Efficient Organic Solar Cells with Non‐Fullerene Acceptors

Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non‐fullerene acceptors exhibit great potential for realizing high‐performance an...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 13; no. 37
Main Authors Li, Shuixing, Liu, Wenqing, Li, Chang‐Zhi, Shi, Minmin, Chen, Hongzheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non‐fullerene acceptors exhibit great potential for realizing high‐performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non‐fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. Fullerene‐free organic solar cells (OSCs) have made great progress in recent years with efficiencies surpassing 12%. In this Review, recent high‐performance non‐fullerene acceptors developed for OSCs are summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. The perspectives for fullerene‐free OSCs with efficiency of 15% are briefly discussed.
AbstractList Fullerene-free OSCs employing n-type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non-fullerene acceptors exhibit great potential for realizing high-performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non-fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance.
Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non‐fullerene acceptors exhibit great potential for realizing high‐performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non‐fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. Fullerene‐free organic solar cells (OSCs) have made great progress in recent years with efficiencies surpassing 12%. In this Review, recent high‐performance non‐fullerene acceptors developed for OSCs are summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance. The perspectives for fullerene‐free OSCs with efficiency of 15% are briefly discussed.
Fullerene-free OSCs employing n-type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non-fullerene acceptors exhibit great potential for realizing high-performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non-fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance.Fullerene-free OSCs employing n-type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non-fullerene acceptors exhibit great potential for realizing high-performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non-fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance.
Author Shi, Minmin
Chen, Hongzheng
Liu, Wenqing
Li, Chang‐Zhi
Li, Shuixing
Author_xml – sequence: 1
  givenname: Shuixing
  surname: Li
  fullname: Li, Shuixing
  organization: Zhejiang University
– sequence: 2
  givenname: Wenqing
  surname: Liu
  fullname: Liu, Wenqing
  organization: Zhejiang University
– sequence: 3
  givenname: Chang‐Zhi
  surname: Li
  fullname: Li, Chang‐Zhi
  email: czli@zju.edu.cn
  organization: Zhejiang University
– sequence: 4
  givenname: Minmin
  surname: Shi
  fullname: Shi, Minmin
  organization: Zhejiang University
– sequence: 5
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  email: hzchen@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28737255$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1KAzEUhYNUbKtuXcqAGzetuZmfzIAbKVaFahfVdcikGU1Jk5rMUNz5CD6jT2JKf4SCuLp38X2Hw-milrFGInQGuA8Ykys_17pPMFAMQPAB6kAGcS_LSdHa_YDbqOv9DOMYSEKPUJvkNKYkTTvo-raqlFDS1NHYvXKjRDSxmrtoILX20VLVb9GTNd-fX8NGa-mkkdGNEHJRW-dP0GHFtZenm3uMXoa3z4P73mh89zC4GfVETGPcSzmFqpqWCQZekJRwySVO86TCoihzCN0xTLMSqphmNM9lnglORCpKSkpI8zI-Rpfr3IWz7430NZsrL0JBbqRtPIOCxBBySBrQiz10ZhtnQrtAJWEPWhAcqPMN1ZRzOWULp-bcfbDtLgFI1oBw1nsnKyZUzWtlTe240gwwW83PVvOz3fxB6-9p2-Q_hWItLJWWH__QbPI4Gv26P9awlmo
CitedBy_id crossref_primary_10_1021_acsami_8b19596
crossref_primary_10_1039_C8QM00318A
crossref_primary_10_1021_acsami_8b01147
crossref_primary_10_1002_tcr_201800037
crossref_primary_10_1016_j_jechem_2020_06_014
crossref_primary_10_1016_j_jmgm_2023_108699
crossref_primary_10_1002_smll_201802349
crossref_primary_10_1002_smtd_201900531
crossref_primary_10_1021_acs_jpclett_2c02864
crossref_primary_10_1016_j_orgel_2021_106131
crossref_primary_10_1002_adma_201800613
crossref_primary_10_1021_acsami_0c00837
crossref_primary_10_1039_C9TA04097H
crossref_primary_10_1039_D1SE01777B
crossref_primary_10_1002_ange_202004989
crossref_primary_10_1021_acsami_8b16628
crossref_primary_10_1002_aenm_201801032
crossref_primary_10_1039_C9QM00334G
crossref_primary_10_1002_solr_201900159
crossref_primary_10_1002_asia_201801669
crossref_primary_10_1002_adma_201900904
crossref_primary_10_1039_D2CP05958D
crossref_primary_10_1016_j_tsf_2022_139134
crossref_primary_10_1021_acsomega_2c05141
crossref_primary_10_1002_cphc_201900793
crossref_primary_10_1002_smll_202202411
crossref_primary_10_1016_j_mattod_2018_09_004
crossref_primary_10_1021_jacs_8b02695
crossref_primary_10_1016_j_joule_2019_03_020
crossref_primary_10_1002_cssc_201901013
crossref_primary_10_1039_C8NJ06491A
crossref_primary_10_1088_2058_8585_ac32aa
crossref_primary_10_1134_S0036024420090216
crossref_primary_10_1002_advs_201802103
crossref_primary_10_1039_C8TA11441B
crossref_primary_10_1021_acsami_9b22987
crossref_primary_10_1002_ejoc_201800275
crossref_primary_10_1002_solr_202000719
crossref_primary_10_1021_acsaem_8b01576
crossref_primary_10_1021_acsenergylett_0c00537
crossref_primary_10_1021_acsenergylett_8b01400
crossref_primary_10_1016_j_nexres_2024_100042
crossref_primary_10_1021_acs_jpclett_1c00822
crossref_primary_10_1002_solr_202000286
crossref_primary_10_1016_j_jechem_2021_01_027
crossref_primary_10_1016_j_solener_2018_09_077
crossref_primary_10_1021_acsami_9b02121
crossref_primary_10_1002_adma_201806616
crossref_primary_10_1038_s41528_022_00222_3
crossref_primary_10_1039_D3TC00547J
crossref_primary_10_1002_aenm_202300046
crossref_primary_10_2494_photopolymer_31_177
crossref_primary_10_3389_fchem_2018_00414
crossref_primary_10_1039_C9MH01439J
crossref_primary_10_1039_C9TC03563J
crossref_primary_10_1007_s12274_019_2288_9
crossref_primary_10_1016_j_solener_2020_08_002
crossref_primary_10_1039_C8QM00609A
crossref_primary_10_1021_acs_jpclett_8b01043
crossref_primary_10_1039_C8EE01546E
crossref_primary_10_1016_j_cclet_2019_12_003
crossref_primary_10_1016_j_solmat_2018_12_033
crossref_primary_10_1002_smll_202302046
crossref_primary_10_1016_j_orgel_2021_106167
crossref_primary_10_1021_acsaelm_2c01076
crossref_primary_10_1080_10408436_2019_1632791
crossref_primary_10_1002_adma_202001621
crossref_primary_10_1002_adma_201803769
crossref_primary_10_1021_acsami_0c17598
crossref_primary_10_1016_j_dyepig_2019_108012
crossref_primary_10_1039_D3SE00987D
crossref_primary_10_1016_j_cclet_2019_01_031
crossref_primary_10_1002_advs_201800755
crossref_primary_10_1002_macp_201900084
crossref_primary_10_1038_s41467_019_10098_z
crossref_primary_10_1016_j_orgel_2022_106461
crossref_primary_10_1039_D0TA09306H
crossref_primary_10_1016_j_joule_2018_09_001
crossref_primary_10_1021_acsami_9b14133
crossref_primary_10_1021_acs_jpclett_3c01536
crossref_primary_10_1021_acs_jctc_3c00960
crossref_primary_10_1016_j_nanoen_2019_104271
crossref_primary_10_1002_adma_201707114
crossref_primary_10_1149_2162_8777_ab9a5a
crossref_primary_10_1002_adfm_202414941
crossref_primary_10_1021_acsami_9b08017
crossref_primary_10_1016_j_dyepig_2020_108540
crossref_primary_10_1002_cjoc_202000289
crossref_primary_10_1002_solr_202000374
crossref_primary_10_1002_adma_201804762
crossref_primary_10_1039_C8TA02633E
crossref_primary_10_1021_acsami_9b16686
crossref_primary_10_1002_cssc_201903087
crossref_primary_10_1002_solr_202000234
crossref_primary_10_1016_j_dyepig_2018_05_050
crossref_primary_10_1002_anie_202004989
crossref_primary_10_1016_j_matdes_2020_108730
crossref_primary_10_1016_j_cclet_2019_01_010
crossref_primary_10_1039_C7ME00075H
crossref_primary_10_1002_aenm_201702377
crossref_primary_10_1039_C9EE02531F
crossref_primary_10_1002_adma_202001160
crossref_primary_10_1007_s10853_019_03551_3
crossref_primary_10_1002_er_8456
crossref_primary_10_1021_acs_chemmater_8b00287
crossref_primary_10_1016_j_molliq_2024_124608
crossref_primary_10_1016_j_orgel_2021_106085
crossref_primary_10_1016_j_jmr_2018_01_007
crossref_primary_10_1088_1674_1056_27_8_088801
crossref_primary_10_1039_D2DD00004K
crossref_primary_10_1021_acsami_9b21929
crossref_primary_10_1007_s11426_018_9334_9
crossref_primary_10_1016_j_rineng_2025_104009
crossref_primary_10_1039_C8TA03753A
crossref_primary_10_1088_1361_6463_ab57ac
crossref_primary_10_1039_D0NR00698J
crossref_primary_10_1016_j_isci_2021_102463
crossref_primary_10_1016_j_saa_2020_119227
crossref_primary_10_1039_C8RA07398H
crossref_primary_10_1002_adma_201800343
crossref_primary_10_1039_C9TA12558B
crossref_primary_10_1021_acs_chemmater_8b01491
crossref_primary_10_1021_acsomega_1c06320
crossref_primary_10_1002_solr_201900446
crossref_primary_10_1016_j_comptc_2022_113852
crossref_primary_10_1021_acsami_8b06562
crossref_primary_10_1039_C8TA10923K
crossref_primary_10_1039_D0TC01077D
crossref_primary_10_1002_aenm_201900887
crossref_primary_10_1021_acsaem_2c01807
crossref_primary_10_1002_solr_202000537
crossref_primary_10_1016_j_cej_2021_131022
crossref_primary_10_1002_pi_6280
crossref_primary_10_1039_C9EE03710A
crossref_primary_10_1016_j_synthmet_2021_116736
crossref_primary_10_1016_j_jpowsour_2018_11_063
crossref_primary_10_1039_C9CP03793D
crossref_primary_10_1016_j_cej_2021_134405
crossref_primary_10_1016_j_orgel_2018_03_005
crossref_primary_10_1039_D4RA00572D
crossref_primary_10_1016_j_orgel_2021_106063
crossref_primary_10_1038_s41598_022_21894_x
crossref_primary_10_1002_smtd_202200828
crossref_primary_10_1039_C8TC00089A
crossref_primary_10_1039_D3MA00546A
crossref_primary_10_1039_C7MH00958E
crossref_primary_10_1016_j_solener_2022_07_011
crossref_primary_10_1021_acsami_9b05463
crossref_primary_10_1021_acs_jpcc_9b09833
crossref_primary_10_1007_s10118_019_2309_x
crossref_primary_10_1021_acsaem_8b00535
crossref_primary_10_1021_acs_macromol_8b00326
crossref_primary_10_1002_adma_202007231
crossref_primary_10_1039_D0QM00305K
crossref_primary_10_1002_aenm_202003441
crossref_primary_10_1021_acsami_8b16131
crossref_primary_10_1080_15421406_2023_2176055
crossref_primary_10_1039_C9TA11285E
crossref_primary_10_1039_D1TA01609A
crossref_primary_10_1002_smsc_202200006
crossref_primary_10_1021_acsaem_1c03578
crossref_primary_10_1139_cjc_2017_0655
crossref_primary_10_1039_D0CP05362G
crossref_primary_10_1039_C8TA09370A
crossref_primary_10_1016_j_mtnano_2018_04_005
crossref_primary_10_1039_D4MA00447G
crossref_primary_10_1016_j_solmat_2021_111046
crossref_primary_10_1142_S1793604719500036
crossref_primary_10_1002_cey2_302
crossref_primary_10_1002_adfm_201800209
crossref_primary_10_1002_cssc_202101067
crossref_primary_10_1021_acs_chemrev_1c00648
crossref_primary_10_1002_solr_201800190
crossref_primary_10_1016_j_nanoen_2023_108991
crossref_primary_10_1016_j_orgel_2019_01_052
crossref_primary_10_1039_D0TC04110F
crossref_primary_10_1002_chem_201804554
crossref_primary_10_1002_admi_201800031
crossref_primary_10_1002_adfm_201802004
crossref_primary_10_1039_C8QO00788H
crossref_primary_10_1016_j_synthmet_2021_116812
crossref_primary_10_1021_jacs_8b12126
crossref_primary_10_1039_C9TC02150G
crossref_primary_10_1021_acsami_3c05306
crossref_primary_10_1016_j_orgel_2018_09_016
crossref_primary_10_1039_C8TA05440A
crossref_primary_10_1002_solr_201800060
crossref_primary_10_1021_acsami_2c10407
crossref_primary_10_1021_acs_chemrev_7b00535
crossref_primary_10_1039_C8TC01988F
crossref_primary_10_1039_C8TC04608E
crossref_primary_10_1016_j_gee_2021_01_009
crossref_primary_10_1039_C9TA00468H
crossref_primary_10_1002_adma_201705208
crossref_primary_10_1021_acsami_4c10792
crossref_primary_10_1016_j_orgel_2020_105747
crossref_primary_10_1002_adma_201804215
crossref_primary_10_1007_s11082_022_03782_w
crossref_primary_10_1002_aenm_201800424
crossref_primary_10_1021_acsami_2c01190
crossref_primary_10_1021_acs_jpclett_2c03585
crossref_primary_10_1021_acsami_9b07317
crossref_primary_10_1002_aenm_201802197
crossref_primary_10_1007_s11426_021_9975_9
crossref_primary_10_1039_D0TC04407E
crossref_primary_10_1063_5_0162270
crossref_primary_10_1039_D3MA00460K
crossref_primary_10_1039_C9TC04680A
crossref_primary_10_1021_acsami_8b20415
crossref_primary_10_1088_1361_6633_ab0530
crossref_primary_10_1021_acsaem_1c01872
crossref_primary_10_1021_acsenergylett_0c00857
crossref_primary_10_1021_acs_macromol_1c01301
crossref_primary_10_1016_j_ccr_2020_213605
crossref_primary_10_1002_asia_202000635
crossref_primary_10_1021_acs_jpclett_4c00153
crossref_primary_10_1039_C8TA12028E
crossref_primary_10_1021_acs_macromol_0c00469
Cites_doi 10.1021/jacs.5b11149
10.1002/adma.201302031
10.1021/cr900182s
10.1002/adfm.200500211
10.1038/ncomms6293
10.1002/aenm.201502529
10.1002/adma.201301476
10.1002/adma.201602834
10.1002/adma.201605437
10.1039/C5EE02477C
10.1002/adma.201605216
10.1002/adma.201601197
10.1021/jacs.6b05868
10.1002/adma.201601595
10.1021/ja5092613
10.1039/C6EE02851A
10.1002/aenm.201501721
10.1021/jacs.6b01744
10.1021/jacs.5b08556
10.1002/adma.201604059
10.1038/ncomms13094
10.1021/jacs.6b03562
10.1039/c3cp50438g
10.1021/acs.chemmater.6b05194
10.1126/sciadv.1501170
10.1002/adma.201700144
10.1039/C6TA07672F
10.1021/cm501513n
10.1002/adma.201100792
10.1002/adma.200501717
10.1002/adma.201404317
10.1002/aenm.201600148
10.1002/adma.201604241
10.1021/jacs.6b09110
10.1002/anie.201103313
10.1002/polb.23192
10.1039/C0CP01178A
10.1002/adma.201502775
10.1021/acs.chemmater.5b04339
10.1038/nenergy.2016.89
10.1038/nphoton.2015.6
10.1002/anie.201610944
10.1039/C6CP07465K
10.1002/adma.201602067
10.1039/C6EE03489F
10.1021/cr400353v
10.1002/adma.201602642
10.1039/C5CS00593K
10.1038/nmat4797
10.1002/adma.200702337
10.1002/adma.201404535
10.1002/adma.201606729
10.1002/aenm.201600430
10.1039/c3sc51841h
10.1002/adma.201304373
10.1002/adma.201603518
10.1038/nenergy.2015.27
10.1002/adma.201502827
10.1039/C4EE00446A
10.1021/jacs.6b04368
10.1039/c2jm15126j
10.1002/adma.201504014
10.1021/acs.chemrev.6b00176
10.1021/acsenergylett.6b00162
10.1039/c2cc31511d
10.1021/acs.chemmater.6b03292
10.1039/C4EE02990A
10.1021/jacs.6b08523
10.1002/adfm.201501971
10.1002/adma.201605115
10.1002/adma.200802854
10.1021/ma301900h
10.1002/adfm.200900090
10.1021/jacs.6b02004
10.1039/C6EE03654F
10.1002/adma.201404152
10.1039/C6EE02598F
10.1039/C6TA06367E
10.1039/C5EE02871J
10.1021/jacs.6b00853
10.1021/ar2002446
10.1039/C3TA14236A
10.1021/ja2073643
10.1039/c2jm30470h
10.1002/adma.201004426
10.1002/solr.201600008
10.1021/acs.jpclett.5b01471
10.1038/nphoton.2015.128
10.1021/acs.accounts.5b00363
10.1002/adma.201700254
10.1002/adma.201600281
10.1038/ncomms11585
10.1002/aenm.201600742
10.1007/s13233-013-1141-3
10.1021/jacs.6b11991
10.1039/b812502n
10.1039/C6TA04232E
10.1038/ncomms9242
10.1002/adma.201601803
10.1002/adma.201504120
10.1002/adma.201604155
10.1039/C6QM00043F
10.1039/C6TA00056H
10.1002/adma.201602570
10.1038/srep06071
10.1039/C4EE03824J
10.1039/C6TA07368A
10.1039/C4EE03424D
10.1021/ar500355d
10.1038/nphoton.2015.84
10.1002/adma.201401494
10.1021/acs.accounts.6b00347
10.1038/ncomms13651
10.1002/adma.201500647
10.1002/adma.201202873
10.1039/C5CS00831J
10.1002/smll.201502775
10.1021/jacs.5b06414
10.1021/ja5110602
10.1021/acs.macromol.6b00248
10.1002/adma.201400647
10.1002/adma.201603588
10.1021/ar900099h
10.1039/C5SC04956C
10.1021/acs.accounts.5b00199
10.1039/C5EE03684D
10.1002/aenm.201600854
10.1021/acs.chemrev.5b00098
10.1002/adma.201602776
10.1021/jacs.6b12755
10.1039/C5EE03481G
10.1039/C7TA01554B
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201701120
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 28737255
10_1002_smll_201701120
SMLL201701120
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21474088; 51473142; 51561145001; 51620105006
– fundername: Zhejiang Natural Science Fund for Distinguished Young Scholars
  funderid: LR17E030001
– fundername: Zhejiang Province Natural Science Foundation
  funderid: LR13E030001
– fundername: International Science and Technology Cooperation Program of China
  funderid: 2016YFE0102900
– fundername: 973 Program
  funderid: 2014CB643503
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2016FZA4007
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3730-5a71ffdb401a9252aeae0584f0c9b8117001d6b1f376788e86ca2c5cb72b158b3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:52:11 EDT 2025
Fri Jul 25 12:12:40 EDT 2025
Wed Feb 19 02:32:04 EST 2025
Tue Jul 01 02:10:30 EDT 2025
Thu Apr 24 23:12:59 EDT 2025
Wed Jan 22 16:25:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords organic solar cells
energy loss
non-fullerene acceptors
morphology
absorption
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-5a71ffdb401a9252aeae0584f0c9b8117001d6b1f376788e86ca2c5cb72b158b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 28737255
PQID 1946137920
PQPubID 1046358
PageCount 15
ParticipantIDs proquest_miscellaneous_1923111725
proquest_journals_1946137920
pubmed_primary_28737255
crossref_citationtrail_10_1002_smll_201701120
crossref_primary_10_1002_smll_201701120
wiley_primary_10_1002_smll_201701120_SMLL201701120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-00
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 1
2013; 25
2013; 4
2009; 42
2013; 21
2014; 26
2011; 13
2014; 136
2015; 48
2014; 5
2013; 15
2014; 4
2014; 2
2015; 137
2013; 51
2011; 23
2016; 116
2008; 20
2009; 19
2016; 49
2014; 7
2012; 22
2016; 45
2015; 6
2009; 21
2006; 18
2017; 29
2015; 9
2015; 8
2014; 114
2011; 133
2016; 12
2017; 139
2016; 4
2016; 6
2016; 7
2015; 25
2015; 27
2016; 1
2016; 2
2015; 115
2017; 16
2017; 10
2011; 50
2017; 56
2016
2017; 19
2016; 138
2012; 48
2005; 15
2016; 29
2009; 2
2016; 28
2012; 45
2009; 109
2016; 9
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
Cui C. (e_1_2_7_19_1) 2016
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
References_xml – volume: 28
  start-page: 7098
  year: 2016
  publication-title: Chem. Mater.
– volume: 6
  start-page: 1501721
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 951
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1015
  year: 2015
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1617
  year: 2005
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 789
  year: 2006
  publication-title: Adv. Mater.
– volume: 27
  start-page: 7299
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 14983
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 8288
  year: 2016
  publication-title: Adv. Mater.
– volume: 48
  start-page: 4773
  year: 2012
  publication-title: Chem. Commun.
– volume: 9
  start-page: 403
  year: 2015
  publication-title: Nat. Photon.
– volume: 1
  start-page: 304
  year: 2017
  publication-title: Mater. Chem. Front.
– volume: 8
  start-page: 3215
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 13094
  year: 2016
  publication-title: Nat. Commun.
– volume: 48
  start-page: 267
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 26
  start-page: 6290
  year: 2014
  publication-title: Adv. Mater.
– volume: 138
  start-page: 2973
  year: 2016
  publication-title: J. Am. Chem. Soc.
– start-page: 1601251
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 4389
  year: 2013
  publication-title: Chem. Sci.
– volume: 7
  start-page: 3543
  year: 2016
  publication-title: Chem. Sci.
– volume: 1
  start-page: 302
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 26
  start-page: 10
  year: 2014
  publication-title: Adv. Mater.
– volume: 138
  start-page: 375
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 5868
  year: 2009
  publication-title: Chem. Rev.
– volume: 16
  start-page: 363
  year: 2017
  publication-title: Nat. Mater.
– volume: 45
  start-page: 2544
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 1434
  year: 2009
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606729
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 8283
  year: 2016
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4766
  year: 2013
  publication-title: Adv. Mater.
– volume: 50
  start-page: 9697
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 5293
  year: 2014
  publication-title: Nat. Commun.
– volume: 137
  start-page: 11156
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 14149
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1604155
  year: 2017
  publication-title: Adv. Mater.
– volume: 116
  start-page: 7397
  year: 2016
  publication-title: Chem. Rev.
– volume: 10
  start-page: 258
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 16335
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 10659
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 133
  start-page: 20009
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 1336
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1170
  year: 2015
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1970
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 29
  start-page: 1605216
  year: 2017
  publication-title: Adv. Mater.
– volume: 137
  start-page: 898
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1700254
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 491
  year: 2015
  publication-title: Nat. Photon.
– volume: 2
  start-page: 1201
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 174
  year: 2015
  publication-title: Nat. Photon.
– volume: 6
  start-page: 1600148
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 11585
  year: 2016
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8242
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9559
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1948
  year: 2016
  publication-title: Chem. Mater.
– volume: 10
  start-page: 546
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 7821
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1700144
  year: 2017
  publication-title: Adv. Mater.
– volume: 26
  start-page: 3603
  year: 2014
  publication-title: Chem. Mater.
– volume: 5
  start-page: 9649
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 138
  start-page: 10026
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 2914
  year: 2017
  publication-title: Chem. Mater.
– volume: 49
  start-page: 2993
  year: 2016
  publication-title: Macromolecules
– volume: 21
  start-page: 272
  year: 2013
  publication-title: Macromol. Res.
– volume: 29
  start-page: 1605437
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 9729
  year: 2016
  publication-title: Adv. Mater.
– volume: 138
  start-page: 10184
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 610
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 15215
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 1847
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3770
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 45
  start-page: 723
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 4955
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1502529
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 138
  start-page: 4657
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 18043
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 4734
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 10008
  year: 2016
  publication-title: Adv. Mater.
– volume: 115
  start-page: 12666
  year: 2015
  publication-title: Chem. Rev.
– volume: 9
  start-page: 604
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1604059
  year: 2017
  publication-title: Adv. Mater.
– volume: 138
  start-page: 15523
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 5880
  year: 2014
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1939
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 29
  year: 2014
  publication-title: Adv. Mater.
– volume: 28
  start-page: 8184
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1547
  year: 2016
  publication-title: Small
– volume: 9
  start-page: 3783
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 45
  start-page: 2937
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 1600742
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 6071
  year: 2014
  publication-title: Sci. Rep.
– volume: 20
  start-page: 579
  year: 2008
  publication-title: Adv. Mater.
– volume: 114
  start-page: 7006
  year: 2014
  publication-title: Chem. Rev.
– volume: 7
  start-page: 2276
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 520
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 15027
  year: 2016
  publication-title: Nat. Energy
– volume: 49
  start-page: 175
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 28
  start-page: 9423
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 391
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 6983
  year: 2015
  publication-title: Adv. Mater.
– volume: 27
  start-page: 2938
  year: 2015
  publication-title: Adv. Mater.
– volume: 2
  start-page: 251
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 48
  start-page: 2803
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 1600854
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 42
  start-page: 1691
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 3777
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 9611
  year: 2012
  publication-title: Macromolecules
– volume: 51
  start-page: 16
  year: 2013
  publication-title: J. Poly. Sci.: Poly. Phys.
– volume: 29
  start-page: 1605115
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1600430
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 395
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 9416
  year: 2016
  publication-title: Adv. Mater.
– volume: 19
  start-page: 3440
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: e1501170
  year: 2016
  publication-title: Sci. Adv.
– volume: 23
  start-page: 3597
  year: 2011
  publication-title: Adv. Mater.
– volume: 9
  start-page: 885
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: 1771
  year: 2011
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1160
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 2387
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 15011
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 7248
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 8021
  year: 2016
  publication-title: Adv. Mater.
– volume: 15
  start-page: 4538
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 13651
  year: 2016
  publication-title: Nat. Commun.
– volume: 56
  start-page: 3045
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 10416
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 49
  start-page: 2424
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 25
  start-page: 5326
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 1600008
  year: 2017
  publication-title: Solar RRL
– volume: 1
  start-page: 16089
  year: 2016
  publication-title: Nat. Energy
– volume: 27
  start-page: 1035
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 967
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1604241
  year: 2017
  publication-title: Adv. Mater.
– volume: 22
  start-page: 4161
  year: 2012
  publication-title: J. Mater. Chem.
– ident: e_1_2_7_88_1
  doi: 10.1021/jacs.5b11149
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201302031
– ident: e_1_2_7_61_1
  doi: 10.1021/cr900182s
– ident: e_1_2_7_82_1
  doi: 10.1002/adfm.200500211
– ident: e_1_2_7_22_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201502529
– ident: e_1_2_7_91_1
  doi: 10.1002/adma.201301476
– ident: e_1_2_7_99_1
  doi: 10.1002/adma.201602834
– ident: e_1_2_7_60_1
  doi: 10.1002/adma.201605437
– ident: e_1_2_7_34_1
  doi: 10.1039/C5EE02477C
– ident: e_1_2_7_127_1
  doi: 10.1002/adma.201605216
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201601197
– ident: e_1_2_7_71_1
  doi: 10.1021/jacs.6b05868
– ident: e_1_2_7_111_1
  doi: 10.1002/adma.201601595
– ident: e_1_2_7_92_1
  doi: 10.1021/ja5092613
– ident: e_1_2_7_27_1
  doi: 10.1039/C6EE02851A
– ident: e_1_2_7_57_1
  doi: 10.1002/aenm.201501721
– ident: e_1_2_7_64_1
  doi: 10.1021/jacs.6b01744
– ident: e_1_2_7_119_1
  doi: 10.1021/jacs.5b08556
– ident: e_1_2_7_103_1
  doi: 10.1002/adma.201604059
– ident: e_1_2_7_110_1
  doi: 10.1038/ncomms13094
– ident: e_1_2_7_129_1
  doi: 10.1021/jacs.6b03562
– ident: e_1_2_7_54_1
  doi: 10.1039/c3cp50438g
– ident: e_1_2_7_100_1
  doi: 10.1021/acs.chemmater.6b05194
– ident: e_1_2_7_122_1
  doi: 10.1126/sciadv.1501170
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.201700144
– ident: e_1_2_7_59_1
  doi: 10.1039/C6TA07672F
– ident: e_1_2_7_112_1
  doi: 10.1021/cm501513n
– ident: e_1_2_7_81_1
  doi: 10.1002/adma.201100792
– ident: e_1_2_7_70_1
  doi: 10.1002/adma.200501717
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201404317
– ident: e_1_2_7_74_1
  doi: 10.1002/aenm.201600148
– ident: e_1_2_7_109_1
  doi: 10.1002/adma.201604241
– ident: e_1_2_7_40_1
  doi: 10.1021/jacs.6b09110
– ident: e_1_2_7_124_1
  doi: 10.1002/anie.201103313
– ident: e_1_2_7_12_1
  doi: 10.1002/polb.23192
– ident: e_1_2_7_18_1
  doi: 10.1039/C0CP01178A
– ident: e_1_2_7_63_1
  doi: 10.1002/adma.201502775
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.chemmater.5b04339
– ident: e_1_2_7_72_1
  doi: 10.1038/nenergy.2016.89
– ident: e_1_2_7_21_1
  doi: 10.1038/nphoton.2015.6
– ident: e_1_2_7_128_1
  doi: 10.1002/anie.201610944
– ident: e_1_2_7_31_1
  doi: 10.1039/C6CP07465K
– ident: e_1_2_7_98_1
  doi: 10.1002/adma.201602067
– ident: e_1_2_7_43_1
  doi: 10.1039/C6EE03489F
– ident: e_1_2_7_77_1
  doi: 10.1021/cr400353v
– ident: e_1_2_7_123_1
  doi: 10.1002/adma.201602642
– ident: e_1_2_7_13_1
  doi: 10.1039/C5CS00593K
– ident: e_1_2_7_104_1
  doi: 10.1038/nmat4797
– ident: e_1_2_7_69_1
  doi: 10.1002/adma.200702337
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201404535
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201606729
– ident: e_1_2_7_126_1
  doi: 10.1002/aenm.201600430
– ident: e_1_2_7_116_1
  doi: 10.1039/c3sc51841h
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.201304373
– ident: e_1_2_7_84_1
  doi: 10.1002/adma.201603518
– ident: e_1_2_7_24_1
  doi: 10.1038/nenergy.2015.27
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201502827
– ident: e_1_2_7_113_1
  doi: 10.1039/C4EE00446A
– ident: e_1_2_7_89_1
  doi: 10.1021/jacs.6b04368
– ident: e_1_2_7_17_1
  doi: 10.1039/c2jm15126j
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201504014
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.chemrev.6b00176
– ident: e_1_2_7_58_1
  doi: 10.1021/acsenergylett.6b00162
– ident: e_1_2_7_46_1
  doi: 10.1039/c2cc31511d
– ident: e_1_2_7_118_1
  doi: 10.1021/acs.chemmater.6b03292
– ident: e_1_2_7_117_1
  doi: 10.1039/C4EE02990A
– ident: e_1_2_7_133_1
  doi: 10.1021/jacs.6b08523
– ident: e_1_2_7_80_1
  doi: 10.1002/adfm.201501971
– ident: e_1_2_7_96_1
  doi: 10.1002/adma.201605115
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.200802854
– ident: e_1_2_7_106_1
  doi: 10.1021/ma301900h
– ident: e_1_2_7_56_1
  doi: 10.1002/adfm.200900090
– ident: e_1_2_7_90_1
  doi: 10.1021/jacs.6b02004
– ident: e_1_2_7_76_1
  doi: 10.1039/C6EE03654F
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201404152
– ident: e_1_2_7_75_1
  doi: 10.1039/C6EE02598F
– ident: e_1_2_7_37_1
  doi: 10.1039/C6TA06367E
– ident: e_1_2_7_73_1
  doi: 10.1039/C5EE02871J
– ident: e_1_2_7_130_1
  doi: 10.1021/jacs.6b00853
– ident: e_1_2_7_3_1
  doi: 10.1021/ar2002446
– ident: e_1_2_7_51_1
  doi: 10.1039/C3TA14236A
– ident: e_1_2_7_62_1
  doi: 10.1021/ja2073643
– ident: e_1_2_7_67_1
  doi: 10.1039/c2jm30470h
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201004426
– ident: e_1_2_7_25_1
  doi: 10.1002/solr.201600008
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.jpclett.5b01471
– ident: e_1_2_7_97_1
  doi: 10.1038/nphoton.2015.128
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.accounts.5b00363
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.201700254
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201600281
– ident: e_1_2_7_85_1
  doi: 10.1038/ncomms11585
– ident: e_1_2_7_66_1
  doi: 10.1002/aenm.201600742
– ident: e_1_2_7_68_1
  doi: 10.1007/s13233-013-1141-3
– ident: e_1_2_7_101_1
  doi: 10.1021/jacs.6b11991
– ident: e_1_2_7_1_1
  doi: 10.1039/b812502n
– ident: e_1_2_7_49_1
  doi: 10.1039/C6TA04232E
– ident: e_1_2_7_65_1
  doi: 10.1038/ncomms9242
– ident: e_1_2_7_108_1
  doi: 10.1002/adma.201601803
– ident: e_1_2_7_93_1
  doi: 10.1002/adma.201504120
– ident: e_1_2_7_132_1
  doi: 10.1002/adma.201604155
– ident: e_1_2_7_8_1
  doi: 10.1039/C6QM00043F
– ident: e_1_2_7_35_1
  doi: 10.1039/C6TA00056H
– ident: e_1_2_7_105_1
  doi: 10.1002/adma.201602570
– start-page: 1601251
  year: 2016
  ident: e_1_2_7_19_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_121_1
  doi: 10.1038/srep06071
– ident: e_1_2_7_16_1
  doi: 10.1039/C4EE03824J
– ident: e_1_2_7_36_1
  doi: 10.1039/C6TA07368A
– ident: e_1_2_7_33_1
  doi: 10.1039/C4EE03424D
– ident: e_1_2_7_95_1
  doi: 10.1021/ar500355d
– ident: e_1_2_7_79_1
  doi: 10.1038/nphoton.2015.84
– ident: e_1_2_7_107_1
  doi: 10.1002/adma.201401494
– ident: e_1_2_7_78_1
  doi: 10.1021/acs.accounts.6b00347
– ident: e_1_2_7_41_1
  doi: 10.1038/ncomms13651
– ident: e_1_2_7_86_1
  doi: 10.1002/adma.201500647
– ident: e_1_2_7_55_1
  doi: 10.1002/adma.201202873
– ident: e_1_2_7_83_1
  doi: 10.1039/C5CS00831J
– ident: e_1_2_7_10_1
  doi: 10.1002/smll.201502775
– ident: e_1_2_7_87_1
  doi: 10.1021/jacs.5b06414
– ident: e_1_2_7_120_1
  doi: 10.1021/ja5110602
– ident: e_1_2_7_125_1
  doi: 10.1021/acs.macromol.6b00248
– ident: e_1_2_7_47_1
  doi: 10.1002/adma.201400647
– ident: e_1_2_7_102_1
  doi: 10.1002/adma.201603588
– ident: e_1_2_7_53_1
  doi: 10.1021/ar900099h
– ident: e_1_2_7_94_1
  doi: 10.1039/C5SC04956C
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.accounts.5b00199
– ident: e_1_2_7_114_1
  doi: 10.1039/C5EE03684D
– ident: e_1_2_7_131_1
  doi: 10.1002/aenm.201600854
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.chemrev.5b00098
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201602776
– ident: e_1_2_7_42_1
  doi: 10.1021/jacs.6b12755
– ident: e_1_2_7_50_1
  doi: 10.1039/C5EE03481G
– ident: e_1_2_7_115_1
  doi: 10.1039/C7TA01554B
SSID ssj0031247
Score 2.6131952
SecondaryResourceType review_article
Snippet Fullerene‐free OSCs employing n‐type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing...
Fullerene-free OSCs employing n-type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms absorption
energy loss
Fullerenes
morphology
Nanotechnology
non‐fullerene acceptors
Optoelectronics
organic solar cells
Photovoltaic cells
Solar cells
Title Efficient Organic Solar Cells with Non‐Fullerene Acceptors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201701120
https://www.ncbi.nlm.nih.gov/pubmed/28737255
https://www.proquest.com/docview/1946137920
https://www.proquest.com/docview/1923111725
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN4YT3rw_ahWg4mJp21hYSkkXpqmTWPaHqxNeiO7y3IRwZT24smf4G_0lzgDBVuNMdEbZBbYxwwzszvzDSHXkQhNGYYOjZQrqMOVoMJUDgXVFILf03J4nsU_HLn9iXM35dOVLP4CH6LacEPJyP_XKOBCZs1P0NDsKcajA8QTtxg67RiwhVbRfYUfZYPyyqurgM6iCLxVojaarLn--LpW-mZqrluuuerp7RJRdrqIOHlsLOayoV6-4Dn-Z1R7ZGdplxrtgpH2yYZODsj2ClrhIbnt5nAToKWMIoNTGWN0jI2OjuPMwB1dY5Qm769v6NfmVVeMtsKwmXSWHZFJr_vQ6dNl8QWqbJB6ykXLiqJQgv8lfMaZ0EKbYK1EpvIlZqeCfgtdaUUIB-N52nOVYIor2WLS4p60j8lmkib6lBi2Iz2mGFNgbjrSZx68Skphhq6ropDrGqHl5AdqiUyOBTLioMBUZgHOSlDNSo3cVO2fC0yOH1vWy7UMlrKZBZbvAD-0fCRfVWSQKjwqEYlOF9gG7F4YJOM1clLwQPUp8DFtIACF5Sv5Sx-C8XAwqO7O_vLQOdnC6yKGsE4257OFvgBbaC4vc37_AKkl_8E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ROLQcKPQHtoXiSq16MiROnE2k9oD40VJ291BA4hZsx7l0ySKyK0RPPAKvwqvwCDwJM_mjW1QhVeLQYzJO4njGnhl75huAT6lKHJ0kPk9NoLgvjeLKMT5H1ZSg39P2ZZHF3-sHnUP_-5E8moLrOhemxIdoNtxoZhTrNU1w2pBev0cNzU8GdHZAgOKucKq4yj17cY5eW_5tdwtZ_FmIne2DzQ6vCgtw46FEc6nabpomGn0LFQkplFXWQU2cOibSlHmJa3cSaDclqJMwtGFglDDS6LbQrgy1h-99BjNURpzg-rd-NIhVHqrLop4LaklOUF81TqQj1if7O6kHHxi3k7Zyoex2XsJNPUxljMvPtfFIr5lffyBI_lfjOA9zlenNNsq5sgBTNnsFs78BMr6Gr9sFogYqYlYmqRq2T74_27SDQc5o05r1h9nt5RW57kVhGbZhKDJoeJa_gcMn6f5bmM6GmV0C5vk6FEYIgxa1ryMR4qu0Vk4SBCZNpG0Br7kdmwp8nWqADOISNlrExIW44UILvjTtT0vYkb-2XK6FJ66Wnzx2Ix8FsB0R-WNDxoWDToNUZodjaoOmPf6kkC1YLIWu-RS60R4SkCIK0XmkD_F-r9ttrt79y0Or8Lxz0OvG3d3-3nt4QffLkMllmB6dje0Kmn4j_aGYbAyOn1oq7wBSc1zX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVkL0wD9loYCRQJzcJo6dTSQ4VN2uWrpdIUql3oL_cuk2WzW7QnDiEXgUXoVX4EmYyR9dEEJC6oFjMk7ieMaeGXvmG4BnuXaBcU7y3MaaS2U114GVHFWTQ7-nL1WVxX8wjneP5OtjdbwEX9tcmBofottwo5lRrdc0wc9cvvkTNLQ8ndDRAeGJhyJowir3_ccP6LSVr_YGyOHnQgx33m3v8qauALcRCjRXuh_muTPoWuhUKKG99gEq4jywqaHES1y6XWzCnJBOksQnsdXCKmv6woQqMRG-9wqsyDhIqVjE4G0HWBWhtqzKuaCS5IT01cJEBmJzsb-LavA323bRVK503fAGfGtHqQ5xOdmYz8yG_fQLgOT_NIw34XpjeLOteqbcgiVf3IbVC3CMd-DlToWngWqY1Smqlh2S58-2_WRSMtqyZuNp8f3zF3Lcq7IybMtSXND0vLwLR5fS_XuwXEwLfx9YJE0irBAW7WlpUpHgq4zRgYtjmzvle8BbZme2gV6nCiCTrAaNFhlxIeu40IMXXfuzGnTkjy3XW9nJmsWnzMJUovz1UyI_7ci4bNBZkC78dE5t0LDHnxSqB2u1zHWfQic6QgJSRCU5f-lDdngwGnVXD_7loSdw9c1gmI32xvsP4RrdruMl12F5dj73j9Dum5nH1VRj8P6yhfIHuVtbhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Organic+Solar+Cells+with+Non-Fullerene+Acceptors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Shuixing&rft.au=Liu%2C+Wenqing&rft.au=Li%2C+Chang-Zhi&rft.au=Shi%2C+Minmin&rft.date=2017-10-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=13&rft.issue=37&rft_id=info:doi/10.1002%2Fsmll.201701120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon