Achieving Biofunctional Micropatterns via Protein‐Based Aqueous Photoresists with Tailored Functionalities
Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of b...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 19; pp. e2411900 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202411900 |
Cover
Abstract | Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein‐based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high‐resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin‐coating, development, and lift‐off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high‐throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors.
This study introduces a protein‐based aqueous photoresist derived from chemically modified silk fibroin that employs an entirely water‐based process for achieving high‐resolution micropatterning (<1.2 µm) with excellent biocompatibility. The conjugation of biofunctional molecules to the photoresist further allows the efficient and high‐throughput fabrication of multiplexed biofunctional micropatterns, with potential applications in biosynthesis, diagnostics, and biosensors. |
---|---|
AbstractList | Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin-coating, development, and lift-off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high-throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors.Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin-coating, development, and lift-off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high-throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors. Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein‐based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high‐resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin‐coating, development, and lift‐off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high‐throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors. This study introduces a protein‐based aqueous photoresist derived from chemically modified silk fibroin that employs an entirely water‐based process for achieving high‐resolution micropatterning (<1.2 µm) with excellent biocompatibility. The conjugation of biofunctional molecules to the photoresist further allows the efficient and high‐throughput fabrication of multiplexed biofunctional micropatterns, with potential applications in biosynthesis, diagnostics, and biosensors. Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein‐based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high‐resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin‐coating, development, and lift‐off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high‐throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors. Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein‐based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high‐resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin‐coating, development, and lift‐off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high‐throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors. |
Author | Shang, Hongpeng Ding, Jie Guo, Chengchen Zheng, Xiaorui Li, Zishun Wang, Min Wang, Jiaqi |
Author_xml | – sequence: 1 givenname: Jiaqi surname: Wang fullname: Wang, Jiaqi organization: Westlake University – sequence: 2 givenname: Zishun surname: Li fullname: Li, Zishun organization: Fudan University – sequence: 3 givenname: Min surname: Wang fullname: Wang, Min organization: Westlake University – sequence: 4 givenname: Hongpeng surname: Shang fullname: Shang, Hongpeng organization: Westlake University – sequence: 5 givenname: Jie surname: Ding fullname: Ding, Jie organization: Westlake University – sequence: 6 givenname: Xiaorui surname: Zheng fullname: Zheng, Xiaorui email: zhengxiaorui@westlake.edu.cn organization: Westlake Institute for Optoelectronics – sequence: 7 givenname: Chengchen orcidid: 0000-0001-9253-3469 surname: Guo fullname: Guo, Chengchen email: guochengchen@westlake.edu.cn organization: Westlake Laboratory of Life Sciences and Biomedicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39817877$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYMovrcuJeDGTWseM5OZZRVfUFGw-yFN7thIOqlJRnHnT_A3-kvMUK0giKuE8J2bc8_ZQeutawGhA0qGlBB2EubWDhlhGaUVIWtomxaUD4qSVeurOyVbaCeER0I4ZZnYRFu8KqkohdhGdqRmBp5N-4BPjWu6VkXjWmnxjVHeLWSM4NuAn43Ed95FMO3H2_upDKDx6KkD1wV8N3PReQgmxIBfTJzhiTQ2vWh8sZpnooGwhzYaaQPsf527aHJxPjm7GoxvL6_PRuOB4oKTgRAq0xTy5DIDlYtpwaaSaMpIw5RSOdeZlvlUawlQkUJTLStVpt0KKhRv-C46Xo5deJc8hljPTVBgrWx7wzWneZGzKi-KhB79Qh9d55PfRDFWpqFZ1VOHX1Q3nYOuF97MpX-tv2NMwHAJpMxC8NCsEErqvqe676le9ZQE2S-BMlH2UUWfwvtbVi1lL8bC6z-f1Pc34_GP9hOnYqq3 |
CitedBy_id | crossref_primary_10_1002_smll_202412297 |
Cites_doi | 10.1002/adhm.202301439 10.1021/acs.chemrev.0c00923 10.1126/sciadv.aay5696 10.1021/acs.nanolett.1c04081 10.1126/sciadv.abi7360 10.1073/pnas.2003696117 10.1002/admt.201900991 10.1038/nnano.2014.47 10.1002/adma.201302823 10.1021/acs.analchem.0c03487 10.1021/acsaenm.2c00045 10.1021/jp300090n 10.1021/acsami.5b00064 10.1002/advs.201700191 10.1021/acsami.2c17843 10.1021/acsami.1c15047 10.1126/science.1071480 10.1021/nn5004277 10.1126/science.abh3551 10.1021/acsnano.2c05195 10.1021/acsbiomaterials.8b00040 10.3390/photonics10080910 10.1038/s41565-020-0755-9 10.1002/bip.23412 10.1021/acsabm.0c00369 10.1038/ncomms13079 10.1002/adma.202308843 10.1002/adma.201900870 10.1038/s41580-020-00279-w 10.1021/acs.chemrev.9b00725 10.1021/acsami.9b10226 10.1002/adma.201400777 10.3389/fbioe.2015.00062 10.1021/acsami.5b01380 10.1021/jacs.2c02883 10.1038/ncomms7654 10.1038/s41557-020-0511-7 10.1038/s41467-021-22645-8 10.1021/ja991829k 10.1021/acsapm.2c00475 10.1002/adfm.201605912 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202411900 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39817877 10_1002_smll_202411900 SMLL202411900 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Key Research and Development Program of Zhejiang Province funderid: 2023SDXHDX0004 – fundername: HRHI program of Westlake Laboratory of Life Sciences and Biomedicine funderid: 202209004 – fundername: National Natural Science Foundation of China funderid: 52103129 – fundername: Key Research and Development Program of Zhejiang Province grantid: 2023SDXHDX0004 – fundername: HRHI program of Westlake Laboratory of Life Sciences and Biomedicine grantid: 202209004 – fundername: National Natural Science Foundation of China grantid: 52103129 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ 53G AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGQPQ AGXDD AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c3730-77c4d1e53984ec57b62ba0d120f2ccc53d4da5bddaee906d1da9c8312617c3f3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 05 04:18:06 EDT 2025 Mon Jul 21 12:12:32 EDT 2025 Mon Jul 21 05:18:28 EDT 2025 Thu Jul 24 02:15:22 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 Mon May 12 09:30:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Silk fibroin diagnostics aqueous photoresist biofunctional micropattern chemically modified protein |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-77c4d1e53984ec57b62ba0d120f2ccc53d4da5bddaee906d1da9c8312617c3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9253-3469 |
PMID | 39817877 |
PQID | 3228831496 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3156529566 proquest_journals_3228831496 pubmed_primary_39817877 crossref_primary_10_1002_smll_202411900 crossref_citationtrail_10_1002_smll_202411900 wiley_primary_10_1002_smll_202411900_SMLL202411900 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 10 2021; 7 2015; 6 2013; 25 2023; 36 2015; 3 2017; 4 2002; 296 2019; 31 2019; 11 2020; 120 2017; 27 2014; 26 1999; 121 2020; 15 2023; 1 2020; 12 2022; 22 2021; 121 2021; 93 2015; 7 2022; 144 2021; 13 2020; 6 2016; 7 2020; 5 2020; 3 2021; 12 2018; 4 2023 2021; 112 2022; 4 2020; 117 2022; 14 2021; 373 2020; 21 2014; 9 2014; 8 2012; 116 2022; 16 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 Yang X. (e_1_2_9_40_1) 2023 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 22 start-page: 726 year: 2022 publication-title: Nano Lett. – volume: 120 start-page: 6009 year: 2020 publication-title: Chem. Rev. – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 6698 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 6654 year: 2015 publication-title: Nat. Commun. – volume: 25 start-page: 6207 year: 2013 publication-title: Adv. Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 3347 year: 2012 publication-title: J. Phys. Chem. A – year: 2023 publication-title: Adv. Mater. – volume: 27 year: 2017 publication-title: Adv Funct Materials – volume: 93 start-page: 697 year: 2021 publication-title: Anal. Chem. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 373 start-page: 88 year: 2021 publication-title: Science – volume: 1 start-page: 222 year: 2023 publication-title: ACS Appl. Eng. Mater. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 4 start-page: 4508 year: 2022 publication-title: ACS Appl. Polym. Mater. – volume: 15 start-page: 941 year: 2020 publication-title: Nat. Nanotechnol. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 1995 year: 2014 publication-title: ACS Nano – volume: 296 start-page: 1836 year: 2002 publication-title: Science – volume: 12 start-page: 814 year: 2020 publication-title: Nat. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 4 start-page: 1463 year: 2018 publication-title: ACS Biomater. Sci. Eng. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 62 year: 2015 publication-title: Front. Bioeng. Biotechnol. – volume: 21 start-page: 696 year: 2020 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 3 start-page: 2891 year: 2020 publication-title: ACS Appl. Bio Mater. – volume: 12 start-page: 2364 year: 2021 publication-title: Nat. Commun. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 7 start-page: 8809 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2020 publication-title: Adv. Mater. Technol – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 10 start-page: 910 year: 2023 publication-title: ACS Photonics – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 144 start-page: 9949 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 121 start-page: 9879 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 306 year: 2014 publication-title: Nature Nanotech. – volume: 112 year: 2021 publication-title: Biopolymers – volume: 36 year: 2023 publication-title: Adv. Mater. – year: 2023 publication-title: Adv Healthcare Materials – volume: 26 start-page: 4431 year: 2014 publication-title: Adv. Mater. – ident: e_1_2_9_29_1 doi: 10.1002/adhm.202301439 – ident: e_1_2_9_35_1 doi: 10.1021/acs.chemrev.0c00923 – ident: e_1_2_9_16_1 doi: 10.1126/sciadv.aay5696 – ident: e_1_2_9_4_1 doi: 10.1021/acs.nanolett.1c04081 – ident: e_1_2_9_3_1 doi: 10.1126/sciadv.abi7360 – ident: e_1_2_9_24_1 doi: 10.1073/pnas.2003696117 – ident: e_1_2_9_33_1 doi: 10.1002/admt.201900991 – ident: e_1_2_9_7_1 doi: 10.1038/nnano.2014.47 – ident: e_1_2_9_26_1 doi: 10.1002/adma.201302823 – ident: e_1_2_9_30_1 doi: 10.1021/acs.analchem.0c03487 – ident: e_1_2_9_6_1 doi: 10.1021/acsaenm.2c00045 – ident: e_1_2_9_27_1 doi: 10.1021/jp300090n – ident: e_1_2_9_43_1 doi: 10.1021/acsami.5b00064 – ident: e_1_2_9_25_1 doi: 10.1002/advs.201700191 – ident: e_1_2_9_36_1 doi: 10.1021/acsami.2c17843 – ident: e_1_2_9_17_1 doi: 10.1021/acsami.1c15047 – ident: e_1_2_9_15_1 doi: 10.1126/science.1071480 – ident: e_1_2_9_37_1 doi: 10.1021/nn5004277 – ident: e_1_2_9_2_1 doi: 10.1126/science.abh3551 – ident: e_1_2_9_38_1 doi: 10.1021/acsnano.2c05195 – ident: e_1_2_9_11_1 doi: 10.1021/acsbiomaterials.8b00040 – ident: e_1_2_9_1_1 doi: 10.3390/photonics10080910 – ident: e_1_2_9_32_1 doi: 10.1038/s41565-020-0755-9 – ident: e_1_2_9_18_1 doi: 10.1002/bip.23412 – ident: e_1_2_9_21_1 doi: 10.1021/acsabm.0c00369 – ident: e_1_2_9_9_1 doi: 10.1038/ncomms13079 – ident: e_1_2_9_34_1 doi: 10.1002/adma.202308843 – ident: e_1_2_9_20_1 doi: 10.1002/adma.201900870 – ident: e_1_2_9_41_1 doi: 10.1038/s41580-020-00279-w – ident: e_1_2_9_13_1 doi: 10.1021/acs.chemrev.9b00725 – ident: e_1_2_9_5_1 doi: 10.1021/acsami.9b10226 – ident: e_1_2_9_22_1 doi: 10.1002/adma.201400777 – ident: e_1_2_9_42_1 doi: 10.3389/fbioe.2015.00062 – ident: e_1_2_9_23_1 doi: 10.1021/acsami.5b01380 – ident: e_1_2_9_10_1 doi: 10.1021/jacs.2c02883 – ident: e_1_2_9_12_1 doi: 10.3389/fbioe.2015.00062 – ident: e_1_2_9_8_1 doi: 10.1038/ncomms7654 – ident: e_1_2_9_31_1 doi: 10.1038/s41557-020-0511-7 – ident: e_1_2_9_39_1 doi: 10.1038/s41467-021-22645-8 – year: 2023 ident: e_1_2_9_40_1 publication-title: Adv. Mater. – ident: e_1_2_9_28_1 doi: 10.1021/ja991829k – ident: e_1_2_9_19_1 doi: 10.1021/acsapm.2c00475 – ident: e_1_2_9_14_1 doi: 10.1002/adfm.201605912 |
SSID | ssj0031247 |
Score | 2.4746056 |
Snippet | Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in... Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2411900 |
SubjectTerms | Animals aqueous photoresist Biocompatibility Biocompatible Materials - chemistry biofunctional micropattern Biological activity Biosensors Biosynthesis chemically modified protein Conjugation diagnostics Fibroins - chemistry High temperature Micropatterning Nucleic acids Photolithography Photoresists Proteins Proteins - chemistry Reagents Silk fibroin Water - chemistry |
Title | Achieving Biofunctional Micropatterns via Protein‐Based Aqueous Photoresists with Tailored Functionalities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202411900 https://www.ncbi.nlm.nih.gov/pubmed/39817877 https://www.proquest.com/docview/3228831496 https://www.proquest.com/docview/3156529566 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFLYQJzjAsJcBZKSROAWS2Fl8LEuFEEVoKBK3yFtENJ0UkXYOc-In8Bv5JbzntIGCEBIck9iJ_XY_O98j5Bfnkos8DzypEt_j3HBP6YR7msUgLYJb4WoRdC_i02t-dhPdvPqLv8aHaBJuqBnOXqOCS1UdvICGVn_7uHUAHgh8Gi7aAxYjeP7x7wY_ioHzctVVwGd5CLw1QW30w4Pp7tNe6V2oOR25OtfTWSRyMuj6xMmf_dFQ7ev_b_AcvzOrH2RhHJfSdi1IS2TGlstk_hVa4Qrpt_VtYTEBQQ-LATrEOo9Iu3io784BdZYV_VdIeonoD0X59PB4CF7S0DZMdDCq6OXtANb4tgLZqiimgGlPFn24Y2ineZ_DeF0lvc5J7-jUGxdrALaClYAoXXMT2IiJlFsdJSoOlfRNEPp5qLWOmOFGRsoYaa3wYxMYKXQKHIIQSrOcrZHZclDaDUKTPNVWRSLnTHEhlVDGpsqXUjKdKOG3iDfhVabHQOZYT6Of1RDMYYZEzBoitshe0_6uhvD4sOXWhPXZWJWrDCxeCuPkIm6R3eYxKCHurMgSqZcxWAXjjmkMbdZrkWk-BQQJwComLRI6xn8yhuyqe37eXG1-pdNPMhdilWJ3LHOLzA7vR3YbQqeh2nHq8QxbohPx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6h5QAceD8KCxgJiVN2k9h5-NgFqgLtagVF4mb5FW1ESVek5cCJn8Bv5Jcw4zSBghASHJPYiT3j8Tw8-QbgsRBayKpKIm2KOBLCicjYQkSW57hapPAy1CKYH-fTt-Llu6zPJqR_YTp8iCHgRpIR9msScApIH_5ADW0_LOnsAFUQKjX02s8LtDbI_3r2ekCQ4qi-Qn0V1FoRQW_1uI1xerjbf1cv_WZs7tquQflMroDph93lnLw_2KzNgf38C6Ljf83rKlzemqZs3K2la3DON9fh0k-AhTdgObantacYBDuqV6QTu1Aim1Ne31nA6mxa9qnW7IQAIOrm25evR6goHRvjTFeblp2crtDN9y0ur5ZRFJgtdL3EO45NhvcFmNebsJg8XzydRtt6DchZ3CjQULfCJT7jshTeZoXJU6Njl6RxlVprM-6E05lxTnsv49wlTktbIovQirK84rdgr1k1_g6woiqtN5msBDdCaiON86WJtdbcFkbGI4h6Zim7xTKnkhpL1aEwp4qIqAYijuDJ0P6sQ_H4Y8v9nvdqK82twk2vxHEKmY_g0fAY5ZAOV3RD1FMcHWE6NM2xze1uzQyfQoIkuDEWI0gD5_8yBvVmPpsNV3f_pdNDuDBdzGdq9uL41T24mFLR4pCluQ97648bfx8tqbV5EGTlO5JkGBA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CQ0Ljgcs2oDDAkybtKVsSOxc_dkA1tnaqtk7am-VbtIiSVqTlgSd-Ar-RX8Kx02br0DQJHpPYiX3uPna-A7DLmGS8KKJAqiwMGDMsUDpjgaYpSgtnlvtaBIPT9OiCHV8mlzf-4m_wIdqEm9MMb6-dgk9NcXANGlp_HbutA_RA6NNw0f6QpRhOuLDorAWQoui9fHkVdFqBQ95awjaG8cFq_1W39FesuRq6et_TewpyOermyMmX_flM7esftwAd_2daz-DJIjAl3UaSnsMDW23A4xtwhZsw7uqr0roMBDksJ84jNolEMnCn-qYeqbOqyfdSkqGDfyir3z9_HaKbNKSLE53MazK8muAi39YoXDVxOWAykuUY7xjSa9_nQV63YNT7NPpwFCyqNSBf0UxgmK6ZiWxCec6sTjKVxkqGJorDItZaJ9QwIxNljLSWh6mJjOQ6Rw5hDKVpQV_AWjWp7CsgWZFrqxJeMKoYl4orY3MVSimpzhQPOxAseSX0AsncFdQYiwaDORaOiKIlYgf22vbTBsPjzpbbS9aLhS7XAk1ejuNkPO3ATvsYtdBtrcjKUU9QXAa7LdMU27xsRKb9FBIkQrOYdSD2jL9nDOJ80O-3V6__pdN7eDT82BP9z6cnb2A9dhWL_RHNbVibfZvbtxhGzdQ7ryl_ADyAFr8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Biofunctional+Micropatterns+via+Protein%E2%80%90Based+Aqueous+Photoresists+with+Tailored+Functionalities&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Jiaqi&rft.au=Li%2C+Zishun&rft.au=Wang%2C+Min&rft.au=Shang%2C+Hongpeng&rft.date=2025-05-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202411900&rft.externalDBID=10.1002%252Fsmll.202411900&rft.externalDocID=SMLL202411900 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |