Tumor‐Selective Nano‐Dispatcher Enforced Cancer Immunotherapeutic Effects via Regulating Lactate Metabolism and Activating Toll‐Like Receptors
The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunot...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 1; pp. e2406870 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll‐like receptors is developed. By using the tumor‐targeting properties of c‐RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH‐responsive release of Toll‐like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions.
The development of tumors can result in increased lactate production and immunosuppression. The overexpression of MCT4 in tumors results in excessive lactate efflux, contributing to elevated lactate levels. A tumor‐selective system (PIMDQ/Syro‐RNP) allows for the simultaneous delivery of MCT4 inhibitor (Syro) and TLR7/8 agonist (IMDQ). The PIMDQ/Syro‐RNP has shown efficacy in reducing lactate efflux, activating DCs, and improving immunotherapy. |
---|---|
AbstractList | The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll‐like receptors is developed. By using the tumor‐targeting properties of c‐RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH‐responsive release of Toll‐like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions. The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll‐like receptors is developed. By using the tumor‐targeting properties of c‐RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH‐responsive release of Toll‐like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions. The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor‐selective nano‐dispatcher, PIMDQ/Syro‐RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll‐like receptors is developed. By using the tumor‐targeting properties of c‐RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH‐responsive release of Toll‐like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions. The development of tumors can result in increased lactate production and immunosuppression. The overexpression of MCT4 in tumors results in excessive lactate efflux, contributing to elevated lactate levels. A tumor‐selective system (PIMDQ/Syro‐RNP) allows for the simultaneous delivery of MCT4 inhibitor (Syro) and TLR7/8 agonist (IMDQ). The PIMDQ/Syro‐RNP has shown efficacy in reducing lactate efflux, activating DCs, and improving immunotherapy. The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor-selective nano-dispatcher, PIMDQ/Syro-RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll-like receptors is developed. By using the tumor-targeting properties of c-RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH-responsive release of Toll-like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions.The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a significant challenge to the efficacy of antitumor immunity. To address this, a tumor-selective nano-dispatcher, PIMDQ/Syro-RNP, to enforce the immunotherapeutic effect through regulation of lactate metabolism and activation of toll-like receptors is developed. By using the tumor-targeting properties of c-RGD, the system can effectively deliver monocarboxylate transporters 4 (MCT4) inhibitor (Syro) to inhibit lactate efflux in tumor cells, leading to decreased lactate levels in the tumor microenvironment (TME) and increased accumulation within tumor cells. The reduction of lactate in TME will reduce the nutritional support for regulatory T cells (Tregs) and promote the effector function of T cells. The accumulation of lactate in tumor cells will lead to tumor death due to cellular acidosis. In addition, it will also reduce the uptake of glucose by tumor cells, reduce nutrient plunder, and further weaken the inhibition of T cell function. Furthermore, the pH-responsive release of Toll-like receptors (TLR) 7/8 agonist IMDQ within the TME activates dendritic cells (DCs) and promotes the infiltration of T cells. These findings offer a promising approach for enhancing tumor immune response through targeted metabolic interventions. |
Author | Huang, Ling‐Ling Guan, Yun‐Yan Zhang, Zhi‐Yue Chen, Hong‐Fei Li, Hui Zou, Jing Liu, Yang Guo, Yi‐Xuan Hao, Yan‐Yun Li, Xia Zhang, Shi‐Ying Yang, Xiao‐Yue |
Author_xml | – sequence: 1 givenname: Yang surname: Liu fullname: Liu, Yang organization: Shandong University – sequence: 2 givenname: Hui surname: Li fullname: Li, Hui organization: Shandong University – sequence: 3 givenname: Yan‐Yun surname: Hao fullname: Hao, Yan‐Yun organization: Shandong University – sequence: 4 givenname: Ling‐Ling surname: Huang fullname: Huang, Ling‐Ling organization: Shandong University – sequence: 5 givenname: Xia surname: Li fullname: Li, Xia organization: Shandong University – sequence: 6 givenname: Jing surname: Zou fullname: Zou, Jing organization: Shandong University – sequence: 7 givenname: Shi‐Ying surname: Zhang fullname: Zhang, Shi‐Ying organization: Shandong University – sequence: 8 givenname: Xiao‐Yue surname: Yang fullname: Yang, Xiao‐Yue organization: Shandong University – sequence: 9 givenname: Hong‐Fei surname: Chen fullname: Chen, Hong‐Fei organization: Shandong University – sequence: 10 givenname: Yi‐Xuan surname: Guo fullname: Guo, Yi‐Xuan organization: Shandong University – sequence: 11 givenname: Yun‐Yan surname: Guan fullname: Guan, Yun‐Yan organization: Shandong University – sequence: 12 givenname: Zhi‐Yue orcidid: 0000-0003-0368-8843 surname: Zhang fullname: Zhang, Zhi‐Yue email: zhiyue.zhang@sdu.edu.cn organization: Shandong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39390849$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1uFDEQgFcoiPxAS4ks0dDcYe-f7TI6jhBpAxI56tXEOw4OXnuxvUHp8ggUPCFPgk-XBCkSorI9830z1sxhsee8w6J4yeiSUVq-jaO1y5KWNW0Fp0-KA9ayatGKUu493BndLw5jvKK0YmXNnxX7lawkFbU8KH5t5tGH37c_z9GiSuYayUdwPgfemThBUl8xkLXTPigcyAqcyu_TcZydTzkFE87JKLLWOtuRXBsgn_FytpCMuyQdqAQJyRkmuPDWxJGAG8jxttGO2Hhrc7POfMMsKpySD_F58VSDjfji7jwqvrxfb1YfFt2nk9PVcbdQFa_ogpcChwbKVuqSwaAENGyoucAWtawxJ3XNOZcaaYUSJNeigaatJS-hUYOqjoo3u7pT8N9njKkfTVRoLTj0c-wrxpqGMsHbjL5-hF75Obj8u0w1Zd0IWYlMvbqj5osRh34KZoRw09_POwP1DlDBxxhQ98rkCRnvUgBje0b77Vr77Vr7h7VmbflIu6_8T0HuhB_G4s1_6P78rOv-un8Ax9i64A |
CitedBy_id | crossref_primary_10_3390_ijms26020669 crossref_primary_10_1007_s10495_024_02044_2 |
Cites_doi | 10.1016/j.mam.2012.05.003 10.3390/metabo12060557 10.1016/j.semcancer.2016.12.003 10.1038/nrc3258 10.1016/j.tibs.2018.10.011 10.1016/j.ccell.2023.05.015 10.1016/j.bioactmat.2023.02.016 10.1016/j.molmet.2019.07.006 10.1038/s41577-020-0406-2 10.1038/s41392-023-01557-7 10.1186/s40001-022-00895-6 10.1016/j.bbamcr.2016.03.013 10.1126/science.1178331 10.1038/s41467-018-07127-8 10.1016/j.cmet.2020.12.010 10.1002/anie.202214992 10.1038/s41586-021-03326-4 10.1039/C9NR10344A 10.1002/adfm.202203490 10.1038/s41568-020-0273-y 10.1016/j.cej.2023.144909 10.1016/j.bioactmat.2021.07.009 10.1038/s41568-021-00378-6 10.1021/acsnano.1c03093 10.1002/hep.32348 10.1038/s41586-020-03045-2 10.3389/fimmu.2022.932055 10.1002/smll.202307794 10.1016/j.bioactmat.2020.09.002 10.3389/fimmu.2014.00316 10.3390/cancers12113244 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202406870 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39390849 10_1002_smll_202406870 SMLL202406870 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Chunhui Program‐Cooperative Research Project of the Ministry of Education of China funderid: HZKY20220462 – fundername: National Natural Science Foundation of China funderid: 82003680; 82111530241 – fundername: Young Taishan Scholars Program funderid: TSQN202312042 – fundername: Natural Science Foundation of Shandong Province of China funderid: ZR2020QH350; ZR2021QH024; ZR2023YQ065 – fundername: Open Projects Fund of NMPA Key Laboratory for Technology Research and Evaluation of Drug Products funderid: 2022TREDP03 – fundername: Natural Science Foundation of Shandong Province of China grantid: ZR2021QH024 – fundername: Natural Science Foundation of Shandong Province of China grantid: ZR2020QH350 – fundername: Natural Science Foundation of Shandong Province of China grantid: ZR2023YQ065 – fundername: Young Taishan Scholars Program grantid: TSQN202312042 – fundername: National Natural Science Foundation of China grantid: 82003680 – fundername: National Natural Science Foundation of China grantid: 82111530241 – fundername: Open Projects Fund of NMPA Key Laboratory for Technology Research and Evaluation of Drug Products grantid: 2022TREDP03 – fundername: Chunhui Program-Cooperative Research Project of the Ministry of Education of China grantid: HZKY20220462 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ 53G AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3730-728ed5a269f21adc8a51d478e6ef94e8edf47779fe03e9a97f85a564972a5cdc3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:34:55 EDT 2025 Fri Jul 25 11:56:06 EDT 2025 Mon Jul 21 05:57:21 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Tue Jul 01 00:42:01 EDT 2025 Wed Jan 22 17:13:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | lactate metabolism immune therapy nano‐dispatcher TLR7/8 monocarboxylate transporters 4 (MCT4) |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-728ed5a269f21adc8a51d478e6ef94e8edf47779fe03e9a97f85a564972a5cdc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0368-8843 |
PMID | 39390849 |
PQID | 3152458938 |
PQPubID | 1046358 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3115501876 proquest_journals_3152458938 pubmed_primary_39390849 crossref_citationtrail_10_1002_smll_202406870 crossref_primary_10_1002_smll_202406870 wiley_primary_10_1002_smll_202406870_SMLL202406870 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020 2021; 20 591 2022 2022; 13 27 2023; 77 2022 2023; 32 26 2023; 472 2022; 61 2013 2017 2016; 34 43 1863 2020 2019 2020; 21 44 12 2022; 12 2023 2024; 41 20 2012 2010 2021; 12 327 6 2021; 591 2020; 12 2021 2014 2023; 15 5 8 2021 2022; 21 9 2021 2016 2020; 33 7 33 2009 2018; 324 9 Matthew L. C. C. (e_1_2_8_2_1) 2009; 324 e_1_2_8_8_3 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_8_1 e_1_2_8_1_1 e_1_2_8_15_3 e_1_2_8_17_1 e_1_2_8_12_2 e_1_2_8_13_1 e_1_2_8_12_3 e_1_2_8_13_2 e_1_2_8_14_1 e_1_2_8_15_1 Xiaofeng Li X. Y. (e_1_2_8_8_2) 2016; 7 e_1_2_8_15_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_11_1 e_1_2_8_10_3 e_1_2_8_12_1 |
References_xml | – volume: 33 7 33 start-page: 160 15 48 year: 2021 2016 2020 publication-title: Cell Metab. Oncotarget Mol. Metab. – volume: 13 27 start-page: 256 year: 2022 2022 publication-title: Front. Immunol. Eur. J. Med.Res. – volume: 12 327 6 start-page: 265 6 697 year: 2012 2010 2021 publication-title: Nat. Rev. Cancer. Science Bioact Mater – volume: 20 591 start-page: 516 645 year: 2020 2021 publication-title: Nat. Rev. Cancer. Nature – volume: 12 start-page: 557 year: 2022 publication-title: Metabolites – volume: 591 start-page: 652 year: 2021 publication-title: Nature – volume: 21 9 start-page: 669 15 year: 2021 2022 publication-title: Nat. Rev. Cancer. Bioact Mater – volume: 32 26 start-page: 169 year: 2022 2023 publication-title: Adv. Funct. Mater. Bioact. Mater. – volume: 12 start-page: 2966 year: 2020 publication-title: Nanoscale – volume: 324 9 start-page: 5 4683 year: 2009 2018 publication-title: Science Nat. Commun. – volume: 472 year: 2023 publication-title: Chem. Eng. J. – volume: 41 20 start-page: 1363 year: 2023 2024 publication-title: Cancer Cell Small – volume: 21 44 12 start-page: 151 153 3244 year: 2020 2019 2020 publication-title: Nat. Rev. Immunol. Trends Biochem. Sci. Cancers – volume: 15 5 8 start-page: 283 year: 2021 2014 2023 publication-title: ACS Nano Front. Immunol. Signal Transduction Targeted Ther. – volume: 61 year: 2022 publication-title: Angew. Chem.‐Int. Ed. – volume: 34 43 1863 start-page: 337 17 2481 year: 2013 2017 2016 publication-title: Mol. Aspects Med. Semin. Cancer Biol. Biochim. Biophys. Acta‐Mol. Cell Res. – volume: 77 start-page: 109 year: 2023 publication-title: Hepatology – volume: 7 start-page: 15 year: 2016 ident: e_1_2_8_8_2 publication-title: Oncotarget – ident: e_1_2_8_15_1 doi: 10.1016/j.mam.2012.05.003 – ident: e_1_2_8_16_1 doi: 10.3390/metabo12060557 – ident: e_1_2_8_15_2 doi: 10.1016/j.semcancer.2016.12.003 – ident: e_1_2_8_10_1 doi: 10.1038/nrc3258 – ident: e_1_2_8_3_2 doi: 10.1016/j.tibs.2018.10.011 – ident: e_1_2_8_7_1 doi: 10.1016/j.ccell.2023.05.015 – ident: e_1_2_8_13_2 doi: 10.1016/j.bioactmat.2023.02.016 – ident: e_1_2_8_8_3 doi: 10.1016/j.molmet.2019.07.006 – ident: e_1_2_8_3_1 doi: 10.1038/s41577-020-0406-2 – ident: e_1_2_8_12_3 doi: 10.1038/s41392-023-01557-7 – ident: e_1_2_8_6_2 doi: 10.1186/s40001-022-00895-6 – ident: e_1_2_8_15_3 doi: 10.1016/j.bbamcr.2016.03.013 – ident: e_1_2_8_10_2 doi: 10.1126/science.1178331 – volume: 324 start-page: 5 year: 2009 ident: e_1_2_8_2_1 publication-title: Science – ident: e_1_2_8_2_2 doi: 10.1038/s41467-018-07127-8 – ident: e_1_2_8_8_1 doi: 10.1016/j.cmet.2020.12.010 – ident: e_1_2_8_14_1 doi: 10.1002/anie.202214992 – ident: e_1_2_8_5_1 doi: 10.1038/s41586-021-03326-4 – ident: e_1_2_8_9_1 doi: 10.1039/C9NR10344A – ident: e_1_2_8_13_1 doi: 10.1002/adfm.202203490 – ident: e_1_2_8_4_1 doi: 10.1038/s41568-020-0273-y – ident: e_1_2_8_11_1 doi: 10.1016/j.cej.2023.144909 – ident: e_1_2_8_1_2 doi: 10.1016/j.bioactmat.2021.07.009 – ident: e_1_2_8_1_1 doi: 10.1038/s41568-021-00378-6 – ident: e_1_2_8_12_1 doi: 10.1021/acsnano.1c03093 – ident: e_1_2_8_17_1 doi: 10.1002/hep.32348 – ident: e_1_2_8_4_2 doi: 10.1038/s41586-020-03045-2 – ident: e_1_2_8_6_1 doi: 10.3389/fimmu.2022.932055 – ident: e_1_2_8_7_2 doi: 10.1002/smll.202307794 – ident: e_1_2_8_10_3 doi: 10.1016/j.bioactmat.2020.09.002 – ident: e_1_2_8_12_2 doi: 10.3389/fimmu.2014.00316 – ident: e_1_2_8_3_3 doi: 10.3390/cancers12113244 |
SSID | ssj0031247 |
Score | 2.509461 |
Snippet | The development of tumors relies on lactate metabolic reprogramming to facilitate their unchecked growth and evade immune surveillance. This poses a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2406870 |
SubjectTerms | Accumulation Acidosis Animals Anticancer properties Cell Line, Tumor Efflux Humans Immune system immune therapy Immunotherapy - methods lactate metabolism Lactic Acid - chemistry Lymphocytes Metabolism Mice monocarboxylate transporters 4 (MCT4) Monocarboxylic Acid Transporters - antagonists & inhibitors Monocarboxylic Acid Transporters - metabolism Nanoparticles - chemistry nano‐dispatcher Neoplasms - immunology Neoplasms - metabolism Neoplasms - pathology Neoplasms - therapy Proteins Receptors TLR7/8 Toll-Like Receptors - metabolism Tumor Microenvironment - drug effects |
Title | Tumor‐Selective Nano‐Dispatcher Enforced Cancer Immunotherapeutic Effects via Regulating Lactate Metabolism and Activating Toll‐Like Receptors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406870 https://www.ncbi.nlm.nih.gov/pubmed/39390849 https://www.proquest.com/docview/3152458938 https://www.proquest.com/docview/3115501876 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnuAA5VFIKchISJzc7tpOYh-r0qqtthzardRb5FeqVXeTarPLgRM_gQO_kF_CjLMbdkGoEj3kkHisOPa8Ys98Q8gHLa3UvkyZMEEwabliVgjHMkRDt84I42KA7Ofs5EqeXafXK1n8LT5Et-GGkhH1NQq4sc3-b9DQZjLGowO0SMBzoIQxYAu9oosOP0qA8YrVVcBmMQTeWqI29vj-evd1q_SXq7nuuUbTc_yUmOWg24iT2735zO65r3_gOT7kq7bIk4VfSg9aRnpGNkL1nDxeQSt8QX4M55N6-vPb98tYOwfUJAXdXMODTyPQS3H56RGmN7ng6SGy05SeYv7JapYXbfGSG_plZOhFuInlw6obOjAO_V56HmbAl-NRM6Gm8vTAtfXXgGIILAsvG4xuA3TEcJx62rwkV8dHw8MTtijqwJwAbcJyroJPDc90yfvGO2XSvpe5ClkotQzQWMo8z3UZeiJoo_NSpSbNpM65SZ13YptsVnUVXhMqteFWBeVLb2UQ0mjMG87h8v1SSpcQtlzUwi0Qz7HwxrhosZp5gbNddLOdkI8d_V2L9fFPyt0ljxQLmW8KAa6QTMH_Uwl53zWDtOIRjKlCPUca_CXsgwlKyKuWt7pXCS10T0mdEB455J4xFJfng0F3t_M_nd6QRxzLGccdpV2yOZvOw1vwsWb2XZSjX5kbI9E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3oVAASMhcUq7azsPH6vSagvZHtqtxC1ybKdadTdBm10OnPgJHPiF_BJmnE3oghASHHJIbCuO883Dj_kG4LWShVS2jEKhnQhlwdOwEMKEMbGhF0YLbfwB2ZN4dC7ffYi604QUC9PyQ_QLbiQZXl-TgNOC9N5P1tBmPqO9AzJJCLrrcIPSevtZ1WnPICXQfPn8Kmi1QqLe6ngbB3xvs_2mXfrN2dz0Xb3xOboLRdft9szJ5e5qWeyaz78wOv7Xd92DO2vXlO23WLoP11z1AG5fISx8CN8mq3m9-P7l65lPn4OakqF6rvHB2ymqJo8AdkgRTsZZdkCIWrBjCkG5GujFWsrkhn2aanbqLnwGseqCZdqQ68vGbonQnE2bOdOVZfumTcGGNSaIWnxZNr102JBO5NSL5hGcHx1ODkbhOq9DaAQqlDDhqbOR5rEq-VBbk-poaGWSutiVSjosLGWSJKp0A-GUVkmZRjqKpUq4jow1Yhu2qrpyT4BJpXmRutSWtpBOSK0odDjByw5LKU0AYfdXc7MmPafcG7O8pWvmOY123o92AG_6-h9buo8_1tzpQJKvxb7JBXpDMkIXMA3gVV-MAku7MLpy9Yrq0KxwiFYogMctuPpXCSXUIJUqAO4h8pc-5GfjLOvvnv5Lo5dwczQZZ3l2fPL-GdzilN3YLzDtwNZysXLP0eVaFi-8UP0AtFUn7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH-CISE4bPwbyzbASEicsrW2k9jHaV21QTahrZN2ixzbmaq1ydS0HDjxETjsE_JJeHba0IIQEhxySGwrjv17f2L7_R7AO8lzLk0RhUxZFvKcijBnTIexY0PPtWJK-wOyZ_HxJf9wFV0tRfE3_BDtgpuTDK-vnYDfmmL_J2loPR65rQNnkRBz9-EBjzvC4bp33hJIMbRePr0KGq3QMW8taBs7dH-1_apZ-s3XXHVdve3pb4Ba9Lo5cnKzN5vme_rLL4SO__NZT2B97piSgwZJT-GeLZ_B4yW6wudwN5iNq8n3r98ufPIc1JMElXOFD3pDVEx-_smRi2_S1pBDh6cJOXEBKMthXqQhTK7J56Ei5_ba5w8rr0mqtHN8yamdIjBHw3pMVGnIgW4SsGGNAWIWX5YObyw2dOdxqkn9Ai77R4PD43Ce1SHUDNVJmFBhTaRoLAvaVUYLFXUNT4SNbSG5xcKCJ0kiC9thViqZFCJSUcxlQlWkjWabsFZWpd0CwqWiubDCFCbnlnElXeBwgpfpFpzrAMLFpGZ6TnnuMm-MsoasmWZutLN2tAN439a_bcg-_lhzd4GRbC70dcbQF-IROoAigLdtMYqr24NRpa1mro77J-yiDQrgZYOt9lVMMtkRXAZAPUL-0ofs4jRN27vtf2n0Bh5-6vWz9OTs4w48oi61sV9d2oW16WRmX6G_Nc1fe5H6AURkJqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor%E2%80%90Selective+Nano%E2%80%90Dispatcher+Enforced+Cancer+Immunotherapeutic+Effects+via+Regulating+Lactate+Metabolism+and+Activating+Toll%E2%80%90Like+Receptors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Yang&rft.au=Li%2C+Hui&rft.au=Yan%E2%80%90Yun+Hao&rft.au=Ling%E2%80%90Ling+Huang&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1002%2Fsmll.202406870&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |