Regulating Perovskite Crystallization through Interfacial Engineering Using a Zwitterionic Additive Potassium Sulfamate for Efficient Pure‐Blue Light‐Emitting Diodes
Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced crystallization of the halide‐mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 7; pp. e202319730 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
12.02.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced crystallization of the halide‐mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non‐radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low‐dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+‐guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi‐2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure‐blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide‐mixed blue perovskite crystallization by manipulating the characteristics of grain‐growth substrate.
A multifunctional interface engineering is proposed for perovskite crystallization modulation and defect passivation by incorporating a zwitterionic additive potassium sulfamate onto the grain‐growth substrate, leading to pure‐blue perovskite light‐emitting diodes with a champion external quantum efficiency of 17.32 % at 478 nm and spectrally stable CIE chromaticity coordinate of (0.106, 0.129). |
---|---|
AbstractList | Quasi-two-dimensional (quasi-2D) perovskites are emerging as efficient emitters in blue perovskite light-emitting diodes (PeLEDs), while the imbalanced crystallization of the halide-mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non-radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low-dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+ ) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+ -guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi-2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure-blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide-mixed blue perovskite crystallization by manipulating the characteristics of grain-growth substrate.Quasi-two-dimensional (quasi-2D) perovskites are emerging as efficient emitters in blue perovskite light-emitting diodes (PeLEDs), while the imbalanced crystallization of the halide-mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non-radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low-dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+ ) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+ -guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi-2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure-blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide-mixed blue perovskite crystallization by manipulating the characteristics of grain-growth substrate. Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced crystallization of the halide‐mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non‐radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low‐dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K + ) as heterogeneous nucleation seeds, finely controlled growth of interfacial K + ‐guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi‐2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure‐blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide‐mixed blue perovskite crystallization by manipulating the characteristics of grain‐growth substrate. Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced crystallization of the halide‐mixed system limits further improvements in device performance. The rapid crystallization caused by Cl doping produces massive defects at the interface, leading to aggravated non‐radiative recombination. Meanwhile, unmanageable perovskite crystallization is prone to facilitate the formation of nonuniform low‐dimensional phases, which results in energy loss during the exciton transfer process. Here, we propose a multifunctional interface engineering for nucleation and phase regulation by incorporating the zwitterionic additive potassium sulfamate into the hole transport layer. By using potassium ions (K+) as heterogeneous nucleation seeds, finely controlled growth of interfacial K+‐guided grains is achieved. The sulfamate ions can simultaneously regulate the phase distribution and passivate defects through coordination interactions with undercoordinated lead atoms. Consequently, such synergistic effect constructs quasi‐2D blue perovskite films with smooth energy landscape and reduced trap states, leading to pure‐blue PeLEDs with a maximum external quantum efficiency (EQE) of 17.32 %, spectrally stable emission at 478 nm and the prolonged operational lifetime. This work provides a unique guide to comprehensively regulate the halide‐mixed blue perovskite crystallization by manipulating the characteristics of grain‐growth substrate. A multifunctional interface engineering is proposed for perovskite crystallization modulation and defect passivation by incorporating a zwitterionic additive potassium sulfamate onto the grain‐growth substrate, leading to pure‐blue perovskite light‐emitting diodes with a champion external quantum efficiency of 17.32 % at 478 nm and spectrally stable CIE chromaticity coordinate of (0.106, 0.129). |
Author | Wang, Bing‐Feng Shen, Yang Su, Zhen‐Huang Ren, Hao Gao, Xingyu Yu, Yi Li, Yan‐Qing Zhang, Ye‐Fan Tang, Jian‐Xin Zhang, Kai |
Author_xml | – sequence: 1 givenname: Yi surname: Yu fullname: Yu, Yi organization: East China Normal University – sequence: 2 givenname: Bing‐Feng surname: Wang fullname: Wang, Bing‐Feng organization: East China Normal University – sequence: 3 givenname: Yang surname: Shen fullname: Shen, Yang email: yangshen@suda.edu.cn organization: Soochow University – sequence: 4 givenname: Zhen‐Huang surname: Su fullname: Su, Zhen‐Huang organization: Chinese Academy of Sciences – sequence: 5 givenname: Kai surname: Zhang fullname: Zhang, Kai organization: Macau University of Science and Technology – sequence: 6 givenname: Hao surname: Ren fullname: Ren, Hao organization: Soochow University – sequence: 7 givenname: Ye‐Fan surname: Zhang fullname: Zhang, Ye‐Fan organization: Soochow University – sequence: 8 givenname: Xingyu surname: Gao fullname: Gao, Xingyu email: gaoxy@sari.ac.cn organization: Chinese Academy of Sciences – sequence: 9 givenname: Jian‐Xin orcidid: 0000-0002-6813-0448 surname: Tang fullname: Tang, Jian‐Xin email: jxtang@must.edu.mo, jxtang@suda.edu.cn organization: Soochow University – sequence: 10 givenname: Yan‐Qing surname: Li fullname: Li, Yan‐Qing email: yqli@phy.ecnu.edu.cn organization: East China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38168882$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcuO0zAYRiM0iLnAliWyxIZNSmynsbMsJUClCipgNmwi1_mdenDswXZmVFY8Aq_Ba_EkOHQYpJEQG1_kcz5b_k6zI-ssZNljXMxwUZDnwmqYkYJQXDNa3MtO8JzgnDJGj9K6pDRnfI6Ps9MQLhLPeVE9yI4pxxXnnJxkP95DPxoRte3RBry7Cp91BLT0-xCFMfprOnIWxZ13Y79DKxvBKyG1MKixvbYAflLPwzQK9Olax0QkRUu06Dod9RWgjYsiBD0O6MNolBhEukE5jxqltNRgI9qMHn5--_7CjIDWut_FtGmGlDXFvtSug_Awu6-ECfDoZj7Lzl81H5dv8vW716vlYp1Lmn4gZ0wJ4EAAb-uuwiAYcAlE8XldS1XTWgLfUlaWJTBG5phUvCpxTTtCq0oqRs-yZ4fcS---jBBiO-ggwRhhwY2hJTUuEs8qntCnd9ALN3qbXpcoQggvWTUFPrmhxu0AXXvp9SD8vv1TQgJmB0B6F4IHdYvgop1abqeW29uWk1DeEaSOv4uKXmjzb60-aNfawP4_l7SLt6vmr_sLxqDBQA |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c05124 crossref_primary_10_1016_j_powtec_2025_120825 crossref_primary_10_1002_adma_202410535 crossref_primary_10_1002_adma_202415648 crossref_primary_10_1002_adma_202410633 crossref_primary_10_1002_ange_202419746 crossref_primary_10_1021_acs_nanolett_4c02110 crossref_primary_10_1021_acs_nanolett_4c02910 crossref_primary_10_1002_adom_202303304 crossref_primary_10_1021_acsenergylett_4c03551 crossref_primary_10_1021_acsami_4c08227 crossref_primary_10_1039_D4TC04214J crossref_primary_10_1002_chem_202400372 crossref_primary_10_1002_anie_202411361 crossref_primary_10_1002_adma_202414788 crossref_primary_10_1039_D4TC02975E crossref_primary_10_1002_adfm_202421576 crossref_primary_10_1002_anie_202419746 crossref_primary_10_1021_acsami_4c21188 crossref_primary_10_1039_D4NR00834K crossref_primary_10_1021_acsanm_4c06141 crossref_primary_10_1021_acsaelm_4c01978 crossref_primary_10_1002_adma_202413673 crossref_primary_10_1002_adma_202409319 crossref_primary_10_1002_ange_202411361 |
Cites_doi | 10.1002/adom.202300147 10.1038/s41467-020-20582-6 10.1002/adfm.202214315 10.1021/acs.jpclett.1c04210 10.1002/lpor.202200608 10.1002/adfm.202100516 10.1021/acsenergylett.2c02246 10.1002/adma.202005570 10.1002/adfm.201909754 10.1002/adfm.202206574 10.1002/adma.201904319 10.1038/s41467-023-36118-7 10.1038/s41586-023-05792-4 10.1002/adma.202302283 10.1002/adma.202208078 10.1002/anie.202302184 10.1021/acsenergylett.2c01785 10.1038/s41467-019-09794-7 10.1002/adfm.202208538 10.1016/j.jechem.2022.04.001 10.1038/s41377-023-01206-2 10.1002/adma.202104381 10.1002/adma.202302161 10.1002/smll.202304821 10.1038/s41928-022-00745-7 10.1002/adfm.202103890 10.1002/adfm.202209186 10.1016/j.cej.2023.142707 10.1002/anie.202115875 10.1002/advs.202102213 10.1002/adfm.202006736 10.1016/j.mattod.2021.10.023 10.1002/adfm.202111578 10.1038/s41928-023-00955-7 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202319730 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38168882 10_1002_anie_202319730 ANIE202319730 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-77fae8e2e1b9d61ea7e8ce2f8599cf939ce8b37444e7725126864193d2366cf73 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:36:31 EDT 2025 Fri Jul 25 11:50:38 EDT 2025 Wed Feb 19 02:09:53 EST 2025 Tue Jul 01 05:24:51 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Wed Jan 22 16:14:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Perovskites light-emitting diodes interfacial engineering pure-blue emission phase distribution crystallization regulation |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-77fae8e2e1b9d61ea7e8ce2f8599cf939ce8b37444e7725126864193d2366cf73 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6813-0448 |
PMID | 38168882 |
PQID | 2922284767 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2910193768 proquest_journals_2922284767 pubmed_primary_38168882 crossref_primary_10_1002_anie_202319730 crossref_citationtrail_10_1002_anie_202319730 wiley_primary_10_1002_anie_202319730_ANIE202319730 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 12, 2024 |
PublicationDateYYYYMMDD | 2024-02-12 |
PublicationDate_xml | – month: 02 year: 2024 text: February 12, 2024 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2023; 35 2023; 14 2023; 11 2023; 33 2023; 12 2023; 17 2019; 31 2022; 71 2023; 6 2019; 10 2023; 8 2023; 464 2021; 51 2023; 62 2021; 31 2021; 12 2021; 33 2020; 30 2022; 5 2022; 61 2022; 7 2022; 13 2024; 20 2023; 615 2022; 32 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_2_1 e_1_2_7_40_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_42_2 e_1_2_7_11_2 e_1_2_7_12_1 e_1_2_7_43_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_1 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_34_2 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_2 |
References_xml | – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 11 year: 2023 publication-title: Adv. Opt. Mater. – volume: 464 year: 2023 publication-title: Chem. Eng. J. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 71 start-page: 418 year: 2022 end-page: 433 publication-title: J. Energy Chem. – volume: 13 start-page: 1962 year: 2022 end-page: 1971 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 397 year: 2023 publication-title: Nat. Commun. – volume: 6 start-page: 360 year: 2023 end-page: 369 publication-title: Nat. Electron. – volume: 12 start-page: 177 year: 2023 publication-title: Light-Sci. Appl. – volume: 5 start-page: 203 year: 2022 end-page: 216 publication-title: Nat. Electron. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 339 year: 2023 end-page: 346 publication-title: ACS Energy Lett. – volume: 7 start-page: 3345 year: 2022 end-page: 3352 publication-title: ACS Energy Lett. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 12 start-page: 361 year: 2021 publication-title: Nat. Commun. – volume: 51 start-page: 222 year: 2021 end-page: 246 publication-title: Mater. Today – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 17 year: 2023 publication-title: Laser Photonics Rev. – volume: 10 start-page: 1868 year: 2019 publication-title: Nat. Commun. – volume: 20 year: 2024 publication-title: Small – volume: 615 start-page: 830 year: 2023 end-page: 835 publication-title: Nature – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_7_17_2 doi: 10.1002/adom.202300147 – ident: e_1_2_7_22_2 doi: 10.1038/s41467-020-20582-6 – ident: e_1_2_7_24_2 doi: 10.1002/adfm.202214315 – ident: e_1_2_7_7_2 doi: 10.1021/acs.jpclett.1c04210 – ident: e_1_2_7_6_2 doi: 10.1002/lpor.202200608 – ident: e_1_2_7_8_1 doi: 10.1002/adfm.202100516 – ident: e_1_2_7_14_1 – ident: e_1_2_7_23_2 doi: 10.1021/acsenergylett.2c02246 – ident: e_1_2_7_39_2 doi: 10.1002/adma.202005570 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.201909754 – ident: e_1_2_7_16_2 doi: 10.1002/adfm.202206574 – ident: e_1_2_7_25_2 doi: 10.1002/adma.201904319 – ident: e_1_2_7_28_1 – ident: e_1_2_7_4_2 doi: 10.1038/s41467-023-36118-7 – ident: e_1_2_7_43_2 doi: 10.1038/s41586-023-05792-4 – ident: e_1_2_7_3_2 doi: 10.1002/adma.202302283 – ident: e_1_2_7_26_2 doi: 10.1002/adma.202208078 – ident: e_1_2_7_27_2 doi: 10.1002/anie.202302184 – ident: e_1_2_7_29_2 doi: 10.1021/acsenergylett.2c01785 – ident: e_1_2_7_13_1 doi: 10.1038/s41467-019-09794-7 – ident: e_1_2_7_15_2 doi: 10.1002/adfm.202208538 – ident: e_1_2_7_5_1 – ident: e_1_2_7_10_2 doi: 10.1016/j.jechem.2022.04.001 – ident: e_1_2_7_2_1 – ident: e_1_2_7_41_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_12_1 doi: 10.1038/s41377-023-01206-2 – ident: e_1_2_7_37_1 doi: 10.1002/adma.202104381 – ident: e_1_2_7_38_1 – ident: e_1_2_7_32_1 – ident: e_1_2_7_40_2 doi: 10.1002/adma.202302161 – ident: e_1_2_7_42_2 doi: 10.1002/smll.202304821 – ident: e_1_2_7_1_1 doi: 10.1038/s41928-022-00745-7 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.202103890 – ident: e_1_2_7_33_2 doi: 10.1002/adfm.202209186 – ident: e_1_2_7_30_2 doi: 10.1016/j.cej.2023.142707 – ident: e_1_2_7_34_2 doi: 10.1002/anie.202115875 – ident: e_1_2_7_18_2 doi: 10.1002/advs.202102213 – ident: e_1_2_7_9_1 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.202006736 – ident: e_1_2_7_11_2 doi: 10.1016/j.mattod.2021.10.023 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.202111578 – ident: e_1_2_7_36_1 doi: 10.1038/s41928-023-00955-7 |
SSID | ssj0028806 |
Score | 2.581367 |
Snippet | Quasi‐two‐dimensional (quasi‐2D) perovskites are emerging as efficient emitters in blue perovskite light‐emitting diodes (PeLEDs), while the imbalanced... Quasi-two-dimensional (quasi-2D) perovskites are emerging as efficient emitters in blue perovskite light-emitting diodes (PeLEDs), while the imbalanced... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202319730 |
SubjectTerms | Crystal defects Crystallization Crystallization Regulation Emitters Energy loss Excitons Interfacial Engineering Ions Light emitting diodes Nucleation Perovskites Perovskites Light-Emitting Diodes Phase Distribution Potassium Pure-Blue Emission Quantum efficiency Radiative recombination Seeds Substrates Synergistic effect Zwitterions |
Title | Regulating Perovskite Crystallization through Interfacial Engineering Using a Zwitterionic Additive Potassium Sulfamate for Efficient Pure‐Blue Light‐Emitting Diodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202319730 https://www.ncbi.nlm.nih.gov/pubmed/38168882 https://www.proquest.com/docview/2922284767 https://www.proquest.com/docview/2910193768 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL-UClN9AQYOExCnbjeNNnOOybFUQVKtCpYpL5J-JtGq6QbubVu2JR-A1eC2ehLHzQxeEkOAWK3Ziy2P7m_HMN4y9UFwLbRVpJ4rbUODIhFrbYRgZkYpEG2W9HfL9YXJwLN6ejE6uRfE3_BC9wc2tDL9fuwWu9GrvJ2moi8AeuOTfUUZSSpuwc9hyqOio54_iJJxNeFEchy4LfcfaOOR7m803T6XfoOYmcvVHz_5tprpONx4np4N6rQfm6hc-x_8Z1R12q8WlMG4EaYfdwMVdtj3p0sHdY9-Omqz1dNTBDJfV-crZfWGyvCR8WZZtOCe0eX_AWxoL5QzycI3zELyLAij4dDF3cUTOGmxgbK13YYJZtSYwP6_P4ENdForQNAKhaph6ogs6H2FWL_H7l6-vyhrhnTMsUGF6Nvfe2_B6Xllc3WfH-9OPk4OwzfMQmpgGSQC_UCiRY6Qzm0SoUpQGeSFHWWaKLM4MSh2nQggkXYAQSiITQcDT8jhJTJHGD9jWolrgIwbICdAZy4uR0cJERtrI6GFWkBZsJX08YGE3z7lpSdBdLo4yb-ibee4mIO8nIGAv-_qfG_qPP9bc7cQmb7eBVc4zZ2ATaZIG7Hn_mibO3cqoBVa1q0O7IoHERAbsYSNu_a_cra4kHShg3AvNX_qQjw_fTPvS439p9ITdpGcR-pQ3u2xrvazxKcGutX7ml9YPQJIqIg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB1BWZQNb4qhwCAhsXIajyd-LEOaKoU0ikorITbWPK6lCDdGSQyCFZ_Ab_BbfAn3jh8QEEKCpeNxbGvuzJw5vvccxp4qoaW2CncnSlhfwsD4Wtu-HxgZy0gbZR0PeTKLJufyxetBm01ItTC1PkRHuNHIcPM1DXAipA9-qIZSCXaP3L-DFMP0MrtCtt4kn3942ilICQzPusAoDH3yoW91G_viYPv67XXpN7C5jV3d4nN0nen2seuck7e9aqN75tMvio7_9V432LUGmvJhHUs32SVY3mK7o9YR7jb7elob1-Nqx-ewKt-vifrlo9VHhJhF0VR08sb6hzuyMVfEyfOfZA-5y1Lgir_5sKBSIiKEDR9a67KY-LzcIJ5fVBf8VVXkCgE1cATWfOy0LnCJ5PNqBd8-f3leVMCnxC3gwfhi4RK4-eGitLC-w86Pxmejid9YPfgmxJdEjJ8rSEBAoFMbBaBiSAyIPBmkqcnTMDWQ6DCWUgJuBxCkREkkEXtaEUaRyePwLttZlku4xzgIxHTGinxgtDSBSWxgdD_NcSNsE_xzj_ltR2em0UEnO44iqxWcRUYdkHUd4LFnXft3tQLIH1vut3GTNTPBOhMpcWwyjmKPPelOY8fRhxm1hLKiNjgxIk6MEo_t1fHW3Yo-7Ca4DfKYcFHzl2fIhrPjcXd0_18uesx2J2cn02x6PHv5gF3F36XvHHD22c5mVcFDRGEb_ciNs-_DOi4- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgkIAN70dgACMhsUqncVzHWZY-NANDVQ2MNGIT-XEjVWSaUduAYMUn8Bv8Fl_CtfNgCkJIsHRiJ7Z8bR9f-55DyDPFNNdW4e5EMRtyGJhQa9sPI8MTLrRR1vshX8_E_jF_eTI4ORfFX_NDdA43NzL8fO0G-JnN936ShroI7J4T_45StNKL5BIX_dSJN4yPOgIphtZZxxfFcehk6Fvaxj7b2y6_vSz9hjW3oatfe6bXiWprXV85ed-rNrpnPv9C6Pg_zbpBrjXAlA5rS7pJLsDyFrkyavXgbpNvR7VsPa51dA6r8sPaOX7paPUJAWZRNPGctBH-od7VmCvnkafnSA-pv6NAFX33ceECiZw72NChtf4OE52XG0Tzi-qUvqmKXCGcBoqwmk480wUukHRereD7l68vigroofMsYGJyuvDXt-l4UVpY3yHH08nb0X7YCD2EJsZGIsLPFUhgEOnUighUAtIAy-UgTU2exqkBqeOEcw64GUCIIqTgiDwti4UweRLfJTvLcgn3CQWGiM5Ylg-M5iYy0kZG99Mct8FW4scDErb9nJmGBd2JcRRZzd_MMtcBWdcBAXne5T-r-T_-mHO3NZusmQfWGUudh40nIgnI0-41dpw7llFLKCuXB6dFRIlCBuRebW7dr9yxrsRNUECYN5q_1CEbzg4mXerBvxR6Qi7Px9Ps8GD26iG5io956OVvdsnOZlXBI4RgG_3Yj7IfG4Es7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Perovskite+Crystallization+through+Interfacial+Engineering+Using+a+Zwitterionic+Additive+Potassium+Sulfamate+for+Efficient+Pure%E2%80%90Blue+Light%E2%80%90Emitting+Diodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+Yi&rft.au=Wang%2C+Bing%E2%80%90Feng&rft.au=Shen%2C+Yang&rft.au=Su%2C+Zhen%E2%80%90Huang&rft.date=2024-02-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=7&rft_id=info:doi/10.1002%2Fanie.202319730&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202319730 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |