj0028806
Score 2.5750499
Snippet The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202115820
SubjectTerms Assembly
Biomimetic Molecular Catalysts
Biomimetics
Biomolecules
Biosensing Techniques
Catalysts
Catalytic activity
Chemical synthesis
Cobalt
Conducting polymers
Design modifications
Electric Conductivity
Electrochemistry
Electron transfer
Glutathione
Glutathione - chemistry
Homeostasis
Intracellular
Monitoring
Nanoelectrode Functionalization
Nanosensor
Nanosensors
Nanotechnology
Nanowires
Nanowires - chemistry
Polymers
Polymers - chemistry
Single Cell
Title Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202115820
https://www.ncbi.nlm.nih.gov/pubmed/35134265
https://www.proquest.com/docview/2643862456
https://www.proquest.com/docview/2627134359
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXNoL0PIKbCsjIXEKBDt24iNFS5dK5YBA4hbFLwmxbBALF349M3GSdqlQJXqMbOdhz4w_T2a-Adhz3hYFRTUqIYo0d7JMjTUhNVqoUgVZ561r4Ne5mlzlP6_l9R9Z_JEfYnC4kWa09poUvDbzw9-koZSBjec7PMBI3MXQCFPAFqGii4E_iqNwxvQiIVKqQt-zNmb8cHH44q70F9RcRK7t1nO6AnX_0jHi5Pbg6dEc2OdXfI7_81WrsNzhUnYcBekzfPCzL_DxpC8HtwZT8qzhMk49oyKfPe0sawL7ftPc3dxRNiRDY93M8WTcPMwZwmE2jlV2bEdLwKIJIV8iDTwjzzL9OqBYWPYDlYBiIZuZX4er0_HlySTtSjWkVqCNSAvraquLIJ1yZSnrQnMZ3JHXyhCEQlMmtHcmBASIWbDCKC3CUeBeh6xEAREbsDTD228Bc8Fl0iNw8VmOm2Vhckus9IV2Zc4zLRJI-6WqbMdjTuU0plVkYOYVzWE1zGEC-0P_-8jg8WbPUb_yVafJ8woBo6AkGqkS2B2ace5pduqZb56oD6eUXCF1AptRYoZHCYktXMkEeLvu_3iH6vj8bDxcbb9n0A584pSj0UYYjWAJBcJ_ReT0aL612vECWxYP1w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASOBOKVN7diJDz2UdssubfeAWqm3sH5JFdsNYlsh-Ff9K_1FnYmToAUhJKQeOEaxk9ie8XyezHwD8Np5WxQU1aiEKNLcyTI11oTUaKFKFeQkb1wDB2M1PMo_HMvjJbjocmEiP0TvcCPNaPZrUnBySK__ZA2lFGw84OEJRqIZa-Mq9_z3b3hqm2-OdnCJ33C-OzjcHqZtYYHUCpTotLBuYnURpFOuLOWk0FwGt-G1MmTwUfGE9s6EgHAmC1YYpUXYCNzrkJU4HIHPvQE3qYw40fXvfOwZqziqQ0xoEiKluvcdT2TG1xe_d9EO_gZuF7FyY-x278BlN00xxuXz2vmZWbM_fmGQ_K_m8S7cbqE324q6cg-W_Ow-rGx3Fe8ewJSchyipU8-ojmnHrMvqwN6d1Kcnp5TwydAe1XM8_Ndf5wwRPxvEQkK2ZV5gcZckdyl1HJHznP6OULgve496TuGe9cw_hKNrGewjWJ7h458Ac8Fl0iM281mOeKAwuSXi_UK7MueZFgmknWxUtqVqp4oh0yqSTPOK1qzq1yyBt337L5Gk5I8tVztRq9rNal4hJhaUJyRVAq_62zj3NDuTma_PqQ2nrGMhdQKPo4j2rxIS73AlE-CNoP3lG6qt8WjQXz39l04vYWV4eLBf7Y_Ge8_gFqeUlCagahWWUTj8cwSKZ-ZFo5oMPl23DF8BHYZuGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_qGBAkYCcUqb2rETHziU7i5dCiuEqNRbuv6TKrabqtsKwVPxKrwRM3EStCCEhNQDxyh2Etszns-TmW8Anjlvi4KiGpUQRZo7WabGmpAaLVSpgpzmjWvg3UTt7udvDuTBCnzrcmEiP0TvcCPNaPZrUvATFzZ_koZSBjae7_AAI9GKtWGVe_7LZzy0LV6OB7jCzzkfDT_u7KZtXYHUChTotLBuanURpFOuLOW00FwGt-W1MmTvUe-E9s6EgGgmC1YYpUXYCtzrkJU4GoHPvQSXc5VpKhYx-NATVnHUhpjPJERKZe87msiMby5_77IZ_A3bLkPlxtaNbsD3bpZiiMunjfMzs2G__kIg-T9N40243gJvth015Ras-PltuLrT1bu7AzNyHaKczjyjKqYdry6rA3t1VB8fHVO6J0NrVC_w6F-fLhjifTaMZYRsy7vA4h5JzlLqOCbXOf0boWBf9hq1nII967m_C_sXMth7sDrHx68Bc8Fl0iMy81mOaKAwuSXa_UK7MueZFgmknWhUtiVqp3ohsypSTPOK1qzq1yyBF337k0hR8seW652kVe1WtagQEQvKEpIqgaf9bZx7mp3p3Nfn1IZTzrGQOoH7UUL7VwmJd7iSCfBGzv7yDdX2ZDzsrx78S6cncOX9YFS9HU_2HsI1TvkoTTTVOqyibPhHiBLPzONGMRkcXrQI_wBIFWzI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Versatile+Construction+of+Biomimetic+Nanosensors+for+Electrochemical+Monitoring+of+Intracellular+Glutathione&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Wen-Tao&rft.au=Chen%2C+Xi&rft.au=Jiao%2C+Yu-Ting&rft.au=Fan%2C+Wen-Ting&rft.date=2022-04-04&rft.eissn=1521-3773&rft.volume=61&rft.issue=15&rft.spage=e202115820&rft_id=info:doi/10.1002%2Fanie.202115820&rft_id=info%3Apmid%2F35134265&rft.externalDocID=35134265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon