Highly Efficient Production of Nanoporous Block Copolymers with Arbitrary Structural Characteristics for Advanced Membranes
The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal man...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 4; pp. e202212400 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
23.01.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene‐based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore‐forming strategy enables the sustainable CO2‐based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol−1). Meanwhile, the water permeance retains around 1020 L (m2 h bar)−1, which is 1–3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore‐forming methods may not deal.
A new pore‐forming strategy has been developed for the fabrication of nanoporous block copolymers (BCPs) with arbitrary structural characteristics with 1 s soaking. This rapid, facile, and universal strategy can produce percolating nanopore structures in the polystyrene‐based BCPs with various bulk morphologies, which inspires us to prepare advanced membranes derived from the CO2‐based sustainable BCPs for fast molecular separation for the first time. |
---|---|
AbstractList | The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene-based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore-forming strategy enables the sustainable CO2 -based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol-1 ). Meanwhile, the water permeance retains around 1020 L (m2 h bar)-1 , which is 1-3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore-forming methods may not deal.The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene-based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore-forming strategy enables the sustainable CO2 -based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol-1 ). Meanwhile, the water permeance retains around 1020 L (m2 h bar)-1 , which is 1-3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore-forming methods may not deal. The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene-based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore-forming strategy enables the sustainable CO -based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol ). Meanwhile, the water permeance retains around 1020 L (m h bar) , which is 1-3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore-forming methods may not deal. The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene‐based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore‐forming strategy enables the sustainable CO 2 ‐based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol −1 ). Meanwhile, the water permeance retains around 1020 L (m 2 h bar) −1 , which is 1–3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore‐forming methods may not deal. The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene‐based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore‐forming strategy enables the sustainable CO2‐based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol−1). Meanwhile, the water permeance retains around 1020 L (m2 h bar)−1, which is 1–3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore‐forming methods may not deal. A new pore‐forming strategy has been developed for the fabrication of nanoporous block copolymers (BCPs) with arbitrary structural characteristics with 1 s soaking. This rapid, facile, and universal strategy can produce percolating nanopore structures in the polystyrene‐based BCPs with various bulk morphologies, which inspires us to prepare advanced membranes derived from the CO2‐based sustainable BCPs for fast molecular separation for the first time. The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in the past several decades. However, it still remains challenging to prepare the desired porous structures in a rapid, facile, and universal manner. Here we have developed an unconventional and benchtop strategy to rapidly generate the nanoporous polystyrene‐based BCPs with arbitrary structural characteristics regardless of the BCP bulk morphology. This universal pore‐forming strategy enables the sustainable CO2‐based BCPs to form advanced membranes after 1 s soaking for efficiently rejecting 94.2 % brilliant blue R (826 g mol−1). Meanwhile, the water permeance retains around 1020 L (m2 h bar)−1, which is 1–3 orders of magnitude higher than that of other membranes. This strategy may offer an excellent opportunity to introduce percolating pore structures in those newly developed BCPs with which the previously reported pore‐forming methods may not deal. |
Author | Thankamony, Roshni Guo, Leiming Hadjichristidis, Nikos Lai, Zhiping Ntetsikas, Konstantinos Zapsas, Georgios |
Author_xml | – sequence: 1 givenname: Leiming orcidid: 0000-0001-9060-9319 surname: Guo fullname: Guo, Leiming email: leiming.guo@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Konstantinos orcidid: 0000-0002-9236-931X surname: Ntetsikas fullname: Ntetsikas, Konstantinos organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Georgios orcidid: 0000-0003-3802-3550 surname: Zapsas fullname: Zapsas, Georgios organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Roshni surname: Thankamony fullname: Thankamony, Roshni organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Nikos orcidid: 0000-0003-1442-1714 surname: Hadjichristidis fullname: Hadjichristidis, Nikos email: Nikolaos.Hadjichristidis@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36346623$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFDEchoNU7JdXjxLw0sus-ZhJZo_rsraFWoXqecinm5pJ1iRjWfrPm2VrhULpKQk8T_LL-x6DgxCDAeAdRjOMEPkogjMzggjBpEXoFTjCHcEN5Zwe1H1LacP7Dh-C45xvK9_3iL0Bh5TRljFCj8D9hfu59lu4stYpZ0KB31LUkyouBhgtvBYhbmKKU4affFS_4LIe_XY0KcM7V9ZwkaQrSaQtvCmpelMSHi7XIglVTHK5OJWhjQku9B8RlNHwixllEsHkU_DaCp_N24f1BPz4vPq-vGiuvp5fLhdXjaKcoqZlcyPbriNIci2Q1YoyqXknCJOMy14INtdKslZzRKxhrCagreGopxxbTegJONvfu0nx92RyGUaXlfG-DlE_NhBOW8x6wruKfniC3sYphTpdpVg3RzW53YXvH6hJjkYPm-TGmsDwL9YKzPaASjHnZOwjgtGw623Y9TY89laF9omgXBG7Emq2zj-vzffanfNm-8Ijw-L6cvXf_Qu8K64F |
CitedBy_id | crossref_primary_10_1039_D4EE03765K crossref_primary_10_1002_advs_202416169 crossref_primary_10_1038_s41467_024_47007_y crossref_primary_10_1002_smll_202308171 crossref_primary_10_1016_j_jcou_2024_102853 crossref_primary_10_1021_acs_macromol_3c00213 |
Cites_doi | 10.1039/D0CS00500B 10.1038/am.2015.13 10.1063/1.339742 10.1126/science.1203771 10.1016/j.trechm.2019.03.004 10.1002/adfm.201800846 10.1016/j.biomaterials.2007.12.039 10.1021/acs.macromol.0c01068 10.1002/adma.201004022 10.1021/acsnano.5b01406 10.1016/j.trechm.2020.05.002 10.1021/acs.chemrev.7b00329 10.1016/j.memsci.2014.12.009 10.1116/1.583945 10.1039/C4CC05009F 10.1021/acsnano.1c00068 10.1021/ja9021478 10.1002/adma.201404309 10.1039/c2jm30497j 10.1002/smll.201801452 10.1016/j.memsci.2014.04.055 10.1142/9789813270527_0002 10.1021/acs.macromol.5b01992 10.1021/ma00098a017 10.1021/ma0498621 10.1126/science.aab0492 10.1002/smll.201701885 10.1016/j.progpolymsci.2020.101219 10.1021/acs.chemrev.1c00029 10.1039/c2cs35115c 10.1021/acs.macromol.1c01017 10.1021/acsnano.0c05903 10.1021/nn8008728 10.1016/j.memsci.2007.03.018 10.1021/nn1014006 10.1039/C4CS00424H 10.1021/acsnano.8b06521 10.1126/science.1238159 10.1021/nn901447a 10.1016/0032-3861(85)90230-7 10.1021/acssuschemeng.8b05084 10.1021/nl402829p 10.1002/(SICI)1097-4628(19960620)60:12<2105::AID-APP7>3.0.CO;2-Q 10.1021/acs.accounts.6b00233 10.1021/ma951450s 10.1021/jacs.2c01263 10.1002/adfm.201302238 10.1021/ma302414w 10.1038/nmat2038 10.1021/acs.nanolett.6b05059 10.1021/acsami.0c13726 10.1002/adma.201503432 10.1126/science.1221383 10.1021/acs.macromol.5b02579 10.1002/marc.201400556 10.1016/S0079-6700(03)00045-5 10.1002/1521-3927(20010201)22:4<219::AID-MARC219>3.0.CO;2-G 10.1016/j.progpolymsci.2007.05.004 10.1016/j.progpolymsci.2008.07.003 10.1038/nature21001 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202212400 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36346623 10_1002_anie_202212400 ANIE202212400 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-469eb45520b7da0fdc36bd75a26b67b8aa69dcb64d702fe66521dfe708371fd23 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:26:22 EDT 2025 Fri Jul 25 10:19:25 EDT 2025 Wed Feb 19 02:26:16 EST 2025 Tue Jul 01 01:46:58 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Wed Jan 22 16:19:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Rapid Pore Generation Advanced Membrane Block Copolymer Molecular Separation Universal Strategy |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-469eb45520b7da0fdc36bd75a26b67b8aa69dcb64d702fe66521dfe708371fd23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3802-3550 0000-0001-9555-6009 0000-0001-9060-9319 0000-0003-1442-1714 0000-0002-9236-931X |
PMID | 36346623 |
PQID | 2765903632 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2734168275 proquest_journals_2765903632 pubmed_primary_36346623 crossref_primary_10_1002_anie_202212400 crossref_citationtrail_10_1002_anie_202212400 wiley_primary_10_1002_anie_202212400_ANIE202212400 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 23, 2023 |
PublicationDateYYYYMMDD | 2023-01-23 |
PublicationDate_xml | – month: 01 year: 2023 text: January 23, 2023 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 36 1987; 5 2016; 540 2020; 14 2014; 24 1994; 27 2008; 33 2020; 12 2015; 349 2021; 121 2007; 32 1985; 26 2015; 48 1996; 29 2020; 2 2020; 53 2013; 13 2008; 29 2004; 37 2015; 44 2007; 296 1996; 60 2007; 6 2011; 23 2012; 336 2016; 49 2014; 50 2010; 4 2012; 22 2019; 7 2018; 28 2013; 46 2019; 1 2013; 341 2020; 102 2009; 131 2021; 50 2001; 22 2015; 9 2015; 7 2011; 332 2022; 144 2021; 15 2021; 54 2015; 27 1987; 62 2017; 17 2015; 476 2018; 118 2019 2003; 28 2009; 3 2018; 12 2016; 28 2014; 466 2012; 41 2018; 14 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_71_2 Guo L. (e_1_2_7_23_2) 2019 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_52_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_54_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_58_1 e_1_2_7_37_2 e_1_2_7_39_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_63_2 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_1 e_1_2_7_46_2 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_72_1 e_1_2_7_70_2 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_57_2 e_1_2_7_38_2 |
References_xml | – volume: 7 year: 2015 publication-title: NPG Asia Mater. – volume: 14 start-page: 1801452 year: 2018 end-page: 1801458 publication-title: Small – volume: 466 start-page: 229 year: 2014 end-page: 237 publication-title: J. Membr. Sci. – volume: 49 start-page: 2905 year: 2016 end-page: 2916 publication-title: Macromolecules – volume: 26 start-page: 1069 year: 1985 end-page: 1072 publication-title: Polymer – volume: 14 start-page: 16897 year: 2020 end-page: 16906 publication-title: ACS Nano – volume: 53 start-page: 5297 year: 2020 end-page: 5307 publication-title: Macromolecules – volume: 60 start-page: 2105 year: 1996 end-page: 2112 publication-title: J. Appl. Polym. Sci. – volume: 33 start-page: 875 year: 2008 end-page: 893 publication-title: Prog. Polym. Sci. – volume: 48 start-page: 8471 year: 2015 end-page: 8479 publication-title: Macromolecules – volume: 540 start-page: 354 year: 2016 end-page: 362 publication-title: Nature – volume: 14 start-page: 1701885 year: 2018 end-page: 1701895 publication-title: Small – volume: 336 start-page: 1422 year: 2012 end-page: 1425 publication-title: Science – volume: 296 start-page: 83 year: 2007 end-page: 92 publication-title: J. Membr. Sci. – volume: 49 start-page: 1401 year: 2016 end-page: 1408 publication-title: Acc. Chem. Res. – volume: 29 start-page: 3283 year: 1996 end-page: 3291 publication-title: Macromolecules – volume: 28 start-page: 1223 year: 2003 end-page: 1270 publication-title: Prog. Polym. Sci. – volume: 5 start-page: 538 year: 1987 end-page: 545 publication-title: J. Vac. Sci. Technol. B – volume: 332 start-page: 674 year: 2011 end-page: 676 publication-title: Science – volume: 28 start-page: 5586 year: 2016 end-page: 5618 publication-title: Adv. Mater. – volume: 36 start-page: 10 year: 2015 end-page: 22 publication-title: Macromol. Rapid Commun. – volume: 476 start-page: 449 year: 2015 end-page: 456 publication-title: J. Membr. Sci. – volume: 144 start-page: 6483 year: 2022 end-page: 6492 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 924 year: 2009 end-page: 932 publication-title: ACS Nano – volume: 37 start-page: 6523 year: 2004 end-page: 6530 publication-title: Macromolecules – volume: 29 start-page: 1796 year: 2008 end-page: 1806 publication-title: Biomaterials – volume: 50 start-page: 12022 year: 2014 end-page: 12025 publication-title: Chem. Commun. – volume: 50 start-page: 6333 year: 2021 end-page: 6348 publication-title: Chem. Soc. Rev. – volume: 54 start-page: 9692 year: 2021 end-page: 9702 publication-title: Macromolecules – volume: 9 start-page: 6147 year: 2015 end-page: 6157 publication-title: ACS Nano – volume: 2 start-page: 750 year: 2020 end-page: 763 publication-title: Trends Chem. – volume: 22 start-page: 219 year: 2001 end-page: 252 publication-title: Macromol. Rapid Commun. – volume: 24 start-page: 863 year: 2014 end-page: 872 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 1974 year: 2015 end-page: 2018 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 11471 year: 2018 end-page: 11480 publication-title: ACS Nano – start-page: 45 year: 2019 end-page: 117 – volume: 341 start-page: 530 year: 2013 end-page: 534 publication-title: Science – volume: 27 start-page: 352 year: 2015 end-page: 355 publication-title: Adv. Mater. – volume: 118 start-page: 839 year: 2018 end-page: 885 publication-title: Chem. Rev. – volume: 22 start-page: 8772 year: 2012 end-page: 8774 publication-title: J. Mater. Chem. – volume: 23 start-page: 2134 year: 2011 end-page: 2148 publication-title: Adv. Mater. – volume: 1 start-page: 148 year: 2019 end-page: 151 publication-title: Trends Chem. – volume: 17 start-page: 1233 year: 2017 end-page: 1239 publication-title: Nano Lett. – volume: 12 start-page: 45351 year: 2020 end-page: 45362 publication-title: ACS Appl. Mater. Interfaces – volume: 121 start-page: 14189 year: 2021 end-page: 14231 publication-title: Chem. Rev. – volume: 62 start-page: 682 year: 1987 end-page: 688 publication-title: J. Appl. Phys. – volume: 4 start-page: 3548 year: 2010 end-page: 3553 publication-title: ACS Nano – volume: 7 start-page: 1372 year: 2019 end-page: 1380 publication-title: ACS Sustainable Chem. Eng. – volume: 27 start-page: 5626 year: 1994 end-page: 5638 publication-title: Macromolecules – volume: 41 start-page: 5969 year: 2012 end-page: 5985 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 992 year: 2007 end-page: 996 publication-title: Nat. Mater. – volume: 46 start-page: 1484 year: 2013 end-page: 1491 publication-title: Macromolecules – volume: 15 start-page: 3490 year: 2021 end-page: 3499 publication-title: ACS Nano – volume: 4 start-page: 962 year: 2010 end-page: 966 publication-title: ACS Nano – volume: 349 start-page: 54 year: 2015 end-page: 58 publication-title: Science – volume: 13 start-page: 5323 year: 2013 end-page: 5328 publication-title: Nano Lett. – volume: 28 start-page: 1800846 year: 2018 end-page: 1800856 publication-title: Adv. Funct. Mater. – volume: 102 start-page: 101219 year: 2020 end-page: 101256 publication-title: Prog. Polym. Sci. – volume: 32 start-page: 1152 year: 2007 end-page: 1204 publication-title: Prog. Polym. Sci. – volume: 131 start-page: 7538 year: 2009 end-page: 7539 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_6_2 doi: 10.1039/D0CS00500B – ident: e_1_2_7_7_2 doi: 10.1038/am.2015.13 – ident: e_1_2_7_57_2 doi: 10.1063/1.339742 – ident: e_1_2_7_61_1 doi: 10.1126/science.1203771 – ident: e_1_2_7_63_2 doi: 10.1016/j.trechm.2019.03.004 – ident: e_1_2_7_52_2 doi: 10.1002/adfm.201800846 – ident: e_1_2_7_53_1 doi: 10.1016/j.biomaterials.2007.12.039 – ident: e_1_2_7_70_2 doi: 10.1021/acs.macromol.0c01068 – ident: e_1_2_7_24_2 doi: 10.1002/adma.201004022 – ident: e_1_2_7_8_2 doi: 10.1021/acsnano.5b01406 – ident: e_1_2_7_25_1 – ident: e_1_2_7_66_1 doi: 10.1016/j.trechm.2020.05.002 – ident: e_1_2_7_65_1 doi: 10.1021/acs.chemrev.7b00329 – ident: e_1_2_7_35_2 doi: 10.1016/j.memsci.2014.12.009 – ident: e_1_2_7_47_2 doi: 10.1116/1.583945 – ident: e_1_2_7_33_2 doi: 10.1039/C4CC05009F – ident: e_1_2_7_5_1 – ident: e_1_2_7_9_2 doi: 10.1021/acsnano.1c00068 – ident: e_1_2_7_59_1 doi: 10.1021/ja9021478 – ident: e_1_2_7_41_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201404309 – ident: e_1_2_7_51_2 doi: 10.1039/c2jm30497j – ident: e_1_2_7_32_2 doi: 10.1002/smll.201801452 – ident: e_1_2_7_34_2 doi: 10.1016/j.memsci.2014.04.055 – start-page: 45 volume-title: World Scientific Reference of Hybrid Materials year: 2019 ident: e_1_2_7_23_2 doi: 10.1142/9789813270527_0002 – ident: e_1_2_7_19_2 doi: 10.1021/acs.macromol.5b01992 – ident: e_1_2_7_54_1 doi: 10.1021/ma00098a017 – ident: e_1_2_7_58_1 doi: 10.1021/ma0498621 – ident: e_1_2_7_40_1 doi: 10.1126/science.aab0492 – ident: e_1_2_7_73_1 doi: 10.1002/smll.201701885 – ident: e_1_2_7_27_2 doi: 10.1016/j.progpolymsci.2020.101219 – ident: e_1_2_7_29_2 doi: 10.1021/acs.chemrev.1c00029 – ident: e_1_2_7_4_2 doi: 10.1039/c2cs35115c – ident: e_1_2_7_13_1 doi: 10.1021/acs.macromol.1c01017 – ident: e_1_2_7_10_2 doi: 10.1021/acsnano.0c05903 – ident: e_1_2_7_11_2 doi: 10.1021/nn8008728 – ident: e_1_2_7_72_1 doi: 10.1016/j.memsci.2007.03.018 – ident: e_1_2_7_15_2 doi: 10.1021/nn1014006 – ident: e_1_2_7_62_1 – ident: e_1_2_7_43_2 doi: 10.1039/C4CS00424H – ident: e_1_2_7_45_1 – ident: e_1_2_7_68_1 doi: 10.1021/acsnano.8b06521 – ident: e_1_2_7_14_1 – ident: e_1_2_7_20_2 doi: 10.1126/science.1238159 – ident: e_1_2_7_44_2 doi: 10.1021/nn901447a – ident: e_1_2_7_56_2 doi: 10.1016/0032-3861(85)90230-7 – ident: e_1_2_7_71_2 doi: 10.1021/acssuschemeng.8b05084 – ident: e_1_2_7_37_2 doi: 10.1021/nl402829p – ident: e_1_2_7_49_1 doi: 10.1002/(SICI)1097-4628(19960620)60:12<2105::AID-APP7>3.0.CO;2-Q – ident: e_1_2_7_22_2 doi: 10.1021/acs.accounts.6b00233 – ident: e_1_2_7_46_2 doi: 10.1021/ma951450s – ident: e_1_2_7_74_1 doi: 10.1021/jacs.2c01263 – ident: e_1_2_7_1_1 – ident: e_1_2_7_42_2 doi: 10.1002/adfm.201302238 – ident: e_1_2_7_30_1 doi: 10.1021/ma302414w – ident: e_1_2_7_28_2 doi: 10.1038/nmat2038 – ident: e_1_2_7_36_1 – ident: e_1_2_7_55_1 – ident: e_1_2_7_67_1 doi: 10.1021/acs.nanolett.6b05059 – ident: e_1_2_7_17_2 doi: 10.1021/acsami.0c13726 – ident: e_1_2_7_16_2 doi: 10.1002/adma.201503432 – ident: e_1_2_7_12_2 doi: 10.1126/science.1221383 – ident: e_1_2_7_69_1 – ident: e_1_2_7_38_2 doi: 10.1021/acs.macromol.5b02579 – ident: e_1_2_7_26_2 doi: 10.1002/marc.201400556 – ident: e_1_2_7_18_1 – ident: e_1_2_7_48_1 doi: 10.1016/S0079-6700(03)00045-5 – ident: e_1_2_7_50_1 – ident: e_1_2_7_60_1 doi: 10.1002/1521-3927(20010201)22:4<219::AID-MARC219>3.0.CO;2-G – ident: e_1_2_7_2_2 doi: 10.1016/j.progpolymsci.2007.05.004 – ident: e_1_2_7_3_2 doi: 10.1016/j.progpolymsci.2008.07.003 – ident: e_1_2_7_64_2 doi: 10.1038/nature21001 – ident: e_1_2_7_31_1 |
SSID | ssj0028806 |
Score | 2.4601982 |
Snippet | The great significance of boosting the design of percolating nanopore structures in block copolymers (BCPs) for various cases has been widely demonstrated in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202212400 |
SubjectTerms | Advanced Membrane Block Copolymer Block copolymers Carbon dioxide Copolymers Membranes Molecular Separation Percolation Polystyrene Polystyrene resins Rapid Pore Generation Universal Strategy |
Title | Highly Efficient Production of Nanoporous Block Copolymers with Arbitrary Structural Characteristics for Advanced Membranes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202212400 https://www.ncbi.nlm.nih.gov/pubmed/36346623 https://www.proquest.com/docview/2765903632 https://www.proquest.com/docview/2734168275 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA7iRS_uS92IIHhKO5NMkumxlpYqWMQFvA2TZUCqrVA9qH_e92bTKiLobYZJJtvLe1-Sl-8RcqRgcWOE5SzTqWORCzRLwbAwE7at4BhTJOctOB-qwU10ditvP93iL_gh6g03nBm5vsYJnppp64M0FG9gw_qOg-4FOQQljA5biIoua_4oDsJZXC8SgmEU-oq1MeCt2eyzVukb1JxFrrnp6S-TtKp04XEyaj4_maZ9_cLn-J9WrZClEpfSTiFIq2TOj9fIQrcKB7dO3tAj5P6F9nLOCTBV9KIgi4WBpZOMgpqeAJafPE_pCRjIEe1i-IUX3BanuNkLvzZ3-R1_epVz1iLfB-3O8kVTgNC0U7ol0HP_AE0BXbxBbvq96-6AlZEbmBWgMhisub2JpOSB0S4NMmeFMk7LlCujtInTVLWdNSpyOuCZVyAxocu8Bjyow8xxsUnmx5Ox3yYUJceaKA49rBSlzOIgspGMjRfeKel5g7Bq5BJb0ppjdI37pCBk5gl2aVJ3aYMc1-kfC0KPH1PuVYKQlBN7mnCtZBsPv6Hgw_ozDAWes0CPQC8nyBgUqphr2SBbhQDVRUHOSAHkbBCei8EvdUg6w9Ne_bbzl0y7ZBGe0WmOcbFH5mGI_T4AqSdzkE-WdzD7FLY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9NAEIBHVTmUC4-WR6CUrQTitK299u46Bw5pmiqhTYSglXpbvA9LqCVBSisU-FX9K_1FzPiFQoWQkHrgmMSO7dmZnZn17DcArxQmNzZxghc69zz1keY5OhZu465LBPUUKbkF44kanqTvTuXpClw1e2EqPkS74EaWUc7XZOC0IL37ixpKW7AxwRM4-aIi1nWVh2HxDbO2-dvRPg7xayEOBsf9Ia8bC3CXoEZzTAmDTaUUkdU-jwrvEmW9lrlQVmmb5bnqemdV6nUkiqDwgWJfBI3hio4LT6wDnPXvUBtxwvXvf2iJVQLNodrQlCSc-t43nMhI7C7f77IfvBHcLsfKpbM7uA_XjZiqGpezncsLu-O-_0aQ_K_k-ADu1aE361W28hBWwnQd1vpNx7sN-EFFL-cLNiixGuiN2fuKh4u6y2YFQ080w3RldjlnexgDnLE-dZhY0Mo_o_Vs_Gv7ucQYsI8llpeQJqy_jMRmmCWwXl15wcbhC8oO3c0jOLmVZ38Mq9PZNDwFRsbhbJrFAZNhKYssSl0qMxuS4JUMogO8URXjanI7NRA5NxVzWhgaQtMOYQfetMd_rZglfzxys9E8U89dcyO0kl16v48X3m5_xqGgV0koEZSyIShSrDKhZQeeVBrbXgrPTBVG1R0Qpd795R5MbzIatJ-e_ctJL2FteDw-MkejyeFzuIvfU40gF8kmrOJwhxcYN17YrdJSGXy6bZX-CY2_cxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JaxRBFH6ECOrFfRmNWoLiqZLu6lp6Dh7GWcgYMwQ1kFvZtTRI4kxgEmT0T_lX_Ee-15uMIoKQg8deqqv77a_61fcAnmlMblzmBS9NEbgMieEFOhbu0r7PBPUUqXAL9md691C-PlJHG_Ct3QtT40N0C26kGZW9JgU_DeXOT9BQ2oGN-Z1A24ty2JRV7sXVZ0zali-nI-TwcyEm4_fDXd70FeA-Q4HmmBFGJ5USiTOhSMrgM-2CUYXQThuXF4XuB--0DCYRZdT4PWkoo8FoxaRlIKgDNPqXpE761Cxi9LYDrBKoDfV-pizj1Pa-hYlMxM76-667wd9i2_VQufJ1k-vwvaVSXeJyvH1-5rb9l18AJP8nMt6Aa03gzQa1ptyEjTi_BVeGbb-72_CVSl5OVmxcgWqgL2YHNRouSi5blAz90AKTlcX5kr3CCOCYDam_xIrW_RmtZuOj3ccKxIC9q0B5CdCEDdcBsRnmCGzQ1F2w_fgJSYfO5g4cXsi334XN-WIe7wMj1fBO5mnEVFipMk-klyp3MYtBqyh6wFtJsb7Bbaf2ISe2RpwWllhoOxb24EV3_2mNWPLHO7dawbON5VpaYbTq0999nPhpdxlZQT-SkCJIZUuQSKnOhVE9uFcLbDcVjpQaY-oeiErs_vIOdjCbjrujB_8y6AlcPhhN7JvpbO8hXMXTVCDIRbYFm8jt-AiDxjP3uNJTBh8uWqJ_AKYZcb8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Production+of+Nanoporous+Block+Copolymers+with+Arbitrary+Structural+Characteristics+for+Advanced+Membranes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Leiming&rft.au=Ntetsikas%2C+Konstantinos&rft.au=Zapsas%2C+Georgios&rft.au=Thankamony%2C+Roshni&rft.date=2023-01-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=4&rft_id=info:doi/10.1002%2Fanie.202212400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202212400 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |