Charge‐Assisted Ionic Hydrogen‐Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials

Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydroge...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 17; pp. e202303580 - n/a
Main Authors Chen, Xu‐Yong, Cao, Li‐Hui, Bai, Xiang‐Tian, Cao, Xiao‐Jie
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 20.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π–π stacking, highly interpenetrated networks, charge‐assisted, ligand‐bond‐assisted, molecular weaving, and covalent cross‐linking. Charge‐assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge‐assisted ionic HOFs, and introduces the different building block construction modes of charge‐assisted ionic HOFs. Highlight the applications of charge‐assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge‐assisted ionic HOFs structures and multifunctional applications. Strategies for the construction of charge‐assisted ionic hydrogen‐bonded organic frameworks (HOFs) as well as recent advances form the focus of this review. The applications of these charge‐assisted ionic hydrogen‐bonded organic frameworks in gas adsorption and separation, proton conduction, and biological applications are highlighted, as well as prospects for future developments in this field.
AbstractList Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.
Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π–π stacking, highly interpenetrated networks, charge‐assisted, ligand‐bond‐assisted, molecular weaving, and covalent cross‐linking. Charge‐assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge‐assisted ionic HOFs, and introduces the different building block construction modes of charge‐assisted ionic HOFs. Highlight the applications of charge‐assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge‐assisted ionic HOFs structures and multifunctional applications.
Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.
Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π–π stacking, highly interpenetrated networks, charge‐assisted, ligand‐bond‐assisted, molecular weaving, and covalent cross‐linking. Charge‐assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge‐assisted ionic HOFs, and introduces the different building block construction modes of charge‐assisted ionic HOFs. Highlight the applications of charge‐assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge‐assisted ionic HOFs structures and multifunctional applications. Strategies for the construction of charge‐assisted ionic hydrogen‐bonded organic frameworks (HOFs) as well as recent advances form the focus of this review. The applications of these charge‐assisted ionic hydrogen‐bonded organic frameworks in gas adsorption and separation, proton conduction, and biological applications are highlighted, as well as prospects for future developments in this field.
Author Bai, Xiang‐Tian
Cao, Li‐Hui
Chen, Xu‐Yong
Cao, Xiao‐Jie
Author_xml – sequence: 1
  givenname: Xu‐Yong
  surname: Chen
  fullname: Chen, Xu‐Yong
  organization: Shaanxi University of Science and Technology
– sequence: 2
  givenname: Li‐Hui
  orcidid: 0000-0002-3676-0242
  surname: Cao
  fullname: Cao, Li‐Hui
  email: caolihui@sust.edu.cn
  organization: Shaanxi University of Science and Technology
– sequence: 3
  givenname: Xiang‐Tian
  surname: Bai
  fullname: Bai, Xiang‐Tian
  organization: Shaanxi University of Science and Technology
– sequence: 4
  givenname: Xiao‐Jie
  surname: Cao
  fullname: Cao, Xiao‐Jie
  organization: Shaanxi University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38179818$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQhy1URLeFK0cUiQuXLP4Txza3dmnZSl31AJwtJ5lsXRy7tRNVy4lH4Bl5EhxtC1IlxGkkz_eNPPM7Qgc-eEDoNcFLgjF9317DsKSYMsy4xM_QgnBKSiZqfoAWWFWirDlTh-gopRuMsaoZe4EOmSRCSSIX6G51beIWfv34eZKSTSN0xUXwti3Wuy6GLfjcOQ2-y-9XcWvmznk0A9yH-C19KD5CsltvGgeF8V3xeTSNdfZ7pjeTG20_-Xa0wRtXbMwI0RqXXqLnfS7w6qEeo6_nZ19W6_Ly6tPF6uSybJlguBSc9Y1UnaG1EFVLoea8xZ1gDZWMEkIAdzU0uIKKUal6JWjVQNV3vGoMrwk7Ru_2c29juJsgjXqwqQXnjIcwJU0V4UqKms3o2yfoTZhi_vVMyUrlq0mVqTcP1NQM0OnbaAcTd_rxmBmo9kAbQ0oRet3a0cz7j9FYpwnWc2Z6zkz_ySxryyfa4-R_Cmov3FsHu__QerU-2_x1fwOrMqsh
CitedBy_id crossref_primary_10_1016_j_jiec_2024_11_002
crossref_primary_10_1039_D4SC02751E
crossref_primary_10_1107_S2053229624005850
crossref_primary_10_1002_adfm_202409359
crossref_primary_10_1002_asia_202400870
crossref_primary_10_1039_D5CC00892A
crossref_primary_10_1007_s11426_024_2352_9
crossref_primary_10_1021_prechem_4c00102
crossref_primary_10_1021_acsmaterialslett_4c00953
crossref_primary_10_1021_acsapm_4c03255
crossref_primary_10_1002_zaac_202400179
crossref_primary_10_1371_journal_pone_0303904
crossref_primary_10_1039_D4TC01453G
crossref_primary_10_1021_acs_cgd_4c01070
Cites_doi 10.1039/C6CC02964G
10.1016/j.jphotochemrev.2021.100418
10.1002/anie.202105634
10.1126/science.1220131
10.1002/anie.202108388
10.1002/anie.201201174
10.1002/chem.202300028
10.1126/science.aal1585
10.1039/D3CE00086A
10.1002/chem.201902117
10.1021/cr300014x
10.1021/jacs.8b02869
10.1021/acs.cgd.1c00007
10.1021/jacs.2c04532
10.1002/ange.201503835
10.1021/jacs.9b06589
10.1021/acs.chemmater.2c03817
10.1002/anie.202203955
10.1039/D1SC02690A
10.1021/acsanm.9b00303
10.1021/acs.cgd.2c01306
10.1002/anie.201208153
10.1126/science.aax8666
10.1002/anie.201800423
10.1039/C7CS00153C
10.1039/C8CS00155C
10.1002/adma.202002563
10.1021/cm00044a019
10.1039/C9CS00827F
10.1039/D0SC06906J
10.1021/jacs.7b11747
10.1039/C2CS35072F
10.1021/ja2066016
10.1039/C7CC00557A
10.1038/nenergy.2016.34
10.1002/anie.201604534
10.1039/D1MA01173A
10.1038/ncomms5503
10.1002/adma.201707146
10.1021/acsenergylett.1c02045
10.1038/s41570-020-00228-3
10.1021/acs.chemmater.3c01669
10.1039/D0CS00997K
10.1021/acs.cgd.7b01538
10.1002/anie.202109987
10.1002/smll.202301887
10.1002/anie.202202597
10.1002/anie.200603841
10.1002/adma.201705146
10.1021/acs.chemrev.9b00757
10.1021/jacs.7b10292
10.1039/C6CS00250A
10.1021/cg300796u
10.1002/anie.201911861
10.1039/D3TA04738E
10.1038/nature21419
10.1002/anie.202208660
10.1002/chem.201700798
10.1016/j.chempr.2021.11.014
10.1002/anie.201902147
10.1039/D3QI01401K
10.1002/anie.202213959
10.1021/acs.cgd.9b00145
10.1002/chem.202201929
10.1039/C7TA01364G
10.1021/acs.cgd.9b00801
10.1021/jacs.2c02598
10.1039/C6CC00366D
10.1021/ja00220a005
10.1021/jacs.0c05277
10.1016/j.chempr.2022.06.015
10.1039/C7SC00201G
10.1002/adma.202005912
10.1021/accountsmr.2c00173
10.1021/ja3055639
10.1039/C8CS00829A
10.1016/j.chempr.2021.02.017
10.1038/s41467-019-12453-6
10.1021/ja4129795
10.1038/s41563-017-0013-1
10.1002/chem.201701893
10.1002/anie.201509761
10.1002/chem.202000186
10.1002/chem.202101061
10.1038/nprot.2014.042
10.1038/s41929-023-00972-x
10.31635/ccschem.021.202100824
10.1021/jacs.2c02918
10.1107/S0108768195009980
10.1021/acs.cgd.5b00147
10.1021/acs.cgd.9b00582
10.1002/anie.201610916
10.1038/nature11893
10.1021/acs.accounts.5b00369
10.1002/adma.201601133
10.1021/cr200324t
10.1002/anie.202011300
10.1039/C0JM03449E
10.1021/jacs.7b13706
10.1021/prechem.3c00094
10.1038/nature11990
10.1038/s41467-020-16977-0
10.1107/S0567740869001713
10.1021/acs.cgd.6b00924
10.1039/C4CS00010B
10.1021/jacs.9b13274
10.1039/C9CC06707H
10.1002/anie.201800354
10.1021/ja1042935
10.1002/chem.202202655
10.1039/C4CS00129J
10.1039/C5CS00023H
10.1126/science.aaz8881
10.1039/C8SC04376K
10.1126/science.1230444
10.1021/ar00172a005
10.1021/ja963905e
10.1021/jacs.5b00534
10.1002/ange.201903600
10.1002/anie.201911087
10.1126/science.1064432
10.1039/C4CS00230J
10.1038/ncomms6131
10.1002/chem.201202959
10.1002/anie.202214189
10.1039/C8DT05030A
10.1021/jacs.7b09452
10.1039/D1ME00055A
10.1002/anie.202308418
10.1002/adma.202208625
10.1007/s10847-019-00972-0
10.1016/j.chempr.2018.12.025
10.1039/C5CC01645B
10.1038/s41467-022-29382-6
10.1126/science.aaf2458
10.1021/accountsmr.0c00019
10.1039/b802426j
10.1039/C9CC09171H
10.1038/s41467-020-18419-3
10.1002/chem.201602233
10.1021/acsami.1c06312
10.1039/C8CE00655E
10.1021/jacs.9b03766
10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
10.1038/s41557-021-00740-z
10.1021/jacs.6b02968
10.1126/science.276.5312.575
10.1021/jacs.0c06485
10.1021/acs.accounts.6b00360
10.1021/acsami.1c15748
10.1021/acs.chemrev.9b00550
10.1016/j.ccr.2018.02.008
10.1038/s41467-019-10575-5
10.1021/jacs.9b05232
10.1039/C6CS00528D
10.1002/anie.202218360
10.1039/b807080f
10.1055/s-0039-1698431
10.1021/acscentsci.2c01196
10.1021/acs.accounts.2c00686
10.1021/ja403002m
10.1021/ja506577g
10.1002/anie.201610901
10.1039/D1CC04782E
10.1002/asia.201700406
10.1021/jacs.5b05644
10.1002/anie.202311419
10.1002/chem.201804342
10.1002/anie.202211482
10.1002/anie.202012079
10.1021/ja001851
10.1021/acsami.2c04746
10.1002/anie.202116483
10.1021/acs.cgd.9b00851
10.1126/science.aaz0251
10.1021/jacs.0c06473
10.1021/ja067571x
10.1039/C5CC04219D
10.1002/anie.202110057
10.1021/jacs.7b03204
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202303580
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 38179818
10_1002_chem_202303580
CHEM202303580
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22075169
– fundername: Fundamental and Frontier Research Project of Chongqing Municipality
  funderid: 22JHQ026
– fundername: Starting Grants from Shaanxi University of Science and Technology
  funderid: 2016QNBJ-11
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
ACUHS
AEYWJ
AGHNM
AGYGG
CITATION
EBD
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3730-753fb89da26774c2e655c0d73b2832111e0d6eb04e43289f9724be4fd54ba5613
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 01:28:47 EDT 2025
Tue Jul 15 19:40:38 EDT 2025
Mon Jul 21 06:02:42 EDT 2025
Tue Jul 01 00:43:58 EDT 2025
Thu Apr 24 22:51:32 EDT 2025
Wed Jan 22 16:12:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords charge-assisted, ionic, hydrogen-bonded organic frameworks, designable, stabilized, multifunctional
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-753fb89da26774c2e655c0d73b2832111e0d6eb04e43289f9724be4fd54ba5613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3676-0242
PMID 38179818
PQID 2984996389
PQPubID 986340
PageCount 16
ParticipantIDs proquest_miscellaneous_2915987631
proquest_journals_2984996389
pubmed_primary_38179818
crossref_citationtrail_10_1002_chem_202303580
crossref_primary_10_1002_chem_202303580
wiley_primary_10_1002_chem_202303580_CHEM202303580
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 20, 2024
PublicationDateYYYYMMDD 2024-03-20
PublicationDate_xml – month: 03
  year: 2024
  text: March 20, 2024
  day: 20
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 10
1997; 276
2019; 19
2020; 11
2012; 12
2011; 112
2014; 136
2022; 28
2023; 62
2012; 134
2015; 137
2020; 96
2013; 52
2019; 25
2018; 30
2000; 122
2016; 49
2021; 47
2019; 5
2015; 127
2020; 142
2019; 2
2015; 51
2019; 1
2013; 341
2020; 32
2016; 16
2018; 20
2011; 133
2014; 43
2017; 139
2018; 24
2021; 57
2017; 53
2018; 18
2018; 17
2016; 1
1990; 23
2012; 112
2022; 3
2022; 4
2022; 8
2019; 48
2017; 56
2022; 13
1969; 25
2020; 26
2022; 14
2020; 399
2016; 28
2021; 60
2017; 543
2016; 22
2018; 362
2017; 5
2021; 27
2017; 8
2023; 35
2021; 21
1997; 119
2020; 120
2023; 6
2019; 55
2017; 46
2019; 58
2020; 368
2019; 366
2020; 59
2020; 56
2023; 1
2020; 367
2017; 355
2012; 51
2013; 19
2015; 48
2020; 4
2014; 5
2001; 294
2023; 25
2020; 1
2023; 23
2023; 29
2015; 44
2020; 49
2016; 353
2011; 21
2014; 9
2001; 13
2012; 336
2023; 10
2021; 7
2015; 15
2021; 6
2007; 129
2018; 140
2023; 11
2013; 42
2023; 19
2017; 23
1996; 52
2016; 52
2019; 141
2016; 55
2022; 144
2021; 13
2021; 12
2023
2022; 61
2017; 12
2010; 132
2013; 135
1988; 110
2016; 138
2013; 495
2022; 55
2009; 38
2007; 46
2019; 131
2018; 57
1994; 6
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_171_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_172_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_176_1
e_1_2_8_17_1
Yang J. (e_1_2_8_96_1) 2020; 399
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_183_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Zhou Q. (e_1_2_8_180_1) 2023
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_173_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_177_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 3
  start-page: 3680
  year: 2022
  end-page: 3708
  publication-title: Mater Adv
– volume: 142
  start-page: 12478
  year: 2020
  end-page: 12485
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 28662
  year: 2021
  end-page: 28667
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 608
  year: 2023
  end-page: 615
  publication-title: Precis. Chem.
– volume: 6
  start-page: 4431
  year: 2021
  end-page: 4453
  publication-title: ACS Energy Lett.
– volume: 46
  start-page: 126
  year: 2017
  end-page: 157
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 3006
  year: 2013
  end-page: 3016
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 21857
  year: 2023
  end-page: 21863
  publication-title: J. Mater. Chem. A
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  publication-title: Chem. Soc. Rev.
– volume: 122
  start-page: 9860
  year: 2000
  end-page: 9861
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 7172
  year: 2017
  end-page: 7175
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 643
  year: 2014
  end-page: 660
  publication-title: Nat. Protoc.
– volume: 60
  start-page: 22315
  year: 2021
  end-page: 22321
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 1709
  year: 2013
  end-page: 1712
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 3752
  year: 2022
  end-page: 3766
  publication-title: Acc. Chem. Res.
– volume: 55
  start-page: 12020
  year: 2019
  end-page: 12023
  publication-title: Chem. Commun.
– volume: 4
  start-page: 381
  year: 2022
  end-page: 388
  publication-title: CCS Chem.
– volume: 144
  start-page: 10663
  year: 2022
  end-page: 10687
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1587
  year: 2017
  end-page: 1597
  publication-title: Chem. Asian J.
– volume: 96
  start-page: 215
  year: 2020
  end-page: 231
  publication-title: J. Inclusion Phenom. Macrocyclic Chem.
– volume: 353
  start-page: 141
  year: 2016
  end-page: 144
  publication-title: Science
– volume: 133
  start-page: 14570
  year: 2011
  end-page: 14573
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 283
  year: 2018
  end-page: 289
  publication-title: Nat. Mater.
– volume: 543
  start-page: 657
  year: 2017
  end-page: 664
  publication-title: Nature
– start-page: 1
  year: 2023
  end-page: 11
  publication-title: Nat. Catal.
– volume: 21
  start-page: 1428
  year: 2021
  end-page: 1433
  publication-title: Cryst. Growth Des.
– volume: 112
  start-page: 1105
  year: 2011
  end-page: 1125
  publication-title: Chem. Rev.
– volume: 8
  start-page: 3019
  year: 2017
  end-page: 3025
  publication-title: Chem. Sci.
– volume: 25
  start-page: 10006
  year: 2019
  end-page: 10012
  publication-title: Chem. Eur. J.
– volume: 49
  start-page: 2669
  year: 2016
  end-page: 2679
  publication-title: Acc. Chem. Res.
– volume: 59
  start-page: 23322
  year: 2020
  end-page: 23328
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 756
  year: 2021
  end-page: 778
  publication-title: Mol. Syst. Des. Eng.
– volume: 14
  start-page: 19623
  year: 2022
  end-page: 19628
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 1997
  year: 2020
  end-page: 2002
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 21952
  year: 2021
  end-page: 21958
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 3053
  year: 2015
  end-page: 3063
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 3180
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1589
  year: 2022
  end-page: 1608
  publication-title: ACS Cent. Sci.
– volume: 35
  start-page: 3172
  year: 2023
  end-page: 3180
  publication-title: Chem. Mater.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 368
  start-page: 297
  year: 2020
  end-page: 303
  publication-title: Science
– volume: 12
  start-page: 3322
  year: 2021
  end-page: 3327
  publication-title: Chem. Sci.
– volume: 44
  start-page: 7112
  year: 2015
  end-page: 7127
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 3952
  year: 2018
  end-page: 3958
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2022
  publication-title: Chem. Eur. J.
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  publication-title: Chem. Rev.
– volume: 136
  start-page: 12828
  year: 2014
  end-page: 12831
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 464
  year: 2017
  end-page: 480
  publication-title: Chem. Soc. Rev.
– volume: 28
  start-page: 8819
  year: 2016
  end-page: 8860
  publication-title: Adv. Mater.
– volume: 13
  start-page: 56566
  year: 2021
  end-page: 56574
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 3402
  year: 2017
  end-page: 3430
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 5345
  year: 2018
  end-page: 5349
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 2204
  year: 2011
  end-page: 2219
  publication-title: J. Mater. Chem.
– volume: 52
  start-page: 209
  year: 1996
  end-page: 214
  publication-title: Acta Crystallogr. Sect. B
– volume: 4
  start-page: 657
  year: 2020
  end-page: 673
  publication-title: Nat. Chem. Rev.
– volume: 135
  start-page: 11684
  year: 2013
  end-page: 11687
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 11064
  year: 2022
  end-page: 11068
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 708
  year: 2020
  end-page: 735
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1477
  year: 2009
  end-page: 1504
  publication-title: Chem. Soc. Rev.
– volume: 120
  start-page: 12089
  year: 2020
  end-page: 12174
  publication-title: Chem. Rev.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 336
  start-page: 1018
  year: 2012
  end-page: 1023
  publication-title: Science
– volume: 142
  start-page: 14399
  year: 2020
  end-page: 14416
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 120
  year: 1990
  end-page: 126
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 730
  year: 2019
  end-page: 736
  publication-title: Chem. Sci.
– volume: 141
  start-page: 10915
  year: 2019
  end-page: 10923
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 5252
  year: 2012
  end-page: 5255
  publication-title: Angew. Chem. Int. Ed.
– volume: 495
  start-page: 80
  year: 2013
  end-page: 84
  publication-title: Nature
– volume: 399
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 7691
  year: 2018
  end-page: 7696
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 5815
  year: 2014
  end-page: 5840
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 2321
  year: 2023
  end-page: 2325
  publication-title: CrystEngComm
– volume: 10
  start-page: 6262
  year: 2023
  end-page: 6268
  publication-title: Inorg. Chem. Front.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  publication-title: Chem. Soc. Rev.
– volume: 29
  year: 2023
  publication-title: Chem. Eur. J.
– volume: 362
  start-page: 1
  year: 2018
  end-page: 23
  publication-title: Coord. Chem. Rev.
– volume: 52
  start-page: 4991
  year: 2016
  end-page: 4994
  publication-title: Chem. Commun.
– volume: 127
  start-page: 10834
  year: 2015
  end-page: 10835
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 3074
  year: 2019
  publication-title: Nat. Commun.
– volume: 142
  start-page: 13334
  year: 2020
  end-page: 13338
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 019
  year: 2019
  end-page: 029
  publication-title: Org. Mater.
– volume: 24
  start-page: 17444
  year: 2018
  end-page: 17448
  publication-title: Chem. Eur. J.
– volume: 13
  start-page: 677
  year: 2001
  end-page: 681
  publication-title: Adv. Mater.
– volume: 52
  start-page: 7249
  year: 2016
  end-page: 7252
  publication-title: Chem. Commun.
– volume: 131
  start-page: 8229
  year: 2019
  end-page: 8234
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 1701
  year: 2022
  publication-title: Nat. Commun.
– volume: 5
  start-page: 719
  year: 2019
  end-page: 730
  publication-title: Chem
– volume: 16
  start-page: 5831
  year: 2016
  end-page: 5835
  publication-title: Cryst. Growth Des.
– volume: 6
  start-page: 1206
  year: 1994
  end-page: 1217
  publication-title: Chem. Mater.
– volume: 11
  start-page: 4652
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 13
  publication-title: Nat. Energy
– volume: 60
  start-page: 25942
  year: 2021
  end-page: 25948
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 7406
  year: 2020
  end-page: 7427
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 1798
  year: 2023
  end-page: 1804
  publication-title: Cryst. Growth Des.
– volume: 8
  start-page: 253
  year: 2022
  end-page: 267
  publication-title: Chem
– volume: 57
  start-page: 10998
  year: 2021
  end-page: 11008
  publication-title: Chem. Commun.
– volume: 137
  start-page: 9963
  year: 2015
  end-page: 9970
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 6549
  year: 2023
  end-page: 6556
  publication-title: Chem. Mater.
– volume: 137
  start-page: 3386
  year: 2015
  end-page: 3392
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 2737
  year: 1997
  end-page: 2738
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 6617
  year: 2016
  end-page: 6628
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 703
  year: 2020
  end-page: 706
  publication-title: Chem. Commun.
– volume: 3
  start-page: 1186
  year: 2022
  end-page: 1200
  publication-title: Acc. Mater. Res.
– volume: 18
  start-page: 2082
  year: 2018
  end-page: 2092
  publication-title: Cryst. Growth Des.
– volume: 136
  start-page: 547
  year: 2014
  end-page: 549
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 228
  year: 2015
  end-page: 249
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 933
  year: 2021
  end-page: 939
  publication-title: Nat. Chem.
– volume: 46
  start-page: 2220
  year: 2007
  end-page: 2223
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 4503
  year: 2014
  publication-title: Nat. Commun.
– volume: 12
  start-page: 9607
  year: 2021
  end-page: 9618
  publication-title: Chem. Sci.
– volume: 142
  start-page: 3593
  year: 2020
  end-page: 3599
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 15648
  year: 2017
  end-page: 15651
  publication-title: J. Am. Chem. Soc.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 366
  start-page: 241
  year: 2019
  end-page: 246
  publication-title: Science
– volume: 10
  start-page: 4477
  year: 2019
  publication-title: Nat. Commun.
– volume: 55
  start-page: 2678
  year: 2016
  end-page: 2682
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 6377
  year: 2019
  end-page: 6380
  publication-title: Cryst. Growth Des.
– volume: 1
  start-page: 77
  year: 2020
  end-page: 87
  publication-title: Acc. Mater. Res.
– volume: 19
  start-page: 2519
  year: 2019
  end-page: 2524
  publication-title: Cryst. Growth Des.
– volume: 53
  start-page: 3677
  year: 2017
  end-page: 3680
  publication-title: Chem. Commun.
– volume: 19
  start-page: 5184
  year: 2019
  end-page: 5188
  publication-title: Cryst. Growth Des.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 8
  start-page: 2114
  year: 2022
  end-page: 2135
  publication-title: Chem
– volume: 55
  start-page: 10667
  year: 2016
  end-page: 10671
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 7062
  year: 2019
  end-page: 7068
  publication-title: Dalton Trans.
– volume: 2
  start-page: 2437
  year: 2019
  end-page: 2445
  publication-title: ACS Appl. Nano Mater.
– volume: 27
  start-page: 10957
  year: 2021
  end-page: 10965
  publication-title: Chem. Eur. J.
– volume: 5
  start-page: 8292
  year: 2017
  end-page: 8296
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 5
  year: 1969
  end-page: 19
  publication-title: Acta Crystallogr. Sect. B
– volume: 15
  start-page: 2000
  year: 2015
  end-page: 2004
  publication-title: Cryst. Growth Des.
– volume: 141
  start-page: 14298
  year: 2019
  end-page: 14305
  publication-title: J. Am. Chem. Soc.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 48
  start-page: 2783
  year: 2019
  end-page: 2828
  publication-title: Chem. Soc. Rev.
– volume: 60
  start-page: 6076
  year: 2021
  end-page: 6085
  publication-title: Angew. Chem. Int. Ed.
– volume: 51
  start-page: 8924
  year: 2015
  end-page: 8927
  publication-title: Chem. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  year: 2021
  publication-title: J. Photochem. Photobiol. C
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  publication-title: Chem. Rev.
– volume: 134
  start-page: 15016
  year: 2012
  end-page: 15021
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 7026
  year: 2020
  end-page: 7040
  publication-title: Chem. Eur. J.
– volume: 56
  start-page: 2101
  year: 2017
  end-page: 2104
  publication-title: Angew. Chem. Int. Ed.
– volume: 144
  start-page: 13021
  year: 2022
  end-page: 13025
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 16152
  year: 2019
  end-page: 16155
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 4829
  year: 2019
  end-page: 4835
  publication-title: Cryst. Growth Des.
– volume: 129
  start-page: 4306
  year: 2007
  end-page: 4322
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 574
  year: 2023
  end-page: 584
  publication-title: Nat. Catal.
– volume: 56
  start-page: 1042
  year: 2017
  end-page: 1045
  publication-title: Angew. Chem. Int. Ed.
– volume: 140
  start-page: 4596
  year: 2018
  end-page: 4603
  publication-title: J. Am. Chem. Soc.
– volume: 367
  start-page: 1473
  year: 2020
  end-page: 1476
  publication-title: Science
– volume: 276
  start-page: 575
  year: 1997
  end-page: 579
  publication-title: Science
– volume: 139
  start-page: 16838
  year: 2017
  end-page: 16844
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 8737
  year: 2019
  end-page: 8740
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1321
  year: 2021
  end-page: 1332
  publication-title: Chem
– volume: 5
  start-page: 5131
  year: 2014
  publication-title: Nat. Commun.
– volume: 294
  start-page: 1907
  year: 2001
  end-page: 1911
  publication-title: Science
– volume: 51
  start-page: 11642
  year: 2015
  end-page: 11645
  publication-title: Chem. Commun.
– volume: 22
  start-page: 15430
  year: 2016
  end-page: 15436
  publication-title: Chem. Eur. J.
– volume: 48
  start-page: 1362
  year: 2019
  end-page: 1389
  publication-title: Chem. Soc. Rev.
– volume: 60
  start-page: 23176
  year: 2021
  end-page: 23181
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 132
  start-page: 14457
  year: 2010
  end-page: 14469
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 5884
  year: 2018
  end-page: 5898
  publication-title: CrystEngComm
– volume: 495
  start-page: 461
  year: 2013
  end-page: 466
  publication-title: Nature
– volume: 58
  start-page: 11160
  year: 2019
  end-page: 11170
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 4774
  year: 2017
  end-page: 4777
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 4600
  year: 2012
  end-page: 4606
  publication-title: Cryst. Growth Des.
– volume: 43
  start-page: 5789
  year: 2014
  end-page: 5814
  publication-title: Chem. Soc. Rev.
– volume: 110
  start-page: 3747
  year: 1988
  end-page: 3754
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 6014
  year: 2018
  end-page: 6026
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 11611
  year: 2017
  end-page: 11619
  publication-title: Chem. Eur. J.
– ident: e_1_2_8_69_1
  doi: 10.1039/C6CC02964G
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jphotochemrev.2021.100418
– ident: e_1_2_8_170_1
  doi: 10.1002/anie.202105634
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1220131
– ident: e_1_2_8_182_1
  doi: 10.1002/anie.202108388
– ident: e_1_2_8_63_1
  doi: 10.1002/anie.201201174
– ident: e_1_2_8_153_1
  doi: 10.1002/chem.202300028
– ident: e_1_2_8_11_1
  doi: 10.1126/science.aal1585
– ident: e_1_2_8_115_1
  doi: 10.1039/D3CE00086A
– ident: e_1_2_8_124_1
  doi: 10.1002/chem.201902117
– ident: e_1_2_8_6_1
  doi: 10.1021/cr300014x
– ident: e_1_2_8_66_1
  doi: 10.1021/jacs.8b02869
– ident: e_1_2_8_156_1
  doi: 10.1021/acs.cgd.1c00007
– ident: e_1_2_8_177_1
  doi: 10.1021/jacs.2c04532
– ident: e_1_2_8_8_1
  doi: 10.1002/ange.201503835
– ident: e_1_2_8_74_1
  doi: 10.1021/jacs.9b06589
– ident: e_1_2_8_150_1
  doi: 10.1021/acs.chemmater.2c03817
– ident: e_1_2_8_181_1
  doi: 10.1002/anie.202203955
– ident: e_1_2_8_71_1
  doi: 10.1039/D1SC02690A
– ident: e_1_2_8_48_1
  doi: 10.1021/acsanm.9b00303
– ident: e_1_2_8_152_1
  doi: 10.1021/acs.cgd.2c01306
– ident: e_1_2_8_112_1
  doi: 10.1002/anie.201208153
– ident: e_1_2_8_23_1
  doi: 10.1126/science.aax8666
– ident: e_1_2_8_89_1
  doi: 10.1002/anie.201800423
– ident: e_1_2_8_24_1
  doi: 10.1039/C7CS00153C
– ident: e_1_2_8_42_1
  doi: 10.1039/C8CS00155C
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.202002563
– ident: e_1_2_8_55_1
  doi: 10.1021/cm00044a019
– ident: e_1_2_8_27_1
  doi: 10.1039/C9CS00827F
– ident: e_1_2_8_122_1
  doi: 10.1039/D0SC06906J
– ident: e_1_2_8_174_1
  doi: 10.1021/jacs.7b11747
– ident: e_1_2_8_13_1
  doi: 10.1039/C2CS35072F
– ident: e_1_2_8_62_1
  doi: 10.1021/ja2066016
– ident: e_1_2_8_78_1
  doi: 10.1039/C7CC00557A
– ident: e_1_2_8_29_1
  doi: 10.1038/nenergy.2016.34
– ident: e_1_2_8_144_1
  doi: 10.1002/anie.201604534
– ident: e_1_2_8_41_1
  doi: 10.1039/D1MA01173A
– ident: e_1_2_8_19_1
  doi: 10.1038/ncomms5503
– ident: e_1_2_8_164_1
  doi: 10.1002/adma.201707146
– ident: e_1_2_8_95_1
  doi: 10.1021/acsenergylett.1c02045
– ident: e_1_2_8_1_1
  doi: 10.1038/s41570-020-00228-3
– ident: e_1_2_8_167_1
  doi: 10.1021/acs.chemmater.3c01669
– ident: e_1_2_8_5_1
  doi: 10.1039/D0CS00997K
– ident: e_1_2_8_129_1
  doi: 10.1021/acs.cgd.7b01538
– ident: e_1_2_8_104_1
  doi: 10.1002/anie.202109987
– ident: e_1_2_8_116_1
  doi: 10.1002/smll.202301887
– ident: e_1_2_8_111_1
  doi: 10.1002/anie.202202597
– ident: e_1_2_8_110_1
  doi: 10.1002/anie.200603841
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201705146
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.chemrev.9b00757
– ident: e_1_2_8_175_1
  doi: 10.1021/jacs.7b10292
– ident: e_1_2_8_2_1
  doi: 10.1039/C6CS00250A
– ident: e_1_2_8_114_1
  doi: 10.1021/cg300796u
– ident: e_1_2_8_141_1
  doi: 10.1002/anie.201911861
– ident: e_1_2_8_83_1
  doi: 10.1039/D3TA04738E
– ident: e_1_2_8_64_1
  doi: 10.1038/nature21419
– ident: e_1_2_8_128_1
  doi: 10.1002/anie.202208660
– start-page: 1
  year: 2023
  ident: e_1_2_8_180_1
  publication-title: Nat. Catal.
– ident: e_1_2_8_102_1
  doi: 10.1002/chem.201700798
– ident: e_1_2_8_106_1
  doi: 10.1016/j.chempr.2021.11.014
– ident: e_1_2_8_45_1
  doi: 10.1002/anie.201902147
– ident: e_1_2_8_168_1
  doi: 10.1039/D3QI01401K
– ident: e_1_2_8_82_1
  doi: 10.1002/anie.202213959
– ident: e_1_2_8_155_1
  doi: 10.1021/acs.cgd.9b00145
– ident: e_1_2_8_123_1
  doi: 10.1002/chem.202201929
– ident: e_1_2_8_135_1
  doi: 10.1039/C7TA01364G
– ident: e_1_2_8_125_1
  doi: 10.1021/acs.cgd.9b00801
– ident: e_1_2_8_51_1
  doi: 10.1021/jacs.2c02598
– ident: e_1_2_8_79_1
  doi: 10.1039/C6CC00366D
– ident: e_1_2_8_54_1
  doi: 10.1021/ja00220a005
– ident: e_1_2_8_88_1
  doi: 10.1021/jacs.0c05277
– ident: e_1_2_8_140_1
  doi: 10.1016/j.chempr.2022.06.015
– ident: e_1_2_8_117_1
  doi: 10.1039/C7SC00201G
– ident: e_1_2_8_92_1
  doi: 10.1002/adma.202005912
– ident: e_1_2_8_103_1
  doi: 10.1021/accountsmr.2c00173
– ident: e_1_2_8_21_1
  doi: 10.1021/ja3055639
– ident: e_1_2_8_31_1
  doi: 10.1039/C8CS00829A
– ident: e_1_2_8_100_1
  doi: 10.1016/j.chempr.2021.02.017
– ident: e_1_2_8_147_1
  doi: 10.1038/s41467-019-12453-6
– ident: e_1_2_8_87_1
  doi: 10.1021/ja4129795
– ident: e_1_2_8_26_1
  doi: 10.1038/s41563-017-0013-1
– ident: e_1_2_8_70_1
  doi: 10.1002/chem.201701893
– ident: e_1_2_8_171_1
  doi: 10.1002/anie.201509761
– ident: e_1_2_8_60_1
  doi: 10.1002/chem.202000186
– ident: e_1_2_8_90_1
  doi: 10.1002/chem.202101061
– ident: e_1_2_8_146_1
  doi: 10.1038/nprot.2014.042
– ident: e_1_2_8_73_1
  doi: 10.1038/s41929-023-00972-x
– ident: e_1_2_8_161_1
  doi: 10.31635/ccschem.021.202100824
– ident: e_1_2_8_178_1
  doi: 10.1021/jacs.2c02918
– ident: e_1_2_8_56_1
  doi: 10.1107/S0108768195009980
– ident: e_1_2_8_101_1
  doi: 10.1021/acs.cgd.5b00147
– ident: e_1_2_8_158_1
  doi: 10.1021/acs.cgd.9b00582
– ident: e_1_2_8_148_1
  doi: 10.1002/anie.201610916
– ident: e_1_2_8_30_1
  doi: 10.1038/nature11893
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.accounts.5b00369
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201601133
– ident: e_1_2_8_37_1
  doi: 10.1021/cr200324t
– ident: e_1_2_8_86_1
  doi: 10.1002/anie.202011300
– ident: e_1_2_8_143_1
  doi: 10.1039/C0JM03449E
– ident: e_1_2_8_159_1
  doi: 10.1021/jacs.7b13706
– ident: e_1_2_8_166_1
  doi: 10.1021/prechem.3c00094
– ident: e_1_2_8_173_1
  doi: 10.1038/nature11990
– ident: e_1_2_8_50_1
  doi: 10.1038/s41467-020-16977-0
– ident: e_1_2_8_52_1
  doi: 10.1107/S0567740869001713
– ident: e_1_2_8_134_1
  doi: 10.1021/acs.cgd.6b00924
– ident: e_1_2_8_36_1
  doi: 10.1039/C4CS00010B
– ident: e_1_2_8_130_1
  doi: 10.1021/jacs.9b13274
– ident: e_1_2_8_120_1
  doi: 10.1039/C9CC06707H
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.201800354
– ident: e_1_2_8_61_1
  doi: 10.1021/ja1042935
– ident: e_1_2_8_99_1
  doi: 10.1002/chem.202202655
– ident: e_1_2_8_9_1
  doi: 10.1039/C4CS00129J
– ident: e_1_2_8_14_1
  doi: 10.1039/C5CS00023H
– ident: e_1_2_8_28_1
  doi: 10.1126/science.aaz8881
– ident: e_1_2_8_127_1
  doi: 10.1039/C8SC04376K
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1230444
– volume: 399
  year: 2020
  ident: e_1_2_8_96_1
  publication-title: Chem. Eng. J.
– ident: e_1_2_8_53_1
  doi: 10.1021/ar00172a005
– ident: e_1_2_8_58_1
  doi: 10.1021/ja963905e
– ident: e_1_2_8_142_1
  doi: 10.1021/jacs.5b00534
– ident: e_1_2_8_160_1
  doi: 10.1002/ange.201903600
– ident: e_1_2_8_145_1
  doi: 10.1002/anie.201911087
– ident: e_1_2_8_109_1
  doi: 10.1126/science.1064432
– ident: e_1_2_8_16_1
  doi: 10.1039/C4CS00230J
– ident: e_1_2_8_65_1
  doi: 10.1038/ncomms6131
– ident: e_1_2_8_113_1
  doi: 10.1002/chem.201202959
– ident: e_1_2_8_105_1
  doi: 10.1002/anie.202214189
– ident: e_1_2_8_126_1
  doi: 10.1039/C8DT05030A
– ident: e_1_2_8_172_1
  doi: 10.1021/jacs.7b09452
– ident: e_1_2_8_40_1
  doi: 10.1039/D1ME00055A
– ident: e_1_2_8_169_1
  doi: 10.1002/anie.202308418
– ident: e_1_2_8_165_1
  doi: 10.1002/adma.202208625
– ident: e_1_2_8_44_1
  doi: 10.1007/s10847-019-00972-0
– ident: e_1_2_8_149_1
  doi: 10.1016/j.chempr.2018.12.025
– ident: e_1_2_8_154_1
  doi: 10.1039/C5CC01645B
– ident: e_1_2_8_131_1
  doi: 10.1038/s41467-022-29382-6
– ident: e_1_2_8_22_1
  doi: 10.1126/science.aaf2458
– ident: e_1_2_8_93_1
  doi: 10.1021/accountsmr.0c00019
– ident: e_1_2_8_25_1
  doi: 10.1039/b802426j
– ident: e_1_2_8_133_1
  doi: 10.1039/C9CC09171H
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-020-18419-3
– ident: e_1_2_8_151_1
  doi: 10.1002/chem.201602233
– ident: e_1_2_8_81_1
  doi: 10.1021/acsami.1c06312
– ident: e_1_2_8_39_1
  doi: 10.1039/C8CE00655E
– ident: e_1_2_8_179_1
  doi: 10.1021/jacs.9b03766
– ident: e_1_2_8_15_1
  doi: 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
– ident: e_1_2_8_84_1
  doi: 10.1038/s41557-021-00740-z
– ident: e_1_2_8_72_1
  doi: 10.1021/jacs.6b02968
– ident: e_1_2_8_108_1
  doi: 10.1126/science.276.5312.575
– ident: e_1_2_8_20_1
  doi: 10.1021/jacs.0c06485
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.accounts.6b00360
– ident: e_1_2_8_132_1
  doi: 10.1021/acsami.1c15748
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.chemrev.9b00550
– ident: e_1_2_8_34_1
  doi: 10.1016/j.ccr.2018.02.008
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-019-10575-5
– ident: e_1_2_8_107_1
  doi: 10.1021/jacs.9b05232
– ident: e_1_2_8_97_1
  doi: 10.1039/C6CS00528D
– ident: e_1_2_8_119_1
  doi: 10.1002/anie.202218360
– ident: e_1_2_8_33_1
  doi: 10.1039/b807080f
– ident: e_1_2_8_67_1
  doi: 10.1055/s-0039-1698431
– ident: e_1_2_8_94_1
  doi: 10.1021/jacs.9b03766
– ident: e_1_2_8_138_1
  doi: 10.1021/acscentsci.2c01196
– ident: e_1_2_8_137_1
  doi: 10.1021/acs.accounts.2c00686
– ident: e_1_2_8_77_1
  doi: 10.1021/ja403002m
– ident: e_1_2_8_76_1
  doi: 10.1021/ja506577g
– ident: e_1_2_8_46_1
  doi: 10.1002/anie.201610901
– ident: e_1_2_8_121_1
  doi: 10.1039/D1CC04782E
– ident: e_1_2_8_118_1
  doi: 10.1002/asia.201700406
– ident: e_1_2_8_136_1
  doi: 10.1021/jacs.5b05644
– ident: e_1_2_8_75_1
  doi: 10.1002/anie.202311419
– ident: e_1_2_8_139_1
  doi: 10.1002/chem.201804342
– ident: e_1_2_8_183_1
  doi: 10.1002/anie.202211482
– ident: e_1_2_8_163_1
  doi: 10.1002/anie.202012079
– ident: e_1_2_8_57_1
  doi: 10.1021/ja001851
– ident: e_1_2_8_80_1
  doi: 10.1021/acsami.2c04746
– ident: e_1_2_8_162_1
  doi: 10.1002/anie.202116483
– ident: e_1_2_8_157_1
  doi: 10.1021/acs.cgd.9b00851
– ident: e_1_2_8_176_1
  doi: 10.1126/science.aaz0251
– ident: e_1_2_8_98_1
  doi: 10.1021/jacs.0c06473
– ident: e_1_2_8_59_1
  doi: 10.1021/ja067571x
– ident: e_1_2_8_68_1
  doi: 10.1039/C5CC04219D
– ident: e_1_2_8_85_1
  doi: 10.1002/anie.202110057
– ident: e_1_2_8_91_1
  doi: 10.1021/jacs.7b03204
SSID ssj0009633
Score 2.5494537
SecondaryResourceType review_article
Snippet Hydrogen‐bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high...
Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202303580
SubjectTerms charge-assisted
Construction
Covalent bonds
designable
Hydrogen
Hydrogen bonding
Hydrogen bonds
hydrogen-bonded organic frameworks
Interpenetrating networks
ionic
Ligands
multifunctional
Multifunctional materials
Proton conduction
stabilized
Structural stability
Title Charge‐Assisted Ionic Hydrogen‐Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202303580
https://www.ncbi.nlm.nih.gov/pubmed/38179818
https://www.proquest.com/docview/2984996389
https://www.proquest.com/docview/2915987631
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hLnBhXwIFGQmJU9rUcZKGGwKqggQHBBK3yFs5gFLocqAnPoFv5EuYiZtAQQgJbknsrDNjv4ln3gDsh3FkWlJbPxFW-ELhOJhy0uVQovRtbGJNjuLFZdy5Eee30e2nLH7HD1H9cCPLKMZrMnCpBo0P0lB8J8okRwhNK3k4CFPAFqGiqw_-KNQuV0teJD5xsJasjQFvTJ8-PSt9g5rTyLWYetqLIMuHdhEn9_XRUNX1-Auf43_eagkWJriUHTlFWoYZm6_A3HFZDm4Vnmhh_s6-vbyiREk3DDsjWl3WeTb9HqohtlCNYjzu8js1a5eBX4NDdlJEilCeFpO5YYhxKSp3jL2LFGCaXt1fSXYhh84q1uCmfXp93PEn9Rp8HeJA4aPn01Wt1EgeI6jU3MZRpAOThKqoh9Rs2sDEVgWoFSH6ed004UJZ0TWRUJIcmXWYzXu53QQWSpvIMMWGAPFaU6baSLysTVuxDIUxHvilvDI9ITOnmhoPmaNh5hl9yKz6kB4cVP0fHY3Hjz1rpfiziTkPMp620DMkcOfBXtWMAqDVFZnb3oj6IDIkfr-mBxtObapbEQ1iitDIA14I_5dnyIgOo9rb-stJ2zCP24Ki5XhQg9lhf2R3ED4N1W5hIu-GnBKV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCvoTVSEicAqnjJA03BFRlKQcEErfIWzmAUijtAU58At_IlzATN0EFISQ4JnbWmbHf2DNvALbDODJ1qa2fCCt8oXAcTDnpcihR-jY2sSZHsXURN6_F6U1URhNSLozjh6gW3MgyivGaDJwWpPc-WUPxoyiVHDE0beWNwjiV9Sb6_KPLTwYp1C9XTV4kPrGwlryNAd8bvn54XvoGNoexazH5NKZBla_tYk7udvs9tatfvjA6_uu7ZmBqAE3ZgdOlWRix-RxMHJYV4ebhkfbmb-376xsKldTDsBNi1mXNZ9PtoCZiC5UpxvMuxVOzRhn79bTPjopgEUrVYjI3DGEuBea-YO8iC5hmWLcwyVqy5wxjAa4bx1eHTX9QssHXIY4VPjo_bVVPjeQx4krNbRxFOjBJqIqSSLWaDUxsVYCKEaKr104TLpQVbRMJJcmXWYSxvJPbZWChtIkMU2wIELLVZKqNxNvatB7LUBjjgV8KLNMDPnMqq3GfOSZmntGPzKof6cFO1f_BMXn82HOtlH82sOinjKd1dA4J33mwVTWjAGiDRea206c-CA6J4q_mwZLTm-pRxISYIjrygBfS_-UdMmLEqI5W_nLRJkw0r1rn2fnJxdkqTOJ5QcFzPFiDsV63b9cRTfXURmEvH6hOFrE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7xIxUu0D_aAG1dCamnsFnHcdbcENtoaQuqKlbaW-TY3h5aZRfYPZQTj8Az8iTMxEnotkKV6DGxkziZGfubeOYbgL1YJranjQtT4UQoCpwHFSddjjVK30krDTmKJ6dyMBSfRsnotyx-zw_R_nAjy6jmazLwqR137klD8Z0okxwhNO3kLcOqkJGi4g39b_cEUqhevpi8SEMiYW1oGyPeWbx-cVn6C2suQtdq7ck2QTej9iEnP_bns2LfXP1B6Pg_r_UUNmpgyg69Jj2DJVc-h7Wjph7cCzinnfnv7vb6BkVKymHZMfHqssEvezFBPcQWKlKM532Cp2FZE_l1ecD6VagIJWoxXVqGIJfCcq-wd5UDTOur_y3JTvTMm8VLGGYfz44GYV2wITQxzhQhuj7joqes5hJRpeFOJomJbBoXVUGkbtdFVroiQrWI0dEbq5SLwomxTUShyZPZgpVyUrrXwGLtUh0rbIgQsHW1MlbjbZ3qSR0LawMIG3nlpmYzp6IaP3PPw8xz-pB5-yED-ND2n3oejwd77jbiz2t7vsy56qFrSOgugPdtMwqAtld06SZz6oPQkAj-ugG88mrTPop4EBViowB4Jfx_jCEnPoz2aPsxF72DJ1_7Wf7l-PTzDqzjaUGRczzahZXZxdy9QSg1K95W1nIHT_QVYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge-Assisted+Ionic+Hydrogen-Bonded+Organic+Frameworks%3A+Designable+and+Stabilized+Multifunctional+Materials&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chen%2C+Xu-Yong&rft.au=Cao%2C+Li-Hui&rft.au=Bai%2C+Xiang-Tian&rft.au=Cao%2C+Xiao-Jie&rft.date=2024-03-20&rft.eissn=1521-3765&rft.spage=e202303580&rft_id=info:doi/10.1002%2Fchem.202303580&rft_id=info%3Apmid%2F38179818&rft.externalDocID=38179818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon