Tumor‐Selective Nano‐Dispatcher Enforced Cancer Immunotherapeutic Effects via Regulating Lactate Metabolism and Activating Toll‐Like Receptors

The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunot...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 1; pp. e2406870 - n/a
Main Authors Liu, Yang, Li, Hui, Hao, Yan‐Yun, Huang, Ling‐Ling, Li, Xia, Zou, Jing, Zhang, Shi‐Ying, Yang, Xiao‐Yue, Chen, Hong‐Fei, Guo, Yi‐Xuan, Guan, Yun‐Yan, Zhang, Zhi‐Yue
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll‐like receptors is developed. By using the tumor‐targeting properties of c‐RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH‐responsive release of Toll‐like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions. The development of tumors can result in increased lactate production and immunosuppression. The overexpression of MCT4 in tumors results in excessive lactate efflux, contributing to elevated lactate levels. A tumor‐selective system (PIMDQ/Syro‐RNP) allows for the simultaneous delivery of MCT4 inhibitor (Syro) and TLR7/8 agonist (IMDQ). The PIMDQ/Syro‐RNP has shown efficacy in reducing lactate efflux, activating DCs, and improving immunotherapy.
AbstractList The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll‐like receptors is developed. By using the tumor‐targeting properties of c‐RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH‐responsive release of Toll‐like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions.
The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll‐like receptors is developed. By using the tumor‐targeting properties of c‐RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH‐responsive release of Toll‐like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions.
The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll‐like receptors is developed. By using the tumor‐targeting properties of c‐RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH‐responsive release of Toll‐like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions. The development of tumors can result in increased lactate production and immunosuppression. The overexpression of MCT4 in tumors results in excessive lactate efflux, contributing to elevated lactate levels. A tumor‐selective system (PIMDQ/Syro‐RNP) allows for the simultaneous delivery of MCT4 inhibitor (Syro) and TLR7/8 agonist (IMDQ). The PIMDQ/Syro‐RNP has shown efficacy in reducing lactate efflux, activating DCs, and improving immunotherapy.
The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor-selective nano-dispatcher, PIMDQ/Syro-RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll-like receptors is developed. By using the tumor-targeting properties of c-RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH-responsive release of Toll-like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions.The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor-selective nano-dispatcher, PIMDQ/Syro-RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll-like receptors is developed. By using the tumor-targeting properties of c-RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH-responsive release of Toll-like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions.
Author Huang, Ling‐Ling
Guan, Yun‐Yan
Zhang, Zhi‐Yue
Chen, Hong‐Fei
Li, Hui
Zou, Jing
Liu, Yang
Guo, Yi‐Xuan
Hao, Yan‐Yun
Li, Xia
Zhang, Shi‐Ying
Yang, Xiao‐Yue
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Shandong University
– sequence: 2
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: Shandong University
– sequence: 3
  givenname: Yan‐Yun
  surname: Hao
  fullname: Hao, Yan‐Yun
  organization: Shandong University
– sequence: 4
  givenname: Ling‐Ling
  surname: Huang
  fullname: Huang, Ling‐Ling
  organization: Shandong University
– sequence: 5
  givenname: Xia
  surname: Li
  fullname: Li, Xia
  organization: Shandong University
– sequence: 6
  givenname: Jing
  surname: Zou
  fullname: Zou, Jing
  organization: Shandong University
– sequence: 7
  givenname: Shi‐Ying
  surname: Zhang
  fullname: Zhang, Shi‐Ying
  organization: Shandong University
– sequence: 8
  givenname: Xiao‐Yue
  surname: Yang
  fullname: Yang, Xiao‐Yue
  organization: Shandong University
– sequence: 9
  givenname: Hong‐Fei
  surname: Chen
  fullname: Chen, Hong‐Fei
  organization: Shandong University
– sequence: 10
  givenname: Yi‐Xuan
  surname: Guo
  fullname: Guo, Yi‐Xuan
  organization: Shandong University
– sequence: 11
  givenname: Yun‐Yan
  surname: Guan
  fullname: Guan, Yun‐Yan
  organization: Shandong University
– sequence: 12
  givenname: Zhi‐Yue
  orcidid: 0000-0003-0368-8843
  surname: Zhang
  fullname: Zhang, Zhi‐Yue
  email: zhiyue.zhang@sdu.edu.cn
  organization: Shandong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39390849$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1uFDEQgFcoiPxAS4ks0dDcYe-f7TI6jhBpAxI56tXEOw4OXnuxvUHp8ggUPCFPgk-XBCkSorI9830z1sxhsee8w6J4yeiSUVq-jaO1y5KWNW0Fp0-KA9ayatGKUu493BndLw5jvKK0YmXNnxX7lawkFbU8KH5t5tGH37c_z9GiSuYayUdwPgfemThBUl8xkLXTPigcyAqcyu_TcZydTzkFE87JKLLWOtuRXBsgn_FytpCMuyQdqAQJyRkmuPDWxJGAG8jxttGO2Hhrc7POfMMsKpySD_F58VSDjfji7jwqvrxfb1YfFt2nk9PVcbdQFa_ogpcChwbKVuqSwaAENGyoucAWtawxJ3XNOZcaaYUSJNeigaatJS-hUYOqjoo3u7pT8N9njKkfTVRoLTj0c-wrxpqGMsHbjL5-hF75Obj8u0w1Zd0IWYlMvbqj5osRh34KZoRw09_POwP1DlDBxxhQ98rkCRnvUgBje0b77Vr77Vr7h7VmbflIu6_8T0HuhB_G4s1_6P78rOv-un8Ax9i64A
CitedBy_id crossref_primary_10_3390_ijms26020669
crossref_primary_10_1007_s10495_024_02044_2
Cites_doi 10.1016/j.mam.2012.05.003
10.3390/metabo12060557
10.1016/j.semcancer.2016.12.003
10.1038/nrc3258
10.1016/j.tibs.2018.10.011
10.1016/j.ccell.2023.05.015
10.1016/j.bioactmat.2023.02.016
10.1016/j.molmet.2019.07.006
10.1038/s41577-020-0406-2
10.1038/s41392-023-01557-7
10.1186/s40001-022-00895-6
10.1016/j.bbamcr.2016.03.013
10.1126/science.1178331
10.1038/s41467-018-07127-8
10.1016/j.cmet.2020.12.010
10.1002/anie.202214992
10.1038/s41586-021-03326-4
10.1039/C9NR10344A
10.1002/adfm.202203490
10.1038/s41568-020-0273-y
10.1016/j.cej.2023.144909
10.1016/j.bioactmat.2021.07.009
10.1038/s41568-021-00378-6
10.1021/acsnano.1c03093
10.1002/hep.32348
10.1038/s41586-020-03045-2
10.3389/fimmu.2022.932055
10.1002/smll.202307794
10.1016/j.bioactmat.2020.09.002
10.3389/fimmu.2014.00316
10.3390/cancers12113244
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202406870
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39390849
10_1002_smll_202406870
SMLL202406870
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Chunhui Program‐Cooperative Research Project of the Ministry of Education of China
  funderid: HZKY20220462
– fundername: National Natural Science Foundation of China
  funderid: 82003680; 82111530241
– fundername: Young Taishan Scholars Program
  funderid: TSQN202312042
– fundername: Natural Science Foundation of Shandong Province of China
  funderid: ZR2020QH350; ZR2021QH024; ZR2023YQ065
– fundername: Open Projects Fund of NMPA Key Laboratory for Technology Research and Evaluation of Drug Products
  funderid: 2022TREDP03
– fundername: Natural Science Foundation of Shandong Province of China
  grantid: ZR2021QH024
– fundername: Natural Science Foundation of Shandong Province of China
  grantid: ZR2020QH350
– fundername: Natural Science Foundation of Shandong Province of China
  grantid: ZR2023YQ065
– fundername: Young Taishan Scholars Program
  grantid: TSQN202312042
– fundername: National Natural Science Foundation of China
  grantid: 82003680
– fundername: National Natural Science Foundation of China
  grantid: 82111530241
– fundername: Open Projects Fund of NMPA Key Laboratory for Technology Research and Evaluation of Drug Products
  grantid: 2022TREDP03
– fundername: Chunhui Program-Cooperative Research Project of the Ministry of Education of China
  grantid: HZKY20220462
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
53G
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3730-728ed5a269f21adc8a51d478e6ef94e8edf47779fe03e9a97f85a564972a5cdc3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:34:55 EDT 2025
Fri Jul 25 11:56:06 EDT 2025
Mon Jul 21 05:57:21 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 00:42:01 EDT 2025
Wed Jan 22 17:13:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords lactate metabolism
immune therapy
nano‐dispatcher
TLR7/8
monocarboxylate transporters 4 (MCT4)
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-728ed5a269f21adc8a51d478e6ef94e8edf47779fe03e9a97f85a564972a5cdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0368-8843
PMID 39390849
PQID 3152458938
PQPubID 1046358
PageCount 14
ParticipantIDs proquest_miscellaneous_3115501876
proquest_journals_3152458938
pubmed_primary_39390849
crossref_citationtrail_10_1002_smll_202406870
crossref_primary_10_1002_smll_202406870
wiley_primary_10_1002_smll_202406870_SMLL202406870
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2021; 20 591
2022 2022; 13 27
2023; 77
2022 2023; 32 26
2023; 472
2022; 61
2013 2017 2016; 34 43 1863
2020 2019 2020; 21 44 12
2022; 12
2023 2024; 41 20
2012 2010 2021; 12 327 6
2021; 591
2020; 12
2021 2014 2023; 15 5 8
2021 2022; 21 9
2021 2016 2020; 33 7 33
2009 2018; 324 9
Matthew L. C. C. (e_1_2_8_2_1) 2009; 324
e_1_2_8_8_3
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_8_1
e_1_2_8_1_1
e_1_2_8_15_3
e_1_2_8_17_1
e_1_2_8_12_2
e_1_2_8_13_1
e_1_2_8_12_3
e_1_2_8_13_2
e_1_2_8_14_1
e_1_2_8_15_1
Xiaofeng Li X. Y. (e_1_2_8_8_2) 2016; 7
e_1_2_8_15_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_11_1
e_1_2_8_10_3
e_1_2_8_12_1
References_xml – volume: 33 7 33
  start-page: 160 15 48
  year: 2021 2016 2020
  publication-title: Cell Metab. Oncotarget Mol. Metab.
– volume: 13 27
  start-page: 256
  year: 2022 2022
  publication-title: Front. Immunol. Eur. J. Med.Res.
– volume: 12 327 6
  start-page: 265 6 697
  year: 2012 2010 2021
  publication-title: Nat. Rev. Cancer. Science Bioact Mater
– volume: 20 591
  start-page: 516 645
  year: 2020 2021
  publication-title: Nat. Rev. Cancer. Nature
– volume: 12
  start-page: 557
  year: 2022
  publication-title: Metabolites
– volume: 591
  start-page: 652
  year: 2021
  publication-title: Nature
– volume: 21 9
  start-page: 669 15
  year: 2021 2022
  publication-title: Nat. Rev. Cancer. Bioact Mater
– volume: 32 26
  start-page: 169
  year: 2022 2023
  publication-title: Adv. Funct. Mater. Bioact. Mater.
– volume: 12
  start-page: 2966
  year: 2020
  publication-title: Nanoscale
– volume: 324 9
  start-page: 5 4683
  year: 2009 2018
  publication-title: Science Nat. Commun.
– volume: 472
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 41 20
  start-page: 1363
  year: 2023 2024
  publication-title: Cancer Cell Small
– volume: 21 44 12
  start-page: 151 153 3244
  year: 2020 2019 2020
  publication-title: Nat. Rev. Immunol. Trends Biochem. Sci. Cancers
– volume: 15 5 8
  start-page: 283
  year: 2021 2014 2023
  publication-title: ACS Nano Front. Immunol. Signal Transduction Targeted Ther.
– volume: 61
  year: 2022
  publication-title: Angew. Chem.‐Int. Ed.
– volume: 34 43 1863
  start-page: 337 17 2481
  year: 2013 2017 2016
  publication-title: Mol. Aspects Med. Semin. Cancer Biol. Biochim. Biophys. Acta‐Mol. Cell Res.
– volume: 77
  start-page: 109
  year: 2023
  publication-title: Hepatology
– volume: 7
  start-page: 15
  year: 2016
  ident: e_1_2_8_8_2
  publication-title: Oncotarget
– ident: e_1_2_8_15_1
  doi: 10.1016/j.mam.2012.05.003
– ident: e_1_2_8_16_1
  doi: 10.3390/metabo12060557
– ident: e_1_2_8_15_2
  doi: 10.1016/j.semcancer.2016.12.003
– ident: e_1_2_8_10_1
  doi: 10.1038/nrc3258
– ident: e_1_2_8_3_2
  doi: 10.1016/j.tibs.2018.10.011
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ccell.2023.05.015
– ident: e_1_2_8_13_2
  doi: 10.1016/j.bioactmat.2023.02.016
– ident: e_1_2_8_8_3
  doi: 10.1016/j.molmet.2019.07.006
– ident: e_1_2_8_3_1
  doi: 10.1038/s41577-020-0406-2
– ident: e_1_2_8_12_3
  doi: 10.1038/s41392-023-01557-7
– ident: e_1_2_8_6_2
  doi: 10.1186/s40001-022-00895-6
– ident: e_1_2_8_15_3
  doi: 10.1016/j.bbamcr.2016.03.013
– ident: e_1_2_8_10_2
  doi: 10.1126/science.1178331
– volume: 324
  start-page: 5
  year: 2009
  ident: e_1_2_8_2_1
  publication-title: Science
– ident: e_1_2_8_2_2
  doi: 10.1038/s41467-018-07127-8
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cmet.2020.12.010
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.202214992
– ident: e_1_2_8_5_1
  doi: 10.1038/s41586-021-03326-4
– ident: e_1_2_8_9_1
  doi: 10.1039/C9NR10344A
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.202203490
– ident: e_1_2_8_4_1
  doi: 10.1038/s41568-020-0273-y
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cej.2023.144909
– ident: e_1_2_8_1_2
  doi: 10.1016/j.bioactmat.2021.07.009
– ident: e_1_2_8_1_1
  doi: 10.1038/s41568-021-00378-6
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.1c03093
– ident: e_1_2_8_17_1
  doi: 10.1002/hep.32348
– ident: e_1_2_8_4_2
  doi: 10.1038/s41586-020-03045-2
– ident: e_1_2_8_6_1
  doi: 10.3389/fimmu.2022.932055
– ident: e_1_2_8_7_2
  doi: 10.1002/smll.202307794
– ident: e_1_2_8_10_3
  doi: 10.1016/j.bioactmat.2020.09.002
– ident: e_1_2_8_12_2
  doi: 10.3389/fimmu.2014.00316
– ident: e_1_2_8_3_3
  doi: 10.3390/cancers12113244
SSID ssj0031247
Score 2.509461
Snippet The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2406870
SubjectTerms Accumulation
Acidosis
Animals
Anticancer properties
Cell Line, Tumor
Efflux
Humans
Immune system
immune therapy
Immunotherapy - methods
lactate metabolism
Lactic Acid - chemistry
Lymphocytes
Metabolism
Mice
monocarboxylate transporters 4 (MCT4)
Monocarboxylic Acid Transporters - antagonists & inhibitors
Monocarboxylic Acid Transporters - metabolism
Nanoparticles - chemistry
nano‐dispatcher
Neoplasms - immunology
Neoplasms - metabolism
Neoplasms - pathology
Neoplasms - therapy
Proteins
Receptors
TLR7/8
Toll-Like Receptors - metabolism
Tumor Microenvironment - drug effects
Title Tumor‐Selective Nano‐Dispatcher Enforced Cancer Immunotherapeutic Effects via Regulating Lactate Metabolism and Activating Toll‐Like Receptors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406870
https://www.ncbi.nlm.nih.gov/pubmed/39390849
https://www.proquest.com/docview/3152458938
https://www.proquest.com/docview/3115501876
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnuAA5VFIKchISJzc7tpOYh-r0qqtthzardRb5FeqVXeTarPLgRM_gQO_kF_CjLMbdkGoEj3kkHisOPa8Ys98Q8gHLa3UvkyZMEEwabliVgjHMkRDt84I42KA7Ofs5EqeXafXK1n8LT5Et-GGkhH1NQq4sc3-b9DQZjLGowO0SMBzoIQxYAu9oosOP0qA8YrVVcBmMQTeWqI29vj-evd1q_SXq7nuuUbTc_yUmOWg24iT2735zO65r3_gOT7kq7bIk4VfSg9aRnpGNkL1nDxeQSt8QX4M55N6-vPb98tYOwfUJAXdXMODTyPQS3H56RGmN7ng6SGy05SeYv7JapYXbfGSG_plZOhFuInlw6obOjAO_V56HmbAl-NRM6Gm8vTAtfXXgGIILAsvG4xuA3TEcJx62rwkV8dHw8MTtijqwJwAbcJyroJPDc90yfvGO2XSvpe5ClkotQzQWMo8z3UZeiJoo_NSpSbNpM65SZ13YptsVnUVXhMqteFWBeVLb2UQ0mjMG87h8v1SSpcQtlzUwi0Qz7HwxrhosZp5gbNddLOdkI8d_V2L9fFPyt0ljxQLmW8KAa6QTMH_Uwl53zWDtOIRjKlCPUca_CXsgwlKyKuWt7pXCS10T0mdEB455J4xFJfng0F3t_M_nd6QRxzLGccdpV2yOZvOw1vwsWb2XZSjX5kbI9E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3oVAASMhcUq7azsPH6vSagvZHtqtxC1ybKdadTdBm10OnPgJHPiF_BJmnE3oghASHHJIbCuO883Dj_kG4LWShVS2jEKhnQhlwdOwEMKEMbGhF0YLbfwB2ZN4dC7ffYi604QUC9PyQ_QLbiQZXl-TgNOC9N5P1tBmPqO9AzJJCLrrcIPSevtZ1WnPICXQfPn8Kmi1QqLe6ngbB3xvs_2mXfrN2dz0Xb3xOboLRdft9szJ5e5qWeyaz78wOv7Xd92DO2vXlO23WLoP11z1AG5fISx8CN8mq3m9-P7l65lPn4OakqF6rvHB2ymqJo8AdkgRTsZZdkCIWrBjCkG5GujFWsrkhn2aanbqLnwGseqCZdqQ68vGbonQnE2bOdOVZfumTcGGNSaIWnxZNr102JBO5NSL5hGcHx1ODkbhOq9DaAQqlDDhqbOR5rEq-VBbk-poaGWSutiVSjosLGWSJKp0A-GUVkmZRjqKpUq4jow1Yhu2qrpyT4BJpXmRutSWtpBOSK0odDjByw5LKU0AYfdXc7MmPafcG7O8pWvmOY123o92AG_6-h9buo8_1tzpQJKvxb7JBXpDMkIXMA3gVV-MAku7MLpy9Yrq0KxwiFYogMctuPpXCSXUIJUqAO4h8pc-5GfjLOvvnv5Lo5dwczQZZ3l2fPL-GdzilN3YLzDtwNZysXLP0eVaFi-8UP0AtFUn7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH-CISE4bPwbyzbASEicsrW2k9jHaV21QTahrZN2ixzbmaq1ydS0HDjxETjsE_JJeHba0IIQEhxySGwrjv17f2L7_R7AO8lzLk0RhUxZFvKcijBnTIexY0PPtWJK-wOyZ_HxJf9wFV0tRfE3_BDtgpuTDK-vnYDfmmL_J2loPR65rQNnkRBz9-EBjzvC4bp33hJIMbRePr0KGq3QMW8taBs7dH-1_apZ-s3XXHVdve3pb4Ba9Lo5cnKzN5vme_rLL4SO__NZT2B97piSgwZJT-GeLZ_B4yW6wudwN5iNq8n3r98ufPIc1JMElXOFD3pDVEx-_smRi2_S1pBDh6cJOXEBKMthXqQhTK7J56Ei5_ba5w8rr0mqtHN8yamdIjBHw3pMVGnIgW4SsGGNAWIWX5YObyw2dOdxqkn9Ai77R4PD43Ce1SHUDNVJmFBhTaRoLAvaVUYLFXUNT4SNbSG5xcKCJ0kiC9thViqZFCJSUcxlQlWkjWabsFZWpd0CwqWiubDCFCbnlnElXeBwgpfpFpzrAMLFpGZ6TnnuMm-MsoasmWZutLN2tAN439a_bcg-_lhzd4GRbC70dcbQF-IROoAigLdtMYqr24NRpa1mro77J-yiDQrgZYOt9lVMMtkRXAZAPUL-0ofs4jRN27vtf2n0Bh5-6vWz9OTs4w48oi61sV9d2oW16WRmX6G_Nc1fe5H6AURkJqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor%E2%80%90Selective+Nano%E2%80%90Dispatcher+Enforced+Cancer+Immunotherapeutic+Effects+via+Regulating+Lactate+Metabolism+and+Activating+Toll%E2%80%90Like+Receptors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Yang&rft.au=Li%2C+Hui&rft.au=Yan%E2%80%90Yun+Hao&rft.au=Ling%E2%80%90Ling+Huang&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1002%2Fsmll.202406870&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon