Fluorescence Enhancement of a Metal‐Organic Framework for Ultra‐Efficient Detection of Trace Benzene Vapor

Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herei...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 24; pp. e202303500 - n/a
Main Authors Li, Wen‐Bin, Wu, Ying, Zhong, Xiao‐Feng, Chen, Xiong‐Hai, Liang, Gang, Ye, Jia‐Wen, Mo, Zong‐Wen, Chen, Xiao‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.06.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal–organic framework (MOF) that exhibits interesting pore‐opening behavior after immersing in H2O. The pore‐opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L−1. Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single‐crystal structure reveal that the special “bilateral π–π stacking” interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence. A new flexible metal–organic framework (MOF) exhibits significant and sensitive fluorescence “turn‐on” behavior for benzene vapor by virtue of unique “bilateral π–π stacking” interactions, enabling visual detection of a trace level of benzene for the first time.
AbstractList Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal–organic framework (MOF) that exhibits interesting pore‐opening behavior after immersing in H2O. The pore‐opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L−1. Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single‐crystal structure reveal that the special “bilateral π–π stacking” interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence. A new flexible metal–organic framework (MOF) exhibits significant and sensitive fluorescence “turn‐on” behavior for benzene vapor by virtue of unique “bilateral π–π stacking” interactions, enabling visual detection of a trace level of benzene for the first time.
Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal-organic framework (MOF) that exhibits interesting pore-opening behavior after immersing in H O. The pore-opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single-crystal structure reveal that the special "bilateral π-π stacking" interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.
Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal–organic framework (MOF) that exhibits interesting pore‐opening behavior after immersing in H2O. The pore‐opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L−1. Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single‐crystal structure reveal that the special “bilateral π–π stacking” interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.
Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal-organic framework (MOF) that exhibits interesting pore-opening behavior after immersing in H2 O. The pore-opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L-1 . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single-crystal structure reveal that the special "bilateral π-π stacking" interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal-organic framework (MOF) that exhibits interesting pore-opening behavior after immersing in H2 O. The pore-opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L-1 . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single-crystal structure reveal that the special "bilateral π-π stacking" interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.
Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal–organic framework (MOF) that exhibits interesting pore‐opening behavior after immersing in H 2 O. The pore‐opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L −1 . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single‐crystal structure reveal that the special “bilateral π–π stacking” interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.
Author Li, Wen‐Bin
Chen, Xiong‐Hai
Zhong, Xiao‐Feng
Wu, Ying
Liang, Gang
Ye, Jia‐Wen
Mo, Zong‐Wen
Chen, Xiao‐Ming
Author_xml – sequence: 1
  givenname: Wen‐Bin
  surname: Li
  fullname: Li, Wen‐Bin
  organization: Wuyi University
– sequence: 2
  givenname: Ying
  surname: Wu
  fullname: Wu, Ying
  organization: Wuyi University
– sequence: 3
  givenname: Xiao‐Feng
  surname: Zhong
  fullname: Zhong, Xiao‐Feng
  organization: Wuyi University
– sequence: 4
  givenname: Xiong‐Hai
  surname: Chen
  fullname: Chen, Xiong‐Hai
  organization: Wuyi University
– sequence: 5
  givenname: Gang
  surname: Liang
  fullname: Liang, Gang
  organization: Wuyi University
– sequence: 6
  givenname: Jia‐Wen
  surname: Ye
  fullname: Ye, Jia‐Wen
  organization: Wuyi University
– sequence: 7
  givenname: Zong‐Wen
  orcidid: 0000-0001-6925-9772
  surname: Mo
  fullname: Mo, Zong‐Wen
  email: wyuchemmzw@126.com
  organization: Wuyi University
– sequence: 8
  givenname: Xiao‐Ming
  surname: Chen
  fullname: Chen, Xiao‐Ming
  organization: Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37069464$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhFF4sIl27Ed5-NYyi6tVNpLy9WadcbgktiLk6gqJ35Cf2N_CY62BalSxWks-XnG43f22Y4Pnhh7y2HBAcQhekcLAUKCVAAv2B5XgueyquROOhdS5lWt-C7bH4brxNc1lK_YrqygbIqy2GN-1U0h0mDIG8qW_jum2pMfs2AzzL7QiN3977uL-C29ZLJVxJ5uQvyR2RCzq26MmG6X1jrjZukTjWRGF_ysX0ZMPT-S_0Wesq-4CfE1e2mxG-jNQz1gV6vl5fFJfnbx-fT46Cw3spKQy0K1XEglm3Wt6tIQGIUV54CmFAhrLEpFhNjYquXWFoY3Zk0WhDUttG0rD9iHbd9NDD8nGkbdu_THrkNPYRq0qOcsSih5Qt8_Qa_DFH2aLlGCK14LUIl690BN655avYmux3irH5NMQLEFTAzDEMlq40aco0gZuU5z0PPC9Lww_XdhSVs80R47Pys0W-HGdXT7H1ofnZ8u_7l_AEi-qmQ
CitedBy_id crossref_primary_10_1002_chem_202304334
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1039_D3TA07938D
crossref_primary_10_1021_acs_inorgchem_3c04398
crossref_primary_10_1016_j_foodchem_2024_139652
crossref_primary_10_1039_D4TA08445D
crossref_primary_10_1039_D3CE00576C
crossref_primary_10_1002_cjoc_202300448
crossref_primary_10_1016_j_jcis_2024_06_075
crossref_primary_10_1002_anie_202401880
crossref_primary_10_1002_adfm_202304773
crossref_primary_10_1039_D3QM00430A
crossref_primary_10_3389_fbioe_2023_1292136
crossref_primary_10_1021_acsami_4c07732
crossref_primary_10_1021_acs_inorgchem_3c02150
crossref_primary_10_1039_D4SC03973D
crossref_primary_10_1039_D4TC00658E
crossref_primary_10_1021_acs_jpcc_4c02856
crossref_primary_10_1016_j_saa_2024_124884
crossref_primary_10_1039_D3DT03867J
crossref_primary_10_1002_ange_202416286
crossref_primary_10_1039_D4QI00941J
crossref_primary_10_1002_adfm_202401562
crossref_primary_10_1021_acs_analchem_4c04125
crossref_primary_10_1016_j_ccr_2024_215690
crossref_primary_10_1002_ange_202401880
crossref_primary_10_1039_D3DT03223J
crossref_primary_10_1021_acs_cgd_4c00068
crossref_primary_10_1039_D3NJ04308H
crossref_primary_10_1016_j_poly_2023_116627
crossref_primary_10_1021_acs_analchem_4c01207
crossref_primary_10_1039_D4DT02350A
crossref_primary_10_1038_s41563_024_02029_1
crossref_primary_10_1039_D4TA02030H
crossref_primary_10_1016_j_seppur_2023_125883
crossref_primary_10_1007_s11426_024_2386_0
crossref_primary_10_1021_acs_cgd_4c01052
crossref_primary_10_1002_adom_202400692
crossref_primary_10_1002_anie_202416286
Cites_doi 10.1039/D0CE01619E
10.1016/j.progpolymsci.2015.01.002
10.1002/anie.201207610
10.1021/jacs.0c00368
10.1038/s41563-022-01237-x
10.1016/j.jssc.2019.121103
10.1002/adfm.201303986
10.1002/chem.201601812
10.1021/ja106851d
10.1039/C4TA04396K
10.1016/j.ccr.2021.213968
10.1016/j.scib.2022.05.009
10.1021/jacs.5b04178
10.1002/anie.202107436
10.1039/C4MH00210E
10.1002/smll.201703822
10.1002/adma.201601133
10.1016/j.ccr.2020.213738
10.1039/D2CS00442A
10.1016/j.ccr.2020.213565
10.1021/jacs.2c03114
10.1126/science.aar6833
10.1021/acsami.7b01758
10.1021/ja502643p
10.1038/nenergy.2016.34
10.1039/C9TA06632B
10.1002/chem.201502033
10.1002/advs.202104374
10.1016/j.mattod.2017.07.006
10.1039/C9CS00778D
10.1002/asia.201901168
10.1021/acs.chemrev.8b00408
10.1038/ncomms1170
10.1016/j.chempr.2018.05.017
10.1016/j.ccr.2017.06.007
10.1021/acs.analchem.6b01628
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202303500
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 37069464
10_1002_anie_202303500
ANIE202303500
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22101210, 22101211, 22090061, and 21821003
– fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program
  funderid: 2017BT01C161
– fundername: Municipal Science and Technology Bureau
  funderid: Jiangke 2021-76
– fundername: Municipal Science and Technology Bureau
  grantid: Jiangke 2021-76
– fundername: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program
  grantid: 2017BT01C161
– fundername: National Natural Science Foundation of China
  grantid: 22101210, 22101211, 22090061, and 21821003
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3730-345d123539b8586ce0c5a7110ac62a0ba465eeaa9f7d1ff4c19cbef02fcd0ddd3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:07:33 EDT 2025
Fri Jul 25 10:28:21 EDT 2025
Wed Feb 19 02:23:29 EST 2025
Tue Jul 01 01:47:10 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Wed Jan 22 16:21:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Trace
Benzene Vapor
Supramolecular Interaction
Metal-Organic Framework
Fluorescence Turn-on
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-345d123539b8586ce0c5a7110ac62a0ba465eeaa9f7d1ff4c19cbef02fcd0ddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6925-9772
PMID 37069464
PQID 2821518205
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2802886061
proquest_journals_2821518205
pubmed_primary_37069464
crossref_citationtrail_10_1002_anie_202303500
crossref_primary_10_1002_anie_202303500
wiley_primary_10_1002_anie_202303500_ANIE202303500
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 12, 2023
PublicationDateYYYYMMDD 2023-06-12
PublicationDate_xml – month: 06
  year: 2023
  text: June 12, 2023
  day: 12
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2019; 7
2021; 23
2011; 2
2021; 443
2020; 142
2022; 51
2021; 427
2020; 282
2019; 14
2022; 67
2014; 24
2022; 21
2018; 21
2017; 9
2014; 136
2011; 133
2019; 363
2022; 144
2015; 45
2016; 1
2018; 4
2014; 2
2015; 137
2018; 354
2022; 9
2015; 21
2013; 52
2020; 49
2019; 119
2021; 430
2016; 28
2021; 60
2018; 14
2016; 88
2016; 22
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_40_1
e_1_2_7_14_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_43_1
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_45_2
e_1_2_7_46_2
e_1_2_7_47_1
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_30_1
e_1_2_7_23_2
e_1_2_7_24_1
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 1
  start-page: 16304
  year: 2016
  publication-title: Nat. Energy
– volume: 67
  start-page: 1229
  year: 2022
  end-page: 1232
  publication-title: Sci. Bull.
– volume: 51
  start-page: 7427
  year: 2022
  end-page: 7508
  publication-title: Chem. Soc. Rev.
– volume: 142
  start-page: 6690
  year: 2020
  end-page: 6697
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 4034
  year: 2014
  end-page: 4041
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 19471
  year: 2019
  end-page: 19484
  publication-title: J. Mater. Chem. A
– volume: 430
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 119
  start-page: 4471
  year: 2019
  end-page: 4568
  publication-title: Chem. Rev.
– volume: 49
  start-page: 6364
  year: 2020
  end-page: 6401
  publication-title: Chem. Soc. Rev.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 133
  start-page: 4153
  year: 2011
  end-page: 4155
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 1604
  year: 2021
  end-page: 1615
  publication-title: CrystEngComm
– volume: 45
  start-page: 102
  year: 2015
  end-page: 118
  publication-title: Prog. Polym. Sci.
– volume: 88
  start-page: 6955
  year: 2016
  end-page: 6961
  publication-title: Anal. Chem.
– volume: 2
  start-page: 20450
  year: 2014
  end-page: 20453
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 245
  year: 2015
  end-page: 251
  publication-title: Mater. Horiz.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 21
  start-page: 15854
  year: 2015
  end-page: 15859
  publication-title: Chem. Eur. J.
– volume: 52
  start-page: 710
  year: 2013
  end-page: 713
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 10346
  year: 2016
  end-page: 10350
  publication-title: Chem. Eur. J.
– volume: 282
  year: 2020
  publication-title: J. Solid State Chem.
– volume: 144
  start-page: 12212
  year: 2022
  end-page: 12218
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 168
  year: 2011
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1911
  year: 2018
  end-page: 1927
  publication-title: Chem
– volume: 354
  start-page: 28
  year: 2018
  end-page: 45
  publication-title: Coord. Chem. Rev.
– volume: 14
  start-page: 4506
  year: 2019
  end-page: 4519
  publication-title: Chem. Asian J.
– volume: 427
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 60
  start-page: 23705
  year: 2021
  end-page: 23712
  publication-title: Angew. Chem. Int. Ed.
– volume: 136
  start-page: 7241
  year: 2014
  end-page: 7244
  publication-title: J. Am. Chem. Soc.
– volume: 443
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 21
  start-page: 689
  year: 2022
  end-page: 695
  publication-title: Nat. Mater.
– volume: 21
  start-page: 108
  year: 2018
  end-page: 121
  publication-title: Mater. Today
– volume: 137
  start-page: 9519
  year: 2015
  end-page: 9522
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 8819
  year: 2016
  end-page: 8860
  publication-title: Adv. Mater.
– volume: 363
  start-page: 387
  year: 2019
  end-page: 391
  publication-title: Science
– volume: 9
  start-page: 17208
  year: 2017
  end-page: 17217
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_27_2
  doi: 10.1039/D0CE01619E
– ident: e_1_2_7_34_1
– ident: e_1_2_7_20_1
– ident: e_1_2_7_4_2
  doi: 10.1016/j.progpolymsci.2015.01.002
– ident: e_1_2_7_36_2
  doi: 10.1002/anie.201207610
– ident: e_1_2_7_37_2
  doi: 10.1021/jacs.0c00368
– ident: e_1_2_7_19_2
  doi: 10.1038/s41563-022-01237-x
– ident: e_1_2_7_26_2
  doi: 10.1016/j.jssc.2019.121103
– ident: e_1_2_7_25_2
  doi: 10.1002/adfm.201303986
– ident: e_1_2_7_41_2
  doi: 10.1002/chem.201601812
– ident: e_1_2_7_46_2
  doi: 10.1021/ja106851d
– ident: e_1_2_7_31_2
  doi: 10.1039/C4TA04396K
– ident: e_1_2_7_40_1
– ident: e_1_2_7_11_1
– ident: e_1_2_7_13_2
  doi: 10.1016/j.ccr.2021.213968
– ident: e_1_2_7_29_2
  doi: 10.1016/j.scib.2022.05.009
– ident: e_1_2_7_42_2
  doi: 10.1021/jacs.5b04178
– ident: e_1_2_7_1_1
– ident: e_1_2_7_23_2
  doi: 10.1002/anie.202107436
– ident: e_1_2_7_38_1
  doi: 10.1039/C4MH00210E
– ident: e_1_2_7_35_2
  doi: 10.1002/smll.201703822
– ident: e_1_2_7_14_2
  doi: 10.1002/adma.201601133
– ident: e_1_2_7_2_2
  doi: 10.1016/j.ccr.2020.213738
– ident: e_1_2_7_39_1
– ident: e_1_2_7_44_1
– ident: e_1_2_7_18_2
  doi: 10.1039/D2CS00442A
– ident: e_1_2_7_9_2
  doi: 10.1016/j.ccr.2020.213565
– ident: e_1_2_7_17_2
  doi: 10.1021/jacs.2c03114
– ident: e_1_2_7_16_2
  doi: 10.1126/science.aar6833
– ident: e_1_2_7_28_2
  doi: 10.1021/acsami.7b01758
– ident: e_1_2_7_33_2
  doi: 10.1021/ja502643p
– ident: e_1_2_7_7_2
  doi: 10.1038/nenergy.2016.34
– ident: e_1_2_7_45_2
  doi: 10.1039/C9TA06632B
– ident: e_1_2_7_32_2
  doi: 10.1002/chem.201502033
– ident: e_1_2_7_30_1
– ident: e_1_2_7_8_2
  doi: 10.1002/advs.202104374
– ident: e_1_2_7_24_1
– ident: e_1_2_7_12_2
  doi: 10.1016/j.mattod.2017.07.006
– ident: e_1_2_7_22_2
  doi: 10.1039/C9CS00778D
– ident: e_1_2_7_43_1
  doi: 10.1002/asia.201901168
– ident: e_1_2_7_3_2
  doi: 10.1021/acs.chemrev.8b00408
– ident: e_1_2_7_6_1
– ident: e_1_2_7_47_1
  doi: 10.1038/ncomms1170
– ident: e_1_2_7_10_2
  doi: 10.1016/j.chempr.2018.05.017
– ident: e_1_2_7_21_2
  doi: 10.1016/j.ccr.2017.06.007
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.analchem.6b01628
– ident: e_1_2_7_15_1
SSID ssj0028806
Score 2.5950408
Snippet Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202303500
SubjectTerms Benzene
Benzene Vapor
Crystal structure
Electron transfer
Fluorescence
Fluorescence Turn-on
Mathematical analysis
Metal-organic frameworks
Metal–Organic Framework
Organic compounds
Supramolecular Interaction
Toxic hazards
Toxicity
Trace
Vapors
VOCs
Volatile organic compounds
Title Fluorescence Enhancement of a Metal‐Organic Framework for Ultra‐Efficient Detection of Trace Benzene Vapor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303500
https://www.ncbi.nlm.nih.gov/pubmed/37069464
https://www.proquest.com/docview/2821518205
https://www.proquest.com/docview/2802886061
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hLuVS2kLb8FMZCYlTliS2k_WRn11RJDhU3YpbZDsTVeoqi5bshVMfoc_YJ2Em2QSWqqpULlEiexLHHtvf2J5vAA6HBm1ZKkm2iXOhMnQxONShcgnqONWZT9h3-Oo6vZioyxt988SLv-WH6BfcuGc04zV3cOvujh9JQ9kDe8DBv3lvjI12PrDFqOhLzx-VkHK27kVShhyFvmNtjJLjVfHVWekPqLmKXJupZ7wJtit0e-Lkx2BRu4G_f8bn-JK_egOvl7hUnLSK9BbWsHoHr866cHBbUI2ni9m8IX_yKEbVd1YXXloUs1JYcYWE4n___NX6dnox7g59CULFYjKt55ZSRw1hBQudY90cAqtYnCZMeucpVvc08opvlmyCbZiMR1_PLsJlsIbQSxolQql0wX630rihHqYeI69tRuDC-jSxkbMq1YjWmjIrYtIOHxvvsIyS0hdRURTyPaxXswo_giCbNEOnMJUkFXtjOL6RslGJkfFRZgMIu8bK_ZLJnANqTPOWgznJuRbzvhYDOOrz37YcHn_Nude1fb7sy3c5GaUEiwgp6QAO-mSqfd5asRXOFpyHlY2MwTiAD63O9J-SGTsXpyqApGn5f5QhP7n-POqfdv5HaBc2-D5sQiztwXo9X-A-YafafWr6xwO4xRI7
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcmgv5dEHgQKuhNRTtkmcx_pYyq62tLuHqlv1FtnORJVYZdGSveyJn8Bv5Jcw42xSLahCgkukxJ7Escf2N7bnG4APfYW6LGNJtokxfqzoorCf-LGJMAnTJLMR-w6PJ-loGn--S9rThOwL0_BDdAtu3DPceM0dnBekTx9YQ9kFu8fRv3lzjKz2pxzW21lV1x2DVETq2TgYSelzHPqWtzGITjflN-elP8DmJnZ1k8_wGZi22M2Zky-9ZW16dvUbo-N__ddz2F1DU3HW6NILeILVS9g-byPC7UE1nC3nC8f_ZFEMqnvWGF5dFPNSaDFGAvI_v_9o3DutGLbnvgQBYzGd1QtNqQPHWcFCn7B258AqFqc5k975EasVDb7iVpNZsA_T4eDmfOSv4zX4VtJA4cs4Kdj1VirTT_qpxcAmOiN8oW0a6cBoaiBErVWZFSEpiA2VNVgGUWmLoCgKeQBb1bzCVyDILM3QxJhKkgqtUhziKNZBiYGyQaY98NvWyu2azJxjaszyhoY5yrkW864WPTjp8n9taDwezXnUNn6-7s7fcrJLCRkRWEo8OO6SqfZ5d0VXOF9yHtY2sgdDDw4bpek-JTP2L05jDyLX9H8pQ342uRh0d6__Reg9bI9uxlf51cXk8g3s8HPfRVw6gq16scS3BKVq8851ll_QwxZW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB6hRQIu_P8EFjASEqd0ndhO4uOybbQLbIUQRXuLHGciJKp0VdLLnngEnpEnYSZpAgUhJLhESuxJHHtsf2N7vgF4nll0da0V2SZlGWpLF4uZCXUZo4kSk_qYfYdP58nxQr86M2c_efH3_BDjghv3jG685g5-XtUHP0hD2QN7wsG_eW-MjPbLOpEZ6_X03UggFZN29v5FSoUchn6gbZTxwa787rT0G9bcha7d3JPfADeUuj9y8mmyacuJv_iF0PF_fusmXN8CU3HYa9ItuITNbbh6NMSDuwNNvtys1h37k0cxaz6yvvDaoljVwolTJBj_7cvX3rnTi3w49SUIFovFsl07Sp11jBUsNMW2OwXWsDjNmPTOl9hc0NArPjgyCu7CIp-9PzoOt9EaQq9omAiVNhU73ipbZiZLPEpvXErowvkkdrJ0OjGIztk6rSJSDx9ZX2It49pXsqoqdQ_2mlWDD0CQUZpiqTFRJBV5aznAkXayRmm9TF0A4dBYhd9SmXNEjWXRkzDHBddiMdZiAC_G_Oc9iccfc-4PbV9sO_PngqxSwkUElUwAz8Zkqn3eW3ENrjach5WNrMEogPu9zoyfUil7Fyc6gLhr-b-UoTicn8zGu4f_IvQUrryd5sWbk_nrR3CNH4dduKV92GvXG3xMOKotn3Rd5TuXdBUO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorescence+Enhancement+of+a+Metal-Organic+Framework+for+Ultra-Efficient+Detection+of+Trace+Benzene+Vapor&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Wen-Bin&rft.au=Wu%2C+Ying&rft.au=Zhong%2C+Xiao-Feng&rft.au=Chen%2C+Xiong-Hai&rft.date=2023-06-12&rft.eissn=1521-3773&rft.volume=62&rft.issue=24&rft.spage=e202303500&rft_id=info:doi/10.1002%2Fanie.202303500&rft_id=info%3Apmid%2F37069464&rft.externalDocID=37069464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon