Efficient Organic Solar Cells with Non‐Fullerene Acceptors
Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non‐fullerene acceptors exhibit great potential for realizing high‐performance an...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 13; no. 37 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non‐fullerene acceptors exhibit great potential for realizing high‐performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non‐fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance.
Fullerene‐free organic solar cells (OSCs) have made great progress in recent years with efficiencies surpassing 12%. In this Review, recent high‐performance non‐fullerene acceptors developed for OSCs are summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. The perspectives for fullerene‐free OSCs with efficiency of 15% are briefly discussed. |
---|---|
AbstractList | Fullerene-free OSCs employing n-type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non-fullerene acceptors exhibit great potential for realizing high-performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non-fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non‐fullerene acceptors exhibit great potential for realizing high‐performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non‐fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. Fullerene‐free organic solar cells (OSCs) have made great progress in recent years with efficiencies surpassing 12%. In this Review, recent high‐performance non‐fullerene acceptors developed for OSCs are summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. The perspectives for fullerene‐free OSCs with efficiency of 15% are briefly discussed. Fullerene-free OSCs employing n-type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non-fullerene acceptors exhibit great potential for realizing high-performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non-fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance.Fullerene-free OSCs employing n-type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non-fullerene acceptors exhibit great potential for realizing high-performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non-fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. |
Author | Shi, Minmin Chen, Hongzheng Liu, Wenqing Li, Chang‐Zhi Li, Shuixing |
Author_xml | – sequence: 1 givenname: Shuixing surname: Li fullname: Li, Shuixing organization: Zhejiang University – sequence: 2 givenname: Wenqing surname: Liu fullname: Liu, Wenqing organization: Zhejiang University – sequence: 3 givenname: Chang‐Zhi surname: Li fullname: Li, Chang‐Zhi email: czli@zju.edu.cn organization: Zhejiang University – sequence: 4 givenname: Minmin surname: Shi fullname: Shi, Minmin organization: Zhejiang University – sequence: 5 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng email: hzchen@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28737255$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM1KAzEUhYNUbKtuXcqAGzetuZmfzIAbKVaFahfVdcikGU1Jk5rMUNz5CD6jT2JKf4SCuLp38X2Hw-milrFGInQGuA8Ykys_17pPMFAMQPAB6kAGcS_LSdHa_YDbqOv9DOMYSEKPUJvkNKYkTTvo-raqlFDS1NHYvXKjRDSxmrtoILX20VLVb9GTNd-fX8NGa-mkkdGNEHJRW-dP0GHFtZenm3uMXoa3z4P73mh89zC4GfVETGPcSzmFqpqWCQZekJRwySVO86TCoihzCN0xTLMSqphmNM9lnglORCpKSkpI8zI-Rpfr3IWz7430NZsrL0JBbqRtPIOCxBBySBrQiz10ZhtnQrtAJWEPWhAcqPMN1ZRzOWULp-bcfbDtLgFI1oBw1nsnKyZUzWtlTe240gwwW83PVvOz3fxB6-9p2-Q_hWItLJWWH__QbPI4Gv26P9awlmo |
CitedBy_id | crossref_primary_10_1021_acsami_8b19596 crossref_primary_10_1039_C8QM00318A crossref_primary_10_1021_acsami_8b01147 crossref_primary_10_1002_tcr_201800037 crossref_primary_10_1016_j_jechem_2020_06_014 crossref_primary_10_1016_j_jmgm_2023_108699 crossref_primary_10_1002_smll_201802349 crossref_primary_10_1002_smtd_201900531 crossref_primary_10_1021_acs_jpclett_2c02864 crossref_primary_10_1016_j_orgel_2021_106131 crossref_primary_10_1002_adma_201800613 crossref_primary_10_1021_acsami_0c00837 crossref_primary_10_1039_C9TA04097H crossref_primary_10_1039_D1SE01777B crossref_primary_10_1002_ange_202004989 crossref_primary_10_1021_acsami_8b16628 crossref_primary_10_1002_aenm_201801032 crossref_primary_10_1039_C9QM00334G crossref_primary_10_1002_solr_201900159 crossref_primary_10_1002_asia_201801669 crossref_primary_10_1002_adma_201900904 crossref_primary_10_1039_D2CP05958D crossref_primary_10_1016_j_tsf_2022_139134 crossref_primary_10_1021_acsomega_2c05141 crossref_primary_10_1002_cphc_201900793 crossref_primary_10_1002_smll_202202411 crossref_primary_10_1016_j_mattod_2018_09_004 crossref_primary_10_1021_jacs_8b02695 crossref_primary_10_1016_j_joule_2019_03_020 crossref_primary_10_1002_cssc_201901013 crossref_primary_10_1039_C8NJ06491A crossref_primary_10_1088_2058_8585_ac32aa crossref_primary_10_1134_S0036024420090216 crossref_primary_10_1002_advs_201802103 crossref_primary_10_1039_C8TA11441B crossref_primary_10_1021_acsami_9b22987 crossref_primary_10_1002_ejoc_201800275 crossref_primary_10_1002_solr_202000719 crossref_primary_10_1021_acsaem_8b01576 crossref_primary_10_1021_acsenergylett_0c00537 crossref_primary_10_1021_acsenergylett_8b01400 crossref_primary_10_1016_j_nexres_2024_100042 crossref_primary_10_1021_acs_jpclett_1c00822 crossref_primary_10_1002_solr_202000286 crossref_primary_10_1016_j_jechem_2021_01_027 crossref_primary_10_1016_j_solener_2018_09_077 crossref_primary_10_1021_acsami_9b02121 crossref_primary_10_1002_adma_201806616 crossref_primary_10_1038_s41528_022_00222_3 crossref_primary_10_1039_D3TC00547J crossref_primary_10_1002_aenm_202300046 crossref_primary_10_2494_photopolymer_31_177 crossref_primary_10_3389_fchem_2018_00414 crossref_primary_10_1039_C9MH01439J crossref_primary_10_1039_C9TC03563J crossref_primary_10_1007_s12274_019_2288_9 crossref_primary_10_1016_j_solener_2020_08_002 crossref_primary_10_1039_C8QM00609A crossref_primary_10_1021_acs_jpclett_8b01043 crossref_primary_10_1039_C8EE01546E crossref_primary_10_1016_j_cclet_2019_12_003 crossref_primary_10_1016_j_solmat_2018_12_033 crossref_primary_10_1002_smll_202302046 crossref_primary_10_1016_j_orgel_2021_106167 crossref_primary_10_1021_acsaelm_2c01076 crossref_primary_10_1080_10408436_2019_1632791 crossref_primary_10_1002_adma_202001621 crossref_primary_10_1002_adma_201803769 crossref_primary_10_1021_acsami_0c17598 crossref_primary_10_1016_j_dyepig_2019_108012 crossref_primary_10_1039_D3SE00987D crossref_primary_10_1016_j_cclet_2019_01_031 crossref_primary_10_1002_advs_201800755 crossref_primary_10_1002_macp_201900084 crossref_primary_10_1038_s41467_019_10098_z crossref_primary_10_1016_j_orgel_2022_106461 crossref_primary_10_1039_D0TA09306H crossref_primary_10_1016_j_joule_2018_09_001 crossref_primary_10_1021_acsami_9b14133 crossref_primary_10_1021_acs_jpclett_3c01536 crossref_primary_10_1021_acs_jctc_3c00960 crossref_primary_10_1016_j_nanoen_2019_104271 crossref_primary_10_1002_adma_201707114 crossref_primary_10_1149_2162_8777_ab9a5a crossref_primary_10_1002_adfm_202414941 crossref_primary_10_1021_acsami_9b08017 crossref_primary_10_1016_j_dyepig_2020_108540 crossref_primary_10_1002_cjoc_202000289 crossref_primary_10_1002_solr_202000374 crossref_primary_10_1002_adma_201804762 crossref_primary_10_1039_C8TA02633E crossref_primary_10_1021_acsami_9b16686 crossref_primary_10_1002_cssc_201903087 crossref_primary_10_1002_solr_202000234 crossref_primary_10_1016_j_dyepig_2018_05_050 crossref_primary_10_1002_anie_202004989 crossref_primary_10_1016_j_matdes_2020_108730 crossref_primary_10_1016_j_cclet_2019_01_010 crossref_primary_10_1039_C7ME00075H crossref_primary_10_1002_aenm_201702377 crossref_primary_10_1039_C9EE02531F crossref_primary_10_1002_adma_202001160 crossref_primary_10_1007_s10853_019_03551_3 crossref_primary_10_1002_er_8456 crossref_primary_10_1021_acs_chemmater_8b00287 crossref_primary_10_1016_j_molliq_2024_124608 crossref_primary_10_1016_j_orgel_2021_106085 crossref_primary_10_1016_j_jmr_2018_01_007 crossref_primary_10_1088_1674_1056_27_8_088801 crossref_primary_10_1039_D2DD00004K crossref_primary_10_1021_acsami_9b21929 crossref_primary_10_1007_s11426_018_9334_9 crossref_primary_10_1016_j_rineng_2025_104009 crossref_primary_10_1039_C8TA03753A crossref_primary_10_1088_1361_6463_ab57ac crossref_primary_10_1039_D0NR00698J crossref_primary_10_1016_j_isci_2021_102463 crossref_primary_10_1016_j_saa_2020_119227 crossref_primary_10_1039_C8RA07398H crossref_primary_10_1002_adma_201800343 crossref_primary_10_1039_C9TA12558B crossref_primary_10_1021_acs_chemmater_8b01491 crossref_primary_10_1021_acsomega_1c06320 crossref_primary_10_1002_solr_201900446 crossref_primary_10_1016_j_comptc_2022_113852 crossref_primary_10_1021_acsami_8b06562 crossref_primary_10_1039_C8TA10923K crossref_primary_10_1039_D0TC01077D crossref_primary_10_1002_aenm_201900887 crossref_primary_10_1021_acsaem_2c01807 crossref_primary_10_1002_solr_202000537 crossref_primary_10_1016_j_cej_2021_131022 crossref_primary_10_1002_pi_6280 crossref_primary_10_1039_C9EE03710A crossref_primary_10_1016_j_synthmet_2021_116736 crossref_primary_10_1016_j_jpowsour_2018_11_063 crossref_primary_10_1039_C9CP03793D crossref_primary_10_1016_j_cej_2021_134405 crossref_primary_10_1016_j_orgel_2018_03_005 crossref_primary_10_1039_D4RA00572D crossref_primary_10_1016_j_orgel_2021_106063 crossref_primary_10_1038_s41598_022_21894_x crossref_primary_10_1002_smtd_202200828 crossref_primary_10_1039_C8TC00089A crossref_primary_10_1039_D3MA00546A crossref_primary_10_1039_C7MH00958E crossref_primary_10_1016_j_solener_2022_07_011 crossref_primary_10_1021_acsami_9b05463 crossref_primary_10_1021_acs_jpcc_9b09833 crossref_primary_10_1007_s10118_019_2309_x crossref_primary_10_1021_acsaem_8b00535 crossref_primary_10_1021_acs_macromol_8b00326 crossref_primary_10_1002_adma_202007231 crossref_primary_10_1039_D0QM00305K crossref_primary_10_1002_aenm_202003441 crossref_primary_10_1021_acsami_8b16131 crossref_primary_10_1080_15421406_2023_2176055 crossref_primary_10_1039_C9TA11285E crossref_primary_10_1039_D1TA01609A crossref_primary_10_1002_smsc_202200006 crossref_primary_10_1021_acsaem_1c03578 crossref_primary_10_1139_cjc_2017_0655 crossref_primary_10_1039_D0CP05362G crossref_primary_10_1039_C8TA09370A crossref_primary_10_1016_j_mtnano_2018_04_005 crossref_primary_10_1039_D4MA00447G crossref_primary_10_1016_j_solmat_2021_111046 crossref_primary_10_1142_S1793604719500036 crossref_primary_10_1002_cey2_302 crossref_primary_10_1002_adfm_201800209 crossref_primary_10_1002_cssc_202101067 crossref_primary_10_1021_acs_chemrev_1c00648 crossref_primary_10_1002_solr_201800190 crossref_primary_10_1016_j_nanoen_2023_108991 crossref_primary_10_1016_j_orgel_2019_01_052 crossref_primary_10_1039_D0TC04110F crossref_primary_10_1002_chem_201804554 crossref_primary_10_1002_admi_201800031 crossref_primary_10_1002_adfm_201802004 crossref_primary_10_1039_C8QO00788H crossref_primary_10_1016_j_synthmet_2021_116812 crossref_primary_10_1021_jacs_8b12126 crossref_primary_10_1039_C9TC02150G crossref_primary_10_1021_acsami_3c05306 crossref_primary_10_1016_j_orgel_2018_09_016 crossref_primary_10_1039_C8TA05440A crossref_primary_10_1002_solr_201800060 crossref_primary_10_1021_acsami_2c10407 crossref_primary_10_1021_acs_chemrev_7b00535 crossref_primary_10_1039_C8TC01988F crossref_primary_10_1039_C8TC04608E crossref_primary_10_1016_j_gee_2021_01_009 crossref_primary_10_1039_C9TA00468H crossref_primary_10_1002_adma_201705208 crossref_primary_10_1021_acsami_4c10792 crossref_primary_10_1016_j_orgel_2020_105747 crossref_primary_10_1002_adma_201804215 crossref_primary_10_1007_s11082_022_03782_w crossref_primary_10_1002_aenm_201800424 crossref_primary_10_1021_acsami_2c01190 crossref_primary_10_1021_acs_jpclett_2c03585 crossref_primary_10_1021_acsami_9b07317 crossref_primary_10_1002_aenm_201802197 crossref_primary_10_1007_s11426_021_9975_9 crossref_primary_10_1039_D0TC04407E crossref_primary_10_1063_5_0162270 crossref_primary_10_1039_D3MA00460K crossref_primary_10_1039_C9TC04680A crossref_primary_10_1021_acsami_8b20415 crossref_primary_10_1088_1361_6633_ab0530 crossref_primary_10_1021_acsaem_1c01872 crossref_primary_10_1021_acsenergylett_0c00857 crossref_primary_10_1021_acs_macromol_1c01301 crossref_primary_10_1016_j_ccr_2020_213605 crossref_primary_10_1002_asia_202000635 crossref_primary_10_1021_acs_jpclett_4c00153 crossref_primary_10_1039_C8TA12028E crossref_primary_10_1021_acs_macromol_0c00469 |
Cites_doi | 10.1021/jacs.5b11149 10.1002/adma.201302031 10.1021/cr900182s 10.1002/adfm.200500211 10.1038/ncomms6293 10.1002/aenm.201502529 10.1002/adma.201301476 10.1002/adma.201602834 10.1002/adma.201605437 10.1039/C5EE02477C 10.1002/adma.201605216 10.1002/adma.201601197 10.1021/jacs.6b05868 10.1002/adma.201601595 10.1021/ja5092613 10.1039/C6EE02851A 10.1002/aenm.201501721 10.1021/jacs.6b01744 10.1021/jacs.5b08556 10.1002/adma.201604059 10.1038/ncomms13094 10.1021/jacs.6b03562 10.1039/c3cp50438g 10.1021/acs.chemmater.6b05194 10.1126/sciadv.1501170 10.1002/adma.201700144 10.1039/C6TA07672F 10.1021/cm501513n 10.1002/adma.201100792 10.1002/adma.200501717 10.1002/adma.201404317 10.1002/aenm.201600148 10.1002/adma.201604241 10.1021/jacs.6b09110 10.1002/anie.201103313 10.1002/polb.23192 10.1039/C0CP01178A 10.1002/adma.201502775 10.1021/acs.chemmater.5b04339 10.1038/nenergy.2016.89 10.1038/nphoton.2015.6 10.1002/anie.201610944 10.1039/C6CP07465K 10.1002/adma.201602067 10.1039/C6EE03489F 10.1021/cr400353v 10.1002/adma.201602642 10.1039/C5CS00593K 10.1038/nmat4797 10.1002/adma.200702337 10.1002/adma.201404535 10.1002/adma.201606729 10.1002/aenm.201600430 10.1039/c3sc51841h 10.1002/adma.201304373 10.1002/adma.201603518 10.1038/nenergy.2015.27 10.1002/adma.201502827 10.1039/C4EE00446A 10.1021/jacs.6b04368 10.1039/c2jm15126j 10.1002/adma.201504014 10.1021/acs.chemrev.6b00176 10.1021/acsenergylett.6b00162 10.1039/c2cc31511d 10.1021/acs.chemmater.6b03292 10.1039/C4EE02990A 10.1021/jacs.6b08523 10.1002/adfm.201501971 10.1002/adma.201605115 10.1002/adma.200802854 10.1021/ma301900h 10.1002/adfm.200900090 10.1021/jacs.6b02004 10.1039/C6EE03654F 10.1002/adma.201404152 10.1039/C6EE02598F 10.1039/C6TA06367E 10.1039/C5EE02871J 10.1021/jacs.6b00853 10.1021/ar2002446 10.1039/C3TA14236A 10.1021/ja2073643 10.1039/c2jm30470h 10.1002/adma.201004426 10.1002/solr.201600008 10.1021/acs.jpclett.5b01471 10.1038/nphoton.2015.128 10.1021/acs.accounts.5b00363 10.1002/adma.201700254 10.1002/adma.201600281 10.1038/ncomms11585 10.1002/aenm.201600742 10.1007/s13233-013-1141-3 10.1021/jacs.6b11991 10.1039/b812502n 10.1039/C6TA04232E 10.1038/ncomms9242 10.1002/adma.201601803 10.1002/adma.201504120 10.1002/adma.201604155 10.1039/C6QM00043F 10.1039/C6TA00056H 10.1002/adma.201602570 10.1038/srep06071 10.1039/C4EE03824J 10.1039/C6TA07368A 10.1039/C4EE03424D 10.1021/ar500355d 10.1038/nphoton.2015.84 10.1002/adma.201401494 10.1021/acs.accounts.6b00347 10.1038/ncomms13651 10.1002/adma.201500647 10.1002/adma.201202873 10.1039/C5CS00831J 10.1002/smll.201502775 10.1021/jacs.5b06414 10.1021/ja5110602 10.1021/acs.macromol.6b00248 10.1002/adma.201400647 10.1002/adma.201603588 10.1021/ar900099h 10.1039/C5SC04956C 10.1021/acs.accounts.5b00199 10.1039/C5EE03684D 10.1002/aenm.201600854 10.1021/acs.chemrev.5b00098 10.1002/adma.201602776 10.1021/jacs.6b12755 10.1039/C5EE03481G 10.1039/C7TA01554B |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201701120 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 28737255 10_1002_smll_201701120 SMLL201701120 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21474088; 51473142; 51561145001; 51620105006 – fundername: Zhejiang Natural Science Fund for Distinguished Young Scholars funderid: LR17E030001 – fundername: Zhejiang Province Natural Science Foundation funderid: LR13E030001 – fundername: International Science and Technology Cooperation Program of China funderid: 2016YFE0102900 – fundername: 973 Program funderid: 2014CB643503 – fundername: Fundamental Research Funds for the Central Universities funderid: 2016FZA4007 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3730-5a71ffdb401a9252aeae0584f0c9b8117001d6b1f376788e86ca2c5cb72b158b3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 11:52:11 EDT 2025 Fri Jul 25 12:12:40 EDT 2025 Wed Feb 19 02:32:04 EST 2025 Tue Jul 01 02:10:30 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Wed Jan 22 16:25:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | organic solar cells energy loss non-fullerene acceptors morphology absorption |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-5a71ffdb401a9252aeae0584f0c9b8117001d6b1f376788e86ca2c5cb72b158b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 28737255 |
PQID | 1946137920 |
PQPubID | 1046358 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1923111725 proquest_journals_1946137920 pubmed_primary_28737255 crossref_citationtrail_10_1002_smll_201701120 crossref_primary_10_1002_smll_201701120 wiley_primary_10_1002_smll_201701120_SMLL201701120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-00 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-00 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 1 2013; 25 2013; 4 2009; 42 2013; 21 2014; 26 2011; 13 2014; 136 2015; 48 2014; 5 2013; 15 2014; 4 2014; 2 2015; 137 2013; 51 2011; 23 2016; 116 2008; 20 2009; 19 2016; 49 2014; 7 2012; 22 2016; 45 2015; 6 2009; 21 2006; 18 2017; 29 2015; 9 2015; 8 2014; 114 2011; 133 2016; 12 2017; 139 2016; 4 2016; 6 2016; 7 2015; 25 2015; 27 2016; 1 2016; 2 2015; 115 2017; 16 2017; 10 2011; 50 2017; 56 2016 2017; 19 2016; 138 2012; 48 2005; 15 2016; 29 2009; 2 2016; 28 2012; 45 2009; 109 2016; 9 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 Cui C. (e_1_2_7_19_1) 2016 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 |
References_xml | – volume: 28 start-page: 7098 year: 2016 publication-title: Chem. Mater. – volume: 6 start-page: 1501721 year: 2016 publication-title: Adv. Energy Mater. – volume: 28 start-page: 951 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 1015 year: 2015 publication-title: Adv. Mater. – volume: 15 start-page: 1617 year: 2005 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 789 year: 2006 publication-title: Adv. Mater. – volume: 27 start-page: 7299 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 14983 year: 2016 publication-title: J. Mater. Chem. A – volume: 28 start-page: 8288 year: 2016 publication-title: Adv. Mater. – volume: 48 start-page: 4773 year: 2012 publication-title: Chem. Commun. – volume: 9 start-page: 403 year: 2015 publication-title: Nat. Photon. – volume: 1 start-page: 304 year: 2017 publication-title: Mater. Chem. Front. – volume: 8 start-page: 3215 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 start-page: 13094 year: 2016 publication-title: Nat. Commun. – volume: 48 start-page: 267 year: 2015 publication-title: Acc. Chem. Res. – volume: 26 start-page: 6290 year: 2014 publication-title: Adv. Mater. – volume: 138 start-page: 2973 year: 2016 publication-title: J. Am. Chem. Soc. – start-page: 1601251 year: 2016 publication-title: Adv. Energy Mater. – volume: 4 start-page: 4389 year: 2013 publication-title: Chem. Sci. – volume: 7 start-page: 3543 year: 2016 publication-title: Chem. Sci. – volume: 1 start-page: 302 year: 2016 publication-title: ACS Energy Lett. – volume: 26 start-page: 10 year: 2014 publication-title: Adv. Mater. – volume: 138 start-page: 375 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 5868 year: 2009 publication-title: Chem. Rev. – volume: 16 start-page: 363 year: 2017 publication-title: Nat. Mater. – volume: 45 start-page: 2544 year: 2016 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 1434 year: 2009 publication-title: Adv. Mater. – volume: 29 start-page: 1606729 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 8283 year: 2016 publication-title: Adv. Mater. – volume: 25 start-page: 4766 year: 2013 publication-title: Adv. Mater. – volume: 50 start-page: 9697 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 5293 year: 2014 publication-title: Nat. Commun. – volume: 137 start-page: 11156 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 14149 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1604155 year: 2017 publication-title: Adv. Mater. – volume: 116 start-page: 7397 year: 2016 publication-title: Chem. Rev. – volume: 10 start-page: 258 year: 2017 publication-title: Energy Environ. Sci. – volume: 4 start-page: 16335 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 10659 year: 2016 publication-title: J. Mater. Chem. A – volume: 133 start-page: 20009 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 1336 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1170 year: 2015 publication-title: Adv. Mater. – volume: 13 start-page: 1970 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 29 start-page: 1605216 year: 2017 publication-title: Adv. Mater. – volume: 137 start-page: 898 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1700254 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 491 year: 2015 publication-title: Nat. Photon. – volume: 2 start-page: 1201 year: 2014 publication-title: J. Mater. Chem. A – volume: 9 start-page: 174 year: 2015 publication-title: Nat. Photon. – volume: 6 start-page: 1600148 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 11585 year: 2016 publication-title: Nat. Commun. – volume: 6 start-page: 8242 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 9559 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 1948 year: 2016 publication-title: Chem. Mater. – volume: 10 start-page: 546 year: 2017 publication-title: Energy Environ. Sci. – volume: 28 start-page: 7821 year: 2016 publication-title: Adv. Mater. – volume: 29 start-page: 1700144 year: 2017 publication-title: Adv. Mater. – volume: 26 start-page: 3603 year: 2014 publication-title: Chem. Mater. – volume: 5 start-page: 9649 year: 2017 publication-title: J. Mater. Chem. A – volume: 138 start-page: 10026 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 2914 year: 2017 publication-title: Chem. Mater. – volume: 49 start-page: 2993 year: 2016 publication-title: Macromolecules – volume: 21 start-page: 272 year: 2013 publication-title: Macromol. Res. – volume: 29 start-page: 1605437 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 9729 year: 2016 publication-title: Adv. Mater. – volume: 138 start-page: 10184 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 610 year: 2015 publication-title: Energy Environ. Sci. – volume: 136 start-page: 15215 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 1847 year: 2013 publication-title: Adv. Mater. – volume: 6 start-page: 3770 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 45 start-page: 723 year: 2012 publication-title: Acc. Chem. Res. – volume: 138 start-page: 4955 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1502529 year: 2016 publication-title: Adv. Energy Mater. – volume: 138 start-page: 4657 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 18043 year: 2016 publication-title: J. Mater. Chem. A – volume: 28 start-page: 4734 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 10008 year: 2016 publication-title: Adv. Mater. – volume: 115 start-page: 12666 year: 2015 publication-title: Chem. Rev. – volume: 9 start-page: 604 year: 2016 publication-title: Energy Environ. Sci. – volume: 29 start-page: 1604059 year: 2017 publication-title: Adv. Mater. – volume: 138 start-page: 15523 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 5880 year: 2014 publication-title: Adv. Mater. – volume: 19 start-page: 1939 year: 2009 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 29 year: 2014 publication-title: Adv. Mater. – volume: 28 start-page: 8184 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 1547 year: 2016 publication-title: Small – volume: 9 start-page: 3783 year: 2016 publication-title: Energy Environ. Sci. – volume: 45 start-page: 2937 year: 2016 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 1600742 year: 2016 publication-title: Adv. Energy Mater. – volume: 4 start-page: 6071 year: 2014 publication-title: Sci. Rep. – volume: 20 start-page: 579 year: 2008 publication-title: Adv. Mater. – volume: 114 start-page: 7006 year: 2014 publication-title: Chem. Rev. – volume: 7 start-page: 2276 year: 2014 publication-title: Energy Environ. Sci. – volume: 8 start-page: 520 year: 2015 publication-title: Energy Environ. Sci. – volume: 1 start-page: 15027 year: 2016 publication-title: Nat. Energy – volume: 49 start-page: 175 year: 2016 publication-title: Acc. Chem. Res. – volume: 28 start-page: 9423 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 391 year: 2016 publication-title: Energy Environ. Sci. – volume: 27 start-page: 6983 year: 2015 publication-title: Adv. Mater. – volume: 27 start-page: 2938 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 251 year: 2009 publication-title: Energy Environ. Sci. – volume: 48 start-page: 2803 year: 2015 publication-title: Acc. Chem. Res. – volume: 6 start-page: 1600854 year: 2016 publication-title: Adv. Energy Mater. – volume: 42 start-page: 1691 year: 2009 publication-title: Acc. Chem. Res. – volume: 4 start-page: 3777 year: 2016 publication-title: J. Mater. Chem. A – volume: 45 start-page: 9611 year: 2012 publication-title: Macromolecules – volume: 51 start-page: 16 year: 2013 publication-title: J. Poly. Sci.: Poly. Phys. – volume: 29 start-page: 1605115 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 1600430 year: 2016 publication-title: Adv. Energy Mater. – volume: 10 start-page: 395 year: 2017 publication-title: Energy Environ. Sci. – volume: 28 start-page: 9416 year: 2016 publication-title: Adv. Mater. – volume: 19 start-page: 3440 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: e1501170 year: 2016 publication-title: Sci. Adv. – volume: 23 start-page: 3597 year: 2011 publication-title: Adv. Mater. – volume: 9 start-page: 885 year: 2016 publication-title: Energy Environ. Sci. – volume: 23 start-page: 1771 year: 2011 publication-title: Adv. Mater. – volume: 8 start-page: 1160 year: 2015 publication-title: Energy Environ. Sci. – volume: 139 start-page: 2387 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 15011 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 7248 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 8021 year: 2016 publication-title: Adv. Mater. – volume: 15 start-page: 4538 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 13651 year: 2016 publication-title: Nat. Commun. – volume: 56 start-page: 3045 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 10416 year: 2012 publication-title: J. Mater. Chem. – volume: 49 start-page: 2424 year: 2016 publication-title: Acc. Chem. Res. – volume: 25 start-page: 5326 year: 2015 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 1600008 year: 2017 publication-title: Solar RRL – volume: 1 start-page: 16089 year: 2016 publication-title: Nat. Energy – volume: 27 start-page: 1035 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 967 year: 2016 publication-title: Adv. Mater. – volume: 29 start-page: 1604241 year: 2017 publication-title: Adv. Mater. – volume: 22 start-page: 4161 year: 2012 publication-title: J. Mater. Chem. – ident: e_1_2_7_88_1 doi: 10.1021/jacs.5b11149 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201302031 – ident: e_1_2_7_61_1 doi: 10.1021/cr900182s – ident: e_1_2_7_82_1 doi: 10.1002/adfm.200500211 – ident: e_1_2_7_22_1 doi: 10.1038/ncomms6293 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201502529 – ident: e_1_2_7_91_1 doi: 10.1002/adma.201301476 – ident: e_1_2_7_99_1 doi: 10.1002/adma.201602834 – ident: e_1_2_7_60_1 doi: 10.1002/adma.201605437 – ident: e_1_2_7_34_1 doi: 10.1039/C5EE02477C – ident: e_1_2_7_127_1 doi: 10.1002/adma.201605216 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201601197 – ident: e_1_2_7_71_1 doi: 10.1021/jacs.6b05868 – ident: e_1_2_7_111_1 doi: 10.1002/adma.201601595 – ident: e_1_2_7_92_1 doi: 10.1021/ja5092613 – ident: e_1_2_7_27_1 doi: 10.1039/C6EE02851A – ident: e_1_2_7_57_1 doi: 10.1002/aenm.201501721 – ident: e_1_2_7_64_1 doi: 10.1021/jacs.6b01744 – ident: e_1_2_7_119_1 doi: 10.1021/jacs.5b08556 – ident: e_1_2_7_103_1 doi: 10.1002/adma.201604059 – ident: e_1_2_7_110_1 doi: 10.1038/ncomms13094 – ident: e_1_2_7_129_1 doi: 10.1021/jacs.6b03562 – ident: e_1_2_7_54_1 doi: 10.1039/c3cp50438g – ident: e_1_2_7_100_1 doi: 10.1021/acs.chemmater.6b05194 – ident: e_1_2_7_122_1 doi: 10.1126/sciadv.1501170 – ident: e_1_2_7_45_1 doi: 10.1002/adma.201700144 – ident: e_1_2_7_59_1 doi: 10.1039/C6TA07672F – ident: e_1_2_7_112_1 doi: 10.1021/cm501513n – ident: e_1_2_7_81_1 doi: 10.1002/adma.201100792 – ident: e_1_2_7_70_1 doi: 10.1002/adma.200501717 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201404317 – ident: e_1_2_7_74_1 doi: 10.1002/aenm.201600148 – ident: e_1_2_7_109_1 doi: 10.1002/adma.201604241 – ident: e_1_2_7_40_1 doi: 10.1021/jacs.6b09110 – ident: e_1_2_7_124_1 doi: 10.1002/anie.201103313 – ident: e_1_2_7_12_1 doi: 10.1002/polb.23192 – ident: e_1_2_7_18_1 doi: 10.1039/C0CP01178A – ident: e_1_2_7_63_1 doi: 10.1002/adma.201502775 – ident: e_1_2_7_30_1 doi: 10.1021/acs.chemmater.5b04339 – ident: e_1_2_7_72_1 doi: 10.1038/nenergy.2016.89 – ident: e_1_2_7_21_1 doi: 10.1038/nphoton.2015.6 – ident: e_1_2_7_128_1 doi: 10.1002/anie.201610944 – ident: e_1_2_7_31_1 doi: 10.1039/C6CP07465K – ident: e_1_2_7_98_1 doi: 10.1002/adma.201602067 – ident: e_1_2_7_43_1 doi: 10.1039/C6EE03489F – ident: e_1_2_7_77_1 doi: 10.1021/cr400353v – ident: e_1_2_7_123_1 doi: 10.1002/adma.201602642 – ident: e_1_2_7_13_1 doi: 10.1039/C5CS00593K – ident: e_1_2_7_104_1 doi: 10.1038/nmat4797 – ident: e_1_2_7_69_1 doi: 10.1002/adma.200702337 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201404535 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201606729 – ident: e_1_2_7_126_1 doi: 10.1002/aenm.201600430 – ident: e_1_2_7_116_1 doi: 10.1039/c3sc51841h – ident: e_1_2_7_52_1 doi: 10.1002/adma.201304373 – ident: e_1_2_7_84_1 doi: 10.1002/adma.201603518 – ident: e_1_2_7_24_1 doi: 10.1038/nenergy.2015.27 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201502827 – ident: e_1_2_7_113_1 doi: 10.1039/C4EE00446A – ident: e_1_2_7_89_1 doi: 10.1021/jacs.6b04368 – ident: e_1_2_7_17_1 doi: 10.1039/c2jm15126j – ident: e_1_2_7_23_1 doi: 10.1002/adma.201504014 – ident: e_1_2_7_15_1 doi: 10.1021/acs.chemrev.6b00176 – ident: e_1_2_7_58_1 doi: 10.1021/acsenergylett.6b00162 – ident: e_1_2_7_46_1 doi: 10.1039/c2cc31511d – ident: e_1_2_7_118_1 doi: 10.1021/acs.chemmater.6b03292 – ident: e_1_2_7_117_1 doi: 10.1039/C4EE02990A – ident: e_1_2_7_133_1 doi: 10.1021/jacs.6b08523 – ident: e_1_2_7_80_1 doi: 10.1002/adfm.201501971 – ident: e_1_2_7_96_1 doi: 10.1002/adma.201605115 – ident: e_1_2_7_4_1 doi: 10.1002/adma.200802854 – ident: e_1_2_7_106_1 doi: 10.1021/ma301900h – ident: e_1_2_7_56_1 doi: 10.1002/adfm.200900090 – ident: e_1_2_7_90_1 doi: 10.1021/jacs.6b02004 – ident: e_1_2_7_76_1 doi: 10.1039/C6EE03654F – ident: e_1_2_7_48_1 doi: 10.1002/adma.201404152 – ident: e_1_2_7_75_1 doi: 10.1039/C6EE02598F – ident: e_1_2_7_37_1 doi: 10.1039/C6TA06367E – ident: e_1_2_7_73_1 doi: 10.1039/C5EE02871J – ident: e_1_2_7_130_1 doi: 10.1021/jacs.6b00853 – ident: e_1_2_7_3_1 doi: 10.1021/ar2002446 – ident: e_1_2_7_51_1 doi: 10.1039/C3TA14236A – ident: e_1_2_7_62_1 doi: 10.1021/ja2073643 – ident: e_1_2_7_67_1 doi: 10.1039/c2jm30470h – ident: e_1_2_7_5_1 doi: 10.1002/adma.201004426 – ident: e_1_2_7_25_1 doi: 10.1002/solr.201600008 – ident: e_1_2_7_29_1 doi: 10.1021/acs.jpclett.5b01471 – ident: e_1_2_7_97_1 doi: 10.1038/nphoton.2015.128 – ident: e_1_2_7_11_1 doi: 10.1021/acs.accounts.5b00363 – ident: e_1_2_7_44_1 doi: 10.1002/adma.201700254 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201600281 – ident: e_1_2_7_85_1 doi: 10.1038/ncomms11585 – ident: e_1_2_7_66_1 doi: 10.1002/aenm.201600742 – ident: e_1_2_7_68_1 doi: 10.1007/s13233-013-1141-3 – ident: e_1_2_7_101_1 doi: 10.1021/jacs.6b11991 – ident: e_1_2_7_1_1 doi: 10.1039/b812502n – ident: e_1_2_7_49_1 doi: 10.1039/C6TA04232E – ident: e_1_2_7_65_1 doi: 10.1038/ncomms9242 – ident: e_1_2_7_108_1 doi: 10.1002/adma.201601803 – ident: e_1_2_7_93_1 doi: 10.1002/adma.201504120 – ident: e_1_2_7_132_1 doi: 10.1002/adma.201604155 – ident: e_1_2_7_8_1 doi: 10.1039/C6QM00043F – ident: e_1_2_7_35_1 doi: 10.1039/C6TA00056H – ident: e_1_2_7_105_1 doi: 10.1002/adma.201602570 – start-page: 1601251 year: 2016 ident: e_1_2_7_19_1 publication-title: Adv. Energy Mater. – ident: e_1_2_7_121_1 doi: 10.1038/srep06071 – ident: e_1_2_7_16_1 doi: 10.1039/C4EE03824J – ident: e_1_2_7_36_1 doi: 10.1039/C6TA07368A – ident: e_1_2_7_33_1 doi: 10.1039/C4EE03424D – ident: e_1_2_7_95_1 doi: 10.1021/ar500355d – ident: e_1_2_7_79_1 doi: 10.1038/nphoton.2015.84 – ident: e_1_2_7_107_1 doi: 10.1002/adma.201401494 – ident: e_1_2_7_78_1 doi: 10.1021/acs.accounts.6b00347 – ident: e_1_2_7_41_1 doi: 10.1038/ncomms13651 – ident: e_1_2_7_86_1 doi: 10.1002/adma.201500647 – ident: e_1_2_7_55_1 doi: 10.1002/adma.201202873 – ident: e_1_2_7_83_1 doi: 10.1039/C5CS00831J – ident: e_1_2_7_10_1 doi: 10.1002/smll.201502775 – ident: e_1_2_7_87_1 doi: 10.1021/jacs.5b06414 – ident: e_1_2_7_120_1 doi: 10.1021/ja5110602 – ident: e_1_2_7_125_1 doi: 10.1021/acs.macromol.6b00248 – ident: e_1_2_7_47_1 doi: 10.1002/adma.201400647 – ident: e_1_2_7_102_1 doi: 10.1002/adma.201603588 – ident: e_1_2_7_53_1 doi: 10.1021/ar900099h – ident: e_1_2_7_94_1 doi: 10.1039/C5SC04956C – ident: e_1_2_7_28_1 doi: 10.1021/acs.accounts.5b00199 – ident: e_1_2_7_114_1 doi: 10.1039/C5EE03684D – ident: e_1_2_7_131_1 doi: 10.1002/aenm.201600854 – ident: e_1_2_7_14_1 doi: 10.1021/acs.chemrev.5b00098 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201602776 – ident: e_1_2_7_42_1 doi: 10.1021/jacs.6b12755 – ident: e_1_2_7_50_1 doi: 10.1039/C5EE03481G – ident: e_1_2_7_115_1 doi: 10.1039/C7TA01554B |
SSID | ssj0031247 |
Score | 2.6131952 |
SecondaryResourceType | review_article |
Snippet | Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing... Fullerene-free OSCs employing n-type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | absorption energy loss Fullerenes morphology Nanotechnology non‐fullerene acceptors Optoelectronics organic solar cells Photovoltaic cells Solar cells |
Title | Efficient Organic Solar Cells with Non‐Fullerene Acceptors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201701120 https://www.ncbi.nlm.nih.gov/pubmed/28737255 https://www.proquest.com/docview/1946137920 https://www.proquest.com/docview/1923111725 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN4YT3rw_ahWg4mJp21hYSkkXpqmTWPaHqxNeiO7y3IRwZT24smf4G_0lzgDBVuNMdEbZBbYxwwzszvzDSHXkQhNGYYOjZQrqMOVoMJUDgXVFILf03J4nsU_HLn9iXM35dOVLP4CH6LacEPJyP_XKOBCZs1P0NDsKcajA8QTtxg67RiwhVbRfYUfZYPyyqurgM6iCLxVojaarLn--LpW-mZqrluuuerp7RJRdrqIOHlsLOayoV6-4Dn-Z1R7ZGdplxrtgpH2yYZODsj2ClrhIbnt5nAToKWMIoNTGWN0jI2OjuPMwB1dY5Qm769v6NfmVVeMtsKwmXSWHZFJr_vQ6dNl8QWqbJB6ykXLiqJQgv8lfMaZ0EKbYK1EpvIlZqeCfgtdaUUIB-N52nOVYIor2WLS4p60j8lmkib6lBi2Iz2mGFNgbjrSZx68Skphhq6ropDrGqHl5AdqiUyOBTLioMBUZgHOSlDNSo3cVO2fC0yOH1vWy7UMlrKZBZbvAD-0fCRfVWSQKjwqEYlOF9gG7F4YJOM1clLwQPUp8DFtIACF5Sv5Sx-C8XAwqO7O_vLQOdnC6yKGsE4257OFvgBbaC4vc37_AKkl_8E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQcKPQHtoXiSq16MiROnE2k9oD40VJ291BA4hZsx7l0ySKyK0RPPAKvwqvwCDwJM_mjW1QhVeLQYzJO4njGnhl75huAT6lKHJ0kPk9NoLgvjeLKMT5H1ZSg39P2ZZHF3-sHnUP_-5E8moLrOhemxIdoNtxoZhTrNU1w2pBev0cNzU8GdHZAgOKucKq4yj17cY5eW_5tdwtZ_FmIne2DzQ6vCgtw46FEc6nabpomGn0LFQkplFXWQU2cOibSlHmJa3cSaDclqJMwtGFglDDS6LbQrgy1h-99BjNURpzg-rd-NIhVHqrLop4LaklOUF81TqQj1if7O6kHHxi3k7Zyoex2XsJNPUxljMvPtfFIr5lffyBI_lfjOA9zlenNNsq5sgBTNnsFs78BMr6Gr9sFogYqYlYmqRq2T74_27SDQc5o05r1h9nt5RW57kVhGbZhKDJoeJa_gcMn6f5bmM6GmV0C5vk6FEYIgxa1ryMR4qu0Vk4SBCZNpG0Br7kdmwp8nWqADOISNlrExIW44UILvjTtT0vYkb-2XK6FJ66Wnzx2Ix8FsB0R-WNDxoWDToNUZodjaoOmPf6kkC1YLIWu-RS60R4SkCIK0XmkD_F-r9ttrt79y0Or8Lxz0OvG3d3-3nt4QffLkMllmB6dje0Kmn4j_aGYbAyOn1oq7wBSc1zX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVkL0wD9loYCRQJzcJo6dTSQ4VN2uWrpdIUql3oL_cuk2WzW7QnDiEXgUXoVX4EmYyR9dEEJC6oFjMk7ieMaeGXvmG4BnuXaBcU7y3MaaS2U114GVHFWTQ7-nL1WVxX8wjneP5OtjdbwEX9tcmBofottwo5lRrdc0wc9cvvkTNLQ8ndDRAeGJhyJowir3_ccP6LSVr_YGyOHnQgx33m3v8qauALcRCjRXuh_muTPoWuhUKKG99gEq4jywqaHES1y6XWzCnJBOksQnsdXCKmv6woQqMRG-9wqsyDhIqVjE4G0HWBWhtqzKuaCS5IT01cJEBmJzsb-LavA323bRVK503fAGfGtHqQ5xOdmYz8yG_fQLgOT_NIw34XpjeLOteqbcgiVf3IbVC3CMd-DlToWngWqY1Smqlh2S58-2_WRSMtqyZuNp8f3zF3Lcq7IybMtSXND0vLwLR5fS_XuwXEwLfx9YJE0irBAW7WlpUpHgq4zRgYtjmzvle8BbZme2gV6nCiCTrAaNFhlxIeu40IMXXfuzGnTkjy3XW9nJmsWnzMJUovz1UyI_7ci4bNBZkC78dE5t0LDHnxSqB2u1zHWfQic6QgJSRCU5f-lDdngwGnVXD_7loSdw9c1gmI32xvsP4RrdruMl12F5dj73j9Dum5nH1VRj8P6yhfIHuVtbhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Organic+Solar+Cells+with+Non-Fullerene+Acceptors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Shuixing&rft.au=Liu%2C+Wenqing&rft.au=Li%2C+Chang-Zhi&rft.au=Shi%2C+Minmin&rft.date=2017-10-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=13&rft.issue=37&rft_id=info:doi/10.1002%2Fsmll.201701120&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |