Highly Efficient Production of Nanoporous Block Copolymers with Arbitrary Structural Characteristics for Advanced Membranes

The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal man...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 4; pp. e202212400 - n/a
Main Authors Guo, Leiming, Ntetsikas, Konstantinos, Zapsas, Georgios, Thankamony, Roshni, Lai, Zhiping, Hadjichristidis, Nikos
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 23.01.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene‐based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore‐forming strategy enables the sustainable CO2‐based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol−1). Meanwhile, the water permeance retains around 1020 L (m2 h bar)−1, which is 1–3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore‐forming methods may not deal. A new pore‐forming strategy has been developed for the fabrication of nanoporous block copolymers (BCPs) with arbitrary structural characteristics with 1 s soaking. This rapid, facile, and universal strategy can produce percolating nanopore structures in the polystyrene‐based BCPs with various bulk morphologies, which inspires us to prepare advanced membranes derived from the CO2‐based sustainable BCPs for fast molecular separation for the first time.
AbstractList The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene-based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore-forming strategy enables the sustainable CO2 -based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol-1 ). Meanwhile, the water permeance retains around 1020 L (m2  h bar)-1 , which is 1-3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore-forming methods may not deal.The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene-based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore-forming strategy enables the sustainable CO2 -based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol-1 ). Meanwhile, the water permeance retains around 1020 L (m2  h bar)-1 , which is 1-3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore-forming methods may not deal.
The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene-based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore-forming strategy enables the sustainable CO -based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol ). Meanwhile, the water permeance retains around 1020 L (m  h bar) , which is 1-3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore-forming methods may not deal.
The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene‐based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore‐forming strategy enables the sustainable CO 2 ‐based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol −1 ). Meanwhile, the water permeance retains around 1020 L (m 2  h bar) −1 , which is 1–3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore‐forming methods may not deal.
The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene‐based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore‐forming strategy enables the sustainable CO2‐based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol−1). Meanwhile, the water permeance retains around 1020 L (m2 h bar)−1, which is 1–3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore‐forming methods may not deal. A new pore‐forming strategy has been developed for the fabrication of nanoporous block copolymers (BCPs) with arbitrary structural characteristics with 1 s soaking. This rapid, facile, and universal strategy can produce percolating nanopore structures in the polystyrene‐based BCPs with various bulk morphologies, which inspires us to prepare advanced membranes derived from the CO2‐based sustainable BCPs for fast molecular separation for the first time.
The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene‐based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore‐forming strategy enables the sustainable CO2‐based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol−1). Meanwhile, the water permeance retains around 1020 L (m2 h bar)−1, which is 1–3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore‐forming methods may not deal.
Author Thankamony, Roshni
Guo, Leiming
Hadjichristidis, Nikos
Lai, Zhiping
Ntetsikas, Konstantinos
Zapsas, Georgios
Author_xml – sequence: 1
  givenname: Leiming
  orcidid: 0000-0001-9060-9319
  surname: Guo
  fullname: Guo, Leiming
  email: leiming.guo@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Konstantinos
  orcidid: 0000-0002-9236-931X
  surname: Ntetsikas
  fullname: Ntetsikas, Konstantinos
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Georgios
  orcidid: 0000-0003-3802-3550
  surname: Zapsas
  fullname: Zapsas, Georgios
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Roshni
  surname: Thankamony
  fullname: Thankamony, Roshni
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Nikos
  orcidid: 0000-0003-1442-1714
  surname: Hadjichristidis
  fullname: Hadjichristidis, Nikos
  email: Nikolaos.Hadjichristidis@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36346623$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFDEchoNU7JdXjxLw0sus-ZhJZo_rsraFWoXqecinm5pJ1iRjWfrPm2VrhULpKQk8T_LL-x6DgxCDAeAdRjOMEPkogjMzggjBpEXoFTjCHcEN5Zwe1H1LacP7Dh-C45xvK9_3iL0Bh5TRljFCj8D9hfu59lu4stYpZ0KB31LUkyouBhgtvBYhbmKKU4affFS_4LIe_XY0KcM7V9ZwkaQrSaQtvCmpelMSHi7XIglVTHK5OJWhjQku9B8RlNHwixllEsHkU_DaCp_N24f1BPz4vPq-vGiuvp5fLhdXjaKcoqZlcyPbriNIci2Q1YoyqXknCJOMy14INtdKslZzRKxhrCagreGopxxbTegJONvfu0nx92RyGUaXlfG-DlE_NhBOW8x6wruKfniC3sYphTpdpVg3RzW53YXvH6hJjkYPm-TGmsDwL9YKzPaASjHnZOwjgtGw623Y9TY89laF9omgXBG7Emq2zj-vzffanfNm-8Ijw-L6cvXf_Qu8K64F
CitedBy_id crossref_primary_10_1039_D4EE03765K
crossref_primary_10_1002_advs_202416169
crossref_primary_10_1038_s41467_024_47007_y
crossref_primary_10_1002_smll_202308171
crossref_primary_10_1016_j_jcou_2024_102853
crossref_primary_10_1021_acs_macromol_3c00213
Cites_doi 10.1039/D0CS00500B
10.1038/am.2015.13
10.1063/1.339742
10.1126/science.1203771
10.1016/j.trechm.2019.03.004
10.1002/adfm.201800846
10.1016/j.biomaterials.2007.12.039
10.1021/acs.macromol.0c01068
10.1002/adma.201004022
10.1021/acsnano.5b01406
10.1016/j.trechm.2020.05.002
10.1021/acs.chemrev.7b00329
10.1016/j.memsci.2014.12.009
10.1116/1.583945
10.1039/C4CC05009F
10.1021/acsnano.1c00068
10.1021/ja9021478
10.1002/adma.201404309
10.1039/c2jm30497j
10.1002/smll.201801452
10.1016/j.memsci.2014.04.055
10.1142/9789813270527_0002
10.1021/acs.macromol.5b01992
10.1021/ma00098a017
10.1021/ma0498621
10.1126/science.aab0492
10.1002/smll.201701885
10.1016/j.progpolymsci.2020.101219
10.1021/acs.chemrev.1c00029
10.1039/c2cs35115c
10.1021/acs.macromol.1c01017
10.1021/acsnano.0c05903
10.1021/nn8008728
10.1016/j.memsci.2007.03.018
10.1021/nn1014006
10.1039/C4CS00424H
10.1021/acsnano.8b06521
10.1126/science.1238159
10.1021/nn901447a
10.1016/0032-3861(85)90230-7
10.1021/acssuschemeng.8b05084
10.1021/nl402829p
10.1002/(SICI)1097-4628(19960620)60:12<2105::AID-APP7>3.0.CO;2-Q
10.1021/acs.accounts.6b00233
10.1021/ma951450s
10.1021/jacs.2c01263
10.1002/adfm.201302238
10.1021/ma302414w
10.1038/nmat2038
10.1021/acs.nanolett.6b05059
10.1021/acsami.0c13726
10.1002/adma.201503432
10.1126/science.1221383
10.1021/acs.macromol.5b02579
10.1002/marc.201400556
10.1016/S0079-6700(03)00045-5
10.1002/1521-3927(20010201)22:4<219::AID-MARC219>3.0.CO;2-G
10.1016/j.progpolymsci.2007.05.004
10.1016/j.progpolymsci.2008.07.003
10.1038/nature21001
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202212400
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36346623
10_1002_anie_202212400
ANIE202212400
Genre article
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3730-469eb45520b7da0fdc36bd75a26b67b8aa69dcb64d702fe66521dfe708371fd23
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:26:22 EDT 2025
Fri Jul 25 10:19:25 EDT 2025
Wed Feb 19 02:26:16 EST 2025
Tue Jul 01 01:46:58 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Wed Jan 22 16:19:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Rapid Pore Generation
Advanced Membrane
Block Copolymer
Molecular Separation
Universal Strategy
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-469eb45520b7da0fdc36bd75a26b67b8aa69dcb64d702fe66521dfe708371fd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3802-3550
0000-0001-9555-6009
0000-0001-9060-9319
0000-0003-1442-1714
0000-0002-9236-931X
PMID 36346623
PQID 2765903632
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2734168275
proquest_journals_2765903632
pubmed_primary_36346623
crossref_primary_10_1002_anie_202212400
crossref_citationtrail_10_1002_anie_202212400
wiley_primary_10_1002_anie_202212400_ANIE202212400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 23, 2023
PublicationDateYYYYMMDD 2023-01-23
PublicationDate_xml – month: 01
  year: 2023
  text: January 23, 2023
  day: 23
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 36
1987; 5
2016; 540
2020; 14
2014; 24
1994; 27
2008; 33
2020; 12
2015; 349
2021; 121
2007; 32
1985; 26
2015; 48
1996; 29
2020; 2
2020; 53
2013; 13
2008; 29
2004; 37
2015; 44
2007; 296
1996; 60
2007; 6
2011; 23
2012; 336
2016; 49
2014; 50
2010; 4
2012; 22
2019; 7
2018; 28
2013; 46
2019; 1
2013; 341
2020; 102
2009; 131
2021; 50
2001; 22
2015; 9
2015; 7
2011; 332
2022; 144
2021; 15
2021; 54
2015; 27
1987; 62
2017; 17
2015; 476
2018; 118
2019
2003; 28
2009; 3
2018; 12
2016; 28
2014; 466
2012; 41
2018; 14
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_71_2
Guo L. (e_1_2_7_23_2) 2019
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_52_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_54_1
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_21_1
e_1_2_7_35_2
e_1_2_7_58_1
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_63_2
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_1
e_1_2_7_46_2
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_72_1
e_1_2_7_70_2
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_57_2
e_1_2_7_38_2
References_xml – volume: 7
  year: 2015
  publication-title: NPG Asia Mater.
– volume: 14
  start-page: 1801452
  year: 2018
  end-page: 1801458
  publication-title: Small
– volume: 466
  start-page: 229
  year: 2014
  end-page: 237
  publication-title: J. Membr. Sci.
– volume: 49
  start-page: 2905
  year: 2016
  end-page: 2916
  publication-title: Macromolecules
– volume: 26
  start-page: 1069
  year: 1985
  end-page: 1072
  publication-title: Polymer
– volume: 14
  start-page: 16897
  year: 2020
  end-page: 16906
  publication-title: ACS Nano
– volume: 53
  start-page: 5297
  year: 2020
  end-page: 5307
  publication-title: Macromolecules
– volume: 60
  start-page: 2105
  year: 1996
  end-page: 2112
  publication-title: J. Appl. Polym. Sci.
– volume: 33
  start-page: 875
  year: 2008
  end-page: 893
  publication-title: Prog. Polym. Sci.
– volume: 48
  start-page: 8471
  year: 2015
  end-page: 8479
  publication-title: Macromolecules
– volume: 540
  start-page: 354
  year: 2016
  end-page: 362
  publication-title: Nature
– volume: 14
  start-page: 1701885
  year: 2018
  end-page: 1701895
  publication-title: Small
– volume: 336
  start-page: 1422
  year: 2012
  end-page: 1425
  publication-title: Science
– volume: 296
  start-page: 83
  year: 2007
  end-page: 92
  publication-title: J. Membr. Sci.
– volume: 49
  start-page: 1401
  year: 2016
  end-page: 1408
  publication-title: Acc. Chem. Res.
– volume: 29
  start-page: 3283
  year: 1996
  end-page: 3291
  publication-title: Macromolecules
– volume: 28
  start-page: 1223
  year: 2003
  end-page: 1270
  publication-title: Prog. Polym. Sci.
– volume: 5
  start-page: 538
  year: 1987
  end-page: 545
  publication-title: J. Vac. Sci. Technol. B
– volume: 332
  start-page: 674
  year: 2011
  end-page: 676
  publication-title: Science
– volume: 28
  start-page: 5586
  year: 2016
  end-page: 5618
  publication-title: Adv. Mater.
– volume: 36
  start-page: 10
  year: 2015
  end-page: 22
  publication-title: Macromol. Rapid Commun.
– volume: 476
  start-page: 449
  year: 2015
  end-page: 456
  publication-title: J. Membr. Sci.
– volume: 144
  start-page: 6483
  year: 2022
  end-page: 6492
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 924
  year: 2009
  end-page: 932
  publication-title: ACS Nano
– volume: 37
  start-page: 6523
  year: 2004
  end-page: 6530
  publication-title: Macromolecules
– volume: 29
  start-page: 1796
  year: 2008
  end-page: 1806
  publication-title: Biomaterials
– volume: 50
  start-page: 12022
  year: 2014
  end-page: 12025
  publication-title: Chem. Commun.
– volume: 50
  start-page: 6333
  year: 2021
  end-page: 6348
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: 9692
  year: 2021
  end-page: 9702
  publication-title: Macromolecules
– volume: 9
  start-page: 6147
  year: 2015
  end-page: 6157
  publication-title: ACS Nano
– volume: 2
  start-page: 750
  year: 2020
  end-page: 763
  publication-title: Trends Chem.
– volume: 22
  start-page: 219
  year: 2001
  end-page: 252
  publication-title: Macromol. Rapid Commun.
– volume: 24
  start-page: 863
  year: 2014
  end-page: 872
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 1974
  year: 2015
  end-page: 2018
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 11471
  year: 2018
  end-page: 11480
  publication-title: ACS Nano
– start-page: 45
  year: 2019
  end-page: 117
– volume: 341
  start-page: 530
  year: 2013
  end-page: 534
  publication-title: Science
– volume: 27
  start-page: 352
  year: 2015
  end-page: 355
  publication-title: Adv. Mater.
– volume: 118
  start-page: 839
  year: 2018
  end-page: 885
  publication-title: Chem. Rev.
– volume: 22
  start-page: 8772
  year: 2012
  end-page: 8774
  publication-title: J. Mater. Chem.
– volume: 23
  start-page: 2134
  year: 2011
  end-page: 2148
  publication-title: Adv. Mater.
– volume: 1
  start-page: 148
  year: 2019
  end-page: 151
  publication-title: Trends Chem.
– volume: 17
  start-page: 1233
  year: 2017
  end-page: 1239
  publication-title: Nano Lett.
– volume: 12
  start-page: 45351
  year: 2020
  end-page: 45362
  publication-title: ACS Appl. Mater. Interfaces
– volume: 121
  start-page: 14189
  year: 2021
  end-page: 14231
  publication-title: Chem. Rev.
– volume: 62
  start-page: 682
  year: 1987
  end-page: 688
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 3548
  year: 2010
  end-page: 3553
  publication-title: ACS Nano
– volume: 7
  start-page: 1372
  year: 2019
  end-page: 1380
  publication-title: ACS Sustainable Chem. Eng.
– volume: 27
  start-page: 5626
  year: 1994
  end-page: 5638
  publication-title: Macromolecules
– volume: 41
  start-page: 5969
  year: 2012
  end-page: 5985
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 992
  year: 2007
  end-page: 996
  publication-title: Nat. Mater.
– volume: 46
  start-page: 1484
  year: 2013
  end-page: 1491
  publication-title: Macromolecules
– volume: 15
  start-page: 3490
  year: 2021
  end-page: 3499
  publication-title: ACS Nano
– volume: 4
  start-page: 962
  year: 2010
  end-page: 966
  publication-title: ACS Nano
– volume: 349
  start-page: 54
  year: 2015
  end-page: 58
  publication-title: Science
– volume: 13
  start-page: 5323
  year: 2013
  end-page: 5328
  publication-title: Nano Lett.
– volume: 28
  start-page: 1800846
  year: 2018
  end-page: 1800856
  publication-title: Adv. Funct. Mater.
– volume: 102
  start-page: 101219
  year: 2020
  end-page: 101256
  publication-title: Prog. Polym. Sci.
– volume: 32
  start-page: 1152
  year: 2007
  end-page: 1204
  publication-title: Prog. Polym. Sci.
– volume: 131
  start-page: 7538
  year: 2009
  end-page: 7539
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_6_2
  doi: 10.1039/D0CS00500B
– ident: e_1_2_7_7_2
  doi: 10.1038/am.2015.13
– ident: e_1_2_7_57_2
  doi: 10.1063/1.339742
– ident: e_1_2_7_61_1
  doi: 10.1126/science.1203771
– ident: e_1_2_7_63_2
  doi: 10.1016/j.trechm.2019.03.004
– ident: e_1_2_7_52_2
  doi: 10.1002/adfm.201800846
– ident: e_1_2_7_53_1
  doi: 10.1016/j.biomaterials.2007.12.039
– ident: e_1_2_7_70_2
  doi: 10.1021/acs.macromol.0c01068
– ident: e_1_2_7_24_2
  doi: 10.1002/adma.201004022
– ident: e_1_2_7_8_2
  doi: 10.1021/acsnano.5b01406
– ident: e_1_2_7_25_1
– ident: e_1_2_7_66_1
  doi: 10.1016/j.trechm.2020.05.002
– ident: e_1_2_7_65_1
  doi: 10.1021/acs.chemrev.7b00329
– ident: e_1_2_7_35_2
  doi: 10.1016/j.memsci.2014.12.009
– ident: e_1_2_7_47_2
  doi: 10.1116/1.583945
– ident: e_1_2_7_33_2
  doi: 10.1039/C4CC05009F
– ident: e_1_2_7_5_1
– ident: e_1_2_7_9_2
  doi: 10.1021/acsnano.1c00068
– ident: e_1_2_7_59_1
  doi: 10.1021/ja9021478
– ident: e_1_2_7_41_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201404309
– ident: e_1_2_7_51_2
  doi: 10.1039/c2jm30497j
– ident: e_1_2_7_32_2
  doi: 10.1002/smll.201801452
– ident: e_1_2_7_34_2
  doi: 10.1016/j.memsci.2014.04.055
– start-page: 45
  volume-title: World Scientific Reference of Hybrid Materials
  year: 2019
  ident: e_1_2_7_23_2
  doi: 10.1142/9789813270527_0002
– ident: e_1_2_7_19_2
  doi: 10.1021/acs.macromol.5b01992
– ident: e_1_2_7_54_1
  doi: 10.1021/ma00098a017
– ident: e_1_2_7_58_1
  doi: 10.1021/ma0498621
– ident: e_1_2_7_40_1
  doi: 10.1126/science.aab0492
– ident: e_1_2_7_73_1
  doi: 10.1002/smll.201701885
– ident: e_1_2_7_27_2
  doi: 10.1016/j.progpolymsci.2020.101219
– ident: e_1_2_7_29_2
  doi: 10.1021/acs.chemrev.1c00029
– ident: e_1_2_7_4_2
  doi: 10.1039/c2cs35115c
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.macromol.1c01017
– ident: e_1_2_7_10_2
  doi: 10.1021/acsnano.0c05903
– ident: e_1_2_7_11_2
  doi: 10.1021/nn8008728
– ident: e_1_2_7_72_1
  doi: 10.1016/j.memsci.2007.03.018
– ident: e_1_2_7_15_2
  doi: 10.1021/nn1014006
– ident: e_1_2_7_62_1
– ident: e_1_2_7_43_2
  doi: 10.1039/C4CS00424H
– ident: e_1_2_7_45_1
– ident: e_1_2_7_68_1
  doi: 10.1021/acsnano.8b06521
– ident: e_1_2_7_14_1
– ident: e_1_2_7_20_2
  doi: 10.1126/science.1238159
– ident: e_1_2_7_44_2
  doi: 10.1021/nn901447a
– ident: e_1_2_7_56_2
  doi: 10.1016/0032-3861(85)90230-7
– ident: e_1_2_7_71_2
  doi: 10.1021/acssuschemeng.8b05084
– ident: e_1_2_7_37_2
  doi: 10.1021/nl402829p
– ident: e_1_2_7_49_1
  doi: 10.1002/(SICI)1097-4628(19960620)60:12<2105::AID-APP7>3.0.CO;2-Q
– ident: e_1_2_7_22_2
  doi: 10.1021/acs.accounts.6b00233
– ident: e_1_2_7_46_2
  doi: 10.1021/ma951450s
– ident: e_1_2_7_74_1
  doi: 10.1021/jacs.2c01263
– ident: e_1_2_7_1_1
– ident: e_1_2_7_42_2
  doi: 10.1002/adfm.201302238
– ident: e_1_2_7_30_1
  doi: 10.1021/ma302414w
– ident: e_1_2_7_28_2
  doi: 10.1038/nmat2038
– ident: e_1_2_7_36_1
– ident: e_1_2_7_55_1
– ident: e_1_2_7_67_1
  doi: 10.1021/acs.nanolett.6b05059
– ident: e_1_2_7_17_2
  doi: 10.1021/acsami.0c13726
– ident: e_1_2_7_16_2
  doi: 10.1002/adma.201503432
– ident: e_1_2_7_12_2
  doi: 10.1126/science.1221383
– ident: e_1_2_7_69_1
– ident: e_1_2_7_38_2
  doi: 10.1021/acs.macromol.5b02579
– ident: e_1_2_7_26_2
  doi: 10.1002/marc.201400556
– ident: e_1_2_7_18_1
– ident: e_1_2_7_48_1
  doi: 10.1016/S0079-6700(03)00045-5
– ident: e_1_2_7_50_1
– ident: e_1_2_7_60_1
  doi: 10.1002/1521-3927(20010201)22:4<219::AID-MARC219>3.0.CO;2-G
– ident: e_1_2_7_2_2
  doi: 10.1016/j.progpolymsci.2007.05.004
– ident: e_1_2_7_3_2
  doi: 10.1016/j.progpolymsci.2008.07.003
– ident: e_1_2_7_64_2
  doi: 10.1038/nature21001
– ident: e_1_2_7_31_1
SSID ssj0028806
Score 2.4601982
Snippet The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202212400
SubjectTerms Advanced Membrane
Block Copolymer
Block copolymers
Carbon dioxide
Copolymers
Membranes
Molecular Separation
Percolation
Polystyrene
Polystyrene resins
Rapid Pore Generation
Universal Strategy
Title Highly Efficient Production of Nanoporous Block Copolymers with Arbitrary Structural Characteristics for Advanced Membranes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202212400
https://www.ncbi.nlm.nih.gov/pubmed/36346623
https://www.proquest.com/docview/2765903632
https://www.proquest.com/docview/2734168275
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA7iRS_uS92IIHhKO5NMkumxlpYqWMQFvA2TZUCqrVA9qH_e92bTKiLobYZJJtvLe1-Sl-8RcqRgcWOE5SzTqWORCzRLwbAwE7at4BhTJOctOB-qwU10ditvP93iL_gh6g03nBm5vsYJnppp64M0FG9gw_qOg-4FOQQljA5biIoua_4oDsJZXC8SgmEU-oq1MeCt2eyzVukb1JxFrrnp6S-TtKp04XEyaj4_maZ9_cLn-J9WrZClEpfSTiFIq2TOj9fIQrcKB7dO3tAj5P6F9nLOCTBV9KIgi4WBpZOMgpqeAJafPE_pCRjIEe1i-IUX3BanuNkLvzZ3-R1_epVz1iLfB-3O8kVTgNC0U7ol0HP_AE0BXbxBbvq96-6AlZEbmBWgMhisub2JpOSB0S4NMmeFMk7LlCujtInTVLWdNSpyOuCZVyAxocu8Bjyow8xxsUnmx5Ox3yYUJceaKA49rBSlzOIgspGMjRfeKel5g7Bq5BJb0ppjdI37pCBk5gl2aVJ3aYMc1-kfC0KPH1PuVYKQlBN7mnCtZBsPv6Hgw_ozDAWes0CPQC8nyBgUqphr2SBbhQDVRUHOSAHkbBCei8EvdUg6w9Ne_bbzl0y7ZBGe0WmOcbFH5mGI_T4AqSdzkE-WdzD7FLY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9NAEIBHVTmUC4-WR6CUrQTitK299u46Bw5pmiqhTYSglXpbvA9LqCVBSisU-FX9K_1FzPiFQoWQkHrgmMSO7dmZnZn17DcArxQmNzZxghc69zz1keY5OhZu465LBPUUKbkF44kanqTvTuXpClw1e2EqPkS74EaWUc7XZOC0IL37ixpKW7AxwRM4-aIi1nWVh2HxDbO2-dvRPg7xayEOBsf9Ia8bC3CXoEZzTAmDTaUUkdU-jwrvEmW9lrlQVmmb5bnqemdV6nUkiqDwgWJfBI3hio4LT6wDnPXvUBtxwvXvf2iJVQLNodrQlCSc-t43nMhI7C7f77IfvBHcLsfKpbM7uA_XjZiqGpezncsLu-O-_0aQ_K_k-ADu1aE361W28hBWwnQd1vpNx7sN-EFFL-cLNiixGuiN2fuKh4u6y2YFQ080w3RldjlnexgDnLE-dZhY0Mo_o_Vs_Gv7ucQYsI8llpeQJqy_jMRmmCWwXl15wcbhC8oO3c0jOLmVZ38Mq9PZNDwFRsbhbJrFAZNhKYssSl0qMxuS4JUMogO8URXjanI7NRA5NxVzWhgaQtMOYQfetMd_rZglfzxys9E8U89dcyO0kl16v48X3m5_xqGgV0koEZSyIShSrDKhZQeeVBrbXgrPTBVG1R0Qpd795R5MbzIatJ-e_ctJL2FteDw-MkejyeFzuIvfU40gF8kmrOJwhxcYN17YrdJSGXy6bZX-CY2_cxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JaxRBFH6ECOrFfRmNWoLiqZLu6lp6Dh7GWcgYMwQ1kFvZtTRI4kxgEmT0T_lX_Ee-15uMIoKQg8deqqv77a_61fcAnmlMblzmBS9NEbgMieEFOhbu0r7PBPUUqXAL9md691C-PlJHG_Ct3QtT40N0C26kGZW9JgU_DeXOT9BQ2oGN-Z1A24ty2JRV7sXVZ0zali-nI-TwcyEm4_fDXd70FeA-Q4HmmBFGJ5USiTOhSMrgM-2CUYXQThuXF4XuB--0DCYRZdT4PWkoo8FoxaRlIKgDNPqXpE761Cxi9LYDrBKoDfV-pizj1Pa-hYlMxM76-667wd9i2_VQufJ1k-vwvaVSXeJyvH1-5rb9l18AJP8nMt6Aa03gzQa1ptyEjTi_BVeGbb-72_CVSl5OVmxcgWqgL2YHNRouSi5blAz90AKTlcX5kr3CCOCYDam_xIrW_RmtZuOj3ccKxIC9q0B5CdCEDdcBsRnmCGzQ1F2w_fgJSYfO5g4cXsi334XN-WIe7wMj1fBO5mnEVFipMk-klyp3MYtBqyh6wFtJsb7Bbaf2ISe2RpwWllhoOxb24EV3_2mNWPLHO7dawbON5VpaYbTq0999nPhpdxlZQT-SkCJIZUuQSKnOhVE9uFcLbDcVjpQaY-oeiErs_vIOdjCbjrujB_8y6AlcPhhN7JvpbO8hXMXTVCDIRbYFm8jt-AiDxjP3uNJTBh8uWqJ_AKYZcb8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Production+of+Nanoporous+Block+Copolymers+with+Arbitrary+Structural+Characteristics+for+Advanced+Membranes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Leiming&rft.au=Ntetsikas%2C+Konstantinos&rft.au=Zapsas%2C+Georgios&rft.au=Thankamony%2C+Roshni&rft.date=2023-01-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=4&rft_id=info:doi/10.1002%2Fanie.202212400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202212400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon