Coaxial Flexible Fiber‐Shaped Triboelectric Nanogenerator Assisted by Deep Learning for Self‐Powered Vibration Monitoring
Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adapta...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 15; pp. e2307680 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F‐TENG with the merits of high‐adaptability, cost‐efficiency, and self‐powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future.
A coaxial flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) is developed for self‐powered vibration sensor. The mechanical and electrical characteristics of the F‐TENG are theoretically analyzed. And the optimized device can detect vibration in broadband frequency range. Assisted by deep‐learning, the proposed TENG shows promising potential in monitoring operational conditions and identifying faults of the system. |
---|---|
AbstractList | Self-powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber-shaped triboelectric nanogenerator (F-TENG) with a coaxial core-shell structure is proposed for the vibration monitoring. The F-TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F-TENG with the merits of high-adaptability, cost-efficiency, and self-powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future.Self-powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber-shaped triboelectric nanogenerator (F-TENG) with a coaxial core-shell structure is proposed for the vibration monitoring. The F-TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F-TENG with the merits of high-adaptability, cost-efficiency, and self-powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future. Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F‐TENG with the merits of high‐adaptability, cost‐efficiency, and self‐powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future. Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F‐TENG with the merits of high‐adaptability, cost‐efficiency, and self‐powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future. Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F‐TENG with the merits of high‐adaptability, cost‐efficiency, and self‐powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future. A coaxial flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) is developed for self‐powered vibration sensor. The mechanical and electrical characteristics of the F‐TENG are theoretically analyzed. And the optimized device can detect vibration in broadband frequency range. Assisted by deep‐learning, the proposed TENG shows promising potential in monitoring operational conditions and identifying faults of the system. |
Author | Shen, Dianlong Xi, Ziyue Wang, Yawei Du, Taili Qian, Zian Zhan, Zhenhao Zhao, Cong Ge, Bin Dong, Fangyang Xu, Minyi Wang, Junpeng |
Author_xml | – sequence: 1 givenname: Cong surname: Zhao fullname: Zhao, Cong organization: Dalian Maritime University – sequence: 2 givenname: Taili surname: Du fullname: Du, Taili email: dutaili@dlmu.edu.cn organization: Dalian Maritime University – sequence: 3 givenname: Bin surname: Ge fullname: Ge, Bin organization: 601 Branch of China Aeronautical Science and Technology Corporation – sequence: 4 givenname: Ziyue surname: Xi fullname: Xi, Ziyue organization: Dalian Maritime University – sequence: 5 givenname: Zian surname: Qian fullname: Qian, Zian organization: Dalian Maritime University – sequence: 6 givenname: Yawei surname: Wang fullname: Wang, Yawei organization: Dalian Maritime University – sequence: 7 givenname: Junpeng surname: Wang fullname: Wang, Junpeng organization: Dalian Maritime University – sequence: 8 givenname: Fangyang surname: Dong fullname: Dong, Fangyang organization: Dalian Maritime University – sequence: 9 givenname: Dianlong surname: Shen fullname: Shen, Dianlong organization: Dalian Maritime University – sequence: 10 givenname: Zhenhao surname: Zhan fullname: Zhan, Zhenhao organization: Dalian Maritime University – sequence: 11 givenname: Minyi orcidid: 0000-0002-3772-8340 surname: Xu fullname: Xu, Minyi email: xuminyi@dlmu.edu.cn organization: Dalian Maritime University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38012528$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi3Uin7AlSOyxKWXpP5cr49VIIC0BaQUriuvd7a4cuxgb9TmUImfwG_sL6lLSpAqIU5jaZ5nxpr3CO2FGAChV5RMKSHsNC-9nzLCOFFVTZ6hQ1pRPqlqpvd2b0oO0FHOV4RwyoR6jg54TSiTrD5Et7NobpzxeO7hxnUe8Nx1kO5-_lp8Nyvo8UVyXQQPdkzO4k8mxEsIkMwYEz7L2eWxQN0GvwVY4QZMCi5c4qF0F-CHMudLvIZUmG-uK5aLAZ_H4IpeuBdofzA-w8vHeoy-zt9dzD5Mms_vP87OmonlipNJJWUvFKe17K0RstdGUj5UYESlmVFgmRTEat2LgQCra9lJ2kspxaCsrIDzY3SynbtK8cca8tguXbbgvQkQ17lltRaKCc1JQd88Qa_iOoXyu7Z0FVVKcl2o14_UultC366SW5q0af8ctgDTLWBTzDnBsEMoaR-Sax-Sa3fJFUE8Eawbf99rTMb5f2t6q107D5v_LGkX503z170HqMiv0Q |
CitedBy_id | crossref_primary_10_1002_smll_202411074 crossref_primary_10_1016_j_nanoen_2025_110711 crossref_primary_10_1016_j_jelechem_2024_118474 crossref_primary_10_3390_s24123817 crossref_primary_10_1360_TB_2024_0647 crossref_primary_10_3390_mi15091079 |
Cites_doi | 10.1002/admt.202201245 10.1109/JSEN.2017.2719865 10.1002/stc.1986 10.1109/TIE.2017.2774777 10.1007/s11431-022-2085-4 10.1007/s00170-018-2093-8 10.1016/j.carbon.2020.06.084 10.1021/acsnano.7b03818 10.1016/j.apenergy.2020.115161 10.1021/acsnano.9b10142 10.1002/adfm.201604378 10.1002/admt.202200003 10.1038/s41528-022-00160-0 10.1016/j.nanoen.2022.107803 10.1016/j.compind.2020.103298 10.1002/advs.202106030 10.1039/C7TA00248C 10.1109/ACCESS.2019.2932187 10.1021/nl300988z 10.1021/acsami.2c05734 10.1109/JSEN.2009.2019333 10.1051/epjconf/201818002031 10.1021/acsnano.0c09146 10.1016/j.eswa.2009.03.069 10.1111/j.1747-1567.2010.00653.x 10.3390/mi12020218 10.1002/admt.202001270 10.1002/aenm.201902460 10.1016/j.sintl.2021.100110 10.1117/1.OE.57.1.016103 10.1016/j.cej.2021.131698 10.1016/j.mattod.2020.10.031 10.1016/j.nanoen.2022.106926 10.1002/aenm.201802159 10.1016/j.nantod.2010.09.001 10.1021/acsami.1c09963 10.1007/s12274-022-4363-x 10.1016/j.neucom.2017.07.032 10.1109/JIOT.2019.2957029 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202307680 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38012528 10_1002_smll_202307680 SMLL202307680 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Dalian Outstanding Young Scientific and Technological Talents Project funderid: 2021RJ11 – fundername: Scientific Research Fund of the Educational Department of Liaoning Province funderid: LJKZ0055 – fundername: Open Fund of National Center for International Research of Subsea Engineering Technology and Equipment funderid: 3132023354 – fundername: National Natural Science Foundation of China funderid: 52101345; 52101400 – fundername: National Natural Science Foundation of China grantid: 52101400 – fundername: Open Fund of National Center for International Research of Subsea Engineering Technology and Equipment grantid: 3132023354 – fundername: Scientific Research Fund of the Educational Department of Liaoning Province grantid: LJKZ0055 – fundername: Dalian Outstanding Young Scientific and Technological Talents Project grantid: 2021RJ11 – fundername: National Natural Science Foundation of China grantid: 52101345 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AAHHS AANHP AASGY AAYOK AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3730-655d473185dca45d9a513f6ea4692a7ec2540c99d4f0e2885b51d5554f7c56e33 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:13:53 EDT 2025 Fri Jul 25 11:48:03 EDT 2025 Mon Jul 21 06:04:20 EDT 2025 Tue Jul 01 02:54:49 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Sun Jul 06 04:45:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | triboelectric nanogenerators self‐powered sensors fiber‐shaped sensors vibration sensors |
Language | English |
License | 2023 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-655d473185dca45d9a513f6ea4692a7ec2540c99d4f0e2885b51d5554f7c56e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3772-8340 |
PMID | 38012528 |
PQID | 3037177539 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2894724930 proquest_journals_3037177539 pubmed_primary_38012528 crossref_primary_10_1002_smll_202307680 crossref_citationtrail_10_1002_smll_202307680 wiley_primary_10_1002_smll_202307680_SMLL202307680 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2021; 6 2019; 9 2021; 43 2021; 2 2022; 94 2017; 27 2023; 8 2017; 24 2020; 14 2011; 35 2020; 123 2022; 65 2020; 168 2012; 12 2018; 65 2020; 7 2021; 13 2009; 36 2020; 6 2018; 8 2021; 15 2021; 31 2021; 12 2018; 272 2017; 17 2022; 6 2017; 11 2022; 7 2022; 9 2020; 270 2009; 9 2022; 14 2022; 15 2022; 427 2010; 5 2018; 180 2018; 97 2018; 57 2022; 103 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Chen X. (e_1_2_9_17_1) 2020; 6 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 Zhang Q. (e_1_2_9_6_1) 2021; 31 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 Li T. (e_1_2_9_13_1) 2017; 17 |
References_xml | – volume: 11 start-page: 7440 year: 2017 publication-title: ACS Nano – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 25 year: 2022 publication-title: npj Flexible Electron. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1422 year: 2009 publication-title: IEEE Sens. J. – volume: 5 start-page: 6032 year: 2017 publication-title: J. Mater. Chem. A – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2022 publication-title: Adv. Mater. Technol. – volume: 6 start-page: 643 year: 2020 publication-title: J. Mater. – volume: 123 year: 2020 publication-title: Comput. Ind. – volume: 180 year: 2018 publication-title: EPJ Web Conf. – volume: 31 start-page: 23 year: 2021 publication-title: Adv. Funct. Mater. – volume: 8 year: 2023 publication-title: Adv. Mater. Technol. – volume: 168 start-page: 308 year: 2020 publication-title: Carbon – volume: 14 start-page: 2475 year: 2020 publication-title: ACS Nano – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 103 year: 2022 publication-title: Nano Energy – volume: 97 start-page: 3251 year: 2018 publication-title: Int. J. Adv. Manuf. Technol. – volume: 270 year: 2020 publication-title: Appl. Energy – volume: 2 year: 2021 publication-title: Sens. Int. – volume: 12 start-page: 218 year: 2021 publication-title: Micromachines – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 12 start-page: 3109 year: 2012 publication-title: Nano Lett. – volume: 6 year: 2021 publication-title: Adv. Mater. Technol. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 57 year: 2018 publication-title: Opt. Eng. – volume: 65 start-page: 1545 year: 2022 publication-title: Sci. China Technol. Sci. – volume: 94 year: 2022 publication-title: Nano Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 year: 2019 publication-title: IEEE Access – volume: 36 year: 2009 publication-title: Expert Syst. Appl. – volume: 7 start-page: 4585 year: 2020 publication-title: IEEE Internet Things J. – volume: 17 start-page: 1021 year: 2017 publication-title: IEEE Sens. J. – volume: 15 start-page: 1597 year: 2021 publication-title: ACS Nano – volume: 24 year: 2017 publication-title: Struct. Control Health Monit. – volume: 35 start-page: 74 year: 2011 publication-title: Exp. Tech. – volume: 15 start-page: 7484 year: 2022 publication-title: Nano Res. – volume: 17 start-page: 5192 year: 2017 publication-title: IEEE Sens. J. – volume: 5 start-page: 512 year: 2010 publication-title: Nano Today – volume: 65 start-page: 5990 year: 2018 publication-title: IEEE Trans. Ind. Electron. – volume: 272 start-page: 619 year: 2018 publication-title: Neurocomputing – volume: 43 start-page: 37 year: 2021 publication-title: Mater. Today – ident: e_1_2_9_14_1 doi: 10.1002/admt.202201245 – ident: e_1_2_9_7_1 doi: 10.1109/JSEN.2017.2719865 – ident: e_1_2_9_39_1 doi: 10.1002/stc.1986 – ident: e_1_2_9_41_1 doi: 10.1109/TIE.2017.2774777 – ident: e_1_2_9_9_1 doi: 10.1007/s11431-022-2085-4 – volume: 17 start-page: 1021 year: 2017 ident: e_1_2_9_13_1 publication-title: IEEE Sens. J. – ident: e_1_2_9_1_1 doi: 10.1007/s00170-018-2093-8 – ident: e_1_2_9_37_1 doi: 10.1016/j.carbon.2020.06.084 – ident: e_1_2_9_18_1 doi: 10.1021/acsnano.7b03818 – ident: e_1_2_9_21_1 doi: 10.1016/j.apenergy.2020.115161 – ident: e_1_2_9_30_1 doi: 10.1021/acsnano.9b10142 – ident: e_1_2_9_34_1 doi: 10.1002/adfm.201604378 – ident: e_1_2_9_25_1 doi: 10.1002/admt.202200003 – ident: e_1_2_9_28_1 doi: 10.1038/s41528-022-00160-0 – ident: e_1_2_9_32_1 doi: 10.1016/j.nanoen.2022.107803 – ident: e_1_2_9_2_1 doi: 10.1016/j.compind.2020.103298 – ident: e_1_2_9_23_1 doi: 10.1002/advs.202106030 – ident: e_1_2_9_36_1 doi: 10.1039/C7TA00248C – ident: e_1_2_9_11_1 doi: 10.1109/ACCESS.2019.2932187 – volume: 6 start-page: 643 year: 2020 ident: e_1_2_9_17_1 publication-title: J. Mater. – ident: e_1_2_9_40_1 doi: 10.1021/nl300988z – ident: e_1_2_9_26_1 doi: 10.1021/acsami.2c05734 – ident: e_1_2_9_15_1 doi: 10.1109/JSEN.2009.2019333 – ident: e_1_2_9_38_1 doi: 10.1051/epjconf/201818002031 – ident: e_1_2_9_33_1 doi: 10.1021/acsnano.0c09146 – ident: e_1_2_9_5_1 doi: 10.1016/j.eswa.2009.03.069 – ident: e_1_2_9_8_1 doi: 10.1111/j.1747-1567.2010.00653.x – ident: e_1_2_9_10_1 doi: 10.3390/mi12020218 – ident: e_1_2_9_27_1 doi: 10.1002/admt.202001270 – ident: e_1_2_9_29_1 doi: 10.1002/aenm.201902460 – ident: e_1_2_9_4_1 doi: 10.1016/j.sintl.2021.100110 – ident: e_1_2_9_12_1 doi: 10.1117/1.OE.57.1.016103 – ident: e_1_2_9_35_1 doi: 10.1016/j.cej.2021.131698 – volume: 31 start-page: 23 year: 2021 ident: e_1_2_9_6_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_9_19_1 doi: 10.1016/j.mattod.2020.10.031 – ident: e_1_2_9_24_1 doi: 10.1016/j.nanoen.2022.106926 – ident: e_1_2_9_31_1 doi: 10.1002/aenm.201802159 – ident: e_1_2_9_16_1 doi: 10.1016/j.nantod.2010.09.001 – ident: e_1_2_9_20_1 doi: 10.1021/acsami.1c09963 – ident: e_1_2_9_22_1 doi: 10.1007/s12274-022-4363-x – ident: e_1_2_9_42_1 doi: 10.1016/j.neucom.2017.07.032 – ident: e_1_2_9_3_1 doi: 10.1109/JIOT.2019.2957029 |
SSID | ssj0031247 |
Score | 2.506416 |
Snippet | Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped... Self-powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber-shaped... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2307680 |
SubjectTerms | Core-shell structure Deep learning Diesel engines Error detection fiber‐shaped sensors Industrial applications Industry 4.0 Nanogenerators self‐powered sensors triboelectric nanogenerators Vibration monitoring vibration sensors |
Title | Coaxial Flexible Fiber‐Shaped Triboelectric Nanogenerator Assisted by Deep Learning for Self‐Powered Vibration Monitoring |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307680 https://www.ncbi.nlm.nih.gov/pubmed/38012528 https://www.proquest.com/docview/3037177539 https://www.proquest.com/docview/2894724930 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEF5VnNpDoRTatAFtpUqcDM7-2T4iIEIoqaoGEDdrfwGRxhFJpIKE1EfoM_ZJOmM7hoCqSuVmy7vr3fXM7Hze2W8I-cyyDouD0BFLAwAU0MUoEzpEPtWhE3svjcIDzv0v6vBEHJ3Jswen-Ct-iOaHG2pGaa9RwbWZ7NyThk6-D3HrAAOZVYqgHQO20Cv61vBHcVi8yuwqsGZFSLw1Z22M2c5i9cVV6Ymruei5lktPd5noeaeriJOr7dnUbNvbR3yOzxnVCnld-6V0txKkN-SFH62SVw_YCt-Su71C_wBxpV0k0TRDT7sYbvL756_BhR57R5GFpKjy6lxaCna7OC9JrQHWUxADFChHzQ3d935Ma2LXcwpeMx34YYB2vmLKNihzikNAiaGVycH3r5GT7sHx3mFUZ2-ILAezESkpnUjwcLazWkiXadnhQXkNgJzpxFuAprHNMidC7FmaSiM7ToJ3ExIrled8nSyNipF_T6hySYiNToSNNTLqZzY1sUiUzhwPQasWieZfL7c1tTlm2BjmFSkzy3Fa82ZaW2SrKT-uSD3-WrI9F4a8Vu5JzpHmMAGcl7XIp-YxqCXuteiRL2aTHHCsSADacmjiXSVEzas4egWSpS3CSlH4Rx_yQb_Xa-4-_E-lj-QlXNcRR22yNL2e-Q1wpqZms1SYP2oGGNc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qygJY8H6EFhgkECu3znjGjwUL1DRKaVIh0qLu3PE8StUQR02iUiQkPoFf4Vf4BL6k9_oFASEkpC5Y2h7b45n7OuM75wI85Umb-04oj8cOAQrqopcI5TwbK9f2rZVZSBucBzthb0-82pf7S_C13gtT8kM0C26kGYW9JgWnBen1H6yh0_cj-ndAmcxh7Fd5ldv27BRR2_TFVgen-Bnn3c3djZ5XFRbwdIAS7YVSGhHRvmGjlZAmUbIduNAqxIpcRVYjavJ1khjhfMvjWGaybSQ6XhdpGVpaA0Wrf4nKiBNdf-dNw1gVoLss6rmgl_SI6qvmifT5-mJ_F_3gb8HtYqxcOLvudfhWD1OZ43K8Np9la_rjLwyS_9U43oBrVejNXpa6chOW7PgWXP2JkPE2fNrI1QfUSNYlntBsZFmXMmq-f_4yfKcm1jAiWsnL0kFHmqFryg8L3u5ZfsJQ0klnDMvOWMfaCau4aw8ZAgM2tCOHz3lNVemwzVsaM1IKVlpVev8d2LuQ778Ly-N8bO8DC03k_ExFQvuKigYkOs58EYUqMYFzKmyBV4tLqiv2dioiMkpL3mme0jSmzTS24HnTflLylvyx5WotfWllv6ZpQEyOEULZpAVPmstoeeh3khrbfD5NEaqLCNF7gI-4V0pt86qAAh_J4xbwQvb-0od0OOj3m6MH_3LTY7jc2x300_7WzvYKXMHzVYLVKizPTub2IcaOs-xRoa0MDi5arM8B_zN0nQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqIiFY8H4MLWAkEKu0Hsd2kgUL1GnU0mlVMRR1lzp-lKrDZNSZUSkSEp_Ap_Ar_AJf0nvzggEhJKQuWCZxEse-5z6c63MJecqTLmde6IDHHgIUwGKQCO0DF2vfZc7JXOEG5-0dtbEnXu3L_QXytdkLU_FDtAtuiIxSXyPAx9av_iANnbwf4q8DTGRWMavTKrfc2SkEbZMXmz2Y4Wecp-tv1jaCuq5AYEIQ6EBJaUWE24at0ULaRMtu6JXTECpyHTkDQRMzSWKFZ47Hscxl10qwuz4yUjlcAgWlf0kolmCxiN7rlrAqBGtZlnMBIxkg01dDE8n46nx_583gb77tvKtc2rr0OvnWjFKV4nK8MpvmK-bjLwSS_9Mw3iDXasebvqyQcpMsuNEtcvUnOsbb5NNaoT8AHmmKLKH50NEU82m-f_4yeKfHzlKkWSmqwkFHhoJhKg5L1u5pcUJBzhExluZntOfcmNbMtYcUwgI6cEMPz9nFmnTQ5i0OGUKCVjoV33-H7F3I998li6Ni5O4TqmzkWa4jYZjGkgGJiXMmIqUTG3qvVYcEjbRkpuZuxxIiw6xineYZTmPWTmOHPG_bjyvWkj-2XG6EL6u11yQLkccxgkA26ZAn7WXQO_gzSY9cMZtkEKiLCGL3EB5xrxLa9lUhuj2Sxx3CS9H7Sx-ywXa_3x49-JebHpPLu70062_ubC2RK3C6zq5aJovTk5l7CI7jNH9UYpWSg4uW6nMQuHNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coaxial+Flexible+Fiber%E2%80%90Shaped+Triboelectric+Nanogenerator+Assisted+by+Deep+Learning+for+Self%E2%80%90Powered+Vibration+Monitoring&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhao%2C+Cong&rft.au=Du%2C+Taili&rft.au=Ge%2C+Bin&rft.au=Xi%2C+Ziyue&rft.date=2024-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202307680&rft.externalDBID=10.1002%252Fsmll.202307680&rft.externalDocID=SMLL202307680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |