Achieving Biofunctional Micropatterns via Protein‐Based Aqueous Photoresists with Tailored Functionalities

Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of b...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 19; pp. e2411900 - n/a
Main Authors Wang, Jiaqi, Li, Zishun, Wang, Min, Shang, Hongpeng, Ding, Jie, Zheng, Xiaorui, Guo, Chengchen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2025
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202411900

Cover

Abstract Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein‐based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high‐resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin‐coating, development, and lift‐off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high‐throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors. This study introduces a protein‐based aqueous photoresist derived from chemically modified silk fibroin that employs an entirely water‐based process for achieving high‐resolution micropatterning (<1.2 µm) with excellent biocompatibility. The conjugation of biofunctional molecules to the photoresist further allows the efficient and high‐throughput fabrication of multiplexed biofunctional micropatterns, with potential applications in biosynthesis, diagnostics, and biosensors.
AbstractList Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin-coating, development, and lift-off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high-throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors.Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin-coating, development, and lift-off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high-throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors.
Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein‐based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high‐resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin‐coating, development, and lift‐off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high‐throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors. This study introduces a protein‐based aqueous photoresist derived from chemically modified silk fibroin that employs an entirely water‐based process for achieving high‐resolution micropatterning (<1.2 µm) with excellent biocompatibility. The conjugation of biofunctional molecules to the photoresist further allows the efficient and high‐throughput fabrication of multiplexed biofunctional micropatterns, with potential applications in biosynthesis, diagnostics, and biosensors.
Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein‐based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high‐resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin‐coating, development, and lift‐off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high‐throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors.
Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous‐based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein‐based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high‐resolution micropatterning (<1.2 µm) while retaining good biocompatibility, is presented. The entire fabrication process, including spin‐coating, development, and lift‐off, employs solely SAMA and water, eliminating the need for toxic reagents and elevated temperature. Notably, the SAMA photoresist allows covalent conjugation of biofunctional molecules, such as enzymes and nucleic acids, while preserving their bioactivity during micropatterning. This innovative approach enables the high‐throughput generation of bioactive micropatterns for various applications such as biosynthesis, diagnostics, and biosensors.
Author Shang, Hongpeng
Ding, Jie
Guo, Chengchen
Zheng, Xiaorui
Li, Zishun
Wang, Min
Wang, Jiaqi
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Wang
  fullname: Wang, Jiaqi
  organization: Westlake University
– sequence: 2
  givenname: Zishun
  surname: Li
  fullname: Li, Zishun
  organization: Fudan University
– sequence: 3
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  organization: Westlake University
– sequence: 4
  givenname: Hongpeng
  surname: Shang
  fullname: Shang, Hongpeng
  organization: Westlake University
– sequence: 5
  givenname: Jie
  surname: Ding
  fullname: Ding, Jie
  organization: Westlake University
– sequence: 6
  givenname: Xiaorui
  surname: Zheng
  fullname: Zheng, Xiaorui
  email: zhengxiaorui@westlake.edu.cn
  organization: Westlake Institute for Optoelectronics
– sequence: 7
  givenname: Chengchen
  orcidid: 0000-0001-9253-3469
  surname: Guo
  fullname: Guo, Chengchen
  email: guochengchen@westlake.edu.cn
  organization: Westlake Laboratory of Life Sciences and Biomedicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39817877$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYMovrcuJeDGTWseM5OZZRVfUFGw-yFN7thIOqlJRnHnT_A3-kvMUK0giKuE8J2bc8_ZQeutawGhA0qGlBB2EubWDhlhGaUVIWtomxaUD4qSVeurOyVbaCeER0I4ZZnYRFu8KqkohdhGdqRmBp5N-4BPjWu6VkXjWmnxjVHeLWSM4NuAn43Ed95FMO3H2_upDKDx6KkD1wV8N3PReQgmxIBfTJzhiTQ2vWh8sZpnooGwhzYaaQPsf527aHJxPjm7GoxvL6_PRuOB4oKTgRAq0xTy5DIDlYtpwaaSaMpIw5RSOdeZlvlUawlQkUJTLStVpt0KKhRv-C46Xo5deJc8hljPTVBgrWx7wzWneZGzKi-KhB79Qh9d55PfRDFWpqFZ1VOHX1Q3nYOuF97MpX-tv2NMwHAJpMxC8NCsEErqvqe676le9ZQE2S-BMlH2UUWfwvtbVi1lL8bC6z-f1Pc34_GP9hOnYqq3
CitedBy_id crossref_primary_10_1002_smll_202412297
Cites_doi 10.1002/adhm.202301439
10.1021/acs.chemrev.0c00923
10.1126/sciadv.aay5696
10.1021/acs.nanolett.1c04081
10.1126/sciadv.abi7360
10.1073/pnas.2003696117
10.1002/admt.201900991
10.1038/nnano.2014.47
10.1002/adma.201302823
10.1021/acs.analchem.0c03487
10.1021/acsaenm.2c00045
10.1021/jp300090n
10.1021/acsami.5b00064
10.1002/advs.201700191
10.1021/acsami.2c17843
10.1021/acsami.1c15047
10.1126/science.1071480
10.1021/nn5004277
10.1126/science.abh3551
10.1021/acsnano.2c05195
10.1021/acsbiomaterials.8b00040
10.3390/photonics10080910
10.1038/s41565-020-0755-9
10.1002/bip.23412
10.1021/acsabm.0c00369
10.1038/ncomms13079
10.1002/adma.202308843
10.1002/adma.201900870
10.1038/s41580-020-00279-w
10.1021/acs.chemrev.9b00725
10.1021/acsami.9b10226
10.1002/adma.201400777
10.3389/fbioe.2015.00062
10.1021/acsami.5b01380
10.1021/jacs.2c02883
10.1038/ncomms7654
10.1038/s41557-020-0511-7
10.1038/s41467-021-22645-8
10.1021/ja991829k
10.1021/acsapm.2c00475
10.1002/adfm.201605912
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202411900
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39817877
10_1002_smll_202411900
SMLL202411900
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Key Research and Development Program of Zhejiang Province
  funderid: 2023SDXHDX0004
– fundername: HRHI program of Westlake Laboratory of Life Sciences and Biomedicine
  funderid: 202209004
– fundername: National Natural Science Foundation of China
  funderid: 52103129
– fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2023SDXHDX0004
– fundername: HRHI program of Westlake Laboratory of Life Sciences and Biomedicine
  grantid: 202209004
– fundername: National Natural Science Foundation of China
  grantid: 52103129
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
53G
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c3730-77c4d1e53984ec57b62ba0d120f2ccc53d4da5bddaee906d1da9c8312617c3f3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 04:18:06 EDT 2025
Mon Jul 21 12:12:32 EDT 2025
Mon Jul 21 05:18:28 EDT 2025
Thu Jul 24 02:15:22 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Mon May 12 09:30:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Silk fibroin
diagnostics
aqueous photoresist
biofunctional micropattern
chemically modified protein
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-77c4d1e53984ec57b62ba0d120f2ccc53d4da5bddaee906d1da9c8312617c3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9253-3469
PMID 39817877
PQID 3228831496
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_3156529566
proquest_journals_3228831496
pubmed_primary_39817877
crossref_primary_10_1002_smll_202411900
crossref_citationtrail_10_1002_smll_202411900
wiley_primary_10_1002_smll_202411900_SMLL202411900
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 10
2021; 7
2015; 6
2013; 25
2023; 36
2015; 3
2017; 4
2002; 296
2019; 31
2019; 11
2020; 120
2017; 27
2014; 26
1999; 121
2020; 15
2023; 1
2020; 12
2022; 22
2021; 121
2021; 93
2015; 7
2022; 144
2021; 13
2020; 6
2016; 7
2020; 5
2020; 3
2021; 12
2018; 4
2023
2021; 112
2022; 4
2020; 117
2022; 14
2021; 373
2020; 21
2014; 9
2014; 8
2012; 116
2022; 16
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
Yang X. (e_1_2_9_40_1) 2023
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 22
  start-page: 726
  year: 2022
  publication-title: Nano Lett.
– volume: 120
  start-page: 6009
  year: 2020
  publication-title: Chem. Rev.
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 6698
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 6654
  year: 2015
  publication-title: Nat. Commun.
– volume: 25
  start-page: 6207
  year: 2013
  publication-title: Adv. Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 3347
  year: 2012
  publication-title: J. Phys. Chem. A
– year: 2023
  publication-title: Adv. Mater.
– volume: 27
  year: 2017
  publication-title: Adv Funct Materials
– volume: 93
  start-page: 697
  year: 2021
  publication-title: Anal. Chem.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 373
  start-page: 88
  year: 2021
  publication-title: Science
– volume: 1
  start-page: 222
  year: 2023
  publication-title: ACS Appl. Eng. Mater.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 4
  start-page: 4508
  year: 2022
  publication-title: ACS Appl. Polym. Mater.
– volume: 15
  start-page: 941
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1995
  year: 2014
  publication-title: ACS Nano
– volume: 296
  start-page: 1836
  year: 2002
  publication-title: Science
– volume: 12
  start-page: 814
  year: 2020
  publication-title: Nat. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1463
  year: 2018
  publication-title: ACS Biomater. Sci. Eng.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 62
  year: 2015
  publication-title: Front. Bioeng. Biotechnol.
– volume: 21
  start-page: 696
  year: 2020
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 3
  start-page: 2891
  year: 2020
  publication-title: ACS Appl. Bio Mater.
– volume: 12
  start-page: 2364
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 7
  start-page: 8809
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 10
  start-page: 910
  year: 2023
  publication-title: ACS Photonics
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 144
  start-page: 9949
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 121
  start-page: 9879
  year: 1999
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 306
  year: 2014
  publication-title: Nature Nanotech.
– volume: 112
  year: 2021
  publication-title: Biopolymers
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– year: 2023
  publication-title: Adv Healthcare Materials
– volume: 26
  start-page: 4431
  year: 2014
  publication-title: Adv. Mater.
– ident: e_1_2_9_29_1
  doi: 10.1002/adhm.202301439
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.chemrev.0c00923
– ident: e_1_2_9_16_1
  doi: 10.1126/sciadv.aay5696
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.nanolett.1c04081
– ident: e_1_2_9_3_1
  doi: 10.1126/sciadv.abi7360
– ident: e_1_2_9_24_1
  doi: 10.1073/pnas.2003696117
– ident: e_1_2_9_33_1
  doi: 10.1002/admt.201900991
– ident: e_1_2_9_7_1
  doi: 10.1038/nnano.2014.47
– ident: e_1_2_9_26_1
  doi: 10.1002/adma.201302823
– ident: e_1_2_9_30_1
  doi: 10.1021/acs.analchem.0c03487
– ident: e_1_2_9_6_1
  doi: 10.1021/acsaenm.2c00045
– ident: e_1_2_9_27_1
  doi: 10.1021/jp300090n
– ident: e_1_2_9_43_1
  doi: 10.1021/acsami.5b00064
– ident: e_1_2_9_25_1
  doi: 10.1002/advs.201700191
– ident: e_1_2_9_36_1
  doi: 10.1021/acsami.2c17843
– ident: e_1_2_9_17_1
  doi: 10.1021/acsami.1c15047
– ident: e_1_2_9_15_1
  doi: 10.1126/science.1071480
– ident: e_1_2_9_37_1
  doi: 10.1021/nn5004277
– ident: e_1_2_9_2_1
  doi: 10.1126/science.abh3551
– ident: e_1_2_9_38_1
  doi: 10.1021/acsnano.2c05195
– ident: e_1_2_9_11_1
  doi: 10.1021/acsbiomaterials.8b00040
– ident: e_1_2_9_1_1
  doi: 10.3390/photonics10080910
– ident: e_1_2_9_32_1
  doi: 10.1038/s41565-020-0755-9
– ident: e_1_2_9_18_1
  doi: 10.1002/bip.23412
– ident: e_1_2_9_21_1
  doi: 10.1021/acsabm.0c00369
– ident: e_1_2_9_9_1
  doi: 10.1038/ncomms13079
– ident: e_1_2_9_34_1
  doi: 10.1002/adma.202308843
– ident: e_1_2_9_20_1
  doi: 10.1002/adma.201900870
– ident: e_1_2_9_41_1
  doi: 10.1038/s41580-020-00279-w
– ident: e_1_2_9_13_1
  doi: 10.1021/acs.chemrev.9b00725
– ident: e_1_2_9_5_1
  doi: 10.1021/acsami.9b10226
– ident: e_1_2_9_22_1
  doi: 10.1002/adma.201400777
– ident: e_1_2_9_42_1
  doi: 10.3389/fbioe.2015.00062
– ident: e_1_2_9_23_1
  doi: 10.1021/acsami.5b01380
– ident: e_1_2_9_10_1
  doi: 10.1021/jacs.2c02883
– ident: e_1_2_9_12_1
  doi: 10.3389/fbioe.2015.00062
– ident: e_1_2_9_8_1
  doi: 10.1038/ncomms7654
– ident: e_1_2_9_31_1
  doi: 10.1038/s41557-020-0511-7
– ident: e_1_2_9_39_1
  doi: 10.1038/s41467-021-22645-8
– year: 2023
  ident: e_1_2_9_40_1
  publication-title: Adv. Mater.
– ident: e_1_2_9_28_1
  doi: 10.1021/ja991829k
– ident: e_1_2_9_19_1
  doi: 10.1021/acsapm.2c00475
– ident: e_1_2_9_14_1
  doi: 10.1002/adfm.201605912
SSID ssj0031247
Score 2.4746056
Snippet Photolithography is the most widely used micropatterning technique at the micro‐ and nanoscale in device fabrication. However, traditional photoresists used in...
Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2411900
SubjectTerms Animals
aqueous photoresist
Biocompatibility
Biocompatible Materials - chemistry
biofunctional micropattern
Biological activity
Biosensors
Biosynthesis
chemically modified protein
Conjugation
diagnostics
Fibroins - chemistry
High temperature
Micropatterning
Nucleic acids
Photolithography
Photoresists
Proteins
Proteins - chemistry
Reagents
Silk fibroin
Water - chemistry
Title Achieving Biofunctional Micropatterns via Protein‐Based Aqueous Photoresists with Tailored Functionalities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202411900
https://www.ncbi.nlm.nih.gov/pubmed/39817877
https://www.proquest.com/docview/3228831496
https://www.proquest.com/docview/3156529566
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFLYQJzjAsJcBZKSROAWS2Fl8LEuFEEVoKBK3yFtENJ0UkXYOc-In8Bv5JbzntIGCEBIck9iJ_XY_O98j5Bfnkos8DzypEt_j3HBP6YR7msUgLYJb4WoRdC_i02t-dhPdvPqLv8aHaBJuqBnOXqOCS1UdvICGVn_7uHUAHgh8Gi7aAxYjeP7x7wY_ioHzctVVwGd5CLw1QW30w4Pp7tNe6V2oOR25OtfTWSRyMuj6xMmf_dFQ7ev_b_AcvzOrH2RhHJfSdi1IS2TGlstk_hVa4Qrpt_VtYTEBQQ-LATrEOo9Iu3io784BdZYV_VdIeonoD0X59PB4CF7S0DZMdDCq6OXtANb4tgLZqiimgGlPFn24Y2ineZ_DeF0lvc5J7-jUGxdrALaClYAoXXMT2IiJlFsdJSoOlfRNEPp5qLWOmOFGRsoYaa3wYxMYKXQKHIIQSrOcrZHZclDaDUKTPNVWRSLnTHEhlVDGpsqXUjKdKOG3iDfhVabHQOZYT6Of1RDMYYZEzBoitshe0_6uhvD4sOXWhPXZWJWrDCxeCuPkIm6R3eYxKCHurMgSqZcxWAXjjmkMbdZrkWk-BQQJwComLRI6xn8yhuyqe37eXG1-pdNPMhdilWJ3LHOLzA7vR3YbQqeh2nHq8QxbohPx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6h5QAceD8KCxgJiVN2k9h5-NgFqgLtagVF4mb5FW1ESVek5cCJn8Bv5Jcw4zSBghASHJPYiT3j8Tw8-QbgsRBayKpKIm2KOBLCicjYQkSW57hapPAy1CKYH-fTt-Llu6zPJqR_YTp8iCHgRpIR9msScApIH_5ADW0_LOnsAFUQKjX02s8LtDbI_3r2ekCQ4qi-Qn0V1FoRQW_1uI1xerjbf1cv_WZs7tquQflMroDph93lnLw_2KzNgf38C6Ljf83rKlzemqZs3K2la3DON9fh0k-AhTdgObantacYBDuqV6QTu1Aim1Ne31nA6mxa9qnW7IQAIOrm25evR6goHRvjTFeblp2crtDN9y0ur5ZRFJgtdL3EO45NhvcFmNebsJg8XzydRtt6DchZ3CjQULfCJT7jshTeZoXJU6Njl6RxlVprM-6E05lxTnsv49wlTktbIovQirK84rdgr1k1_g6woiqtN5msBDdCaiON86WJtdbcFkbGI4h6Zim7xTKnkhpL1aEwp4qIqAYijuDJ0P6sQ_H4Y8v9nvdqK82twk2vxHEKmY_g0fAY5ZAOV3RD1FMcHWE6NM2xze1uzQyfQoIkuDEWI0gD5_8yBvVmPpsNV3f_pdNDuDBdzGdq9uL41T24mFLR4pCluQ97648bfx8tqbV5EGTlO5JkGBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5CQ0Ljgcs2oDDAkybtKVsSOxc_dkA1tnaqtk7am-VbtIiSVqTlgSd-Ar-RX8Kx02br0DQJHpPYiX3uPna-A7DLmGS8KKJAqiwMGDMsUDpjgaYpSgtnlvtaBIPT9OiCHV8mlzf-4m_wIdqEm9MMb6-dgk9NcXANGlp_HbutA_RA6NNw0f6QpRhOuLDorAWQoui9fHkVdFqBQ95awjaG8cFq_1W39FesuRq6et_TewpyOermyMmX_flM7esftwAd_2daz-DJIjAl3UaSnsMDW23A4xtwhZsw7uqr0roMBDksJ84jNolEMnCn-qYeqbOqyfdSkqGDfyir3z9_HaKbNKSLE53MazK8muAi39YoXDVxOWAykuUY7xjSa9_nQV63YNT7NPpwFCyqNSBf0UxgmK6ZiWxCec6sTjKVxkqGJorDItZaJ9QwIxNljLSWh6mJjOQ6Rw5hDKVpQV_AWjWp7CsgWZFrqxJeMKoYl4orY3MVSimpzhQPOxAseSX0AsncFdQYiwaDORaOiKIlYgf22vbTBsPjzpbbS9aLhS7XAk1ejuNkPO3ATvsYtdBtrcjKUU9QXAa7LdMU27xsRKb9FBIkQrOYdSD2jL9nDOJ80O-3V6__pdN7eDT82BP9z6cnb2A9dhWL_RHNbVibfZvbtxhGzdQ7ryl_ADyAFr8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Biofunctional+Micropatterns+via+Protein%E2%80%90Based+Aqueous+Photoresists+with+Tailored+Functionalities&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Jiaqi&rft.au=Li%2C+Zishun&rft.au=Wang%2C+Min&rft.au=Shang%2C+Hongpeng&rft.date=2025-05-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202411900&rft.externalDBID=10.1002%252Fsmll.202411900&rft.externalDocID=SMLL202411900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon