Charge‐Assisted Ionic Hydrogen‐Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials
Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydroge...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 17; pp. e202303580 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
20.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π–π stacking, highly interpenetrated networks, charge‐assisted, ligand‐bond‐assisted, molecular weaving, and covalent cross‐linking. Charge‐assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge‐assisted ionic HOFs, and introduces the different building block construction modes of charge‐assisted ionic HOFs. Highlight the applications of charge‐assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge‐assisted ionic HOFs structures and multifunctional applications.
Strategies for the construction of charge‐assisted ionic hydrogen‐bonded organic frameworks (HOFs) as well as recent advances form the focus of this review. The applications of these charge‐assisted ionic hydrogen‐bonded organic frameworks in gas adsorption and separation, proton conduction, and biological applications are highlighted, as well as prospects for future developments in this field. |
---|---|
AbstractList | Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications. Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π–π stacking, highly interpenetrated networks, charge‐assisted, ligand‐bond‐assisted, molecular weaving, and covalent cross‐linking. Charge‐assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge‐assisted ionic HOFs, and introduces the different building block construction modes of charge‐assisted ionic HOFs. Highlight the applications of charge‐assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge‐assisted ionic HOFs structures and multifunctional applications. Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications. Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π–π stacking, highly interpenetrated networks, charge‐assisted, ligand‐bond‐assisted, molecular weaving, and covalent cross‐linking. Charge‐assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge‐assisted ionic HOFs, and introduces the different building block construction modes of charge‐assisted ionic HOFs. Highlight the applications of charge‐assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge‐assisted ionic HOFs structures and multifunctional applications. Strategies for the construction of charge‐assisted ionic hydrogen‐bonded organic frameworks (HOFs) as well as recent advances form the focus of this review. The applications of these charge‐assisted ionic hydrogen‐bonded organic frameworks in gas adsorption and separation, proton conduction, and biological applications are highlighted, as well as prospects for future developments in this field. |
Author | Bai, Xiang‐Tian Cao, Li‐Hui Chen, Xu‐Yong Cao, Xiao‐Jie |
Author_xml | – sequence: 1 givenname: Xu‐Yong surname: Chen fullname: Chen, Xu‐Yong organization: Shaanxi University of Science and Technology – sequence: 2 givenname: Li‐Hui orcidid: 0000-0002-3676-0242 surname: Cao fullname: Cao, Li‐Hui email: caolihui@sust.edu.cn organization: Shaanxi University of Science and Technology – sequence: 3 givenname: Xiang‐Tian surname: Bai fullname: Bai, Xiang‐Tian organization: Shaanxi University of Science and Technology – sequence: 4 givenname: Xiao‐Jie surname: Cao fullname: Cao, Xiao‐Jie organization: Shaanxi University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38179818$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQhy1URLeFK0cUiQuXLP4Txza3dmnZSl31AJwtJ5lsXRy7tRNVy4lH4Bl5EhxtC1IlxGkkz_eNPPM7Qgc-eEDoNcFLgjF9317DsKSYMsy4xM_QgnBKSiZqfoAWWFWirDlTh-gopRuMsaoZe4EOmSRCSSIX6G51beIWfv34eZKSTSN0xUXwti3Wuy6GLfjcOQ2-y-9XcWvmznk0A9yH-C19KD5CsltvGgeF8V3xeTSNdfZ7pjeTG20_-Xa0wRtXbMwI0RqXXqLnfS7w6qEeo6_nZ19W6_Ly6tPF6uSybJlguBSc9Y1UnaG1EFVLoea8xZ1gDZWMEkIAdzU0uIKKUal6JWjVQNV3vGoMrwk7Ru_2c29juJsgjXqwqQXnjIcwJU0V4UqKms3o2yfoTZhi_vVMyUrlq0mVqTcP1NQM0OnbaAcTd_rxmBmo9kAbQ0oRet3a0cz7j9FYpwnWc2Z6zkz_ySxryyfa4-R_Cmov3FsHu__QerU-2_x1fwOrMqsh |
CitedBy_id | crossref_primary_10_1016_j_jiec_2024_11_002 crossref_primary_10_1039_D4SC02751E crossref_primary_10_1107_S2053229624005850 crossref_primary_10_1002_adfm_202409359 crossref_primary_10_1002_asia_202400870 crossref_primary_10_1039_D5CC00892A crossref_primary_10_1007_s11426_024_2352_9 crossref_primary_10_1021_prechem_4c00102 crossref_primary_10_1021_acsmaterialslett_4c00953 crossref_primary_10_1021_acsapm_4c03255 crossref_primary_10_1002_zaac_202400179 crossref_primary_10_1371_journal_pone_0303904 crossref_primary_10_1039_D4TC01453G crossref_primary_10_1021_acs_cgd_4c01070 |
Cites_doi | 10.1039/C6CC02964G 10.1016/j.jphotochemrev.2021.100418 10.1002/anie.202105634 10.1126/science.1220131 10.1002/anie.202108388 10.1002/anie.201201174 10.1002/chem.202300028 10.1126/science.aal1585 10.1039/D3CE00086A 10.1002/chem.201902117 10.1021/cr300014x 10.1021/jacs.8b02869 10.1021/acs.cgd.1c00007 10.1021/jacs.2c04532 10.1002/ange.201503835 10.1021/jacs.9b06589 10.1021/acs.chemmater.2c03817 10.1002/anie.202203955 10.1039/D1SC02690A 10.1021/acsanm.9b00303 10.1021/acs.cgd.2c01306 10.1002/anie.201208153 10.1126/science.aax8666 10.1002/anie.201800423 10.1039/C7CS00153C 10.1039/C8CS00155C 10.1002/adma.202002563 10.1021/cm00044a019 10.1039/C9CS00827F 10.1039/D0SC06906J 10.1021/jacs.7b11747 10.1039/C2CS35072F 10.1021/ja2066016 10.1039/C7CC00557A 10.1038/nenergy.2016.34 10.1002/anie.201604534 10.1039/D1MA01173A 10.1038/ncomms5503 10.1002/adma.201707146 10.1021/acsenergylett.1c02045 10.1038/s41570-020-00228-3 10.1021/acs.chemmater.3c01669 10.1039/D0CS00997K 10.1021/acs.cgd.7b01538 10.1002/anie.202109987 10.1002/smll.202301887 10.1002/anie.202202597 10.1002/anie.200603841 10.1002/adma.201705146 10.1021/acs.chemrev.9b00757 10.1021/jacs.7b10292 10.1039/C6CS00250A 10.1021/cg300796u 10.1002/anie.201911861 10.1039/D3TA04738E 10.1038/nature21419 10.1002/anie.202208660 10.1002/chem.201700798 10.1016/j.chempr.2021.11.014 10.1002/anie.201902147 10.1039/D3QI01401K 10.1002/anie.202213959 10.1021/acs.cgd.9b00145 10.1002/chem.202201929 10.1039/C7TA01364G 10.1021/acs.cgd.9b00801 10.1021/jacs.2c02598 10.1039/C6CC00366D 10.1021/ja00220a005 10.1021/jacs.0c05277 10.1016/j.chempr.2022.06.015 10.1039/C7SC00201G 10.1002/adma.202005912 10.1021/accountsmr.2c00173 10.1021/ja3055639 10.1039/C8CS00829A 10.1016/j.chempr.2021.02.017 10.1038/s41467-019-12453-6 10.1021/ja4129795 10.1038/s41563-017-0013-1 10.1002/chem.201701893 10.1002/anie.201509761 10.1002/chem.202000186 10.1002/chem.202101061 10.1038/nprot.2014.042 10.1038/s41929-023-00972-x 10.31635/ccschem.021.202100824 10.1021/jacs.2c02918 10.1107/S0108768195009980 10.1021/acs.cgd.5b00147 10.1021/acs.cgd.9b00582 10.1002/anie.201610916 10.1038/nature11893 10.1021/acs.accounts.5b00369 10.1002/adma.201601133 10.1021/cr200324t 10.1002/anie.202011300 10.1039/C0JM03449E 10.1021/jacs.7b13706 10.1021/prechem.3c00094 10.1038/nature11990 10.1038/s41467-020-16977-0 10.1107/S0567740869001713 10.1021/acs.cgd.6b00924 10.1039/C4CS00010B 10.1021/jacs.9b13274 10.1039/C9CC06707H 10.1002/anie.201800354 10.1021/ja1042935 10.1002/chem.202202655 10.1039/C4CS00129J 10.1039/C5CS00023H 10.1126/science.aaz8881 10.1039/C8SC04376K 10.1126/science.1230444 10.1021/ar00172a005 10.1021/ja963905e 10.1021/jacs.5b00534 10.1002/ange.201903600 10.1002/anie.201911087 10.1126/science.1064432 10.1039/C4CS00230J 10.1038/ncomms6131 10.1002/chem.201202959 10.1002/anie.202214189 10.1039/C8DT05030A 10.1021/jacs.7b09452 10.1039/D1ME00055A 10.1002/anie.202308418 10.1002/adma.202208625 10.1007/s10847-019-00972-0 10.1016/j.chempr.2018.12.025 10.1039/C5CC01645B 10.1038/s41467-022-29382-6 10.1126/science.aaf2458 10.1021/accountsmr.0c00019 10.1039/b802426j 10.1039/C9CC09171H 10.1038/s41467-020-18419-3 10.1002/chem.201602233 10.1021/acsami.1c06312 10.1039/C8CE00655E 10.1021/jacs.9b03766 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C 10.1038/s41557-021-00740-z 10.1021/jacs.6b02968 10.1126/science.276.5312.575 10.1021/jacs.0c06485 10.1021/acs.accounts.6b00360 10.1021/acsami.1c15748 10.1021/acs.chemrev.9b00550 10.1016/j.ccr.2018.02.008 10.1038/s41467-019-10575-5 10.1021/jacs.9b05232 10.1039/C6CS00528D 10.1002/anie.202218360 10.1039/b807080f 10.1055/s-0039-1698431 10.1021/acscentsci.2c01196 10.1021/acs.accounts.2c00686 10.1021/ja403002m 10.1021/ja506577g 10.1002/anie.201610901 10.1039/D1CC04782E 10.1002/asia.201700406 10.1021/jacs.5b05644 10.1002/anie.202311419 10.1002/chem.201804342 10.1002/anie.202211482 10.1002/anie.202012079 10.1021/ja001851 10.1021/acsami.2c04746 10.1002/anie.202116483 10.1021/acs.cgd.9b00851 10.1126/science.aaz0251 10.1021/jacs.0c06473 10.1021/ja067571x 10.1039/C5CC04219D 10.1002/anie.202110057 10.1021/jacs.7b03204 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202303580 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 38179818 10_1002_chem_202303580 CHEM202303580 |
Genre | reviewArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22075169 – fundername: Fundamental and Frontier Research Project of Chongqing Municipality funderid: 22JHQ026 – fundername: Starting Grants from Shaanxi University of Science and Technology funderid: 2016QNBJ-11 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX ACUHS AEYWJ AGHNM AGYGG CITATION EBD NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3730-753fb89da26774c2e655c0d73b2832111e0d6eb04e43289f9724be4fd54ba5613 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 01:28:47 EDT 2025 Tue Jul 15 19:40:38 EDT 2025 Mon Jul 21 06:02:42 EDT 2025 Tue Jul 01 00:43:58 EDT 2025 Thu Apr 24 22:51:32 EDT 2025 Wed Jan 22 16:12:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | charge-assisted, ionic, hydrogen-bonded organic frameworks, designable, stabilized, multifunctional |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-753fb89da26774c2e655c0d73b2832111e0d6eb04e43289f9724be4fd54ba5613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3676-0242 |
PMID | 38179818 |
PQID | 2984996389 |
PQPubID | 986340 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2915987631 proquest_journals_2984996389 pubmed_primary_38179818 crossref_citationtrail_10_1002_chem_202303580 crossref_primary_10_1002_chem_202303580 wiley_primary_10_1002_chem_202303580_CHEM202303580 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 20, 2024 |
PublicationDateYYYYMMDD | 2024-03-20 |
PublicationDate_xml | – month: 03 year: 2024 text: March 20, 2024 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 10 1997; 276 2019; 19 2020; 11 2012; 12 2011; 112 2014; 136 2022; 28 2023; 62 2012; 134 2015; 137 2020; 96 2013; 52 2019; 25 2018; 30 2000; 122 2016; 49 2021; 47 2019; 5 2015; 127 2020; 142 2019; 2 2015; 51 2019; 1 2013; 341 2020; 32 2016; 16 2018; 20 2011; 133 2014; 43 2017; 139 2018; 24 2021; 57 2017; 53 2018; 18 2018; 17 2016; 1 1990; 23 2012; 112 2022; 3 2022; 4 2022; 8 2019; 48 2017; 56 2022; 13 1969; 25 2020; 26 2022; 14 2020; 399 2016; 28 2021; 60 2017; 543 2016; 22 2018; 362 2017; 5 2021; 27 2017; 8 2023; 35 2021; 21 1997; 119 2020; 120 2023; 6 2019; 55 2017; 46 2019; 58 2020; 368 2019; 366 2020; 59 2020; 56 2023; 1 2020; 367 2017; 355 2012; 51 2013; 19 2015; 48 2020; 4 2014; 5 2001; 294 2023; 25 2020; 1 2023; 23 2023; 29 2015; 44 2020; 49 2016; 353 2011; 21 2014; 9 2001; 13 2012; 336 2023; 10 2021; 7 2015; 15 2021; 6 2007; 129 2018; 140 2023; 11 2013; 42 2023; 19 2017; 23 1996; 52 2016; 52 2019; 141 2016; 55 2022; 144 2021; 13 2021; 12 2023 2022; 61 2017; 12 2010; 132 2013; 135 1988; 110 2016; 138 2013; 495 2022; 55 2009; 38 2007; 46 2019; 131 2018; 57 1994; 6 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_171_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_172_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_176_1 e_1_2_8_17_1 Yang J. (e_1_2_8_96_1) 2020; 399 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_183_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Zhou Q. (e_1_2_8_180_1) 2023 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_173_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_177_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 3 start-page: 3680 year: 2022 end-page: 3708 publication-title: Mater Adv – volume: 142 start-page: 12478 year: 2020 end-page: 12485 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 28662 year: 2021 end-page: 28667 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 608 year: 2023 end-page: 615 publication-title: Precis. Chem. – volume: 6 start-page: 4431 year: 2021 end-page: 4453 publication-title: ACS Energy Lett. – volume: 46 start-page: 126 year: 2017 end-page: 157 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 3006 year: 2013 end-page: 3016 publication-title: Chem. Eur. J. – volume: 11 start-page: 21857 year: 2023 end-page: 21863 publication-title: J. Mater. Chem. A – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 122 start-page: 9860 year: 2000 end-page: 9861 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7172 year: 2017 end-page: 7175 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 643 year: 2014 end-page: 660 publication-title: Nat. Protoc. – volume: 60 start-page: 22315 year: 2021 end-page: 22321 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 1709 year: 2013 end-page: 1712 publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 3752 year: 2022 end-page: 3766 publication-title: Acc. Chem. Res. – volume: 55 start-page: 12020 year: 2019 end-page: 12023 publication-title: Chem. Commun. – volume: 4 start-page: 381 year: 2022 end-page: 388 publication-title: CCS Chem. – volume: 144 start-page: 10663 year: 2022 end-page: 10687 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1587 year: 2017 end-page: 1597 publication-title: Chem. Asian J. – volume: 96 start-page: 215 year: 2020 end-page: 231 publication-title: J. Inclusion Phenom. Macrocyclic Chem. – volume: 353 start-page: 141 year: 2016 end-page: 144 publication-title: Science – volume: 133 start-page: 14570 year: 2011 end-page: 14573 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 283 year: 2018 end-page: 289 publication-title: Nat. Mater. – volume: 543 start-page: 657 year: 2017 end-page: 664 publication-title: Nature – start-page: 1 year: 2023 end-page: 11 publication-title: Nat. Catal. – volume: 21 start-page: 1428 year: 2021 end-page: 1433 publication-title: Cryst. Growth Des. – volume: 112 start-page: 1105 year: 2011 end-page: 1125 publication-title: Chem. Rev. – volume: 8 start-page: 3019 year: 2017 end-page: 3025 publication-title: Chem. Sci. – volume: 25 start-page: 10006 year: 2019 end-page: 10012 publication-title: Chem. Eur. J. – volume: 49 start-page: 2669 year: 2016 end-page: 2679 publication-title: Acc. Chem. Res. – volume: 59 start-page: 23322 year: 2020 end-page: 23328 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 756 year: 2021 end-page: 778 publication-title: Mol. Syst. Des. Eng. – volume: 14 start-page: 19623 year: 2022 end-page: 19628 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 1997 year: 2020 end-page: 2002 publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 21952 year: 2021 end-page: 21958 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 3053 year: 2015 end-page: 3063 publication-title: Acc. Chem. Res. – volume: 11 start-page: 3180 year: 2020 publication-title: Nat. Commun. – volume: 8 start-page: 1589 year: 2022 end-page: 1608 publication-title: ACS Cent. Sci. – volume: 35 start-page: 3172 year: 2023 end-page: 3180 publication-title: Chem. Mater. – volume: 355 year: 2017 publication-title: Science – volume: 368 start-page: 297 year: 2020 end-page: 303 publication-title: Science – volume: 12 start-page: 3322 year: 2021 end-page: 3327 publication-title: Chem. Sci. – volume: 44 start-page: 7112 year: 2015 end-page: 7127 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 3952 year: 2018 end-page: 3958 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2022 publication-title: Chem. Eur. J. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 publication-title: Chem. Rev. – volume: 136 start-page: 12828 year: 2014 end-page: 12831 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 464 year: 2017 end-page: 480 publication-title: Chem. Soc. Rev. – volume: 28 start-page: 8819 year: 2016 end-page: 8860 publication-title: Adv. Mater. – volume: 13 start-page: 56566 year: 2021 end-page: 56574 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 3402 year: 2017 end-page: 3430 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 5345 year: 2018 end-page: 5349 publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 2204 year: 2011 end-page: 2219 publication-title: J. Mater. Chem. – volume: 52 start-page: 209 year: 1996 end-page: 214 publication-title: Acta Crystallogr. Sect. B – volume: 4 start-page: 657 year: 2020 end-page: 673 publication-title: Nat. Chem. Rev. – volume: 135 start-page: 11684 year: 2013 end-page: 11687 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 11064 year: 2022 end-page: 11068 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 708 year: 2020 end-page: 735 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1477 year: 2009 end-page: 1504 publication-title: Chem. Soc. Rev. – volume: 120 start-page: 12089 year: 2020 end-page: 12174 publication-title: Chem. Rev. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 336 start-page: 1018 year: 2012 end-page: 1023 publication-title: Science – volume: 142 start-page: 14399 year: 2020 end-page: 14416 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 120 year: 1990 end-page: 126 publication-title: Acc. Chem. Res. – volume: 10 start-page: 730 year: 2019 end-page: 736 publication-title: Chem. Sci. – volume: 141 start-page: 10915 year: 2019 end-page: 10923 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 5252 year: 2012 end-page: 5255 publication-title: Angew. Chem. Int. Ed. – volume: 495 start-page: 80 year: 2013 end-page: 84 publication-title: Nature – volume: 399 year: 2020 publication-title: Chem. Eng. J. – volume: 57 start-page: 7691 year: 2018 end-page: 7696 publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 5815 year: 2014 end-page: 5840 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 2321 year: 2023 end-page: 2325 publication-title: CrystEngComm – volume: 10 start-page: 6262 year: 2023 end-page: 6268 publication-title: Inorg. Chem. Front. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 publication-title: Chem. Soc. Rev. – volume: 29 year: 2023 publication-title: Chem. Eur. J. – volume: 362 start-page: 1 year: 2018 end-page: 23 publication-title: Coord. Chem. Rev. – volume: 52 start-page: 4991 year: 2016 end-page: 4994 publication-title: Chem. Commun. – volume: 127 start-page: 10834 year: 2015 end-page: 10835 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 3074 year: 2019 publication-title: Nat. Commun. – volume: 142 start-page: 13334 year: 2020 end-page: 13338 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 019 year: 2019 end-page: 029 publication-title: Org. Mater. – volume: 24 start-page: 17444 year: 2018 end-page: 17448 publication-title: Chem. Eur. J. – volume: 13 start-page: 677 year: 2001 end-page: 681 publication-title: Adv. Mater. – volume: 52 start-page: 7249 year: 2016 end-page: 7252 publication-title: Chem. Commun. – volume: 131 start-page: 8229 year: 2019 end-page: 8234 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 1701 year: 2022 publication-title: Nat. Commun. – volume: 5 start-page: 719 year: 2019 end-page: 730 publication-title: Chem – volume: 16 start-page: 5831 year: 2016 end-page: 5835 publication-title: Cryst. Growth Des. – volume: 6 start-page: 1206 year: 1994 end-page: 1217 publication-title: Chem. Mater. – volume: 11 start-page: 4652 year: 2020 publication-title: Nat. Commun. – volume: 1 start-page: 1 year: 2016 end-page: 13 publication-title: Nat. Energy – volume: 60 start-page: 25942 year: 2021 end-page: 25948 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 7406 year: 2020 end-page: 7427 publication-title: Chem. Soc. Rev. – volume: 23 start-page: 1798 year: 2023 end-page: 1804 publication-title: Cryst. Growth Des. – volume: 8 start-page: 253 year: 2022 end-page: 267 publication-title: Chem – volume: 57 start-page: 10998 year: 2021 end-page: 11008 publication-title: Chem. Commun. – volume: 137 start-page: 9963 year: 2015 end-page: 9970 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 6549 year: 2023 end-page: 6556 publication-title: Chem. Mater. – volume: 137 start-page: 3386 year: 2015 end-page: 3392 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 2737 year: 1997 end-page: 2738 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 6617 year: 2016 end-page: 6628 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 703 year: 2020 end-page: 706 publication-title: Chem. Commun. – volume: 3 start-page: 1186 year: 2022 end-page: 1200 publication-title: Acc. Mater. Res. – volume: 18 start-page: 2082 year: 2018 end-page: 2092 publication-title: Cryst. Growth Des. – volume: 136 start-page: 547 year: 2014 end-page: 549 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 228 year: 2015 end-page: 249 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 933 year: 2021 end-page: 939 publication-title: Nat. Chem. – volume: 46 start-page: 2220 year: 2007 end-page: 2223 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 4503 year: 2014 publication-title: Nat. Commun. – volume: 12 start-page: 9607 year: 2021 end-page: 9618 publication-title: Chem. Sci. – volume: 142 start-page: 3593 year: 2020 end-page: 3599 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 15648 year: 2017 end-page: 15651 publication-title: J. Am. Chem. Soc. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 366 start-page: 241 year: 2019 end-page: 246 publication-title: Science – volume: 10 start-page: 4477 year: 2019 publication-title: Nat. Commun. – volume: 55 start-page: 2678 year: 2016 end-page: 2682 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 6377 year: 2019 end-page: 6380 publication-title: Cryst. Growth Des. – volume: 1 start-page: 77 year: 2020 end-page: 87 publication-title: Acc. Mater. Res. – volume: 19 start-page: 2519 year: 2019 end-page: 2524 publication-title: Cryst. Growth Des. – volume: 53 start-page: 3677 year: 2017 end-page: 3680 publication-title: Chem. Commun. – volume: 19 start-page: 5184 year: 2019 end-page: 5188 publication-title: Cryst. Growth Des. – volume: 341 year: 2013 publication-title: Science – volume: 8 start-page: 2114 year: 2022 end-page: 2135 publication-title: Chem – volume: 55 start-page: 10667 year: 2016 end-page: 10671 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 7062 year: 2019 end-page: 7068 publication-title: Dalton Trans. – volume: 2 start-page: 2437 year: 2019 end-page: 2445 publication-title: ACS Appl. Nano Mater. – volume: 27 start-page: 10957 year: 2021 end-page: 10965 publication-title: Chem. Eur. J. – volume: 5 start-page: 8292 year: 2017 end-page: 8296 publication-title: J. Mater. Chem. A – volume: 25 start-page: 5 year: 1969 end-page: 19 publication-title: Acta Crystallogr. Sect. B – volume: 15 start-page: 2000 year: 2015 end-page: 2004 publication-title: Cryst. Growth Des. – volume: 141 start-page: 14298 year: 2019 end-page: 14305 publication-title: J. Am. Chem. Soc. – volume: 19 year: 2023 publication-title: Small – volume: 48 start-page: 2783 year: 2019 end-page: 2828 publication-title: Chem. Soc. Rev. – volume: 60 start-page: 6076 year: 2021 end-page: 6085 publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 8924 year: 2015 end-page: 8927 publication-title: Chem. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 47 year: 2021 publication-title: J. Photochem. Photobiol. C – volume: 112 start-page: 673 year: 2012 end-page: 674 publication-title: Chem. Rev. – volume: 134 start-page: 15016 year: 2012 end-page: 15021 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 7026 year: 2020 end-page: 7040 publication-title: Chem. Eur. J. – volume: 56 start-page: 2101 year: 2017 end-page: 2104 publication-title: Angew. Chem. Int. Ed. – volume: 144 start-page: 13021 year: 2022 end-page: 13025 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 16152 year: 2019 end-page: 16155 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 4829 year: 2019 end-page: 4835 publication-title: Cryst. Growth Des. – volume: 129 start-page: 4306 year: 2007 end-page: 4322 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 574 year: 2023 end-page: 584 publication-title: Nat. Catal. – volume: 56 start-page: 1042 year: 2017 end-page: 1045 publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 4596 year: 2018 end-page: 4603 publication-title: J. Am. Chem. Soc. – volume: 367 start-page: 1473 year: 2020 end-page: 1476 publication-title: Science – volume: 276 start-page: 575 year: 1997 end-page: 579 publication-title: Science – volume: 139 start-page: 16838 year: 2017 end-page: 16844 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 8737 year: 2019 end-page: 8740 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1321 year: 2021 end-page: 1332 publication-title: Chem – volume: 5 start-page: 5131 year: 2014 publication-title: Nat. Commun. – volume: 294 start-page: 1907 year: 2001 end-page: 1911 publication-title: Science – volume: 51 start-page: 11642 year: 2015 end-page: 11645 publication-title: Chem. Commun. – volume: 22 start-page: 15430 year: 2016 end-page: 15436 publication-title: Chem. Eur. J. – volume: 48 start-page: 1362 year: 2019 end-page: 1389 publication-title: Chem. Soc. Rev. – volume: 60 start-page: 23176 year: 2021 end-page: 23181 publication-title: Angew. Chem. Int. Ed. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 132 start-page: 14457 year: 2010 end-page: 14469 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 5884 year: 2018 end-page: 5898 publication-title: CrystEngComm – volume: 495 start-page: 461 year: 2013 end-page: 466 publication-title: Nature – volume: 58 start-page: 11160 year: 2019 end-page: 11170 publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 4774 year: 2017 end-page: 4777 publication-title: Chem. Eur. J. – volume: 12 start-page: 4600 year: 2012 end-page: 4606 publication-title: Cryst. Growth Des. – volume: 43 start-page: 5789 year: 2014 end-page: 5814 publication-title: Chem. Soc. Rev. – volume: 110 start-page: 3747 year: 1988 end-page: 3754 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 6014 year: 2018 end-page: 6026 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 11611 year: 2017 end-page: 11619 publication-title: Chem. Eur. J. – ident: e_1_2_8_69_1 doi: 10.1039/C6CC02964G – ident: e_1_2_8_43_1 doi: 10.1016/j.jphotochemrev.2021.100418 – ident: e_1_2_8_170_1 doi: 10.1002/anie.202105634 – ident: e_1_2_8_18_1 doi: 10.1126/science.1220131 – ident: e_1_2_8_182_1 doi: 10.1002/anie.202108388 – ident: e_1_2_8_63_1 doi: 10.1002/anie.201201174 – ident: e_1_2_8_153_1 doi: 10.1002/chem.202300028 – ident: e_1_2_8_11_1 doi: 10.1126/science.aal1585 – ident: e_1_2_8_115_1 doi: 10.1039/D3CE00086A – ident: e_1_2_8_124_1 doi: 10.1002/chem.201902117 – ident: e_1_2_8_6_1 doi: 10.1021/cr300014x – ident: e_1_2_8_66_1 doi: 10.1021/jacs.8b02869 – ident: e_1_2_8_156_1 doi: 10.1021/acs.cgd.1c00007 – ident: e_1_2_8_177_1 doi: 10.1021/jacs.2c04532 – ident: e_1_2_8_8_1 doi: 10.1002/ange.201503835 – ident: e_1_2_8_74_1 doi: 10.1021/jacs.9b06589 – ident: e_1_2_8_150_1 doi: 10.1021/acs.chemmater.2c03817 – ident: e_1_2_8_181_1 doi: 10.1002/anie.202203955 – ident: e_1_2_8_71_1 doi: 10.1039/D1SC02690A – ident: e_1_2_8_48_1 doi: 10.1021/acsanm.9b00303 – ident: e_1_2_8_152_1 doi: 10.1021/acs.cgd.2c01306 – ident: e_1_2_8_112_1 doi: 10.1002/anie.201208153 – ident: e_1_2_8_23_1 doi: 10.1126/science.aax8666 – ident: e_1_2_8_89_1 doi: 10.1002/anie.201800423 – ident: e_1_2_8_24_1 doi: 10.1039/C7CS00153C – ident: e_1_2_8_42_1 doi: 10.1039/C8CS00155C – ident: e_1_2_8_32_1 doi: 10.1002/adma.202002563 – ident: e_1_2_8_55_1 doi: 10.1021/cm00044a019 – ident: e_1_2_8_27_1 doi: 10.1039/C9CS00827F – ident: e_1_2_8_122_1 doi: 10.1039/D0SC06906J – ident: e_1_2_8_174_1 doi: 10.1021/jacs.7b11747 – ident: e_1_2_8_13_1 doi: 10.1039/C2CS35072F – ident: e_1_2_8_62_1 doi: 10.1021/ja2066016 – ident: e_1_2_8_78_1 doi: 10.1039/C7CC00557A – ident: e_1_2_8_29_1 doi: 10.1038/nenergy.2016.34 – ident: e_1_2_8_144_1 doi: 10.1002/anie.201604534 – ident: e_1_2_8_41_1 doi: 10.1039/D1MA01173A – ident: e_1_2_8_19_1 doi: 10.1038/ncomms5503 – ident: e_1_2_8_164_1 doi: 10.1002/adma.201707146 – ident: e_1_2_8_95_1 doi: 10.1021/acsenergylett.1c02045 – ident: e_1_2_8_1_1 doi: 10.1038/s41570-020-00228-3 – ident: e_1_2_8_167_1 doi: 10.1021/acs.chemmater.3c01669 – ident: e_1_2_8_5_1 doi: 10.1039/D0CS00997K – ident: e_1_2_8_129_1 doi: 10.1021/acs.cgd.7b01538 – ident: e_1_2_8_104_1 doi: 10.1002/anie.202109987 – ident: e_1_2_8_116_1 doi: 10.1002/smll.202301887 – ident: e_1_2_8_111_1 doi: 10.1002/anie.202202597 – ident: e_1_2_8_110_1 doi: 10.1002/anie.200603841 – ident: e_1_2_8_38_1 doi: 10.1002/adma.201705146 – ident: e_1_2_8_35_1 doi: 10.1021/acs.chemrev.9b00757 – ident: e_1_2_8_175_1 doi: 10.1021/jacs.7b10292 – ident: e_1_2_8_2_1 doi: 10.1039/C6CS00250A – ident: e_1_2_8_114_1 doi: 10.1021/cg300796u – ident: e_1_2_8_141_1 doi: 10.1002/anie.201911861 – ident: e_1_2_8_83_1 doi: 10.1039/D3TA04738E – ident: e_1_2_8_64_1 doi: 10.1038/nature21419 – ident: e_1_2_8_128_1 doi: 10.1002/anie.202208660 – start-page: 1 year: 2023 ident: e_1_2_8_180_1 publication-title: Nat. Catal. – ident: e_1_2_8_102_1 doi: 10.1002/chem.201700798 – ident: e_1_2_8_106_1 doi: 10.1016/j.chempr.2021.11.014 – ident: e_1_2_8_45_1 doi: 10.1002/anie.201902147 – ident: e_1_2_8_168_1 doi: 10.1039/D3QI01401K – ident: e_1_2_8_82_1 doi: 10.1002/anie.202213959 – ident: e_1_2_8_155_1 doi: 10.1021/acs.cgd.9b00145 – ident: e_1_2_8_123_1 doi: 10.1002/chem.202201929 – ident: e_1_2_8_135_1 doi: 10.1039/C7TA01364G – ident: e_1_2_8_125_1 doi: 10.1021/acs.cgd.9b00801 – ident: e_1_2_8_51_1 doi: 10.1021/jacs.2c02598 – ident: e_1_2_8_79_1 doi: 10.1039/C6CC00366D – ident: e_1_2_8_54_1 doi: 10.1021/ja00220a005 – ident: e_1_2_8_88_1 doi: 10.1021/jacs.0c05277 – ident: e_1_2_8_140_1 doi: 10.1016/j.chempr.2022.06.015 – ident: e_1_2_8_117_1 doi: 10.1039/C7SC00201G – ident: e_1_2_8_92_1 doi: 10.1002/adma.202005912 – ident: e_1_2_8_103_1 doi: 10.1021/accountsmr.2c00173 – ident: e_1_2_8_21_1 doi: 10.1021/ja3055639 – ident: e_1_2_8_31_1 doi: 10.1039/C8CS00829A – ident: e_1_2_8_100_1 doi: 10.1016/j.chempr.2021.02.017 – ident: e_1_2_8_147_1 doi: 10.1038/s41467-019-12453-6 – ident: e_1_2_8_87_1 doi: 10.1021/ja4129795 – ident: e_1_2_8_26_1 doi: 10.1038/s41563-017-0013-1 – ident: e_1_2_8_70_1 doi: 10.1002/chem.201701893 – ident: e_1_2_8_171_1 doi: 10.1002/anie.201509761 – ident: e_1_2_8_60_1 doi: 10.1002/chem.202000186 – ident: e_1_2_8_90_1 doi: 10.1002/chem.202101061 – ident: e_1_2_8_146_1 doi: 10.1038/nprot.2014.042 – ident: e_1_2_8_73_1 doi: 10.1038/s41929-023-00972-x – ident: e_1_2_8_161_1 doi: 10.31635/ccschem.021.202100824 – ident: e_1_2_8_178_1 doi: 10.1021/jacs.2c02918 – ident: e_1_2_8_56_1 doi: 10.1107/S0108768195009980 – ident: e_1_2_8_101_1 doi: 10.1021/acs.cgd.5b00147 – ident: e_1_2_8_158_1 doi: 10.1021/acs.cgd.9b00582 – ident: e_1_2_8_148_1 doi: 10.1002/anie.201610916 – ident: e_1_2_8_30_1 doi: 10.1038/nature11893 – ident: e_1_2_8_10_1 doi: 10.1021/acs.accounts.5b00369 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201601133 – ident: e_1_2_8_37_1 doi: 10.1021/cr200324t – ident: e_1_2_8_86_1 doi: 10.1002/anie.202011300 – ident: e_1_2_8_143_1 doi: 10.1039/C0JM03449E – ident: e_1_2_8_159_1 doi: 10.1021/jacs.7b13706 – ident: e_1_2_8_166_1 doi: 10.1021/prechem.3c00094 – ident: e_1_2_8_173_1 doi: 10.1038/nature11990 – ident: e_1_2_8_50_1 doi: 10.1038/s41467-020-16977-0 – ident: e_1_2_8_52_1 doi: 10.1107/S0567740869001713 – ident: e_1_2_8_134_1 doi: 10.1021/acs.cgd.6b00924 – ident: e_1_2_8_36_1 doi: 10.1039/C4CS00010B – ident: e_1_2_8_130_1 doi: 10.1021/jacs.9b13274 – ident: e_1_2_8_120_1 doi: 10.1039/C9CC06707H – ident: e_1_2_8_47_1 doi: 10.1002/anie.201800354 – ident: e_1_2_8_61_1 doi: 10.1021/ja1042935 – ident: e_1_2_8_99_1 doi: 10.1002/chem.202202655 – ident: e_1_2_8_9_1 doi: 10.1039/C4CS00129J – ident: e_1_2_8_14_1 doi: 10.1039/C5CS00023H – ident: e_1_2_8_28_1 doi: 10.1126/science.aaz8881 – ident: e_1_2_8_127_1 doi: 10.1039/C8SC04376K – ident: e_1_2_8_3_1 doi: 10.1126/science.1230444 – volume: 399 year: 2020 ident: e_1_2_8_96_1 publication-title: Chem. Eng. J. – ident: e_1_2_8_53_1 doi: 10.1021/ar00172a005 – ident: e_1_2_8_58_1 doi: 10.1021/ja963905e – ident: e_1_2_8_142_1 doi: 10.1021/jacs.5b00534 – ident: e_1_2_8_160_1 doi: 10.1002/ange.201903600 – ident: e_1_2_8_145_1 doi: 10.1002/anie.201911087 – ident: e_1_2_8_109_1 doi: 10.1126/science.1064432 – ident: e_1_2_8_16_1 doi: 10.1039/C4CS00230J – ident: e_1_2_8_65_1 doi: 10.1038/ncomms6131 – ident: e_1_2_8_113_1 doi: 10.1002/chem.201202959 – ident: e_1_2_8_105_1 doi: 10.1002/anie.202214189 – ident: e_1_2_8_126_1 doi: 10.1039/C8DT05030A – ident: e_1_2_8_172_1 doi: 10.1021/jacs.7b09452 – ident: e_1_2_8_40_1 doi: 10.1039/D1ME00055A – ident: e_1_2_8_169_1 doi: 10.1002/anie.202308418 – ident: e_1_2_8_165_1 doi: 10.1002/adma.202208625 – ident: e_1_2_8_44_1 doi: 10.1007/s10847-019-00972-0 – ident: e_1_2_8_149_1 doi: 10.1016/j.chempr.2018.12.025 – ident: e_1_2_8_154_1 doi: 10.1039/C5CC01645B – ident: e_1_2_8_131_1 doi: 10.1038/s41467-022-29382-6 – ident: e_1_2_8_22_1 doi: 10.1126/science.aaf2458 – ident: e_1_2_8_93_1 doi: 10.1021/accountsmr.0c00019 – ident: e_1_2_8_25_1 doi: 10.1039/b802426j – ident: e_1_2_8_133_1 doi: 10.1039/C9CC09171H – ident: e_1_2_8_7_1 doi: 10.1038/s41467-020-18419-3 – ident: e_1_2_8_151_1 doi: 10.1002/chem.201602233 – ident: e_1_2_8_81_1 doi: 10.1021/acsami.1c06312 – ident: e_1_2_8_39_1 doi: 10.1039/C8CE00655E – ident: e_1_2_8_179_1 doi: 10.1021/jacs.9b03766 – ident: e_1_2_8_15_1 doi: 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C – ident: e_1_2_8_84_1 doi: 10.1038/s41557-021-00740-z – ident: e_1_2_8_72_1 doi: 10.1021/jacs.6b02968 – ident: e_1_2_8_108_1 doi: 10.1126/science.276.5312.575 – ident: e_1_2_8_20_1 doi: 10.1021/jacs.0c06485 – ident: e_1_2_8_17_1 doi: 10.1021/acs.accounts.6b00360 – ident: e_1_2_8_132_1 doi: 10.1021/acsami.1c15748 – ident: e_1_2_8_12_1 doi: 10.1021/acs.chemrev.9b00550 – ident: e_1_2_8_34_1 doi: 10.1016/j.ccr.2018.02.008 – ident: e_1_2_8_49_1 doi: 10.1038/s41467-019-10575-5 – ident: e_1_2_8_107_1 doi: 10.1021/jacs.9b05232 – ident: e_1_2_8_97_1 doi: 10.1039/C6CS00528D – ident: e_1_2_8_119_1 doi: 10.1002/anie.202218360 – ident: e_1_2_8_33_1 doi: 10.1039/b807080f – ident: e_1_2_8_67_1 doi: 10.1055/s-0039-1698431 – ident: e_1_2_8_94_1 doi: 10.1021/jacs.9b03766 – ident: e_1_2_8_138_1 doi: 10.1021/acscentsci.2c01196 – ident: e_1_2_8_137_1 doi: 10.1021/acs.accounts.2c00686 – ident: e_1_2_8_77_1 doi: 10.1021/ja403002m – ident: e_1_2_8_76_1 doi: 10.1021/ja506577g – ident: e_1_2_8_46_1 doi: 10.1002/anie.201610901 – ident: e_1_2_8_121_1 doi: 10.1039/D1CC04782E – ident: e_1_2_8_118_1 doi: 10.1002/asia.201700406 – ident: e_1_2_8_136_1 doi: 10.1021/jacs.5b05644 – ident: e_1_2_8_75_1 doi: 10.1002/anie.202311419 – ident: e_1_2_8_139_1 doi: 10.1002/chem.201804342 – ident: e_1_2_8_183_1 doi: 10.1002/anie.202211482 – ident: e_1_2_8_163_1 doi: 10.1002/anie.202012079 – ident: e_1_2_8_57_1 doi: 10.1021/ja001851 – ident: e_1_2_8_80_1 doi: 10.1021/acsami.2c04746 – ident: e_1_2_8_162_1 doi: 10.1002/anie.202116483 – ident: e_1_2_8_157_1 doi: 10.1021/acs.cgd.9b00851 – ident: e_1_2_8_176_1 doi: 10.1126/science.aaz0251 – ident: e_1_2_8_98_1 doi: 10.1021/jacs.0c06473 – ident: e_1_2_8_59_1 doi: 10.1021/ja067571x – ident: e_1_2_8_68_1 doi: 10.1039/C5CC04219D – ident: e_1_2_8_85_1 doi: 10.1002/anie.202110057 – ident: e_1_2_8_91_1 doi: 10.1021/jacs.7b03204 |
SSID | ssj0009633 |
Score | 2.5494537 |
SecondaryResourceType | review_article |
Snippet | Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high... Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202303580 |
SubjectTerms | charge-assisted Construction Covalent bonds designable Hydrogen Hydrogen bonding Hydrogen bonds hydrogen-bonded organic frameworks Interpenetrating networks ionic Ligands multifunctional Multifunctional materials Proton conduction stabilized Structural stability |
Title | Charge‐Assisted Ionic Hydrogen‐Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202303580 https://www.ncbi.nlm.nih.gov/pubmed/38179818 https://www.proquest.com/docview/2984996389 https://www.proquest.com/docview/2915987631 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hLnBhXwIFGQmJU9rUcZKGGwKqggQHBBK3yFs5gFLocqAnPoFv5EuYiZtAQQgJbknsrDNjv4ln3gDsh3FkWlJbPxFW-ELhOJhy0uVQovRtbGJNjuLFZdy5Eee30e2nLH7HD1H9cCPLKMZrMnCpBo0P0lB8J8okRwhNK3k4CFPAFqGiqw_-KNQuV0teJD5xsJasjQFvTJ8-PSt9g5rTyLWYetqLIMuHdhEn9_XRUNX1-Auf43_eagkWJriUHTlFWoYZm6_A3HFZDm4Vnmhh_s6-vbyiREk3DDsjWl3WeTb9HqohtlCNYjzu8js1a5eBX4NDdlJEilCeFpO5YYhxKSp3jL2LFGCaXt1fSXYhh84q1uCmfXp93PEn9Rp8HeJA4aPn01Wt1EgeI6jU3MZRpAOThKqoh9Rs2sDEVgWoFSH6ed004UJZ0TWRUJIcmXWYzXu53QQWSpvIMMWGAPFaU6baSLysTVuxDIUxHvilvDI9ITOnmhoPmaNh5hl9yKz6kB4cVP0fHY3Hjz1rpfiziTkPMp620DMkcOfBXtWMAqDVFZnb3oj6IDIkfr-mBxtObapbEQ1iitDIA14I_5dnyIgOo9rb-stJ2zCP24Ki5XhQg9lhf2R3ED4N1W5hIu-GnBKV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCvoTVSEicAqnjJA03BFRlKQcEErfIWzmAUijtAU58At_IlzATN0EFISQ4JnbWmbHf2DNvALbDODJ1qa2fCCt8oXAcTDnpcihR-jY2sSZHsXURN6_F6U1URhNSLozjh6gW3MgyivGaDJwWpPc-WUPxoyiVHDE0beWNwjiV9Sb6_KPLTwYp1C9XTV4kPrGwlryNAd8bvn54XvoGNoexazH5NKZBla_tYk7udvs9tatfvjA6_uu7ZmBqAE3ZgdOlWRix-RxMHJYV4ebhkfbmb-376xsKldTDsBNi1mXNZ9PtoCZiC5UpxvMuxVOzRhn79bTPjopgEUrVYjI3DGEuBea-YO8iC5hmWLcwyVqy5wxjAa4bx1eHTX9QssHXIY4VPjo_bVVPjeQx4krNbRxFOjBJqIqSSLWaDUxsVYCKEaKr104TLpQVbRMJJcmXWYSxvJPbZWChtIkMU2wIELLVZKqNxNvatB7LUBjjgV8KLNMDPnMqq3GfOSZmntGPzKof6cFO1f_BMXn82HOtlH82sOinjKd1dA4J33mwVTWjAGiDRea206c-CA6J4q_mwZLTm-pRxISYIjrygBfS_-UdMmLEqI5W_nLRJkw0r1rn2fnJxdkqTOJ5QcFzPFiDsV63b9cRTfXURmEvH6hOFrE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7xIxUu0D_aAG1dCamnsFnHcdbcENtoaQuqKlbaW-TY3h5aZRfYPZQTj8Az8iTMxEnotkKV6DGxkziZGfubeOYbgL1YJranjQtT4UQoCpwHFSddjjVK30krDTmKJ6dyMBSfRsnotyx-zw_R_nAjy6jmazLwqR137klD8Z0okxwhNO3kLcOqkJGi4g39b_cEUqhevpi8SEMiYW1oGyPeWbx-cVn6C2suQtdq7ck2QTej9iEnP_bns2LfXP1B6Pg_r_UUNmpgyg69Jj2DJVc-h7Wjph7cCzinnfnv7vb6BkVKymHZMfHqssEvezFBPcQWKlKM532Cp2FZE_l1ecD6VagIJWoxXVqGIJfCcq-wd5UDTOur_y3JTvTMm8VLGGYfz44GYV2wITQxzhQhuj7joqes5hJRpeFOJomJbBoXVUGkbtdFVroiQrWI0dEbq5SLwomxTUShyZPZgpVyUrrXwGLtUh0rbIgQsHW1MlbjbZ3qSR0LawMIG3nlpmYzp6IaP3PPw8xz-pB5-yED-ND2n3oejwd77jbiz2t7vsy56qFrSOgugPdtMwqAtld06SZz6oPQkAj-ugG88mrTPop4EBViowB4Jfx_jCEnPoz2aPsxF72DJ1_7Wf7l-PTzDqzjaUGRczzahZXZxdy9QSg1K95W1nIHT_QVYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge-Assisted+Ionic+Hydrogen-Bonded+Organic+Frameworks%3A+Designable+and+Stabilized+Multifunctional+Materials&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chen%2C+Xu-Yong&rft.au=Cao%2C+Li-Hui&rft.au=Bai%2C+Xiang-Tian&rft.au=Cao%2C+Xiao-Jie&rft.date=2024-03-20&rft.eissn=1521-3765&rft.spage=e202303580&rft_id=info:doi/10.1002%2Fchem.202303580&rft_id=info%3Apmid%2F38179818&rft.externalDocID=38179818 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |