Regulating Perovskite Crystallization through Interfacial Engineering Using a Zwitterionic Additive Potassium Sulfamate for Efficient Pure‐Blue Light‐Emitting Diodes

Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced crystallization of the halide‐mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 7; pp. e202319730 - n/a
Main Authors Yu, Yi, Wang, Bing‐Feng, Shen, Yang, Su, Zhen‐Huang, Zhang, Kai, Ren, Hao, Zhang, Ye‐Fan, Gao, Xingyu, Tang, Jian‐Xin, Li, Yan‐Qing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.02.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced crystallization of the halide‐mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non‐radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low‐dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+‐guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi‐2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure‐blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide‐mixed blue perovskite crystallization by manipulating the characteristics of grain‐growth substrate. A multifunctional interface engineering is proposed for perovskite crystallization modulation and defect passivation by incorporating a zwitterionic additive potassium sulfamate onto the grain‐growth substrate, leading to pure‐blue perovskite light‐emitting diodes with a champion external quantum efficiency of 17.32 % at 478 nm and spectrally stable CIE chromaticity coordinate of (0.106, 0.129).
AbstractList Quasi-two-dimensional (quasi-2D) perovskites are emerging as efficient emitters in blue perovskite light-emitting diodes (PeLEDs), while the imbalanced crystallization of the halide-mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non-radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low-dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+ ) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+ -guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi-2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure-blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide-mixed blue perovskite crystallization by manipulating the characteristics of grain-growth substrate.Quasi-two-dimensional (quasi-2D) perovskites are emerging as efficient emitters in blue perovskite light-emitting diodes (PeLEDs), while the imbalanced crystallization of the halide-mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non-radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low-dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+ ) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+ -guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi-2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure-blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide-mixed blue perovskite crystallization by manipulating the characteristics of grain-growth substrate.
Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced crystallization of the halide‐mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non‐radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low‐dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K + ) as heterogeneous nucleation seeds, finely controlled growth of interfacial K + ‐guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi‐2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure‐blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide‐mixed blue perovskite crystallization by manipulating the characteristics of grain‐growth substrate.
Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced crystallization of the halide‐mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non‐radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low‐dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+‐guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi‐2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure‐blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide‐mixed blue perovskite crystallization by manipulating the characteristics of grain‐growth substrate. A multifunctional interface engineering is proposed for perovskite crystallization modulation and defect passivation by incorporating a zwitterionic additive potassium sulfamate onto the grain‐growth substrate, leading to pure‐blue perovskite light‐emitting diodes with a champion external quantum efficiency of 17.32 % at 478 nm and spectrally stable CIE chromaticity coordinate of (0.106, 0.129).
Author Wang, Bing‐Feng
Shen, Yang
Su, Zhen‐Huang
Ren, Hao
Gao, Xingyu
Yu, Yi
Li, Yan‐Qing
Zhang, Ye‐Fan
Tang, Jian‐Xin
Zhang, Kai
Author_xml – sequence: 1
  givenname: Yi
  surname: Yu
  fullname: Yu, Yi
  organization: East China Normal University
– sequence: 2
  givenname: Bing‐Feng
  surname: Wang
  fullname: Wang, Bing‐Feng
  organization: East China Normal University
– sequence: 3
  givenname: Yang
  surname: Shen
  fullname: Shen, Yang
  email: yangshen@suda.edu.cn
  organization: Soochow University
– sequence: 4
  givenname: Zhen‐Huang
  surname: Su
  fullname: Su, Zhen‐Huang
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Macau University of Science and Technology
– sequence: 6
  givenname: Hao
  surname: Ren
  fullname: Ren, Hao
  organization: Soochow University
– sequence: 7
  givenname: Ye‐Fan
  surname: Zhang
  fullname: Zhang, Ye‐Fan
  organization: Soochow University
– sequence: 8
  givenname: Xingyu
  surname: Gao
  fullname: Gao, Xingyu
  email: gaoxy@sari.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Jian‐Xin
  orcidid: 0000-0002-6813-0448
  surname: Tang
  fullname: Tang, Jian‐Xin
  email: jxtang@must.edu.mo, jxtang@suda.edu.cn
  organization: Soochow University
– sequence: 10
  givenname: Yan‐Qing
  surname: Li
  fullname: Li, Yan‐Qing
  email: yqli@phy.ecnu.edu.cn
  organization: East China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38168882$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuO0zAYRiM0iLnAliWyxIZNSmynsbMsJUClCipgNmwi1_mdenDswXZmVFY8Aq_Ba_EkOHQYpJEQG1_kcz5b_k6zI-ssZNljXMxwUZDnwmqYkYJQXDNa3MtO8JzgnDJGj9K6pDRnfI6Ps9MQLhLPeVE9yI4pxxXnnJxkP95DPxoRte3RBry7Cp91BLT0-xCFMfprOnIWxZ13Y79DKxvBKyG1MKixvbYAflLPwzQK9Olax0QkRUu06Dod9RWgjYsiBD0O6MNolBhEukE5jxqltNRgI9qMHn5--_7CjIDWut_FtGmGlDXFvtSug_Awu6-ECfDoZj7Lzl81H5dv8vW716vlYp1Lmn4gZ0wJ4EAAb-uuwiAYcAlE8XldS1XTWgLfUlaWJTBG5phUvCpxTTtCq0oqRs-yZ4fcS---jBBiO-ggwRhhwY2hJTUuEs8qntCnd9ALN3qbXpcoQggvWTUFPrmhxu0AXXvp9SD8vv1TQgJmB0B6F4IHdYvgop1abqeW29uWk1DeEaSOv4uKXmjzb60-aNfawP4_l7SLt6vmr_sLxqDBQA
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c05124
crossref_primary_10_1016_j_powtec_2025_120825
crossref_primary_10_1002_adma_202410535
crossref_primary_10_1002_adma_202415648
crossref_primary_10_1002_adma_202410633
crossref_primary_10_1002_ange_202419746
crossref_primary_10_1021_acs_nanolett_4c02110
crossref_primary_10_1021_acs_nanolett_4c02910
crossref_primary_10_1002_adom_202303304
crossref_primary_10_1021_acsenergylett_4c03551
crossref_primary_10_1021_acsami_4c08227
crossref_primary_10_1039_D4TC04214J
crossref_primary_10_1002_chem_202400372
crossref_primary_10_1002_anie_202411361
crossref_primary_10_1002_adma_202414788
crossref_primary_10_1039_D4TC02975E
crossref_primary_10_1002_adfm_202421576
crossref_primary_10_1002_anie_202419746
crossref_primary_10_1021_acsami_4c21188
crossref_primary_10_1039_D4NR00834K
crossref_primary_10_1021_acsanm_4c06141
crossref_primary_10_1021_acsaelm_4c01978
crossref_primary_10_1002_adma_202413673
crossref_primary_10_1002_adma_202409319
crossref_primary_10_1002_ange_202411361
Cites_doi 10.1002/adom.202300147
10.1038/s41467-020-20582-6
10.1002/adfm.202214315
10.1021/acs.jpclett.1c04210
10.1002/lpor.202200608
10.1002/adfm.202100516
10.1021/acsenergylett.2c02246
10.1002/adma.202005570
10.1002/adfm.201909754
10.1002/adfm.202206574
10.1002/adma.201904319
10.1038/s41467-023-36118-7
10.1038/s41586-023-05792-4
10.1002/adma.202302283
10.1002/adma.202208078
10.1002/anie.202302184
10.1021/acsenergylett.2c01785
10.1038/s41467-019-09794-7
10.1002/adfm.202208538
10.1016/j.jechem.2022.04.001
10.1038/s41377-023-01206-2
10.1002/adma.202104381
10.1002/adma.202302161
10.1002/smll.202304821
10.1038/s41928-022-00745-7
10.1002/adfm.202103890
10.1002/adfm.202209186
10.1016/j.cej.2023.142707
10.1002/anie.202115875
10.1002/advs.202102213
10.1002/adfm.202006736
10.1016/j.mattod.2021.10.023
10.1002/adfm.202111578
10.1038/s41928-023-00955-7
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202319730
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38168882
10_1002_anie_202319730
ANIE202319730
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3730-77fae8e2e1b9d61ea7e8ce2f8599cf939ce8b37444e7725126864193d2366cf73
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:36:31 EDT 2025
Fri Jul 25 11:50:38 EDT 2025
Wed Feb 19 02:09:53 EST 2025
Tue Jul 01 05:24:51 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Wed Jan 22 16:14:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Perovskites light-emitting diodes
interfacial engineering
pure-blue emission
phase distribution
crystallization regulation
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-77fae8e2e1b9d61ea7e8ce2f8599cf939ce8b37444e7725126864193d2366cf73
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6813-0448
PMID 38168882
PQID 2922284767
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2910193768
proquest_journals_2922284767
pubmed_primary_38168882
crossref_primary_10_1002_anie_202319730
crossref_citationtrail_10_1002_anie_202319730
wiley_primary_10_1002_anie_202319730_ANIE202319730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 12, 2024
PublicationDateYYYYMMDD 2024-02-12
PublicationDate_xml – month: 02
  year: 2024
  text: February 12, 2024
  day: 12
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2023; 35
2023; 14
2023; 11
2023; 33
2023; 12
2023; 17
2019; 31
2022; 71
2023; 6
2019; 10
2023; 8
2023; 464
2021; 51
2023; 62
2021; 31
2021; 12
2021; 33
2020; 30
2022; 5
2022; 61
2022; 7
2022; 13
2024; 20
2023; 615
2022; 32
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_2_1
e_1_2_7_40_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_12_1
e_1_2_7_43_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_1
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_34_2
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_2
References_xml – volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  year: 2023
  publication-title: Adv. Opt. Mater.
– volume: 464
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 71
  start-page: 418
  year: 2022
  end-page: 433
  publication-title: J. Energy Chem.
– volume: 13
  start-page: 1962
  year: 2022
  end-page: 1971
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 397
  year: 2023
  publication-title: Nat. Commun.
– volume: 6
  start-page: 360
  year: 2023
  end-page: 369
  publication-title: Nat. Electron.
– volume: 12
  start-page: 177
  year: 2023
  publication-title: Light-Sci. Appl.
– volume: 5
  start-page: 203
  year: 2022
  end-page: 216
  publication-title: Nat. Electron.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 339
  year: 2023
  end-page: 346
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 3345
  year: 2022
  end-page: 3352
  publication-title: ACS Energy Lett.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 12
  start-page: 361
  year: 2021
  publication-title: Nat. Commun.
– volume: 51
  start-page: 222
  year: 2021
  end-page: 246
  publication-title: Mater. Today
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 17
  year: 2023
  publication-title: Laser Photonics Rev.
– volume: 10
  start-page: 1868
  year: 2019
  publication-title: Nat. Commun.
– volume: 20
  year: 2024
  publication-title: Small
– volume: 615
  start-page: 830
  year: 2023
  end-page: 835
  publication-title: Nature
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_7_17_2
  doi: 10.1002/adom.202300147
– ident: e_1_2_7_22_2
  doi: 10.1038/s41467-020-20582-6
– ident: e_1_2_7_24_2
  doi: 10.1002/adfm.202214315
– ident: e_1_2_7_7_2
  doi: 10.1021/acs.jpclett.1c04210
– ident: e_1_2_7_6_2
  doi: 10.1002/lpor.202200608
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.202100516
– ident: e_1_2_7_14_1
– ident: e_1_2_7_23_2
  doi: 10.1021/acsenergylett.2c02246
– ident: e_1_2_7_39_2
  doi: 10.1002/adma.202005570
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.201909754
– ident: e_1_2_7_16_2
  doi: 10.1002/adfm.202206574
– ident: e_1_2_7_25_2
  doi: 10.1002/adma.201904319
– ident: e_1_2_7_28_1
– ident: e_1_2_7_4_2
  doi: 10.1038/s41467-023-36118-7
– ident: e_1_2_7_43_2
  doi: 10.1038/s41586-023-05792-4
– ident: e_1_2_7_3_2
  doi: 10.1002/adma.202302283
– ident: e_1_2_7_26_2
  doi: 10.1002/adma.202208078
– ident: e_1_2_7_27_2
  doi: 10.1002/anie.202302184
– ident: e_1_2_7_29_2
  doi: 10.1021/acsenergylett.2c01785
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-019-09794-7
– ident: e_1_2_7_15_2
  doi: 10.1002/adfm.202208538
– ident: e_1_2_7_5_1
– ident: e_1_2_7_10_2
  doi: 10.1016/j.jechem.2022.04.001
– ident: e_1_2_7_2_1
– ident: e_1_2_7_41_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_12_1
  doi: 10.1038/s41377-023-01206-2
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.202104381
– ident: e_1_2_7_38_1
– ident: e_1_2_7_32_1
– ident: e_1_2_7_40_2
  doi: 10.1002/adma.202302161
– ident: e_1_2_7_42_2
  doi: 10.1002/smll.202304821
– ident: e_1_2_7_1_1
  doi: 10.1038/s41928-022-00745-7
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.202103890
– ident: e_1_2_7_33_2
  doi: 10.1002/adfm.202209186
– ident: e_1_2_7_30_2
  doi: 10.1016/j.cej.2023.142707
– ident: e_1_2_7_34_2
  doi: 10.1002/anie.202115875
– ident: e_1_2_7_18_2
  doi: 10.1002/advs.202102213
– ident: e_1_2_7_9_1
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.202006736
– ident: e_1_2_7_11_2
  doi: 10.1016/j.mattod.2021.10.023
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.202111578
– ident: e_1_2_7_36_1
  doi: 10.1038/s41928-023-00955-7
SSID ssj0028806
Score 2.581367
Snippet Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced...
Quasi-two-dimensional (quasi-2D) perovskites are emerging as efficient emitters in blue perovskite light-emitting diodes (PeLEDs), while the imbalanced...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202319730
SubjectTerms Crystal defects
Crystallization
Crystallization Regulation
Emitters
Energy loss
Excitons
Interfacial Engineering
Ions
Light emitting diodes
Nucleation
Perovskites
Perovskites Light-Emitting Diodes
Phase Distribution
Potassium
Pure-Blue Emission
Quantum efficiency
Radiative recombination
Seeds
Substrates
Synergistic effect
Zwitterions
Title Regulating Perovskite Crystallization through Interfacial Engineering Using a Zwitterionic Additive Potassium Sulfamate for Efficient Pure‐Blue Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202319730
https://www.ncbi.nlm.nih.gov/pubmed/38168882
https://www.proquest.com/docview/2922284767
https://www.proquest.com/docview/2910193768
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL-UClN9AQYOExCnbjeNNnOOybFUQVKtCpYpL5J-JtGq6QbubVu2JR-A1eC2ehLHzQxeEkOAWK3Ziy2P7m_HMN4y9UFwLbRVpJ4rbUODIhFrbYRgZkYpEG2W9HfL9YXJwLN6ejE6uRfE3_BC9wc2tDL9fuwWu9GrvJ2moi8AeuOTfUUZSSpuwc9hyqOio54_iJJxNeFEchy4LfcfaOOR7m803T6XfoOYmcvVHz_5tprpONx4np4N6rQfm6hc-x_8Z1R12q8WlMG4EaYfdwMVdtj3p0sHdY9-Omqz1dNTBDJfV-crZfWGyvCR8WZZtOCe0eX_AWxoL5QzycI3zELyLAij4dDF3cUTOGmxgbK13YYJZtSYwP6_P4ENdForQNAKhaph6ogs6H2FWL_H7l6-vyhrhnTMsUGF6Nvfe2_B6Xllc3WfH-9OPk4OwzfMQmpgGSQC_UCiRY6Qzm0SoUpQGeSFHWWaKLM4MSh2nQggkXYAQSiITQcDT8jhJTJHGD9jWolrgIwbICdAZy4uR0cJERtrI6GFWkBZsJX08YGE3z7lpSdBdLo4yb-ibee4mIO8nIGAv-_qfG_qPP9bc7cQmb7eBVc4zZ2ATaZIG7Hn_mibO3cqoBVa1q0O7IoHERAbsYSNu_a_cra4kHShg3AvNX_qQjw_fTPvS439p9ITdpGcR-pQ3u2xrvazxKcGutX7ml9YPQJIqIg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB1BWZQNb4qhwCAhsXIajyd-LEOaKoU0ikorITbWPK6lCDdGSQyCFZ_Ab_BbfAn3jh8QEEKCpeNxbGvuzJw5vvccxp4qoaW2CncnSlhfwsD4Wtu-HxgZy0gbZR0PeTKLJufyxetBm01ItTC1PkRHuNHIcPM1DXAipA9-qIZSCXaP3L-DFMP0MrtCtt4kn3942ilICQzPusAoDH3yoW91G_viYPv67XXpN7C5jV3d4nN0nen2seuck7e9aqN75tMvio7_9V432LUGmvJhHUs32SVY3mK7o9YR7jb7elob1-Nqx-ewKt-vifrlo9VHhJhF0VR08sb6hzuyMVfEyfOfZA-5y1Lgir_5sKBSIiKEDR9a67KY-LzcIJ5fVBf8VVXkCgE1cATWfOy0LnCJ5PNqBd8-f3leVMCnxC3gwfhi4RK4-eGitLC-w86Pxmejid9YPfgmxJdEjJ8rSEBAoFMbBaBiSAyIPBmkqcnTMDWQ6DCWUgJuBxCkREkkEXtaEUaRyePwLttZlku4xzgIxHTGinxgtDSBSWxgdD_NcSNsE_xzj_ltR2em0UEnO44iqxWcRUYdkHUd4LFnXft3tQLIH1vut3GTNTPBOhMpcWwyjmKPPelOY8fRhxm1hLKiNjgxIk6MEo_t1fHW3Yo-7Ca4DfKYcFHzl2fIhrPjcXd0_18uesx2J2cn02x6PHv5gF3F36XvHHD22c5mVcFDRGEb_ciNs-_DOi4-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgkIAN70dgACMhsUqncVzHWZY-NANDVQ2MNGIT-XEjVWSaUduAYMUn8Bv8Fl_CtfNgCkJIsHRiJ7Z8bR9f-55DyDPFNNdW4e5EMRtyGJhQa9sPI8MTLrRR1vshX8_E_jF_eTI4ORfFX_NDdA43NzL8fO0G-JnN936ShroI7J4T_45StNKL5BIX_dSJN4yPOgIphtZZxxfFcehk6Fvaxj7b2y6_vSz9hjW3oatfe6bXiWprXV85ed-rNrpnPv9C6Pg_zbpBrjXAlA5rS7pJLsDyFrkyavXgbpNvR7VsPa51dA6r8sPaOX7paPUJAWZRNPGctBH-od7VmCvnkafnSA-pv6NAFX33ceECiZw72NChtf4OE52XG0Tzi-qUvqmKXCGcBoqwmk480wUukHRereD7l68vigroofMsYGJyuvDXt-l4UVpY3yHH08nb0X7YCD2EJsZGIsLPFUhgEOnUighUAtIAy-UgTU2exqkBqeOEcw64GUCIIqTgiDwti4UweRLfJTvLcgn3CQWGiM5Ylg-M5iYy0kZG99Mct8FW4scDErb9nJmGBd2JcRRZzd_MMtcBWdcBAXne5T-r-T_-mHO3NZusmQfWGUudh40nIgnI0-41dpw7llFLKCuXB6dFRIlCBuRebW7dr9yxrsRNUECYN5q_1CEbzg4mXerBvxR6Qi7Px9Ps8GD26iG5io956OVvdsnOZlXBI4RgG_3Yj7IfG4Es7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Perovskite+Crystallization+through+Interfacial+Engineering+Using+a+Zwitterionic+Additive+Potassium+Sulfamate+for+Efficient+Pure%E2%80%90Blue+Light%E2%80%90Emitting+Diodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+Yi&rft.au=Wang%2C+Bing%E2%80%90Feng&rft.au=Shen%2C+Yang&rft.au=Su%2C+Zhen%E2%80%90Huang&rft.date=2024-02-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=7&rft_id=info:doi/10.1002%2Fanie.202319730&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202319730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon