Efficient and Color‐Tunable Dual‐Mode Afterglow from Large‐Area and Flexible Polymer‐Based Transparent Films for Anti‐Counterfeiting and Information Encryption
It remains a great challenge to develop polymer‐based materials with efficient and color‐tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual‐mo...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 23; pp. e202201820 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
07.06.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It remains a great challenge to develop polymer‐based materials with efficient and color‐tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual‐mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA‐doped PVA film exhibits intense blue afterglow with Φafterglow and τafterglow up to 19.8 % and 1.81 s, respectively, representing state‐of‐the‐art dual‐mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large‐area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature‐sensitive security ink for anti‐counterfeiting and information encryption.
Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films simultaneously produce persistent thermally activated delayed fluorescence and ultralong organic phosphorescence, and their afterglow colors can be linearly tuned by temperature. Besides, the IbCzA‐doped PVA film presents state‐of‐the‐art dual‐mode organic afterglow performance. |
---|---|
AbstractList | It remains a great challenge to develop polymer-based materials with efficient and color-tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual-mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA-doped PVA film exhibits intense blue afterglow with Φafterglow and τafterglow up to 19.8 % and 1.81 s, respectively, representing state-of-the-art dual-mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large-area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature-sensitive security ink for anti-counterfeiting and information encryption.It remains a great challenge to develop polymer-based materials with efficient and color-tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual-mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA-doped PVA film exhibits intense blue afterglow with Φafterglow and τafterglow up to 19.8 % and 1.81 s, respectively, representing state-of-the-art dual-mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large-area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature-sensitive security ink for anti-counterfeiting and information encryption. It remains a great challenge to develop polymer‐based materials with efficient and color‐tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual‐mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA‐doped PVA film exhibits intense blue afterglow with Φ afterglow and τ afterglow up to 19.8 % and 1.81 s, respectively, representing state‐of‐the‐art dual‐mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large‐area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature‐sensitive security ink for anti‐counterfeiting and information encryption. It remains a great challenge to develop polymer‐based materials with efficient and color‐tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual‐mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA‐doped PVA film exhibits intense blue afterglow with Φafterglow and τafterglow up to 19.8 % and 1.81 s, respectively, representing state‐of‐the‐art dual‐mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large‐area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature‐sensitive security ink for anti‐counterfeiting and information encryption. It remains a great challenge to develop polymer-based materials with efficient and color-tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual-mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA-doped PVA film exhibits intense blue afterglow with Φ and τ up to 19.8 % and 1.81 s, respectively, representing state-of-the-art dual-mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large-area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature-sensitive security ink for anti-counterfeiting and information encryption. It remains a great challenge to develop polymer-based materials with efficient and color-tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual-mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA-doped PVA film exhibits intense blue afterglow with phi(afterglow) and tau(afterglow) up to 19.8 % and 1.81 s, respectively, representing state-of-the-art dual-mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large-area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature-sensitive security ink for anti-counterfeiting and information encryption. It remains a great challenge to develop polymer‐based materials with efficient and color‐tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual‐mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA‐doped PVA film exhibits intense blue afterglow with Φafterglow and τafterglow up to 19.8 % and 1.81 s, respectively, representing state‐of‐the‐art dual‐mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large‐area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature‐sensitive security ink for anti‐counterfeiting and information encryption. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films simultaneously produce persistent thermally activated delayed fluorescence and ultralong organic phosphorescence, and their afterglow colors can be linearly tuned by temperature. Besides, the IbCzA‐doped PVA film presents state‐of‐the‐art dual‐mode organic afterglow performance. |
ArticleNumber | 202201820 |
Author | Shi, Guang Liang, Yaohui Wu, Shiying Li, Jian‐An Chi, Zhenguo Sun, Fengqiang Liu, Cong Xu, Bingjia Zheng, Yitao Yang, Yifan Zhang, Huaqing Luo, Suilian Huang, Tepeng |
Author_xml | – sequence: 1 givenname: Yifan surname: Yang fullname: Yang, Yifan organization: South China Normal University – sequence: 2 givenname: Yaohui surname: Liang fullname: Liang, Yaohui organization: South China Normal University – sequence: 3 givenname: Yitao surname: Zheng fullname: Zheng, Yitao organization: South China Normal University – sequence: 4 givenname: Jian‐An surname: Li fullname: Li, Jian‐An organization: South China Normal University – sequence: 5 givenname: Shiying surname: Wu fullname: Wu, Shiying organization: South China Normal University – sequence: 6 givenname: Huaqing surname: Zhang fullname: Zhang, Huaqing organization: South China Normal University – sequence: 7 givenname: Tepeng surname: Huang fullname: Huang, Tepeng organization: South China Normal University – sequence: 8 givenname: Suilian surname: Luo fullname: Luo, Suilian organization: South China Normal University – sequence: 9 givenname: Cong surname: Liu fullname: Liu, Cong organization: South China Normal University – sequence: 10 givenname: Guang surname: Shi fullname: Shi, Guang email: shiguang@scnu.edu.cn organization: South China Normal University – sequence: 11 givenname: Fengqiang surname: Sun fullname: Sun, Fengqiang organization: South China Normal University – sequence: 12 givenname: Zhenguo surname: Chi fullname: Chi, Zhenguo email: chizhg@mail.sysu.edu.cn organization: Sun Yat-sen University – sequence: 13 givenname: Bingjia orcidid: 0000-0001-6580-3240 surname: Xu fullname: Xu, Bingjia email: bingjiaxu@m.scnu.edu.cn organization: South China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35315193$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksuO0zAUhi00iLnAliWKxAYJpdhxEtvLElqoVC6Lso6c5LjyyLGLnWjojkfgNXgtngSnLUUaCcHKx_L3_ceyzzW6sM4CQk8JnhGMs1fSaphlOMsw4Rl-gK5IkZGUMkYvYp1TmjJekEt0HcJt5DnH5SN0SQtKCiLoFfqxUEq3GuyQSNsllTPO__z2fTNa2RhI3ozSxO1710EyVwP4rXF3ifKuT9bSbyGezT3Ig7s08FVP0idn9j1MMa9lgC7ZeGnDTvqpyVKbPiTK-WRuBx2Ryo025irQg7bbQ9DKxvNeDtrZZGFbv99N5WP0UEkT4MlpvUGfl4tN9S5df3y7qubrtKWM4jTvmox0rShAcgKcQiFEy4A2outEiyUTIApW5kUjBOV5IwqeS8mxyBRh0aQ36MUxd-fdlxHCUPc6tGCMtODGUGdlTnhJizyP6PN76K0bvY23ixQjGaYcs0g9O1Fj00NX77zupd_Xvz8hAi-PwB00ToXpN1o4YxhjxniMKmOFSaT5_9OVHg7veHjlqM6OautdCB7UWSO4nsapnsapPo9TFPJ7QnsKHLzU5u-aOF1RG9j_o0k9_7Ba_HF_AW7a4vA |
CitedBy_id | crossref_primary_10_1002_chem_202304137 crossref_primary_10_1039_D4SC01040J crossref_primary_10_1002_agt2_579 crossref_primary_10_1002_ange_202316647 crossref_primary_10_1039_D3SC01276J crossref_primary_10_1002_adma_202306501 crossref_primary_10_1002_adma_202401220 crossref_primary_10_1002_anie_202312534 crossref_primary_10_1002_anie_202318516 crossref_primary_10_1002_ange_202501448 crossref_primary_10_1016_j_cej_2022_139385 crossref_primary_10_1021_acs_jpclett_4c00359 crossref_primary_10_1002_smll_202409689 crossref_primary_10_1002_ange_202212673 crossref_primary_10_1002_adma_202416397 crossref_primary_10_1002_adfm_202416465 crossref_primary_10_1002_ange_202403973 crossref_primary_10_1002_advs_202301017 crossref_primary_10_1021_acsanm_4c02689 crossref_primary_10_1002_adom_202201903 crossref_primary_10_1016_j_cej_2024_154949 crossref_primary_10_1002_adfm_202312491 crossref_primary_10_1007_s10118_024_3183_8 crossref_primary_10_1002_anie_202308848 crossref_primary_10_1021_acsami_3c03207 crossref_primary_10_1002_ange_202217284 crossref_primary_10_1002_anie_202421421 crossref_primary_10_1002_ange_202421036 crossref_primary_10_1038_s41467_023_40451_2 crossref_primary_10_1038_s41467_024_45678_1 crossref_primary_10_1002_anie_202403773 crossref_primary_10_1039_D2MH00998F crossref_primary_10_1039_D3TC02256K crossref_primary_10_1002_adfm_202208895 crossref_primary_10_1021_acs_jpclett_3c02668 crossref_primary_10_3390_chemosensors11090489 crossref_primary_10_1002_agt2_638 crossref_primary_10_1002_ange_202317631 crossref_primary_10_1002_adom_202300604 crossref_primary_10_1002_adom_202301812 crossref_primary_10_1002_ange_202421421 crossref_primary_10_1002_ejoc_202201347 crossref_primary_10_1016_j_dyepig_2022_110734 crossref_primary_10_1002_adfm_202403977 crossref_primary_10_1021_acs_jpclett_4c01786 crossref_primary_10_1021_acsmaterialslett_3c01498 crossref_primary_10_1039_D3QM00214D crossref_primary_10_1039_D4SC02030H crossref_primary_10_1002_adom_202301147 crossref_primary_10_1039_D2CS00993E crossref_primary_10_1016_j_cej_2024_155612 crossref_primary_10_1016_j_dyepig_2023_111113 crossref_primary_10_1038_s41467_024_45497_4 crossref_primary_10_1038_s41467_024_47674_x crossref_primary_10_1039_D4QM01025F crossref_primary_10_1002_anie_202215071 crossref_primary_10_1002_adom_202400920 crossref_primary_10_1021_acsami_3c07900 crossref_primary_10_1002_anie_202316647 crossref_primary_10_1016_j_cej_2024_153026 crossref_primary_10_1016_j_cej_2024_155325 crossref_primary_10_1039_D4QM00977K crossref_primary_10_1002_adma_202402666 crossref_primary_10_1021_acs_analchem_4c00835 crossref_primary_10_1021_jacs_3c03681 crossref_primary_10_1002_smtd_202400982 crossref_primary_10_1007_s11426_024_2247_4 crossref_primary_10_1021_jacsau_4c01002 crossref_primary_10_1002_ange_202215071 crossref_primary_10_1002_adfm_202402428 crossref_primary_10_1039_D4SC00161C crossref_primary_10_1002_anie_202217616 crossref_primary_10_1038_s41467_024_47888_z crossref_primary_10_1002_ange_202403773 crossref_primary_10_1002_cptc_202400068 crossref_primary_10_1016_j_cej_2024_148698 crossref_primary_10_1021_acs_jpclett_2c01614 crossref_primary_10_1002_adom_202400642 crossref_primary_10_1002_anie_202501448 crossref_primary_10_1039_D2TC01093C crossref_primary_10_1002_adom_202202754 crossref_primary_10_1021_acs_chemmater_2c03484 crossref_primary_10_1002_anie_202410974 crossref_primary_10_1002_pol_20240089 crossref_primary_10_1039_D4SC00160E crossref_primary_10_1002_ange_202310335 crossref_primary_10_1038_s41467_023_39795_6 crossref_primary_10_1002_anie_202317631 crossref_primary_10_1002_anie_202403973 crossref_primary_10_1016_j_cej_2025_161969 crossref_primary_10_1002_adfm_202417467 crossref_primary_10_1021_acs_jpcc_3c02882 crossref_primary_10_1002_anie_202218712 crossref_primary_10_1002_anie_202217284 crossref_primary_10_1002_anie_202310335 crossref_primary_10_1002_adma_202304820 crossref_primary_10_1002_anie_202421036 crossref_primary_10_1016_j_ijbiomac_2024_135930 crossref_primary_10_1002_chir_23551 crossref_primary_10_1002_pat_6052 crossref_primary_10_1016_j_cej_2024_156584 crossref_primary_10_1039_D3QM00883E crossref_primary_10_1002_ange_202218712 crossref_primary_10_1021_jacs_4c09165 crossref_primary_10_1021_acsami_4c01531 crossref_primary_10_1016_j_cej_2022_139806 crossref_primary_10_6023_cjoc202403038 crossref_primary_10_1016_j_cej_2024_148967 crossref_primary_10_1002_ange_202312534 crossref_primary_10_1038_s41377_023_01132_3 crossref_primary_10_1002_pol_20230977 crossref_primary_10_3390_molecules29133236 crossref_primary_10_1021_acs_joc_4c00479 crossref_primary_10_1002_adom_202302935 crossref_primary_10_1002_ange_202318516 crossref_primary_10_1002_cjoc_202400361 crossref_primary_10_1002_adom_202302424 crossref_primary_10_1016_j_cej_2023_143929 crossref_primary_10_1002_smm2_1184 crossref_primary_10_1002_anie_202212673 crossref_primary_10_1002_ange_202308848 crossref_primary_10_1021_acs_macromol_3c01913 crossref_primary_10_1002_ange_202410974 crossref_primary_10_1002_adom_202400210 crossref_primary_10_1016_j_saa_2024_124955 crossref_primary_10_1002_ange_202217616 crossref_primary_10_1038_s41467_023_40193_1 |
Cites_doi | 10.1038/s41563-020-0797-2 10.1002/anie.202109229 10.1002/andp.201800482 10.1002/anie.201800762 10.1039/D1SC00446H 10.1039/C9SC02282A 10.1002/anie.201803947 10.1016/j.cej.2021.134197 10.1038/s41566-019-0408-4 10.1038/s41467-020-14669-3 10.1002/ange.202110251 10.1038/nature24010 10.1002/anie.201906226 10.1002/adom.201700116 10.1002/adom.202100411 10.1038/s41563-021-01073-5 10.1126/sciadv.aas9732 10.1002/ange.202108025 10.1002/smll.202104073 10.1002/ange.201800762 10.1002/anie.202104361 10.1002/ange.201912102 10.1002/ange.201803947 10.1021/jacs.1c05213 10.1002/adma.202000880 10.1002/anie.202110251 10.1002/adma.201502442 10.1038/s41467-021-22609-y 10.1002/anie.202007343 10.1002/adma.201602604 10.1002/adom.202100353 10.1002/ange.202109229 10.1002/anie.201912102 10.1021/acsami.9b19919 10.1002/ange.202104361 10.1002/adfm.202003693 10.1002/adom.202101337 10.1002/ange.201906226 10.1002/advs.202103402 10.1002/adma.202005973 10.1002/adma.201807887 10.1039/D1CC06616A 10.1007/s10118-019-2218-z 10.1002/adfm.202101656 10.1002/anie.201509224 10.1002/marc.202100021 10.1002/ange.202007343 10.1002/ange.202115748 10.1016/j.cej.2021.132346 10.1002/anie.202001141 10.1038/nmat4259 10.1002/adom.202101773 10.1039/D1SC04738H 10.1002/adma.202104002 10.1038/s41467-019-09561-8 10.1002/adma.201907355 10.1016/j.cej.2021.129167 10.1021/jacs.1c08118 10.1002/ange.201509224 10.1002/adfm.201807599 10.1021/acsami.1c12249 10.1002/anie.202108025 10.1002/ange.202001141 10.1002/anie.202115748 10.1039/d1sc04738h 10.1002/agt2.123 10.1038/NMAT4259 10.1039/d1cc06616a 10.34133/2021/9757460 10.1039/d1sc00446h 10.1039/c9sc02282a 10.1002/adfm.202008404 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202201820 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35315193 000778038600001 10_1002_anie_202201820 ANIE202201820 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51973239 – fundername: Natural Science Foundation of Guangdong Province funderid: 2019A1515010550; 2020A1515010439; 2019A1515011389 – fundername: GDUPS funderid: 2019 – fundername: Natural Science Foundation of Guangdong Province of China; National Natural Science Foundation of Guangdong Province grantid: 2019A1515010550; 2020A1515010439; 2019A1515011389 – fundername: GDUPS – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 51973239 – fundername: Natural Science Foundation of Guangdong Province grantid: 2019A1515010550 – fundername: Natural Science Foundation of Guangdong Province grantid: 2019A1515011389 – fundername: National Natural Science Foundation of China grantid: 51973239 – fundername: GDUPS grantid: 2019 – fundername: Natural Science Foundation of Guangdong Province grantid: 2020A1515010439 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-4db21dc95ea81e83e599c7e3b9dd9c0a79e957645b99384b9584aa8092f1721d3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 141 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000778038600001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:41:20 EDT 2025 Sun Jul 13 04:34:07 EDT 2025 Wed Feb 19 02:25:53 EST 2025 Fri Aug 29 16:21:38 EDT 2025 Wed Jul 09 18:14:45 EDT 2025 Tue Jul 01 01:18:19 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Wed Jan 22 16:24:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Doped Polymer Films Afterglow Phosphorescence ROOM-TEMPERATURE PHOSPHORESCENCE Thermally Activated Delayed Fluorescence Anti-Counterfeiting |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3730-4db21dc95ea81e83e599c7e3b9dd9c0a79e957645b99384b9584aa8092f1721d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6580-3240 0000-0001-9772-5363 |
PMID | 35315193 |
PQID | 2671203807 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2641863544 crossref_primary_10_1002_anie_202201820 wiley_primary_10_1002_anie_202201820_ANIE202201820 proquest_journals_2671203807 crossref_citationtrail_10_1002_anie_202201820 pubmed_primary_35315193 webofscience_primary_000778038600001CitationCount webofscience_primary_000778038600001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 7, 2022 |
PublicationDateYYYYMMDD | 2022-06-07 |
PublicationDate_xml | – month: 06 year: 2022 text: June 7, 2022 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 9 2017; 5 2022; 431 2015; 14 2021; 20 2021; 42 2019; 31 2019; 10 2019; 13 2019; 37 2020 2020; 59 132 2020; 12 2020; 11 2017; 550 2021; 143 2020; 32 2019 2019; 58 131 2021; 418 2021; 13 2022 2022; 61 134 2015; 27 2016 2016; 55 128 2021; 31 2021; 12 2021; 33 2018; 4 2020; 30 2021 2018 2018; 57 130 2022; 9 2021 2021; 60 133 2019; 531 2022; 58 2019; 29 2022; 429 2022; 10 2016; 28 2021; 2021 2022; 18 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_3_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_11_3 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_45_2 (e_1_2_7_42_3) 2022; 134 e_1_2_7_45_3 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_26_3 e_1_2_7_28_1 e_1_2_7_50_1 Yang T. (e_1_2_7_4_2) 2021; 2021 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_3 e_1_2_7_21_2 e_1_2_7_56_2 e_1_2_7_35_1 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_39_3 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_14_3 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_61_3 e_1_2_7_63_1 e_1_2_7_42_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_1 Hackney H. E. (e_1_2_7_33_2) 2021 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_1 e_1_2_7_38_2 e_1_2_7_59_2 Gu, L (WOS:000468752300017) 2019; 13 Fang, MM (WOS:000460411000007) 2019; 37 Yang, YJ (WOS:000694637700001) 2021; 33 Wu, Z (WOS:000669234500001) 2021; 9 Ma, L (000778038600001.44) 2022; 134 Louis, M (WOS:000462619000024) 2019; 31 Wang, Q (WOS:000478384000001) 2019; 58 Zhou, B (WOS:000456216900021) 2019; 29 (000778038600001.14) 2018; 130 Li, JA (WOS:000434041700004) 2018; 57 Ma, X (WOS:000442863700007) 2018; 57 Ma, X (000778038600001.26) 2018; 130 Kuila, S (WOS:000551454200001) 2020; 30 Thomas, H (WOS:000522744400001) 2020; 32 Xu, BJ (WOS:000722703400001) 2021; 12 (000778038600001.3) 2020; 132 (000778038600001.40) 2020; 132 Ye, WP (WOS:000687491400001) 2021; 20 Mao, Z (WOS:000479245400002) 2019; 10 Chen, RJ (WOS:000693050200092) 2021; 13 Zhao, WJ (WOS:000463695400010) 2019; 10 Sun, Y (WOS:000646226800001) 2021; 9 Yang, TJ (WOS:000691800400001) 2021; 2021 Zhang, J (000778038600001.11) 2021; 133 Yao, XY (WOS:000600414700001) 2021; 33 Yan, X (WOS:000713467200001) 2022; 18 Wang, JX (WOS:000537909700031) 2020; 59 Jin, JB (WOS:000514609800002) 2020; 11 Nidhankar, AD (WOS:000635768300002) 2021; 12 Yang, Z (WOS:000557830100001) 2020; 59 Zhang, YF (WOS:000733712600001) 2022; 9 Yan, ZA (WOS:000681752800001) 2021; 60 Liang, X (WOS:000704319800001) 2021; 60 (000778038600001.17) 2016; 128 Ma, HL (WOS:000474798700012) 2019; 531 Hackney, HE (WOS:000697697900001) 2022; 3 Wang, J (WOS:000625045500001) 2021; 42 Zhang, JY (WOS:000665690500001) 2021; 60 Wang, GM (WOS:000784248500001) 2022; 431 Jin, J (000778038600001.61) 2021; 133 Wang, ZH (WOS:000506686600001) 2020; 32 Su, Y (WOS:000493875800001) 2020; 59 Ma, LW (WOS:000737300000001) 2022; 61 Jin, JB (WOS:000706840700001) 2021; 60 Kabe, R (WOS:000413247900058) 2017; 550 Gong, YY (WOS:000363476200018) 2015; 27 Su, Y (WOS:000432440600049) 2018; 4 Jian, MY (WOS:000724758900004) 2022; 429 Zhao, ZH (WOS:000730277600001) 2022; 58 Yang, ZY (WOS:000369854700043) 2016; 55 Li, FY (WOS:000715163800001) 2022; 10 Mu, YX (WOS:000510532000096) 2020; 12 Li, JA (WOS:000655688800006) 2021; 418 Hirata, S (WOS:000408849400002) 2017; 5 An, ZF (WOS:000356631200018) 2015; 14 Liang, X (000778038600001.22) 2021; 133 Zhang, YF (WOS:000704514200025) 2021; 143 Gu, L (WOS:000718279300020) 2021; 143 Chen, CJ (WOS:000571692500007) 2021; 20 Xu, S (WOS:000392725200002) 2016; 28 Huang, GH (WOS:000698253600001) 2021 Zhang, YF (WOS:000641850500005) 2021; 12 Wang, Z (WOS:000582536800001) 2021; 31 |
References_xml | – volume: 12 start-page: 15556 year: 2021 end-page: 15562 publication-title: Chem. Sci. – volume: 13 start-page: 406 year: 2019 end-page: 411 publication-title: Nat. Photonics – volume: 18 year: 2022 publication-title: Small – volume: 60 133 start-page: 24437 24642 year: 2021 2021 end-page: 24442 24647 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 2181 2221 year: 2016 2016 end-page: 2185 2225 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 418 year: 2021 publication-title: Chem. Eng. J. – volume: 12 start-page: 5073 year: 2020 end-page: 5080 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 1595 year: 2019 publication-title: Nat. Commun. – volume: 20 start-page: 175 year: 2021 end-page: 180 publication-title: Nat. Mater. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 2021 year: 2021 publication-title: Research – volume: 42 year: 2021 publication-title: Macromol. Rapid Commun. – volume: 58 131 start-page: 12667 12797 year: 2019 2019 end-page: 12673 12803 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 9920 year: 2016 end-page: 9940 publication-title: Adv. Mater. – year: 2021 publication-title: Aggregate – volume: 20 start-page: 1539 year: 2021 end-page: 1544 publication-title: Nat. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 57 130 start-page: 10854 11020 year: 2018 2018 end-page: 10858 11024 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 18527 year: 2021 end-page: 18535 publication-title: J. Am. Chem. Soc. – volume: 550 start-page: 384 year: 2017 end-page: 387 publication-title: Nature – volume: 58 start-page: 545 year: 2022 end-page: 548 publication-title: Chem. Commun. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 13675 year: 2021 end-page: 13685 publication-title: J. Am. Chem. Soc. – volume: 531 year: 2019 publication-title: Ann. Phys. – volume: 13 start-page: 41131 year: 2021 end-page: 41139 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 7352 year: 2019 end-page: 7357 publication-title: Chem. Sci. – volume: 60 133 start-page: 19735 19887 year: 2021 2021 end-page: 19739 19891 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 2297 year: 2021 publication-title: Nat. Commun. – volume: 57 130 start-page: 6449 6559 year: 2018 2018 end-page: 6453 6563 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 11 start-page: 842 year: 2020 publication-title: Nat. Commun. – volume: 37 start-page: 383 year: 2019 end-page: 393 publication-title: Chin. J. Polym. Sci. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 59 132 start-page: 9967 10053 year: 2020 2020 end-page: 9971 10057 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 17451 17604 year: 2020 2020 end-page: 17455 17608 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 27 start-page: 6195 year: 2015 end-page: 6201 publication-title: Adv. Mater. – volume: 14 start-page: 685 year: 2015 end-page: 690 publication-title: Nat. Mater. – volume: 12 start-page: 4216 year: 2021 end-page: 4236 publication-title: Chem. Sci. – volume: 60 133 start-page: 17094 17231 year: 2021 2021 end-page: 17101 17238 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 24984 25188 year: 2021 2021 end-page: 24990 25194 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 59 132 start-page: 10032 10118 year: 2020 2020 end-page: 10036 10122 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 431 year: 2022 publication-title: Chem. Eng. J. – ident: e_1_2_7_19_2 doi: 10.1038/s41563-020-0797-2 – ident: e_1_2_7_61_2 doi: 10.1002/anie.202109229 – ident: e_1_2_7_31_2 doi: 10.1002/andp.201800482 – ident: e_1_2_7_14_2 doi: 10.1002/anie.201800762 – ident: e_1_2_7_34_2 doi: 10.1039/D1SC00446H – ident: e_1_2_7_59_2 doi: 10.1039/C9SC02282A – ident: e_1_2_7_24_2 doi: 10.1002/anie.201803947 – ident: e_1_2_7_58_2 doi: 10.1016/j.cej.2021.134197 – ident: e_1_2_7_2_2 doi: 10.1038/s41566-019-0408-4 – ident: e_1_2_7_20_2 doi: 10.1038/s41467-020-14669-3 – ident: e_1_2_7_21_3 doi: 10.1002/ange.202110251 – ident: e_1_2_7_8_1 doi: 10.1038/nature24010 – ident: e_1_2_7_26_2 doi: 10.1002/anie.201906226 – ident: e_1_2_7_30_2 doi: 10.1002/adom.201700116 – ident: e_1_2_7_6_2 doi: 10.1002/adom.202100411 – ident: e_1_2_7_13_2 doi: 10.1038/s41563-021-01073-5 – ident: e_1_2_7_48_2 doi: 10.1126/sciadv.aas9732 – ident: e_1_2_7_45_3 doi: 10.1002/ange.202108025 – volume: 2021 start-page: 9757460 year: 2021 ident: e_1_2_7_4_2 publication-title: Research – ident: e_1_2_7_5_2 doi: 10.1002/smll.202104073 – ident: e_1_2_7_14_3 doi: 10.1002/ange.201800762 – ident: e_1_2_7_11_2 doi: 10.1002/anie.202104361 – ident: e_1_2_7_3_3 doi: 10.1002/ange.201912102 – ident: e_1_2_7_24_3 doi: 10.1002/ange.201803947 – ident: e_1_2_7_44_2 doi: 10.1021/jacs.1c05213 – ident: e_1_2_7_54_2 doi: 10.1002/adma.202000880 – ident: e_1_2_7_46_1 – ident: e_1_2_7_21_2 doi: 10.1002/anie.202110251 – ident: e_1_2_7_43_1 – ident: e_1_2_7_15_2 doi: 10.1002/adma.201502442 – ident: e_1_2_7_55_2 doi: 10.1038/s41467-021-22609-y – ident: e_1_2_7_17_2 doi: 10.1002/anie.202007343 – ident: e_1_2_7_29_2 doi: 10.1002/adma.201602604 – ident: e_1_2_7_62_2 doi: 10.1002/adom.202100353 – ident: e_1_2_7_57_1 – ident: e_1_2_7_61_3 doi: 10.1002/ange.202109229 – ident: e_1_2_7_3_2 doi: 10.1002/anie.201912102 – ident: e_1_2_7_40_2 doi: 10.1021/acsami.9b19919 – ident: e_1_2_7_11_3 doi: 10.1002/ange.202104361 – ident: e_1_2_7_53_2 doi: 10.1002/adfm.202003693 – ident: e_1_2_7_60_2 doi: 10.1002/adom.202101337 – ident: e_1_2_7_26_3 doi: 10.1002/ange.201906226 – ident: e_1_2_7_49_1 doi: 10.1002/advs.202103402 – ident: e_1_2_7_56_2 doi: 10.1002/adma.202005973 – ident: e_1_2_7_63_1 doi: 10.1002/adma.201807887 – ident: e_1_2_7_41_2 doi: 10.1039/D1CC06616A – ident: e_1_2_7_28_1 – ident: e_1_2_7_32_2 doi: 10.1007/s10118-019-2218-z – ident: e_1_2_7_52_2 doi: 10.1002/adfm.202101656 – ident: e_1_2_7_16_2 doi: 10.1002/anie.201509224 – ident: e_1_2_7_1_1 – ident: e_1_2_7_35_1 doi: 10.1002/marc.202100021 – ident: e_1_2_7_17_3 doi: 10.1002/ange.202007343 – volume: 134 start-page: e202115748 year: 2022 ident: e_1_2_7_42_3 publication-title: Angew. Chem. doi: 10.1002/ange.202115748 – ident: e_1_2_7_36_1 – ident: e_1_2_7_23_2 doi: 10.1016/j.cej.2021.132346 – ident: e_1_2_7_39_2 doi: 10.1002/anie.202001141 – ident: e_1_2_7_10_2 doi: 10.1038/nmat4259 – ident: e_1_2_7_38_2 doi: 10.1002/adom.202101773 – ident: e_1_2_7_64_1 doi: 10.1039/D1SC04738H – ident: e_1_2_7_47_2 doi: 10.1002/adma.202104002 – year: 2021 ident: e_1_2_7_33_2 publication-title: Aggregate – ident: e_1_2_7_22_2 doi: 10.1038/s41467-019-09561-8 – ident: e_1_2_7_51_2 doi: 10.1002/adma.201907355 – ident: e_1_2_7_18_1 – ident: e_1_2_7_7_2 doi: 10.1016/j.cej.2021.129167 – ident: e_1_2_7_25_2 doi: 10.1021/jacs.1c08118 – ident: e_1_2_7_50_1 – ident: e_1_2_7_16_3 doi: 10.1002/ange.201509224 – ident: e_1_2_7_9_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_27_2 doi: 10.1002/adfm.201807599 – ident: e_1_2_7_37_2 doi: 10.1021/acsami.1c12249 – ident: e_1_2_7_45_2 doi: 10.1002/anie.202108025 – ident: e_1_2_7_39_3 doi: 10.1002/ange.202001141 – ident: e_1_2_7_42_2 doi: 10.1002/anie.202115748 – volume: 431 start-page: ARTN 134197 year: 2022 ident: WOS:000784248500001 article-title: Two-component design strategy: TADF-Type organic afterglow for time-gated chemodosimeters publication-title: CHEMICAL ENGINEERING JOURNAL doi: 10.1016/j.cej.2021.134197 – volume: 58 start-page: 12667 year: 2019 ident: WOS:000478384000001 article-title: Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201906226 – volume: 550 start-page: 384 year: 2017 ident: WOS:000413247900058 article-title: Organic long persistent luminescence publication-title: NATURE doi: 10.1038/nature24010 – volume: 37 start-page: 383 year: 2019 ident: WOS:000460411000007 article-title: Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer publication-title: CHINESE JOURNAL OF POLYMER SCIENCE doi: 10.1007/s10118-019-2218-z – volume: 134 year: 2022 ident: 000778038600001.44 publication-title: Angew. Chem – volume: 5 start-page: ARTN 1700116 year: 2017 ident: WOS:000408849400002 article-title: Recent Advances in Materials with Room-Temperature Phosphorescence: Photophysics for Triplet Exciton Stabilization publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.201700116 – volume: 12 start-page: 15556 year: 2021 ident: WOS:000722703400001 article-title: Controlling the thermally activated delayed fluorescence of axially chiral organic emitters and their racemate for information encryption publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc04738h – volume: 12 start-page: 5073 year: 2020 ident: WOS:000510532000096 article-title: Reversible and Continuous Color-Tunable Persistent Luminescence of Metal-Free Organic Materials by "Self"-Interface Energy Transfer publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.9b19919 – volume: 27 start-page: 6195 year: 2015 ident: WOS:000363476200018 article-title: Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201502442 – volume: 128 start-page: 2221 year: 2016 ident: 000778038600001.17 publication-title: Angew. Chem – volume: 33 start-page: ARTN 2005973 year: 2021 ident: WOS:000600414700001 article-title: Room-Temperature Phosphorescence Enabled through Nacre-Mimetic Nanocomposite Design publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202005973 – volume: 429 start-page: ARTN 132346 year: 2022 ident: WOS:000724758900004 article-title: Afterglows from the indolocarbazole families publication-title: CHEMICAL ENGINEERING JOURNAL doi: 10.1016/j.cej.2021.132346 – volume: 59 start-page: 17451 year: 2020 ident: WOS:000557830100001 article-title: Boosting the Quantum Efficiency of Ultralong Organic Phosphorescence up to 52 % via Intramolecular Halogen Bonding publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202007343 – volume: 143 start-page: 13675 year: 2021 ident: WOS:000704514200025 article-title: Large-Area, Flexible, Transparent, and Long-Lived Polymer-Based Phosphorescence Films publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c05213 – volume: 12 start-page: ARTN 2297 year: 2021 ident: WOS:000641850500005 article-title: Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-22609-y – volume: 61 start-page: ARTN e202115748 year: 2022 ident: WOS:000737300000001 article-title: A Universal Strategy for Tunable Persistent Luminescent Materials via Radiative Energy Transfer publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202115748 – volume: 531 start-page: ARTN 1800482 year: 2019 ident: WOS:000474798700012 article-title: Room-Temperature Phosphorescence in Metal-Free Organic Materials publication-title: ANNALEN DER PHYSIK doi: 10.1002/andp.201800482 – volume: 3 start-page: ARTN e123 year: 2022 ident: WOS:000697697900001 article-title: Recent advances in room temperature phosphorescence of crystalline boron containing organic compounds publication-title: AGGREGATE doi: 10.1002/agt2.123 – volume: 28 start-page: 9920 year: 2016 ident: WOS:000392725200002 article-title: Excited State Modulation for Organic Afterglow: Materials and Applications publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201602604 – volume: 13 start-page: 406 year: 2019 ident: WOS:000468752300017 article-title: Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal publication-title: NATURE PHOTONICS doi: 10.1038/s41566-019-0408-4 – volume: 133 start-page: 17231 year: 2021 ident: 000778038600001.11 publication-title: Angew. Chem – volume: 132 start-page: 10053 year: 2020 ident: 000778038600001.3 publication-title: Angew. Chem – volume: 14 start-page: 685 year: 2015 ident: WOS:000356631200018 article-title: Stabilizing triplet excited states for ultralong organic phosphorescence publication-title: NATURE MATERIALS doi: 10.1038/NMAT4259 – volume: 58 start-page: 545 year: 2022 ident: WOS:000730277600001 article-title: Robust and color-tunable afterglows from guanidine derivatives publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d1cc06616a – volume: 60 start-page: 17094 year: 2021 ident: WOS:000665690500001 article-title: Stimuli-Responsive Deep-Blue Organic Ultralong Phosphorescence with Lifetime over 5 s for Reversible Water-Jet Anti-Counterfeiting Printing publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202104361 – volume: 133 start-page: 25188 year: 2021 ident: 000778038600001.61 publication-title: Angew. Chem – volume: 60 start-page: 24437 year: 2021 ident: WOS:000704319800001 article-title: Organic Long Persistent Luminescence Through In Situ Generation of Cuprous(I) Ion Pairs in Ionic Solids publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202110251 – volume: 143 start-page: 18527 year: 2021 ident: WOS:000718279300020 article-title: Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c08118 – volume: 418 start-page: ARTN 129167 year: 2021 ident: WOS:000655688800006 article-title: Colour-tunable dual-mode afterglows and helical-array-induced mechanoluminescence from AIE enantiomers: Effects of molecular arrangement on formation and decay of excited states publication-title: CHEMICAL ENGINEERING JOURNAL doi: 10.1016/j.cej.2021.129167 – volume: 32 start-page: ARTN 2000880 year: 2020 ident: WOS:000522744400001 article-title: Aromatic Phosphonates: A Novel Group of Emitters Showing Blue Ultralong Room Temperature Phosphorescence publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202000880 – volume: 130 start-page: 11020 year: 2018 ident: 000778038600001.26 publication-title: Angew. Chem – volume: 60 start-page: 24984 year: 2021 ident: WOS:000706840700001 article-title: Modulating Tri-Mode Emission for Single-Component White Organic Afterglow publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202109229 – volume: 57 start-page: 10854 year: 2018 ident: WOS:000442863700007 article-title: Amorphous Pure Organic Polymers for Heavy-Atom-Free Efficient Room-Temperature Phosphorescence Emission publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201803947 – volume: 10 start-page: ARTN 1595 year: 2019 ident: WOS:000463695400010 article-title: Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-09561-8 – volume: 20 start-page: 175 year: 2021 ident: WOS:000571692500007 article-title: Carbazole isomers induce ultralong organic phosphorescence publication-title: NATURE MATERIALS doi: 10.1038/s41563-020-0797-2 – volume: 9 start-page: ARTN 2100353 year: 2021 ident: WOS:000646226800001 article-title: Achieving High Afterglow Brightness in Organic Dopant-Matrix Systems publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.202100353 – start-page: ARTN 2101337 year: 2021 ident: WOS:000698253600001 article-title: Long-Range Charge Transportation Induced Organic Host-Guest Dual Color Long Persistent Luminescence publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.202101337 – volume: 18 start-page: ARTN 2104073 year: 2022 ident: WOS:000713467200001 article-title: Recent Advances on Host-Guest Material Systems toward Organic Room Temperature Phosphorescence publication-title: SMALL doi: 10.1002/smll.202104073 – volume: 57 start-page: 6449 year: 2018 ident: WOS:000434041700004 article-title: Transient and Persistent Room-Temperature Mechanoluminescence from a White-Light-Emitting AlEgen with Tricolor Emission Switching Triggered by Light publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201800762 – volume: 2021 start-page: ARTN 9757460 year: 2021 ident: WOS:000691800400001 article-title: Time-Dependent Afterglow from a Single Component Organic Luminogen publication-title: RESEARCH doi: 10.34133/2021/9757460 – volume: 133 start-page: 24642 year: 2021 ident: 000778038600001.22 publication-title: Angew. Chem – volume: 10 start-page: ARTN 2101773 year: 2022 ident: WOS:000715163800001 article-title: Color-Tunable Dual Persistent Emission Via a Triplet Exciton Reservoir for Temperature Sensing and Anti-Counterfeiting publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.202101773 – volume: 59 start-page: 10032 year: 2020 ident: WOS:000537909700031 article-title: Time-Dependent Afterglow Color in a Single-Component Organic Molecular Crystal publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202001141 – volume: 9 start-page: ARTN 2103402 year: 2022 ident: WOS:000733712600001 article-title: Room Temperature Phosphorescent (RTP) Thermoplastic Elastomers with Dual and Variable RTP Emission, Photo-Patterning Memory Effect, and Dynamic Deformation RTP Response publication-title: ADVANCED SCIENCE doi: 10.1002/advs.202103402 – volume: 32 start-page: ARTN 1907355 year: 2020 ident: WOS:000506686600001 article-title: Color-Tunable Polymeric Long-Persistent Luminescence Based on Polyphosphazenes publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201907355 – volume: 31 start-page: ARTN 1807887 year: 2019 ident: WOS:000462619000024 article-title: Blue-Light-Absorbing Thin Films Showing Ultralong Room-Temperature Phosphorescence publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201807887 – volume: 12 start-page: 4216 year: 2021 ident: WOS:000635768300002 article-title: Efficient metal-free organic room temperature phosphors publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc00446h – volume: 10 start-page: 7352 year: 2019 ident: WOS:000479245400002 article-title: Two-photon-excited ultralong organic room temperature phosphorescence by dual-channel triplet harvesting publication-title: CHEMICAL SCIENCE doi: 10.1039/c9sc02282a – volume: 132 start-page: 10118 year: 2020 ident: 000778038600001.40 publication-title: Angew. Chem – volume: 20 start-page: 1539 year: 2021 ident: WOS:000687491400001 article-title: Confining isolated chromophores for highly efficient blue phosphorescence publication-title: NATURE MATERIALS doi: 10.1038/s41563-021-01073-5 – volume: 55 start-page: 2181 year: 2016 ident: WOS:000369854700043 article-title: Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201509224 – volume: 11 start-page: ARTN 842 year: 2020 ident: WOS:000514609800002 article-title: Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-14669-3 – volume: 130 start-page: 6559 year: 2018 ident: 000778038600001.14 publication-title: Angew. Chem – volume: 42 start-page: ARTN 2100021 year: 2021 ident: WOS:000625045500001 article-title: Recent Advances of Polymer-Based Pure Organic Room Temperature Phosphorescent Materials publication-title: MACROMOLECULAR RAPID COMMUNICATIONS doi: 10.1002/marc.202100021 – volume: 29 start-page: ARTN 1807599 year: 2019 ident: WOS:000456216900021 article-title: Hydrogen-Bonded Two-Component Ionic Crystals Showing Enhanced Long-Lived Room-Temperature Phosphorescence via TADF-Assisted Forster Resonance Energy Transfer publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201807599 – volume: 9 start-page: ARTN 2100411 year: 2021 ident: WOS:000669234500001 article-title: Persistent Room-Temperature Phosphorescence from Purely Organic Molecules and Multi-Component Systems publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.202100411 – volume: 60 start-page: 19735 year: 2021 ident: WOS:000681752800001 article-title: Activating Room-Temperature Phosphorescence of Organic Luminophores via External Heavy-Atom Effect and Rigidity of Ionic Polymer Matrix** publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202108025 – volume: 59 start-page: 9967 year: 2020 ident: WOS:000493875800001 article-title: Excitation-Dependent Long-Life Luminescent Polymeric Systems under Ambient Conditions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201912102 – volume: 33 start-page: ARTN 2104002 year: 2021 ident: WOS:000694637700001 article-title: Tunable Photoresponsive Behaviors Based on Triphenylamine Derivatives: The Pivotal Role of π-Conjugated Structure and Corresponding Application publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202104002 – volume: 30 start-page: ARTN 2003693 year: 2020 ident: WOS:000551454200001 article-title: All-Organic, Temporally Pure White Afterglow in Amorphous Films Using Complementary Blue and Greenish-Yellow Ultralong Room Temperature Phosphors publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202003693 – volume: 13 start-page: 41131 year: 2021 ident: WOS:000693050200092 article-title: Organic Persistent Luminescent Materials: Ultralong Room-Temperature Phosphorescence and Multicolor-Tunable Afterglow publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.1c12249 – volume: 31 start-page: ARTN 2008404 year: 2021 ident: WOS:000582536800001 article-title: Spacer Cation Tuning Enables Vertically Oriented and Graded Quasi-2D Perovskites for Efficient Solar Cells publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202008404 – volume: 4 start-page: ARTN eaas9732 year: 2018 ident: WOS:000432440600049 article-title: Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption publication-title: SCIENCE ADVANCES doi: 10.1126/sciadv.aas9732 |
SSID | ssj0028806 |
Score | 2.6708016 |
Snippet | It remains a great challenge to develop polymer‐based materials with efficient and color‐tunable organic afterglow. Two indolocarbazole derivatives IaCzA and... It remains a great challenge to develop polymer-based materials with efficient and color-tunable organic afterglow. Two indolocarbazole derivatives IaCzA and... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202201820 |
SubjectTerms | Afterglow Anti-Counterfeiting Chemistry Chemistry, Multidisciplinary Color Counterfeiting Doped Polymer Films Phosphorescence Physical Sciences Polymer films Polymers Polyvinyl alcohol Science & Technology Thermally Activated Delayed Fluorescence |
Title | Efficient and Color‐Tunable Dual‐Mode Afterglow from Large‐Area and Flexible Polymer‐Based Transparent Films for Anti‐Counterfeiting and Information Encryption |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202201820 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000778038600001 https://www.ncbi.nlm.nih.gov/pubmed/35315193 https://www.proquest.com/docview/2671203807 https://www.proquest.com/docview/2641863544 |
Volume | 61 |
WOS | 000778038600001 |
WOSCitedRecordID | wos000778038600001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_QgUZKRKnNImdh7OMSy7KggqhFqpt8hPtCLNot1EqJz4CfwN_ha_hBnnQbcIgeCWyDOJrBnPfE483xCy53hmRGR0yJyLwsQlsOaUdmGaGumixOU9482bo-zwJHl1mp5eqOLv-SGmD264Mny8xgUu1ebgJ2koVmDD_o5BBoMsBkEYD2whKno38UcxcM6-vIjzELvQj6yNETvYVt_OSr9AzUtZaRvI-ky0uEHkOIf-AMqH_a5V-_rzJXrH_5nkTXJ9gKm07P3qFrlim9vk6mzsDneHfJt77glIWVQ2hs4ghq6_f_l63PlaLPqikzXcYqc1WmIb8vf16hPFWhb6Gs-ew1gJcNXrLpCTE5XerurzM4uPeQ651dCeeB2r1Vq6WNZnGwoIm5ZNuwQRLKbHFtt2iQe3_YOG0ip0NTpv9Prch8O75GQxP54dhkPbh1BziDdhYhSLjS5SK0VsBbdpUejcclUYU-hI5oUtYJeUpAqwlUhUARhKShEVzOF-1vB7ZKdZNfYBoTzLRORYpl2kceMohDKZ4akCVWdFHpBwNHulB050bM1RVz2bM6vQANVkgIA8m-Q_9mwgv5XcHb2oGqLCpmJZHrMIKf4D8nQaBsPhTxrZ2FWHMkksAAUmSUDu9943vYpDwETEHZC9i-44jSPgywW8IPM_bQIS_43YbJi4t1tAmPfHP0yvKo9ezqe7h_-i9Ihcw2t_7C7fJTvturOPAeC16olfxD8A37hMTg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcigX3g9DgUUq4uTWXr8PHEIeSmgaIZRKvRl7HygidVAeqsKJn8Df4Mhf4SfwS5hZPyBFCITUA0dnZ9fxzszOjD3zDcCe9kIZO1LYXGvH9rWPOpcLbQeBzLTj66hEvDkahf1j_-VJcLIFX-pamBIfonnhRpphzmtScHohffADNZRKsDHA42jC0IxVeZWHan2GUdvi-aCDLH7Kea87bvftqrGALTyUaNuXOXelSAKVxa6KPRUkiYiUlydSJsLJokQl6If7QY7WO_bzBK10lsVOwjVFTNLDdS_BZWojTnD9ndcNYhVHdSgLmjzPpr73NU6kww82_--mHfzFuT1nBzddZ2P7etfga71rZcrLu_3VMt8XH84BSv5X23odrlaeOGuVqnMDtlRxE3badQO8W_C5a-A10CqzrJCsjWZi_u3jp_HKlJuxziqb4iU1k2Mt6rT-djo7Y1Suw4aUXo9jLfTIzdwewY7SpFez6fpU0TIv0H2QrMSWp4K8JetNpqcLhkEEaxXLCZIQXgB1EVcTyk03C1XVY6RNrFuI-dqc-Lfh-EJ26g5sF7NC3QPmhWHsaB4K7QiKjeM4l6H0ghynahVHFti1nKWign2n7iPTtASs5ikxPG0YbsGzhv59CXjyW8rdWmzT6uBbpDyMXO5QFwMLnjTDyDj6DpUVarYiGt-N0dH1fQvuluLe3MpDm0BBhQV7P8t_M04-bRTjDULzXcoC92_I2tWDG75ZwI0C_OHx0tZo0G2u7v_LpMew0x8fDdPhYHT4AK7Q7ybLMNqF7eV8pR6iP7vMH5kThMGbi9at77GiqOY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FIAEX9sUQoJGCODnxtLf2gcMwizIkjCKUSLk5di9oxMQTzaJoOPEJ_AY3foVf4Euoai8wQQiElANHT1e37a6qrqpx1SuATeNHSnhKutwYzw1MgDqXS-OGocqMF5i4RLx5M4x2DoPXR-HRGnypa2FKfIjmDzfSDHtek4KfKrP9AzSUKrAxvuNowdCKVWmVu3p5hkHb7OWgixx-znm_d9DZcau-Aq70UaDdQOW8pWQS6ky0tPB1mCQy1n6eKJVIL4sTnaAbHoQ5Gm8R5Aka6SwTXsINBUzKx3UvweUg8hJqFtF92wBWcdSGsp7J911qe1_DRHp8e_V5V83gL77tOTO46jlb09e_AV_rTSszXt5vLeb5lvxwDk_yf9rVm3C98sNZu1ScW7Cmi9twtVO3v7sDn3sWXANtMssKxTpoJKbfPn46WNhiM9ZdZGO8pFZyrE191t-NJ2eMinXYHiXX41gb_XE7t0-gozRpfzJenmha5hU6D4qVyPJUjjdn_dH4ZMYwhGDtYj5CEkILoB7iekSZ6XahqnaMdIn1Cjld2vP-LhxeyE7dg_ViUugHwPwoEp7hkTSepMhYiFxFyg9znGq0iB1wazFLZQX6Tr1HxmkJV81TYnjaMNyBFw39aQl38lvKjVpq0-rYm6U8ilvcox4GDjxrhpFx9BUqK_RkQTRBS6CbGwQO3C-lvbmVjxaBQgoHNn8W_2acPNpY4A0i-1XKgdbfkHWqF7d8c4Bb-f_D66Xt4aDXXD38l0lP4cp-t5_uDYa7j-Aa_WxTDOMNWJ9PF_oxOrPz_Ik9PxgcX7RqfQcCyqeV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Color-Tunable+Dual-Mode+Afterglow+from+Large-Area+and+Flexible+Polymer-Based+Transparent+Films+for+Anti-Counterfeiting+and+Information+Encryption&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yang%2C+Yifan&rft.au=Liang%2C+Yaohui&rft.au=Zheng%2C+Yitao&rft.au=Li%2C+Jian-An&rft.date=2022-06-07&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=23&rft.spage=e202201820&rft_id=info:doi/10.1002%2Fanie.202201820&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |