Coaxial Flexible Fiber‐Shaped Triboelectric Nanogenerator Assisted by Deep Learning for Self‐Powered Vibration Monitoring

Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adapta...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 15; pp. e2307680 - n/a
Main Authors Zhao, Cong, Du, Taili, Ge, Bin, Xi, Ziyue, Qian, Zian, Wang, Yawei, Wang, Junpeng, Dong, Fangyang, Shen, Dianlong, Zhan, Zhenhao, Xu, Minyi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F‐TENG with the merits of high‐adaptability, cost‐efficiency, and self‐powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future. A coaxial flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) is developed for self‐powered vibration sensor. The mechanical and electrical characteristics of the F‐TENG are theoretically analyzed. And the optimized device can detect vibration in broadband frequency range. Assisted by deep‐learning, the proposed TENG shows promising potential in monitoring operational conditions and identifying faults of the system.
AbstractList Self-powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber-shaped triboelectric nanogenerator (F-TENG) with a coaxial core-shell structure is proposed for the vibration monitoring. The F-TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F-TENG with the merits of high-adaptability, cost-efficiency, and self-powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future.Self-powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber-shaped triboelectric nanogenerator (F-TENG) with a coaxial core-shell structure is proposed for the vibration monitoring. The F-TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F-TENG with the merits of high-adaptability, cost-efficiency, and self-powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future.
Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F‐TENG with the merits of high‐adaptability, cost‐efficiency, and self‐powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future.
Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F‐TENG with the merits of high‐adaptability, cost‐efficiency, and self‐powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future.
Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) with a coaxial core‐shell structure is proposed for the vibration monitoring. The F‐TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F‐TENG with the merits of high‐adaptability, cost‐efficiency, and self‐powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future. A coaxial flexible fiber‐shaped triboelectric nanogenerator (F‐TENG) is developed for self‐powered vibration sensor. The mechanical and electrical characteristics of the F‐TENG are theoretically analyzed. And the optimized device can detect vibration in broadband frequency range. Assisted by deep‐learning, the proposed TENG shows promising potential in monitoring operational conditions and identifying faults of the system.
Author Shen, Dianlong
Xi, Ziyue
Wang, Yawei
Du, Taili
Qian, Zian
Zhan, Zhenhao
Zhao, Cong
Ge, Bin
Dong, Fangyang
Xu, Minyi
Wang, Junpeng
Author_xml – sequence: 1
  givenname: Cong
  surname: Zhao
  fullname: Zhao, Cong
  organization: Dalian Maritime University
– sequence: 2
  givenname: Taili
  surname: Du
  fullname: Du, Taili
  email: dutaili@dlmu.edu.cn
  organization: Dalian Maritime University
– sequence: 3
  givenname: Bin
  surname: Ge
  fullname: Ge, Bin
  organization: 601 Branch of China Aeronautical Science and Technology Corporation
– sequence: 4
  givenname: Ziyue
  surname: Xi
  fullname: Xi, Ziyue
  organization: Dalian Maritime University
– sequence: 5
  givenname: Zian
  surname: Qian
  fullname: Qian, Zian
  organization: Dalian Maritime University
– sequence: 6
  givenname: Yawei
  surname: Wang
  fullname: Wang, Yawei
  organization: Dalian Maritime University
– sequence: 7
  givenname: Junpeng
  surname: Wang
  fullname: Wang, Junpeng
  organization: Dalian Maritime University
– sequence: 8
  givenname: Fangyang
  surname: Dong
  fullname: Dong, Fangyang
  organization: Dalian Maritime University
– sequence: 9
  givenname: Dianlong
  surname: Shen
  fullname: Shen, Dianlong
  organization: Dalian Maritime University
– sequence: 10
  givenname: Zhenhao
  surname: Zhan
  fullname: Zhan, Zhenhao
  organization: Dalian Maritime University
– sequence: 11
  givenname: Minyi
  orcidid: 0000-0002-3772-8340
  surname: Xu
  fullname: Xu, Minyi
  email: xuminyi@dlmu.edu.cn
  organization: Dalian Maritime University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38012528$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi3Uin7AlSOyxKWXpP5cr49VIIC0BaQUriuvd7a4cuxgb9TmUImfwG_sL6lLSpAqIU5jaZ5nxpr3CO2FGAChV5RMKSHsNC-9nzLCOFFVTZ6hQ1pRPqlqpvd2b0oO0FHOV4RwyoR6jg54TSiTrD5Et7NobpzxeO7hxnUe8Nx1kO5-_lp8Nyvo8UVyXQQPdkzO4k8mxEsIkMwYEz7L2eWxQN0GvwVY4QZMCi5c4qF0F-CHMudLvIZUmG-uK5aLAZ_H4IpeuBdofzA-w8vHeoy-zt9dzD5Mms_vP87OmonlipNJJWUvFKe17K0RstdGUj5UYESlmVFgmRTEat2LgQCra9lJ2kspxaCsrIDzY3SynbtK8cca8tguXbbgvQkQ17lltRaKCc1JQd88Qa_iOoXyu7Z0FVVKcl2o14_UultC366SW5q0af8ctgDTLWBTzDnBsEMoaR-Sax-Sa3fJFUE8Eawbf99rTMb5f2t6q107D5v_LGkX503z170HqMiv0Q
CitedBy_id crossref_primary_10_1002_smll_202411074
crossref_primary_10_1016_j_nanoen_2025_110711
crossref_primary_10_1016_j_jelechem_2024_118474
crossref_primary_10_3390_s24123817
crossref_primary_10_1360_TB_2024_0647
crossref_primary_10_3390_mi15091079
Cites_doi 10.1002/admt.202201245
10.1109/JSEN.2017.2719865
10.1002/stc.1986
10.1109/TIE.2017.2774777
10.1007/s11431-022-2085-4
10.1007/s00170-018-2093-8
10.1016/j.carbon.2020.06.084
10.1021/acsnano.7b03818
10.1016/j.apenergy.2020.115161
10.1021/acsnano.9b10142
10.1002/adfm.201604378
10.1002/admt.202200003
10.1038/s41528-022-00160-0
10.1016/j.nanoen.2022.107803
10.1016/j.compind.2020.103298
10.1002/advs.202106030
10.1039/C7TA00248C
10.1109/ACCESS.2019.2932187
10.1021/nl300988z
10.1021/acsami.2c05734
10.1109/JSEN.2009.2019333
10.1051/epjconf/201818002031
10.1021/acsnano.0c09146
10.1016/j.eswa.2009.03.069
10.1111/j.1747-1567.2010.00653.x
10.3390/mi12020218
10.1002/admt.202001270
10.1002/aenm.201902460
10.1016/j.sintl.2021.100110
10.1117/1.OE.57.1.016103
10.1016/j.cej.2021.131698
10.1016/j.mattod.2020.10.031
10.1016/j.nanoen.2022.106926
10.1002/aenm.201802159
10.1016/j.nantod.2010.09.001
10.1021/acsami.1c09963
10.1007/s12274-022-4363-x
10.1016/j.neucom.2017.07.032
10.1109/JIOT.2019.2957029
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202307680
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38012528
10_1002_smll_202307680
SMLL202307680
Genre article
Journal Article
GrantInformation_xml – fundername: Dalian Outstanding Young Scientific and Technological Talents Project
  funderid: 2021RJ11
– fundername: Scientific Research Fund of the Educational Department of Liaoning Province
  funderid: LJKZ0055
– fundername: Open Fund of National Center for International Research of Subsea Engineering Technology and Equipment
  funderid: 3132023354
– fundername: National Natural Science Foundation of China
  funderid: 52101345; 52101400
– fundername: National Natural Science Foundation of China
  grantid: 52101400
– fundername: Open Fund of National Center for International Research of Subsea Engineering Technology and Equipment
  grantid: 3132023354
– fundername: Scientific Research Fund of the Educational Department of Liaoning Province
  grantid: LJKZ0055
– fundername: Dalian Outstanding Young Scientific and Technological Talents Project
  grantid: 2021RJ11
– fundername: National Natural Science Foundation of China
  grantid: 52101345
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3730-655d473185dca45d9a513f6ea4692a7ec2540c99d4f0e2885b51d5554f7c56e33
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:13:53 EDT 2025
Fri Jul 25 11:48:03 EDT 2025
Mon Jul 21 06:04:20 EDT 2025
Tue Jul 01 02:54:49 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Sun Jul 06 04:45:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords triboelectric nanogenerators
self‐powered sensors
fiber‐shaped sensors
vibration sensors
Language English
License 2023 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-655d473185dca45d9a513f6ea4692a7ec2540c99d4f0e2885b51d5554f7c56e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3772-8340
PMID 38012528
PQID 3037177539
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2894724930
proquest_journals_3037177539
pubmed_primary_38012528
crossref_primary_10_1002_smll_202307680
crossref_citationtrail_10_1002_smll_202307680
wiley_primary_10_1002_smll_202307680_SMLL202307680
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2021; 6
2019; 9
2021; 43
2021; 2
2022; 94
2017; 27
2023; 8
2017; 24
2020; 14
2011; 35
2020; 123
2022; 65
2020; 168
2012; 12
2018; 65
2020; 7
2021; 13
2009; 36
2020; 6
2018; 8
2021; 15
2021; 31
2021; 12
2018; 272
2017; 17
2022; 6
2017; 11
2022; 7
2022; 9
2020; 270
2009; 9
2022; 14
2022; 15
2022; 427
2010; 5
2018; 180
2018; 97
2018; 57
2022; 103
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Chen X. (e_1_2_9_17_1) 2020; 6
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
Zhang Q. (e_1_2_9_6_1) 2021; 31
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Li T. (e_1_2_9_13_1) 2017; 17
References_xml – volume: 11
  start-page: 7440
  year: 2017
  publication-title: ACS Nano
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 25
  year: 2022
  publication-title: npj Flexible Electron.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1422
  year: 2009
  publication-title: IEEE Sens. J.
– volume: 5
  start-page: 6032
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2022
  publication-title: Adv. Mater. Technol.
– volume: 6
  start-page: 643
  year: 2020
  publication-title: J. Mater.
– volume: 123
  year: 2020
  publication-title: Comput. Ind.
– volume: 180
  year: 2018
  publication-title: EPJ Web Conf.
– volume: 31
  start-page: 23
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2023
  publication-title: Adv. Mater. Technol.
– volume: 168
  start-page: 308
  year: 2020
  publication-title: Carbon
– volume: 14
  start-page: 2475
  year: 2020
  publication-title: ACS Nano
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 103
  year: 2022
  publication-title: Nano Energy
– volume: 97
  start-page: 3251
  year: 2018
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 270
  year: 2020
  publication-title: Appl. Energy
– volume: 2
  year: 2021
  publication-title: Sens. Int.
– volume: 12
  start-page: 218
  year: 2021
  publication-title: Micromachines
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 12
  start-page: 3109
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 57
  year: 2018
  publication-title: Opt. Eng.
– volume: 65
  start-page: 1545
  year: 2022
  publication-title: Sci. China Technol. Sci.
– volume: 94
  year: 2022
  publication-title: Nano Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  year: 2019
  publication-title: IEEE Access
– volume: 36
  year: 2009
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 4585
  year: 2020
  publication-title: IEEE Internet Things J.
– volume: 17
  start-page: 1021
  year: 2017
  publication-title: IEEE Sens. J.
– volume: 15
  start-page: 1597
  year: 2021
  publication-title: ACS Nano
– volume: 24
  year: 2017
  publication-title: Struct. Control Health Monit.
– volume: 35
  start-page: 74
  year: 2011
  publication-title: Exp. Tech.
– volume: 15
  start-page: 7484
  year: 2022
  publication-title: Nano Res.
– volume: 17
  start-page: 5192
  year: 2017
  publication-title: IEEE Sens. J.
– volume: 5
  start-page: 512
  year: 2010
  publication-title: Nano Today
– volume: 65
  start-page: 5990
  year: 2018
  publication-title: IEEE Trans. Ind. Electron.
– volume: 272
  start-page: 619
  year: 2018
  publication-title: Neurocomputing
– volume: 43
  start-page: 37
  year: 2021
  publication-title: Mater. Today
– ident: e_1_2_9_14_1
  doi: 10.1002/admt.202201245
– ident: e_1_2_9_7_1
  doi: 10.1109/JSEN.2017.2719865
– ident: e_1_2_9_39_1
  doi: 10.1002/stc.1986
– ident: e_1_2_9_41_1
  doi: 10.1109/TIE.2017.2774777
– ident: e_1_2_9_9_1
  doi: 10.1007/s11431-022-2085-4
– volume: 17
  start-page: 1021
  year: 2017
  ident: e_1_2_9_13_1
  publication-title: IEEE Sens. J.
– ident: e_1_2_9_1_1
  doi: 10.1007/s00170-018-2093-8
– ident: e_1_2_9_37_1
  doi: 10.1016/j.carbon.2020.06.084
– ident: e_1_2_9_18_1
  doi: 10.1021/acsnano.7b03818
– ident: e_1_2_9_21_1
  doi: 10.1016/j.apenergy.2020.115161
– ident: e_1_2_9_30_1
  doi: 10.1021/acsnano.9b10142
– ident: e_1_2_9_34_1
  doi: 10.1002/adfm.201604378
– ident: e_1_2_9_25_1
  doi: 10.1002/admt.202200003
– ident: e_1_2_9_28_1
  doi: 10.1038/s41528-022-00160-0
– ident: e_1_2_9_32_1
  doi: 10.1016/j.nanoen.2022.107803
– ident: e_1_2_9_2_1
  doi: 10.1016/j.compind.2020.103298
– ident: e_1_2_9_23_1
  doi: 10.1002/advs.202106030
– ident: e_1_2_9_36_1
  doi: 10.1039/C7TA00248C
– ident: e_1_2_9_11_1
  doi: 10.1109/ACCESS.2019.2932187
– volume: 6
  start-page: 643
  year: 2020
  ident: e_1_2_9_17_1
  publication-title: J. Mater.
– ident: e_1_2_9_40_1
  doi: 10.1021/nl300988z
– ident: e_1_2_9_26_1
  doi: 10.1021/acsami.2c05734
– ident: e_1_2_9_15_1
  doi: 10.1109/JSEN.2009.2019333
– ident: e_1_2_9_38_1
  doi: 10.1051/epjconf/201818002031
– ident: e_1_2_9_33_1
  doi: 10.1021/acsnano.0c09146
– ident: e_1_2_9_5_1
  doi: 10.1016/j.eswa.2009.03.069
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1747-1567.2010.00653.x
– ident: e_1_2_9_10_1
  doi: 10.3390/mi12020218
– ident: e_1_2_9_27_1
  doi: 10.1002/admt.202001270
– ident: e_1_2_9_29_1
  doi: 10.1002/aenm.201902460
– ident: e_1_2_9_4_1
  doi: 10.1016/j.sintl.2021.100110
– ident: e_1_2_9_12_1
  doi: 10.1117/1.OE.57.1.016103
– ident: e_1_2_9_35_1
  doi: 10.1016/j.cej.2021.131698
– volume: 31
  start-page: 23
  year: 2021
  ident: e_1_2_9_6_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_9_19_1
  doi: 10.1016/j.mattod.2020.10.031
– ident: e_1_2_9_24_1
  doi: 10.1016/j.nanoen.2022.106926
– ident: e_1_2_9_31_1
  doi: 10.1002/aenm.201802159
– ident: e_1_2_9_16_1
  doi: 10.1016/j.nantod.2010.09.001
– ident: e_1_2_9_20_1
  doi: 10.1021/acsami.1c09963
– ident: e_1_2_9_22_1
  doi: 10.1007/s12274-022-4363-x
– ident: e_1_2_9_42_1
  doi: 10.1016/j.neucom.2017.07.032
– ident: e_1_2_9_3_1
  doi: 10.1109/JIOT.2019.2957029
SSID ssj0031247
Score 2.506416
Snippet Self‐powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber‐shaped...
Self-powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber-shaped...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2307680
SubjectTerms Core-shell structure
Deep learning
Diesel engines
Error detection
fiber‐shaped sensors
Industrial applications
Industry 4.0
Nanogenerators
self‐powered sensors
triboelectric nanogenerators
Vibration monitoring
vibration sensors
Title Coaxial Flexible Fiber‐Shaped Triboelectric Nanogenerator Assisted by Deep Learning for Self‐Powered Vibration Monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202307680
https://www.ncbi.nlm.nih.gov/pubmed/38012528
https://www.proquest.com/docview/3037177539
https://www.proquest.com/docview/2894724930
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEF5VnNpDoRTatAFtpUqcDM7-2T4iIEIoqaoGEDdrfwGRxhFJpIKE1EfoM_ZJOmM7hoCqSuVmy7vr3fXM7Hze2W8I-cyyDouD0BFLAwAU0MUoEzpEPtWhE3svjcIDzv0v6vBEHJ3Jswen-Ct-iOaHG2pGaa9RwbWZ7NyThk6-D3HrAAOZVYqgHQO20Cv61vBHcVi8yuwqsGZFSLw1Z22M2c5i9cVV6Ymruei5lktPd5noeaeriJOr7dnUbNvbR3yOzxnVCnld-6V0txKkN-SFH62SVw_YCt-Su71C_wBxpV0k0TRDT7sYbvL756_BhR57R5GFpKjy6lxaCna7OC9JrQHWUxADFChHzQ3d935Ma2LXcwpeMx34YYB2vmLKNihzikNAiaGVycH3r5GT7sHx3mFUZ2-ILAezESkpnUjwcLazWkiXadnhQXkNgJzpxFuAprHNMidC7FmaSiM7ToJ3ExIrled8nSyNipF_T6hySYiNToSNNTLqZzY1sUiUzhwPQasWieZfL7c1tTlm2BjmFSkzy3Fa82ZaW2SrKT-uSD3-WrI9F4a8Vu5JzpHmMAGcl7XIp-YxqCXuteiRL2aTHHCsSADacmjiXSVEzas4egWSpS3CSlH4Rx_yQb_Xa-4-_E-lj-QlXNcRR22yNL2e-Q1wpqZms1SYP2oGGNc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qygJY8H6EFhgkECu3znjGjwUL1DRKaVIh0qLu3PE8StUQR02iUiQkPoFf4Vf4BL6k9_oFASEkpC5Y2h7b45n7OuM75wI85Umb-04oj8cOAQrqopcI5TwbK9f2rZVZSBucBzthb0-82pf7S_C13gtT8kM0C26kGYW9JgWnBen1H6yh0_cj-ndAmcxh7Fd5ldv27BRR2_TFVgen-Bnn3c3djZ5XFRbwdIAS7YVSGhHRvmGjlZAmUbIduNAqxIpcRVYjavJ1khjhfMvjWGaybSQ6XhdpGVpaA0Wrf4nKiBNdf-dNw1gVoLss6rmgl_SI6qvmifT5-mJ_F_3gb8HtYqxcOLvudfhWD1OZ43K8Np9la_rjLwyS_9U43oBrVejNXpa6chOW7PgWXP2JkPE2fNrI1QfUSNYlntBsZFmXMmq-f_4yfKcm1jAiWsnL0kFHmqFryg8L3u5ZfsJQ0klnDMvOWMfaCau4aw8ZAgM2tCOHz3lNVemwzVsaM1IKVlpVev8d2LuQ778Ly-N8bO8DC03k_ExFQvuKigYkOs58EYUqMYFzKmyBV4tLqiv2dioiMkpL3mme0jSmzTS24HnTflLylvyx5WotfWllv6ZpQEyOEULZpAVPmstoeeh3khrbfD5NEaqLCNF7gI-4V0pt86qAAh_J4xbwQvb-0od0OOj3m6MH_3LTY7jc2x300_7WzvYKXMHzVYLVKizPTub2IcaOs-xRoa0MDi5arM8B_zN0nQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqIiFY8H4MLWAkEKu0Hsd2kgUL1GnU0mlVMRR1lzp-lKrDZNSZUSkSEp_Ap_Ar_AJf0nvzggEhJKQuWCZxEse-5z6c63MJecqTLmde6IDHHgIUwGKQCO0DF2vfZc7JXOEG5-0dtbEnXu3L_QXytdkLU_FDtAtuiIxSXyPAx9av_iANnbwf4q8DTGRWMavTKrfc2SkEbZMXmz2Y4Wecp-tv1jaCuq5AYEIQ6EBJaUWE24at0ULaRMtu6JXTECpyHTkDQRMzSWKFZ47Hscxl10qwuz4yUjlcAgWlf0kolmCxiN7rlrAqBGtZlnMBIxkg01dDE8n46nx_583gb77tvKtc2rr0OvnWjFKV4nK8MpvmK-bjLwSS_9Mw3iDXasebvqyQcpMsuNEtcvUnOsbb5NNaoT8AHmmKLKH50NEU82m-f_4yeKfHzlKkWSmqwkFHhoJhKg5L1u5pcUJBzhExluZntOfcmNbMtYcUwgI6cEMPz9nFmnTQ5i0OGUKCVjoV33-H7F3I998li6Ni5O4TqmzkWa4jYZjGkgGJiXMmIqUTG3qvVYcEjbRkpuZuxxIiw6xineYZTmPWTmOHPG_bjyvWkj-2XG6EL6u11yQLkccxgkA26ZAn7WXQO_gzSY9cMZtkEKiLCGL3EB5xrxLa9lUhuj2Sxx3CS9H7Sx-ywXa_3x49-JebHpPLu70062_ubC2RK3C6zq5aJovTk5l7CI7jNH9UYpWSg4uW6nMQuHNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coaxial+Flexible+Fiber%E2%80%90Shaped+Triboelectric+Nanogenerator+Assisted+by+Deep+Learning+for+Self%E2%80%90Powered+Vibration+Monitoring&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhao%2C+Cong&rft.au=Du%2C+Taili&rft.au=Ge%2C+Bin&rft.au=Xi%2C+Ziyue&rft.date=2024-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202307680&rft.externalDBID=10.1002%252Fsmll.202307680&rft.externalDocID=SMLL202307680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon