Fluorescence Enhancement of a Metal‐Organic Framework for Ultra‐Efficient Detection of Trace Benzene Vapor
Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herei...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 24; pp. e202303500 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
12.06.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal–organic framework (MOF) that exhibits interesting pore‐opening behavior after immersing in H2O. The pore‐opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L−1. Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single‐crystal structure reveal that the special “bilateral π–π stacking” interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.
A new flexible metal–organic framework (MOF) exhibits significant and sensitive fluorescence “turn‐on” behavior for benzene vapor by virtue of unique “bilateral π–π stacking” interactions, enabling visual detection of a trace level of benzene for the first time. |
---|---|
AbstractList | Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal–organic framework (MOF) that exhibits interesting pore‐opening behavior after immersing in H2O. The pore‐opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L−1. Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single‐crystal structure reveal that the special “bilateral π–π stacking” interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.
A new flexible metal–organic framework (MOF) exhibits significant and sensitive fluorescence “turn‐on” behavior for benzene vapor by virtue of unique “bilateral π–π stacking” interactions, enabling visual detection of a trace level of benzene for the first time. Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal-organic framework (MOF) that exhibits interesting pore-opening behavior after immersing in H O. The pore-opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single-crystal structure reveal that the special "bilateral π-π stacking" interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence. Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal–organic framework (MOF) that exhibits interesting pore‐opening behavior after immersing in H2O. The pore‐opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L−1. Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single‐crystal structure reveal that the special “bilateral π–π stacking” interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence. Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal-organic framework (MOF) that exhibits interesting pore-opening behavior after immersing in H2 O. The pore-opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L-1 . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single-crystal structure reveal that the special "bilateral π-π stacking" interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal-organic framework (MOF) that exhibits interesting pore-opening behavior after immersing in H2 O. The pore-opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L-1 . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single-crystal structure reveal that the special "bilateral π-π stacking" interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence. Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal–organic framework (MOF) that exhibits interesting pore‐opening behavior after immersing in H 2 O. The pore‐opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L −1 . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single‐crystal structure reveal that the special “bilateral π–π stacking” interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence. |
Author | Li, Wen‐Bin Chen, Xiong‐Hai Zhong, Xiao‐Feng Wu, Ying Liang, Gang Ye, Jia‐Wen Mo, Zong‐Wen Chen, Xiao‐Ming |
Author_xml | – sequence: 1 givenname: Wen‐Bin surname: Li fullname: Li, Wen‐Bin organization: Wuyi University – sequence: 2 givenname: Ying surname: Wu fullname: Wu, Ying organization: Wuyi University – sequence: 3 givenname: Xiao‐Feng surname: Zhong fullname: Zhong, Xiao‐Feng organization: Wuyi University – sequence: 4 givenname: Xiong‐Hai surname: Chen fullname: Chen, Xiong‐Hai organization: Wuyi University – sequence: 5 givenname: Gang surname: Liang fullname: Liang, Gang organization: Wuyi University – sequence: 6 givenname: Jia‐Wen surname: Ye fullname: Ye, Jia‐Wen organization: Wuyi University – sequence: 7 givenname: Zong‐Wen orcidid: 0000-0001-6925-9772 surname: Mo fullname: Mo, Zong‐Wen email: wyuchemmzw@126.com organization: Wuyi University – sequence: 8 givenname: Xiao‐Ming surname: Chen fullname: Chen, Xiao‐Ming organization: Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37069464$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gyhFF4sIl27Ed5-NYyi6tVNpLy9WadcbgktiLk6gqJ35Cf2N_CY62BalSxWks-XnG43f22Y4Pnhh7y2HBAcQhekcLAUKCVAAv2B5XgueyquROOhdS5lWt-C7bH4brxNc1lK_YrqygbIqy2GN-1U0h0mDIG8qW_jum2pMfs2AzzL7QiN3977uL-C29ZLJVxJ5uQvyR2RCzq26MmG6X1jrjZukTjWRGF_ysX0ZMPT-S_0Wesq-4CfE1e2mxG-jNQz1gV6vl5fFJfnbx-fT46Cw3spKQy0K1XEglm3Wt6tIQGIUV54CmFAhrLEpFhNjYquXWFoY3Zk0WhDUttG0rD9iHbd9NDD8nGkbdu_THrkNPYRq0qOcsSih5Qt8_Qa_DFH2aLlGCK14LUIl690BN655avYmux3irH5NMQLEFTAzDEMlq40aco0gZuU5z0PPC9Lww_XdhSVs80R47Pys0W-HGdXT7H1ofnZ8u_7l_AEi-qmQ |
CitedBy_id | crossref_primary_10_1002_chem_202304334 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1039_D3TA07938D crossref_primary_10_1021_acs_inorgchem_3c04398 crossref_primary_10_1016_j_foodchem_2024_139652 crossref_primary_10_1039_D4TA08445D crossref_primary_10_1039_D3CE00576C crossref_primary_10_1002_cjoc_202300448 crossref_primary_10_1016_j_jcis_2024_06_075 crossref_primary_10_1002_anie_202401880 crossref_primary_10_1002_adfm_202304773 crossref_primary_10_1039_D3QM00430A crossref_primary_10_3389_fbioe_2023_1292136 crossref_primary_10_1021_acsami_4c07732 crossref_primary_10_1021_acs_inorgchem_3c02150 crossref_primary_10_1039_D4SC03973D crossref_primary_10_1039_D4TC00658E crossref_primary_10_1021_acs_jpcc_4c02856 crossref_primary_10_1016_j_saa_2024_124884 crossref_primary_10_1039_D3DT03867J crossref_primary_10_1002_ange_202416286 crossref_primary_10_1039_D4QI00941J crossref_primary_10_1002_adfm_202401562 crossref_primary_10_1021_acs_analchem_4c04125 crossref_primary_10_1016_j_ccr_2024_215690 crossref_primary_10_1002_ange_202401880 crossref_primary_10_1039_D3DT03223J crossref_primary_10_1021_acs_cgd_4c00068 crossref_primary_10_1039_D3NJ04308H crossref_primary_10_1016_j_poly_2023_116627 crossref_primary_10_1021_acs_analchem_4c01207 crossref_primary_10_1039_D4DT02350A crossref_primary_10_1038_s41563_024_02029_1 crossref_primary_10_1039_D4TA02030H crossref_primary_10_1016_j_seppur_2023_125883 crossref_primary_10_1007_s11426_024_2386_0 crossref_primary_10_1021_acs_cgd_4c01052 crossref_primary_10_1002_adom_202400692 crossref_primary_10_1002_anie_202416286 |
Cites_doi | 10.1039/D0CE01619E 10.1016/j.progpolymsci.2015.01.002 10.1002/anie.201207610 10.1021/jacs.0c00368 10.1038/s41563-022-01237-x 10.1016/j.jssc.2019.121103 10.1002/adfm.201303986 10.1002/chem.201601812 10.1021/ja106851d 10.1039/C4TA04396K 10.1016/j.ccr.2021.213968 10.1016/j.scib.2022.05.009 10.1021/jacs.5b04178 10.1002/anie.202107436 10.1039/C4MH00210E 10.1002/smll.201703822 10.1002/adma.201601133 10.1016/j.ccr.2020.213738 10.1039/D2CS00442A 10.1016/j.ccr.2020.213565 10.1021/jacs.2c03114 10.1126/science.aar6833 10.1021/acsami.7b01758 10.1021/ja502643p 10.1038/nenergy.2016.34 10.1039/C9TA06632B 10.1002/chem.201502033 10.1002/advs.202104374 10.1016/j.mattod.2017.07.006 10.1039/C9CS00778D 10.1002/asia.201901168 10.1021/acs.chemrev.8b00408 10.1038/ncomms1170 10.1016/j.chempr.2018.05.017 10.1016/j.ccr.2017.06.007 10.1021/acs.analchem.6b01628 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202303500 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 37069464 10_1002_anie_202303500 ANIE202303500 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22101210, 22101211, 22090061, and 21821003 – fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program funderid: 2017BT01C161 – fundername: Municipal Science and Technology Bureau funderid: Jiangke 2021-76 – fundername: Municipal Science and Technology Bureau grantid: Jiangke 2021-76 – fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program grantid: 2017BT01C161 – fundername: National Natural Science Foundation of China grantid: 22101210, 22101211, 22090061, and 21821003 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-345d123539b8586ce0c5a7110ac62a0ba465eeaa9f7d1ff4c19cbef02fcd0ddd3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:07:33 EDT 2025 Fri Jul 25 10:28:21 EDT 2025 Wed Feb 19 02:23:29 EST 2025 Tue Jul 01 01:47:10 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Wed Jan 22 16:21:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Trace Benzene Vapor Supramolecular Interaction Metal-Organic Framework Fluorescence Turn-on |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-345d123539b8586ce0c5a7110ac62a0ba465eeaa9f7d1ff4c19cbef02fcd0ddd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6925-9772 |
PMID | 37069464 |
PQID | 2821518205 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2802886061 proquest_journals_2821518205 pubmed_primary_37069464 crossref_citationtrail_10_1002_anie_202303500 crossref_primary_10_1002_anie_202303500 wiley_primary_10_1002_anie_202303500_ANIE202303500 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 12, 2023 |
PublicationDateYYYYMMDD | 2023-06-12 |
PublicationDate_xml | – month: 06 year: 2023 text: June 12, 2023 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2019; 7 2021; 23 2011; 2 2021; 443 2020; 142 2022; 51 2021; 427 2020; 282 2019; 14 2022; 67 2014; 24 2022; 21 2018; 21 2017; 9 2014; 136 2011; 133 2019; 363 2022; 144 2015; 45 2016; 1 2018; 4 2014; 2 2015; 137 2018; 354 2022; 9 2015; 21 2013; 52 2020; 49 2019; 119 2021; 430 2016; 28 2021; 60 2018; 14 2016; 88 2016; 22 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_40_1 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_43_1 e_1_2_7_44_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_45_2 e_1_2_7_46_2 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_30_1 e_1_2_7_23_2 e_1_2_7_24_1 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 1 start-page: 16304 year: 2016 publication-title: Nat. Energy – volume: 67 start-page: 1229 year: 2022 end-page: 1232 publication-title: Sci. Bull. – volume: 51 start-page: 7427 year: 2022 end-page: 7508 publication-title: Chem. Soc. Rev. – volume: 142 start-page: 6690 year: 2020 end-page: 6697 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 4034 year: 2014 end-page: 4041 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 19471 year: 2019 end-page: 19484 publication-title: J. Mater. Chem. A – volume: 430 year: 2021 publication-title: Coord. Chem. Rev. – volume: 119 start-page: 4471 year: 2019 end-page: 4568 publication-title: Chem. Rev. – volume: 49 start-page: 6364 year: 2020 end-page: 6401 publication-title: Chem. Soc. Rev. – volume: 14 year: 2018 publication-title: Small – volume: 133 start-page: 4153 year: 2011 end-page: 4155 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 1604 year: 2021 end-page: 1615 publication-title: CrystEngComm – volume: 45 start-page: 102 year: 2015 end-page: 118 publication-title: Prog. Polym. Sci. – volume: 88 start-page: 6955 year: 2016 end-page: 6961 publication-title: Anal. Chem. – volume: 2 start-page: 20450 year: 2014 end-page: 20453 publication-title: J. Mater. Chem. A – volume: 2 start-page: 245 year: 2015 end-page: 251 publication-title: Mater. Horiz. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 21 start-page: 15854 year: 2015 end-page: 15859 publication-title: Chem. Eur. J. – volume: 52 start-page: 710 year: 2013 end-page: 713 publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 10346 year: 2016 end-page: 10350 publication-title: Chem. Eur. J. – volume: 282 year: 2020 publication-title: J. Solid State Chem. – volume: 144 start-page: 12212 year: 2022 end-page: 12218 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 168 year: 2011 publication-title: Nat. Commun. – volume: 4 start-page: 1911 year: 2018 end-page: 1927 publication-title: Chem – volume: 354 start-page: 28 year: 2018 end-page: 45 publication-title: Coord. Chem. Rev. – volume: 14 start-page: 4506 year: 2019 end-page: 4519 publication-title: Chem. Asian J. – volume: 427 year: 2021 publication-title: Coord. Chem. Rev. – volume: 60 start-page: 23705 year: 2021 end-page: 23712 publication-title: Angew. Chem. Int. Ed. – volume: 136 start-page: 7241 year: 2014 end-page: 7244 publication-title: J. Am. Chem. Soc. – volume: 443 year: 2021 publication-title: Coord. Chem. Rev. – volume: 21 start-page: 689 year: 2022 end-page: 695 publication-title: Nat. Mater. – volume: 21 start-page: 108 year: 2018 end-page: 121 publication-title: Mater. Today – volume: 137 start-page: 9519 year: 2015 end-page: 9522 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 8819 year: 2016 end-page: 8860 publication-title: Adv. Mater. – volume: 363 start-page: 387 year: 2019 end-page: 391 publication-title: Science – volume: 9 start-page: 17208 year: 2017 end-page: 17217 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_27_2 doi: 10.1039/D0CE01619E – ident: e_1_2_7_34_1 – ident: e_1_2_7_20_1 – ident: e_1_2_7_4_2 doi: 10.1016/j.progpolymsci.2015.01.002 – ident: e_1_2_7_36_2 doi: 10.1002/anie.201207610 – ident: e_1_2_7_37_2 doi: 10.1021/jacs.0c00368 – ident: e_1_2_7_19_2 doi: 10.1038/s41563-022-01237-x – ident: e_1_2_7_26_2 doi: 10.1016/j.jssc.2019.121103 – ident: e_1_2_7_25_2 doi: 10.1002/adfm.201303986 – ident: e_1_2_7_41_2 doi: 10.1002/chem.201601812 – ident: e_1_2_7_46_2 doi: 10.1021/ja106851d – ident: e_1_2_7_31_2 doi: 10.1039/C4TA04396K – ident: e_1_2_7_40_1 – ident: e_1_2_7_11_1 – ident: e_1_2_7_13_2 doi: 10.1016/j.ccr.2021.213968 – ident: e_1_2_7_29_2 doi: 10.1016/j.scib.2022.05.009 – ident: e_1_2_7_42_2 doi: 10.1021/jacs.5b04178 – ident: e_1_2_7_1_1 – ident: e_1_2_7_23_2 doi: 10.1002/anie.202107436 – ident: e_1_2_7_38_1 doi: 10.1039/C4MH00210E – ident: e_1_2_7_35_2 doi: 10.1002/smll.201703822 – ident: e_1_2_7_14_2 doi: 10.1002/adma.201601133 – ident: e_1_2_7_2_2 doi: 10.1016/j.ccr.2020.213738 – ident: e_1_2_7_39_1 – ident: e_1_2_7_44_1 – ident: e_1_2_7_18_2 doi: 10.1039/D2CS00442A – ident: e_1_2_7_9_2 doi: 10.1016/j.ccr.2020.213565 – ident: e_1_2_7_17_2 doi: 10.1021/jacs.2c03114 – ident: e_1_2_7_16_2 doi: 10.1126/science.aar6833 – ident: e_1_2_7_28_2 doi: 10.1021/acsami.7b01758 – ident: e_1_2_7_33_2 doi: 10.1021/ja502643p – ident: e_1_2_7_7_2 doi: 10.1038/nenergy.2016.34 – ident: e_1_2_7_45_2 doi: 10.1039/C9TA06632B – ident: e_1_2_7_32_2 doi: 10.1002/chem.201502033 – ident: e_1_2_7_30_1 – ident: e_1_2_7_8_2 doi: 10.1002/advs.202104374 – ident: e_1_2_7_24_1 – ident: e_1_2_7_12_2 doi: 10.1016/j.mattod.2017.07.006 – ident: e_1_2_7_22_2 doi: 10.1039/C9CS00778D – ident: e_1_2_7_43_1 doi: 10.1002/asia.201901168 – ident: e_1_2_7_3_2 doi: 10.1021/acs.chemrev.8b00408 – ident: e_1_2_7_6_1 – ident: e_1_2_7_47_1 doi: 10.1038/ncomms1170 – ident: e_1_2_7_10_2 doi: 10.1016/j.chempr.2018.05.017 – ident: e_1_2_7_21_2 doi: 10.1016/j.ccr.2017.06.007 – ident: e_1_2_7_5_1 doi: 10.1021/acs.analchem.6b01628 – ident: e_1_2_7_15_1 |
SSID | ssj0028806 |
Score | 2.5950408 |
Snippet | Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202303500 |
SubjectTerms | Benzene Benzene Vapor Crystal structure Electron transfer Fluorescence Fluorescence Turn-on Mathematical analysis Metal-organic frameworks Metal–Organic Framework Organic compounds Supramolecular Interaction Toxic hazards Toxicity Trace Vapors VOCs Volatile organic compounds |
Title | Fluorescence Enhancement of a Metal‐Organic Framework for Ultra‐Efficient Detection of Trace Benzene Vapor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303500 https://www.ncbi.nlm.nih.gov/pubmed/37069464 https://www.proquest.com/docview/2821518205 https://www.proquest.com/docview/2802886061 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hLuVS2kLb8FMZCYlTliS2k_WRn11RJDhU3YpbZDsTVeoqi5bshVMfoc_YJ2Em2QSWqqpULlEiexLHHtvf2J5vAA6HBm1ZKkm2iXOhMnQxONShcgnqONWZT9h3-Oo6vZioyxt988SLv-WH6BfcuGc04zV3cOvujh9JQ9kDe8DBv3lvjI12PrDFqOhLzx-VkHK27kVShhyFvmNtjJLjVfHVWekPqLmKXJupZ7wJtit0e-Lkx2BRu4G_f8bn-JK_egOvl7hUnLSK9BbWsHoHr866cHBbUI2ni9m8IX_yKEbVd1YXXloUs1JYcYWE4n___NX6dnox7g59CULFYjKt55ZSRw1hBQudY90cAqtYnCZMeucpVvc08opvlmyCbZiMR1_PLsJlsIbQSxolQql0wX630rihHqYeI69tRuDC-jSxkbMq1YjWmjIrYtIOHxvvsIyS0hdRURTyPaxXswo_giCbNEOnMJUkFXtjOL6RslGJkfFRZgMIu8bK_ZLJnANqTPOWgznJuRbzvhYDOOrz37YcHn_Nude1fb7sy3c5GaUEiwgp6QAO-mSqfd5asRXOFpyHlY2MwTiAD63O9J-SGTsXpyqApGn5f5QhP7n-POqfdv5HaBc2-D5sQiztwXo9X-A-YafafWr6xwO4xRI7 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcmgv5dEHgQKuhNRTtkmcx_pYyq62tLuHqlv1FtnORJVYZdGSveyJn8Bv5Jcw42xSLahCgkukxJ7Escf2N7bnG4APfYW6LGNJtokxfqzoorCf-LGJMAnTJLMR-w6PJ-loGn--S9rThOwL0_BDdAtu3DPceM0dnBekTx9YQ9kFu8fRv3lzjKz2pxzW21lV1x2DVETq2TgYSelzHPqWtzGITjflN-elP8DmJnZ1k8_wGZi22M2Zky-9ZW16dvUbo-N__ddz2F1DU3HW6NILeILVS9g-byPC7UE1nC3nC8f_ZFEMqnvWGF5dFPNSaDFGAvI_v_9o3DutGLbnvgQBYzGd1QtNqQPHWcFCn7B258AqFqc5k975EasVDb7iVpNZsA_T4eDmfOSv4zX4VtJA4cs4Kdj1VirTT_qpxcAmOiN8oW0a6cBoaiBErVWZFSEpiA2VNVgGUWmLoCgKeQBb1bzCVyDILM3QxJhKkgqtUhziKNZBiYGyQaY98NvWyu2azJxjaszyhoY5yrkW864WPTjp8n9taDwezXnUNn6-7s7fcrJLCRkRWEo8OO6SqfZ5d0VXOF9yHtY2sgdDDw4bpek-JTP2L05jDyLX9H8pQ342uRh0d6__Reg9bI9uxlf51cXk8g3s8HPfRVw6gq16scS3BKVq8851ll_QwxZW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB6hRQIu_P8EFjASEqd0ndhO4uOybbQLbIUQRXuLHGciJKp0VdLLnngEnpEnYSZpAgUhJLhESuxJHHtsf2N7vgF4nll0da0V2SZlGWpLF4uZCXUZo4kSk_qYfYdP58nxQr86M2c_efH3_BDjghv3jG685g5-XtUHP0hD2QN7wsG_eW-MjPbLOpEZ6_X03UggFZN29v5FSoUchn6gbZTxwa787rT0G9bcha7d3JPfADeUuj9y8mmyacuJv_iF0PF_fusmXN8CU3HYa9ItuITNbbh6NMSDuwNNvtys1h37k0cxaz6yvvDaoljVwolTJBj_7cvX3rnTi3w49SUIFovFsl07Sp11jBUsNMW2OwXWsDjNmPTOl9hc0NArPjgyCu7CIp-9PzoOt9EaQq9omAiVNhU73ipbZiZLPEpvXErowvkkdrJ0OjGIztk6rSJSDx9ZX2It49pXsqoqdQ_2mlWDD0CQUZpiqTFRJBV5aznAkXayRmm9TF0A4dBYhd9SmXNEjWXRkzDHBddiMdZiAC_G_Oc9iccfc-4PbV9sO_PngqxSwkUElUwAz8Zkqn3eW3ENrjach5WNrMEogPu9zoyfUil7Fyc6gLhr-b-UoTicn8zGu4f_IvQUrryd5sWbk_nrR3CNH4dduKV92GvXG3xMOKotn3Rd5TuXdBUO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescence+Enhancement+of+a+Metal-Organic+Framework+for+Ultra-Efficient+Detection+of+Trace+Benzene+Vapor&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Wen-Bin&rft.au=Wu%2C+Ying&rft.au=Zhong%2C+Xiao-Feng&rft.au=Chen%2C+Xiong-Hai&rft.date=2023-06-12&rft.eissn=1521-3773&rft.volume=62&rft.issue=24&rft.spage=e202303500&rft_id=info:doi/10.1002%2Fanie.202303500&rft_id=info%3Apmid%2F37069464&rft.externalDocID=37069464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |