Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione
The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large‐scale synthesis of biomimetic m...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 15; pp. e202115820 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.04.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large‐scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs‐poly(3,4‐ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real‐time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.
Versatile and large‐scale synthesis of biomimetic molecular catalyst modified nanowires provides an innovative perspective for simple and stable construction of functionalized electrochemical nanosensors. Such nanosensors enable the sensitive and selective detection of diverse biomolecules, and for the first time achieve real‐time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells. |
---|---|
AbstractList | The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time. The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time. The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large‐scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs‐poly(3,4‐ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real‐time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time. Versatile and large‐scale synthesis of biomimetic molecular catalyst modified nanowires provides an innovative perspective for simple and stable construction of functionalized electrochemical nanosensors. Such nanosensors enable the sensitive and selective detection of diverse biomolecules, and for the first time achieve real‐time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells. |
Author | Chen, Xi Jiao, Yu‐Ting Huang, Wei‐Hua Liu, Yan‐Ling Fan, Wen‐Ting Wu, Wen‐Tao |
Author_xml | – sequence: 1 givenname: Wen‐Tao surname: Wu fullname: Wu, Wen‐Tao organization: Wuhan University – sequence: 2 givenname: Xi surname: Chen fullname: Chen, Xi organization: Wuhan University – sequence: 3 givenname: Yu‐Ting surname: Jiao fullname: Jiao, Yu‐Ting organization: Wuhan University – sequence: 4 givenname: Wen‐Ting surname: Fan fullname: Fan, Wen‐Ting organization: Wuhan University – sequence: 5 givenname: Yan‐Ling surname: Liu fullname: Liu, Yan‐Ling organization: Wuhan University – sequence: 6 givenname: Wei‐Hua orcidid: 0000-0001-8951-075X surname: Huang fullname: Huang, Wei‐Hua email: whhuang@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35134265$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPHDEURq2IKDxCS4lGSpNmNn6MPZ6SrBZYiZAmobW8nmsw8thgexTx7_FqgUhIUSq7OOfq3u87RHshBkDohOAFwZh-08HBgmJKCJcUf0AHhFPSsr5ne_XfMdb2kpN9dJjzfeWlxOIT2mecsI4KfoD8DaSsi_PQLGPIJc2muBiaaJvvLk5uguJMc61DzBByTLmxMTUrD6akaO5gckb75kcMrsTkwu1WXIeStAHvZ69Tc-HnostdHQqf0UerfYbjl_cI_T5f_Vpetlc_L9bLs6vWsJ7htjejNkNv-ShGKbnuB8rtSGAQG0Eox1KyAcaNtbzD2Bq2EQOzxFIYLJYjl-wIfd3NfUjxcYZc1OTydiEdIM5ZUUH7GgDjQ0W_vEPv45xC3a5SHZOCdlxU6vSFmjcTjOohuUmnJ_WaYwW6HWBSzDmBVcbVq-vRNQrnFcFqW5fa1qXe6qra4p32OvmfwrAT_tTGnv5Dq7Pr9eqv-wzqKqkC |
CitedBy_id | crossref_primary_10_1002_ange_202313612 crossref_primary_10_1016_j_bios_2024_116688 crossref_primary_10_1021_jacs_3c07814 crossref_primary_10_1002_ange_202300083 crossref_primary_10_1080_00032719_2024_2354390 crossref_primary_10_1016_j_saa_2024_125280 crossref_primary_10_1021_acs_analchem_2c05679 crossref_primary_10_1021_acs_analchem_3c02340 crossref_primary_10_1039_D4AN00511B crossref_primary_10_1002_adma_202305917 crossref_primary_10_1021_acs_analchem_4c05482 crossref_primary_10_1039_D3QM00167A crossref_primary_10_1021_acs_analchem_3c04415 crossref_primary_10_1016_j_foodchem_2025_143337 crossref_primary_10_1021_acs_chemmater_2c02707 crossref_primary_10_1021_acssensors_3c00082 crossref_primary_10_1016_j_cej_2023_146491 crossref_primary_10_1039_D3CC06231G crossref_primary_10_1002_anie_202300083 crossref_primary_10_1016_j_snb_2024_135597 crossref_primary_10_3390_life12081142 crossref_primary_10_1039_D2CC06557F crossref_primary_10_1021_acs_analchem_2c01722 crossref_primary_10_1360_TB_2023_0214 crossref_primary_10_1002_anie_202313612 crossref_primary_10_1002_ange_202410815 crossref_primary_10_1002_anie_202410815 crossref_primary_10_1002_smll_202406796 crossref_primary_10_1021_acs_analchem_4c05627 crossref_primary_10_1021_acs_analchem_4c01542 crossref_primary_10_31393_reports_vnmedical_2023_27_4__25 crossref_primary_10_1021_acs_nanolett_3c04520 crossref_primary_10_1039_D3CC04657E |
Cites_doi | 10.1002/ange.202106251 10.1016/S0956-5663(97)85338-9 10.1016/j.cell.2010.04.033 10.1021/acs.analchem.0c04361 10.1016/j.trac.2016.01.018 10.1002/anie.202100882 10.1038/ncomms16087 10.1002/ange.201404744 10.1080/10408347.2020.1806702 10.1039/C9CC01280J 10.1021/cr068062g 10.1002/celc.201600390 10.1016/j.electacta.2009.08.048 10.1007/s11426-020-9719-9 10.3390/solids2020014 10.1038/nature09232 10.1039/C7SC00433H 10.1039/C9SC05538J 10.1002/anie.202106251 10.1016/S0022-0728(03)00309-7 10.1021/jacs.7b12106 10.1002/ange.202100882 10.1073/pnas.1201552109 10.1016/j.coelec.2020.05.008 10.1039/C9NR01997A 10.1007/s11426-020-9715-x 10.1016/j.electacta.2017.12.111 10.1021/acs.analchem.9b04139 10.1021/jacs.1c02532 10.1007/s00216-020-02899-9 10.1002/ange.201504839 10.1002/ange.201702114 10.1021/ac403816h 10.1002/elan.201200306 10.1002/aoc.5540 10.1016/j.isci.2020.101852 10.1039/D0SC02889D 10.1002/ange.201707187 10.1039/D0TA10451E 10.1021/acs.analchem.0c00931 10.1038/nchem.2648 10.1007/s00216-006-1053-6 10.1038/nprot.2015.109 10.1002/anie.201504839 10.1021/cs200171u 10.1039/c4tb00313f 10.1021/cr4000072 10.1002/anie.201702114 10.1002/anie.201404744 10.1002/anie.201707187 10.1016/j.trac.2020.115886 10.3390/nano10091673 10.1039/C1CS15265C 10.1021/jacs.9b13796 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202115820 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35134265 10_1002_anie_202115820 ANIE202115820 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Major Research Plan funderid: 22090050, 22090051 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China funderid: 21721005 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China funderid: 21725504 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-7cdac97f5d6d885a7925fd1e96b612508839edbff5400fc3b693f1f2e9f08d583 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:35:14 EDT 2025 Fri Jul 25 11:55:22 EDT 2025 Thu Apr 03 07:08:17 EDT 2025 Tue Jul 01 01:18:16 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Wed Jan 22 16:32:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Biomimetic Molecular Catalysts Single Cell Nanoelectrode Functionalization Nanosensor Glutathione |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-7cdac97f5d6d885a7925fd1e96b612508839edbff5400fc3b693f1f2e9f08d583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8951-075X |
PMID | 35134265 |
PQID | 2643862456 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2627134359 proquest_journals_2643862456 pubmed_primary_35134265 crossref_citationtrail_10_1002_anie_202115820 crossref_primary_10_1002_anie_202115820 wiley_primary_10_1002_anie_202115820_ANIE202115820 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 4, 2022 |
PublicationDateYYYYMMDD | 2022-04-04 |
PublicationDate_xml | – month: 04 year: 2022 text: April 4, 2022 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2021; 9 2007; 387 2017; 8 2013; 25 2018; 140 2018; 261 2011; 1 2021; 2 2020; 63 2020; 142 2019; 11 2019; 55 2010; 465 2015; 10 2020; 127 2008; 108 2010; 141 2020; 34 2020; 11 2017 2017; 56 129 2021; 143 2020; 10 2021; 93 2003; 553 2017; 9 2016; 79 2012; 109 2014; 86 2009; 55 2016; 3 2014; 2 2020 2020; 92 2021; 413 1997; 12 2021 2021; 60 133 2015 2015; 54 127 2013; 113 2020; 23 2020; 22 2012; 41 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_17_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_1 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_49_3 e_1_2_7_50_2 e_1_2_7_50_1 e_1_2_7_52_2 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_31_3 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_40_1 e_1_2_7_14_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_3 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 |
References_xml | – volume: 127 year: 2020 publication-title: TrAC Trends Anal. Chem. – volume: 55 start-page: 3461 year: 2019 end-page: 3464 publication-title: Chem. Commun. – volume: 113 start-page: 8152 year: 2013 end-page: 8191 publication-title: Chem. Rev. – volume: 63 start-page: 1004 year: 2020 end-page: 1011 publication-title: Sci. China Chem. – volume: 8 start-page: 16087 year: 2017 publication-title: Nat. Commun. – volume: 54 127 start-page: 11978 12146 year: 2015 2015 end-page: 11982 12150 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 8547 year: 2021 end-page: 8551 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 5812 5906 year: 2017 2017 end-page: 5816 5910 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 465 start-page: 736 year: 2010 end-page: 745 publication-title: Nature – volume: 8 start-page: 3338 year: 2017 end-page: 3348 publication-title: Chem. Sci. – volume: 9 start-page: 4150 year: 2021 end-page: 4158 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1742 year: 2015 end-page: 1754 publication-title: Nat. Protoc. – volume: 11 start-page: 8495 year: 2020 end-page: 8501 publication-title: Chem. Sci. – volume: 41 start-page: 2061 year: 2012 end-page: 2071 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 279 year: 2017 end-page: 286 publication-title: Nat. Chem. – volume: 413 start-page: 17 year: 2021 end-page: 24 publication-title: Anal. Bioanal. Chem. – volume: 1 start-page: 1090 year: 2011 end-page: 1118 publication-title: ACS Catal. – volume: 553 start-page: 147 year: 2003 end-page: 156 publication-title: J. Electroanal. Chem. – year: 2020 publication-title: Crit. Rev. Anal. Chem. – volume: 92 start-page: 2543 year: 2020 end-page: 2549 publication-title: Anal. Chem. – volume: 53 126 start-page: 12456 12664 year: 2014 2014 end-page: 12460 12668 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 109 start-page: 11534 year: 2012 end-page: 11539 publication-title: Proc. Natl. Acad. Sci. USA – volume: 86 start-page: 2849 year: 2014 end-page: 2852 publication-title: Anal. Chem. – volume: 2 start-page: 212 year: 2021 end-page: 231 publication-title: Solids – volume: 79 start-page: 46 year: 2016 end-page: 59 publication-title: TrAC Trends Anal. Chem. – volume: 142 start-page: 5778 year: 2020 end-page: 5784 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2125 year: 2016 end-page: 2129 publication-title: ChemElectroChem – volume: 261 start-page: 206 year: 2018 end-page: 213 publication-title: Electrochim. Acta – volume: 92 start-page: 5621 year: 2020 end-page: 5644 publication-title: Anal. Chem. – volume: 34 year: 2020 publication-title: Appl. Organomet. Chem. – volume: 60 133 start-page: 19337 19486 year: 2021 2021 end-page: 19343 19492 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 start-page: 265 year: 2009 end-page: 270 publication-title: Electrochim. Acta – volume: 60 133 start-page: 15803 15937 year: 2021 2021 end-page: 15808 15942 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 5385 year: 2018 end-page: 5392 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 12997 13177 year: 2017 2017 end-page: 13000 13180 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 4324 year: 2014 end-page: 4330 publication-title: J. Mater. Chem. B – volume: 93 start-page: 41 year: 2021 end-page: 71 publication-title: Anal. Chem. – volume: 387 start-page: 1891 year: 2007 end-page: 1897 publication-title: Anal. Bioanal. Chem. – volume: 23 year: 2020 publication-title: iScience – volume: 10 start-page: 1673 year: 2020 publication-title: Nanomaterials – volume: 25 start-page: 587 year: 2013 end-page: 600 publication-title: Electroanalysis – volume: 11 start-page: 778 year: 2020 end-page: 785 publication-title: Chem. Sci. – volume: 11 start-page: 10702 year: 2019 end-page: 10708 publication-title: Nanoscale – volume: 141 start-page: 559 year: 2010 end-page: 563 publication-title: Cell – volume: 108 start-page: 2585 year: 2008 end-page: 2621 publication-title: Chem. Rev. – volume: 63 start-page: 564 year: 2020 end-page: 588 publication-title: Sci. China Chem. – volume: 22 start-page: 94 year: 2020 end-page: 101 publication-title: Curr. Opin. Electrochem. – volume: 12 start-page: 205 year: 1997 end-page: 212 publication-title: Biosens. Bioelectron. – ident: e_1_2_7_50_2 doi: 10.1002/ange.202106251 – ident: e_1_2_7_57_2 doi: 10.1016/S0956-5663(97)85338-9 – ident: e_1_2_7_8_2 doi: 10.1016/j.cell.2010.04.033 – ident: e_1_2_7_4_2 doi: 10.1021/acs.analchem.0c04361 – ident: e_1_2_7_13_2 doi: 10.1016/j.trac.2016.01.018 – ident: e_1_2_7_31_2 doi: 10.1002/anie.202100882 – ident: e_1_2_7_51_1 – ident: e_1_2_7_48_2 doi: 10.1038/ncomms16087 – ident: e_1_2_7_16_3 doi: 10.1002/ange.201404744 – ident: e_1_2_7_56_1 – ident: e_1_2_7_43_2 doi: 10.1080/10408347.2020.1806702 – ident: e_1_2_7_25_1 – ident: e_1_2_7_34_1 doi: 10.1039/C9CC01280J – ident: e_1_2_7_9_2 doi: 10.1021/cr068062g – ident: e_1_2_7_26_2 doi: 10.1002/celc.201600390 – ident: e_1_2_7_27_2 doi: 10.1016/j.electacta.2009.08.048 – ident: e_1_2_7_5_2 doi: 10.1007/s11426-020-9719-9 – ident: e_1_2_7_42_2 doi: 10.3390/solids2020014 – ident: e_1_2_7_7_2 doi: 10.1038/nature09232 – ident: e_1_2_7_10_1 – ident: e_1_2_7_11_2 doi: 10.1039/C7SC00433H – ident: e_1_2_7_17_2 doi: 10.1039/C9SC05538J – ident: e_1_2_7_50_1 doi: 10.1002/anie.202106251 – ident: e_1_2_7_59_1 doi: 10.1016/S0022-0728(03)00309-7 – ident: e_1_2_7_21_2 doi: 10.1021/jacs.7b12106 – ident: e_1_2_7_31_3 doi: 10.1002/ange.202100882 – ident: e_1_2_7_19_2 doi: 10.1073/pnas.1201552109 – ident: e_1_2_7_14_2 doi: 10.1016/j.coelec.2020.05.008 – ident: e_1_2_7_35_1 – ident: e_1_2_7_30_2 doi: 10.1039/C9NR01997A – ident: e_1_2_7_54_1 doi: 10.1007/s11426-020-9715-x – ident: e_1_2_7_55_1 doi: 10.1016/j.electacta.2017.12.111 – ident: e_1_2_7_32_2 doi: 10.1021/acs.analchem.9b04139 – ident: e_1_2_7_28_2 doi: 10.1021/jacs.1c02532 – ident: e_1_2_7_24_1 doi: 10.1007/s00216-020-02899-9 – ident: e_1_2_7_20_3 doi: 10.1002/ange.201504839 – ident: e_1_2_7_49_3 doi: 10.1002/ange.201702114 – ident: e_1_2_7_33_2 doi: 10.1021/ac403816h – ident: e_1_2_7_58_2 doi: 10.1002/elan.201200306 – ident: e_1_2_7_29_1 – ident: e_1_2_7_38_2 doi: 10.1002/aoc.5540 – ident: e_1_2_7_39_2 doi: 10.1016/j.isci.2020.101852 – ident: e_1_2_7_45_1 – ident: e_1_2_7_60_1 doi: 10.1039/D0SC02889D – ident: e_1_2_7_40_1 – ident: e_1_2_7_22_3 doi: 10.1002/ange.201707187 – ident: e_1_2_7_53_2 doi: 10.1039/D0TA10451E – ident: e_1_2_7_12_2 doi: 10.1021/acs.analchem.0c00931 – ident: e_1_2_7_46_2 doi: 10.1038/nchem.2648 – ident: e_1_2_7_41_2 doi: 10.1007/s00216-006-1053-6 – ident: e_1_2_7_1_1 – ident: e_1_2_7_47_2 doi: 10.1038/nprot.2015.109 – ident: e_1_2_7_20_2 doi: 10.1002/anie.201504839 – ident: e_1_2_7_36_2 doi: 10.1021/cs200171u – ident: e_1_2_7_44_2 doi: 10.1039/c4tb00313f – ident: e_1_2_7_37_2 doi: 10.1021/cr4000072 – ident: e_1_2_7_49_2 doi: 10.1002/anie.201702114 – ident: e_1_2_7_16_2 doi: 10.1002/anie.201404744 – ident: e_1_2_7_22_2 doi: 10.1002/anie.201707187 – ident: e_1_2_7_3_2 doi: 10.1016/j.trac.2020.115886 – ident: e_1_2_7_18_1 – ident: e_1_2_7_6_1 – ident: e_1_2_7_52_2 doi: 10.3390/nano10091673 – ident: e_1_2_7_2_2 doi: 10.1039/C1CS15265C – ident: e_1_2_7_15_1 – ident: e_1_2_7_23_2 doi: 10.1021/jacs.9b13796 |
SSID | ssj0028806 |
Score | 2.5750499 |
Snippet | The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202115820 |
SubjectTerms | Assembly Biomimetic Molecular Catalysts Biomimetics Biomolecules Biosensing Techniques Catalysts Catalytic activity Chemical synthesis Cobalt Conducting polymers Design modifications Electric Conductivity Electrochemistry Electron transfer Glutathione Glutathione - chemistry Homeostasis Intracellular Monitoring Nanoelectrode Functionalization Nanosensor Nanosensors Nanotechnology Nanowires Nanowires - chemistry Polymers Polymers - chemistry Single Cell |
Title | Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202115820 https://www.ncbi.nlm.nih.gov/pubmed/35134265 https://www.proquest.com/docview/2643862456 https://www.proquest.com/docview/2627134359 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXNoL0PIKbCsjIXEKBDt24iNFS5dK5YBA4hbFLwmxbBALF349M3GSdqlQJXqMbOdhz4w_T2a-Adhz3hYFRTUqIYo0d7JMjTUhNVqoUgVZ561r4Ne5mlzlP6_l9R9Z_JEfYnC4kWa09poUvDbzw9-koZSBjec7PMBI3MXQCFPAFqGii4E_iqNwxvQiIVKqQt-zNmb8cHH44q70F9RcRK7t1nO6AnX_0jHi5Pbg6dEc2OdXfI7_81WrsNzhUnYcBekzfPCzL_DxpC8HtwZT8qzhMk49oyKfPe0sawL7ftPc3dxRNiRDY93M8WTcPMwZwmE2jlV2bEdLwKIJIV8iDTwjzzL9OqBYWPYDlYBiIZuZX4er0_HlySTtSjWkVqCNSAvraquLIJ1yZSnrQnMZ3JHXyhCEQlMmtHcmBASIWbDCKC3CUeBeh6xEAREbsDTD228Bc8Fl0iNw8VmOm2Vhckus9IV2Zc4zLRJI-6WqbMdjTuU0plVkYOYVzWE1zGEC-0P_-8jg8WbPUb_yVafJ8woBo6AkGqkS2B2ace5pduqZb56oD6eUXCF1AptRYoZHCYktXMkEeLvu_3iH6vj8bDxcbb9n0A584pSj0UYYjWAJBcJ_ReT0aL612vECWxYP1w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASOBOKVN7diJDz2UdssubfeAWqm3sH5JFdsNYlsh-Ff9K_1FnYmToAUhJKQeOEaxk9ie8XyezHwD8Np5WxQU1aiEKNLcyTI11oTUaKFKFeQkb1wDB2M1PMo_HMvjJbjocmEiP0TvcCPNaPZrUnBySK__ZA2lFGw84OEJRqIZa-Mq9_z3b3hqm2-OdnCJ33C-OzjcHqZtYYHUCpTotLBuYnURpFOuLOWk0FwGt-G1MmTwUfGE9s6EgHAmC1YYpUXYCNzrkJU4HIHPvQE3qYw40fXvfOwZqziqQ0xoEiKluvcdT2TG1xe_d9EO_gZuF7FyY-x278BlN00xxuXz2vmZWbM_fmGQ_K_m8S7cbqE324q6cg-W_Ow-rGx3Fe8ewJSchyipU8-ojmnHrMvqwN6d1Kcnp5TwydAe1XM8_Ndf5wwRPxvEQkK2ZV5gcZckdyl1HJHznP6OULgve496TuGe9cw_hKNrGewjWJ7h458Ac8Fl0iM281mOeKAwuSXi_UK7MueZFgmknWxUtqVqp4oh0yqSTPOK1qzq1yyBt337L5Gk5I8tVztRq9rNal4hJhaUJyRVAq_62zj3NDuTma_PqQ2nrGMhdQKPo4j2rxIS73AlE-CNoP3lG6qt8WjQXz39l04vYWV4eLBf7Y_Ge8_gFqeUlCagahWWUTj8cwSKZ-ZFo5oMPl23DF8BHYZuGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_qGBAkYCcUqb2rETHziU7i5dCiuEqNRbuv6TKrabqtsKwVPxKrwRM3EStCCEhNQDxyh2Etszns-TmW8Anjlvi4KiGpUQRZo7WabGmpAaLVSpgpzmjWvg3UTt7udvDuTBCnzrcmEiP0TvcCPNaPZrUvATFzZ_koZSBjae7_AAI9GKtWGVe_7LZzy0LV6OB7jCzzkfDT_u7KZtXYHUChTotLBuanURpFOuLOW00FwGt-W1MmTvUe-E9s6EgGgmC1YYpUXYCtzrkJU4GoHPvQSXc5VpKhYx-NATVnHUhpjPJERKZe87msiMby5_77IZ_A3bLkPlxtaNbsD3bpZiiMunjfMzs2G__kIg-T9N40243gJvth015Ras-PltuLrT1bu7AzNyHaKczjyjKqYdry6rA3t1VB8fHVO6J0NrVC_w6F-fLhjifTaMZYRsy7vA4h5JzlLqOCbXOf0boWBf9hq1nII967m_C_sXMth7sDrHx68Bc8Fl0iMy81mOaKAwuSXa_UK7MueZFgmknWhUtiVqp3ohsypSTPOK1qzq1yyBF337k0hR8seW652kVe1WtagQEQvKEpIqgaf9bZx7mp3p3Nfn1IZTzrGQOoH7UUL7VwmJd7iSCfBGzv7yDdX2ZDzsrx78S6cncOX9YFS9HU_2HsI1TvkoTTTVOqyibPhHiBLPzONGMRkcXrQI_wBIFWzI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Versatile+Construction+of+Biomimetic+Nanosensors+for+Electrochemical+Monitoring+of+Intracellular+Glutathione&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Wen-Tao&rft.au=Chen%2C+Xi&rft.au=Jiao%2C+Yu-Ting&rft.au=Fan%2C+Wen-Ting&rft.date=2022-04-04&rft.eissn=1521-3773&rft.volume=61&rft.issue=15&rft.spage=e202115820&rft_id=info:doi/10.1002%2Fanie.202115820&rft_id=info%3Apmid%2F35134265&rft.externalDocID=35134265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |