Supramolecular Shish Kebabs: Higher Order Dimeric Structures from Ring‐in‐Rings Complexes with Conformational Adaptivity
Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring‐in‐ring(s) system comprising a hydrogen‐bonded macrocycle and cyclobis(paraquat‐o‐phenylene) tetracation (o‐Box) or cyclobis(paraquat‐p‐phenylene) tetracation (CBPQT4+, p‐Box) that as...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 14; pp. e202216690 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
27.03.2023
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring‐in‐ring(s) system comprising a hydrogen‐bonded macrocycle and cyclobis(paraquat‐o‐phenylene) tetracation (o‐Box) or cyclobis(paraquat‐p‐phenylene) tetracation (CBPQT4+, p‐Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single‐crystal X‐ray diffraction analysis, this ring‐in‐ring(s) system features the box‐directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o‐Box) and H5G (1 a/o‐Box). Remarkably, a dimeric shish‐kebab‐like ring‐in‐rings superstructure H7G2 (1 a/o‐Box) or H8G2 (1 a/p‐Box) is formed from the coaxial stacking of two ring‐in‐rings units. The formation of such unique dimeric superstructures is attributed to the large π‐surface of this 2D planar macrocycle and the conformational variation of both host and guest.
Multiple 2D H‐bonded macrocycles are threaded onto a box‐like cationic cyclophane, which further assembles into higher order dimeric shish‐kebab‐like structures. Such ring‐in‐ring(s) superstructures maximize their stability through the conformational adaptivity of both host and guest. |
---|---|
AbstractList | Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring‐in‐ring(s) system comprising a hydrogen‐bonded macrocycle and cyclobis(paraquat‐o‐phenylene) tetracation (o‐Box) or cyclobis(paraquat‐p‐phenylene) tetracation (CBPQT4+, p‐Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single‐crystal X‐ray diffraction analysis, this ring‐in‐ring(s) system features the box‐directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o‐Box) and H5G (1 a/o‐Box). Remarkably, a dimeric shish‐kebab‐like ring‐in‐rings superstructure H7G2 (1 a/o‐Box) or H8G2 (1 a/p‐Box) is formed from the coaxial stacking of two ring‐in‐rings units. The formation of such unique dimeric superstructures is attributed to the large π‐surface of this 2D planar macrocycle and the conformational variation of both host and guest. Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a hydrogen-bonded macrocycle and cyclobis(paraquat-o-phenylene) tetracation (o-Box) or cyclobis(paraquat-p-phenylene) tetracation (CBPQT4+, p-Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single-crystal X-ray diffraction analysis, this ring-in-ring(s) system features the box-directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o-Box) and H5G (1a/o-Box). Remarkably, a dimeric shish-kebab-like ring-in-rings superstructure H7G2 (1a/o-Box) or H8G2 (1 a/p-Box) is formed from the coaxial stacking of two ring-in-rings units. The formation of such unique dimeric superstructures is attributed to the large p-surface of this 2D planar macrocycle and the conformational variation of both host and guest. Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring‐in‐ring(s) system comprising a hydrogen‐bonded macrocycle and cyclobis(paraquat‐ o ‐phenylene) tetracation ( o ‐Box ) or cyclobis(paraquat‐ p ‐phenylene) tetracation ( CBPQT 4+ , p ‐Box ) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single‐crystal X‐ray diffraction analysis, this ring‐in‐ring(s) system features the box‐directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G ( 1 a / o ‐Box ) and H5G ( 1 a / o ‐Box ). Remarkably, a dimeric shish‐kebab‐like ring‐in‐rings superstructure H7G2 ( 1 a / o ‐Box ) or H8G2 ( 1 a / p ‐Box ) is formed from the coaxial stacking of two ring‐in‐rings units. The formation of such unique dimeric superstructures is attributed to the large π‐surface of this 2D planar macrocycle and the conformational variation of both host and guest. Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a hydrogen-bonded macrocycle and cyclobis(paraquat-o-phenylene) tetracation (o-Box) or cyclobis(paraquat-p-phenylene) tetracation (CBPQT4+ , p-Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single-crystal X-ray diffraction analysis, this ring-in-ring(s) system features the box-directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o-Box) and H5G (1 a/o-Box). Remarkably, a dimeric shish-kebab-like ring-in-rings superstructure H7G2 (1 a/o-Box) or H8G2 (1 a/p-Box) is formed from the coaxial stacking of two ring-in-rings units. The formation of such unique dimeric superstructures is attributed to the large π-surface of this 2D planar macrocycle and the conformational variation of both host and guest.Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a hydrogen-bonded macrocycle and cyclobis(paraquat-o-phenylene) tetracation (o-Box) or cyclobis(paraquat-p-phenylene) tetracation (CBPQT4+ , p-Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single-crystal X-ray diffraction analysis, this ring-in-ring(s) system features the box-directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o-Box) and H5G (1 a/o-Box). Remarkably, a dimeric shish-kebab-like ring-in-rings superstructure H7G2 (1 a/o-Box) or H8G2 (1 a/p-Box) is formed from the coaxial stacking of two ring-in-rings units. The formation of such unique dimeric superstructures is attributed to the large π-surface of this 2D planar macrocycle and the conformational variation of both host and guest. Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a hydrogen-bonded macrocycle and cyclobis(paraquat-o-phenylene) tetracation (o-Box) or cyclobis(paraquat-p-phenylene) tetracation (CBPQT , p-Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single-crystal X-ray diffraction analysis, this ring-in-ring(s) system features the box-directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o-Box) and H5G (1 a/o-Box). Remarkably, a dimeric shish-kebab-like ring-in-rings superstructure H7G2 (1 a/o-Box) or H8G2 (1 a/p-Box) is formed from the coaxial stacking of two ring-in-rings units. The formation of such unique dimeric superstructures is attributed to the large π-surface of this 2D planar macrocycle and the conformational variation of both host and guest. Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring‐in‐ring(s) system comprising a hydrogen‐bonded macrocycle and cyclobis(paraquat‐o‐phenylene) tetracation (o‐Box) or cyclobis(paraquat‐p‐phenylene) tetracation (CBPQT4+, p‐Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single‐crystal X‐ray diffraction analysis, this ring‐in‐ring(s) system features the box‐directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o‐Box) and H5G (1 a/o‐Box). Remarkably, a dimeric shish‐kebab‐like ring‐in‐rings superstructure H7G2 (1 a/o‐Box) or H8G2 (1 a/p‐Box) is formed from the coaxial stacking of two ring‐in‐rings units. The formation of such unique dimeric superstructures is attributed to the large π‐surface of this 2D planar macrocycle and the conformational variation of both host and guest. Multiple 2D H‐bonded macrocycles are threaded onto a box‐like cationic cyclophane, which further assembles into higher order dimeric shish‐kebab‐like structures. Such ring‐in‐ring(s) superstructures maximize their stability through the conformational adaptivity of both host and guest. |
ArticleNumber | 202216690 |
Author | Yang, Cheng Shi, Wei‐Qun Li, Xiaowei Mei, Lei Huang, Song Yuan, Lihua Guo, Chenxing Li, Xiaopeng Feng, Wen Wang, Zhenwen |
Author_xml | – sequence: 1 givenname: Zhenwen orcidid: 0000-0002-3317-4467 surname: Wang fullname: Wang, Zhenwen organization: Sichuan University – sequence: 2 givenname: Lei orcidid: 0000-0002-2926-7265 surname: Mei fullname: Mei, Lei organization: Chinese Academy of Sciences – sequence: 3 givenname: Chenxing orcidid: 0000-0001-6640-6941 surname: Guo fullname: Guo, Chenxing organization: Shenzhen University – sequence: 4 givenname: Song orcidid: 0000-0001-8045-9986 surname: Huang fullname: Huang, Song organization: Sichuan University – sequence: 5 givenname: Wei‐Qun orcidid: 0000-0001-9929-9732 surname: Shi fullname: Shi, Wei‐Qun organization: Chinese Academy of Sciences – sequence: 6 givenname: Xiaowei orcidid: 0000-0001-9479-4857 surname: Li fullname: Li, Xiaowei organization: Sichuan University – sequence: 7 givenname: Wen orcidid: 0000-0002-1590-071X surname: Feng fullname: Feng, Wen organization: Sichuan University – sequence: 8 givenname: Xiaopeng orcidid: 0000-0001-9655-9551 surname: Li fullname: Li, Xiaopeng email: xiaopengli@szu.edu.cn organization: Shenzhen University – sequence: 9 givenname: Cheng orcidid: 0000-0002-2049-1324 surname: Yang fullname: Yang, Cheng email: yangchengyc@scu.edu.cn organization: Sichuan University – sequence: 10 givenname: Lihua orcidid: 0000-0003-0578-4214 surname: Yuan fullname: Yuan, Lihua email: lhyuan@scu.edu.cn organization: Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36652350$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstqFEEUhhuJmItuXUqDGyH0WJfuurgb2miCwYCj66a6-lSmQnfXWFVtMuDCR_AZfRJrnHGEgOjm1Dnw_XV-Dv9xdjC6EbLsKUYzjBB5qUYLM4IIwYxJ9CA7whXBBeWcHqS-pLTgosKH2XEIN4kXArFH2SFlrCK0QkfZ18W08mpwPeipVz5fLG1Y5u-gVW14lZ_b6yX4_Mp3qb62A3ir80X0k46Th5Ab74b8gx2vf3z7bsdUNn3IazeserhLwK2NyzSOxvlBRetG1efzTq2i_WLj-nH20Kg-wJPde5J9enP2sT4vLq_eXtTzy0JTTlFBjKikhJKREtGq1UK0bWdKxYiSBDFpKtXi1iBJgauSMm2M5sxgw7tSicrQk-zF9t-Vd58nCLEZbNDQ92oEN4WGcMY4wZhXCX1-D71xk0-2N5QQtJSoZIl6tqOmdoCuWXk7KL9uft81AWIL3ELrTNAWRg17DKHkVZYVkalDuLbx121qN40xSU__X5ro2ZbW3oXgwexJjJpNQppNQpp9QpKgvCfQu_XRK9v_XSZ3rmwP638saebvL87-aH8CHL7Q5A |
CitedBy_id | crossref_primary_10_1002_ange_202422546 crossref_primary_10_3390_biophysica3030031 crossref_primary_10_1002_ange_202414072 crossref_primary_10_1002_anie_202422546 crossref_primary_10_1002_chem_202303394 crossref_primary_10_1021_acs_inorgchem_4c01376 crossref_primary_10_1039_D4CC00178H crossref_primary_10_1039_D2CS00856D crossref_primary_10_1002_anie_202414072 crossref_primary_10_1002_chem_202304161 crossref_primary_10_1002_chem_202404257 crossref_primary_10_1021_acs_cgd_3c00677 crossref_primary_10_1021_acsmacrolett_4c00815 |
Cites_doi | 10.1002/anie.200503988 10.1021/ja511443p 10.1002/anie.201411619 10.1002/ange.19951071505 10.1021/ar800064f 10.1039/D1SC01226F 10.1002/1521-3757(20010601)113:11<2177::AID-ANGE2177>3.0.CO;2-G 10.1016/S0040-4020(01)87583-9 10.1039/C4CS00167B 10.1002/anie.197906231 10.1021/jacs.6b00712 10.1016/j.tibs.2004.09.006 10.1021/ja0474547 10.1021/cr200034u 10.1002/ange.202116509 10.1002/anie.201501507 10.1002/ange.201702992 10.1002/chem.201604149 10.1021/ja991747w 10.1126/science.1070821 10.1021/jacs.9b02866 10.1016/j.cclet.2020.11.002 10.1007/s11172-005-0148-0 10.1002/ange.200503988 10.1002/anie.199515551 10.1002/ange.19881001132 10.1002/ange.201208397 10.1021/jacs.0c07745 10.1126/science.aav4677 10.1016/0079-6107(94)00008-W 10.1039/D1QO00764E 10.1039/D0CS00341G 10.1038/s41467-020-17134-3 10.1002/ange.201501507 10.1038/s41557-021-00658-6 10.1021/acs.accounts.8b00313 10.1002/chem.201102919 10.1039/D1SC06236K 10.1002/anie.198815471 10.1016/j.ccr.2018.06.010 10.1002/1521-3773(20010601)40:11<2119::AID-ANIE2119>3.0.CO;2-4 10.1038/s41467-018-07673-1 10.1021/jacs.9b09756 10.1021/ja208548b 10.1039/C6SC04714A 10.1002/anie.201208397 10.18388/abp.2016_1335 10.1002/pro.2206 10.1021/acs.chemrev.0c00321 10.1021/ar700266f 10.1002/1521-3757(20020118)114:2<285::AID-ANGE285>3.0.CO;2-6 10.1246/bcsj.61.3825 10.1002/ange.201906069 10.1039/c2cc36698c 10.1002/anie.200300589 10.1039/B606803K 10.1021/jo961758x 10.1021/jacs.5b07956 10.1002/wcms.1493 10.1002/anie.201906912 10.1021/acscentsci.7b00535 10.1021/cr9900331 10.1021/ar040226x 10.1002/ange.19790910831 10.1039/C5CS00157A 10.31635/ccschem.021.202101408 10.1021/cr300116k 10.1039/D1CC05501A 10.1002/(SICI)1521-3757(20000403)112:7<1288::AID-ANGE1288>3.0.CO;2-J 10.1002/anie.201906069 10.1002/(SICI)1521-3773(20000403)39:7<1239::AID-ANIE1239>3.0.CO;2-1 10.1002/ange.200300589 10.1002/anie.202116509 10.1016/j.cclet.2020.07.028 10.1002/anie.201702992 10.1021/jacs.6b04436 10.1038/s41570-018-0062-2 10.1021/ar500037v 10.1002/1521-3773(20020118)41:2<275::AID-ANIE275>3.0.CO;2-M 10.1002/ange.201411619 10.1002/ange.201906912 10.1039/C6QO00024J 10.1039/c6sc04714a 10.1039/c5cs00157a 10.1039/b606803k 10.1039/c6qo00024j 10.1039/d1sc06236k 10.1039/d0cs00341g 10.1039/d1sc01226f 10.1039/d1qo00764e 10.1039/c4cs00167b 10.1039/d1cc05501a |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM BLEPL BNZSX DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202216690 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) Web of Science CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36652350 000939452900001 10_1002_anie_202216690 ANIE202216690 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: YJ2021158 – fundername: National Natural Science Foundation of China funderid: 21971170 and 22271202; 22125106; 92056116 and 21871194; 22122609 – fundername: State Key Laboratory of Supramolecular Structure and Materials funderid: SKLSSM2022030 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21971170; 22271202; 22125106; 92056116; 21871194; 22122609 – fundername: Developmental Fund for Science and Technology of Shenzhen grantid: RCJC20200714114556036 – fundername: Fundamental Research Funds for the Central Universities grantid: YJ2021158 – fundername: Open Project of State Key Laboratory of Supramolecular Structure and Materials grantid: SKLSSM2022030 – fundername: National Natural Science Foundation of China grantid: 21971170 and 22271202 – fundername: National Natural Science Foundation of China grantid: 22125106 – fundername: National Natural Science Foundation of China grantid: 92056116 and 21871194 – fundername: National Natural Science Foundation of China grantid: 22122609 – fundername: State Key Laboratory of Supramolecular Structure and Materials grantid: SKLSSM2022030 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-2f8599e4624035bc88bbdf4a62a92069f5ab1bf093e7a436cffc76f1f7d4a85f3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 18 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000939452900001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:39:44 EDT 2025 Fri Jul 25 10:35:48 EDT 2025 Mon Jul 21 06:07:50 EDT 2025 Fri Aug 29 16:17:37 EDT 2025 Wed Jul 09 18:40:28 EDT 2025 Tue Jul 01 01:47:03 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Wed Jan 22 16:22:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | MACROCYCLES Host-Guest Systems ENCAPSULATION Self-Assembly GAMMA-CYCLODEXTRIN MODEL Ring-in-Rings CHEMICAL TOPOLOGY Pseudo-Rotaxanes BIOLOGY CHEMISTRY INCLUSION Supramolecular Chemistry EFFICIENT |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3730-2f8599e4624035bc88bbdf4a62a92069f5ab1bf093e7a436cffc76f1f7d4a85f3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9479-4857 0000-0001-8045-9986 0000-0002-1590-071X 0000-0001-9655-9551 0000-0002-2926-7265 0000-0002-2049-1324 0000-0001-9929-9732 0000-0003-0578-4214 0000-0001-6640-6941 0000-0002-3317-4467 |
PMID | 36652350 |
PQID | 2788349046 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | webofscience_primary_000939452900001CitationCount crossref_primary_10_1002_anie_202216690 crossref_citationtrail_10_1002_anie_202216690 webofscience_primary_000939452900001 wiley_primary_10_1002_anie_202216690_ANIE202216690 proquest_journals_2788349046 proquest_miscellaneous_2766721175 pubmed_primary_36652350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 27, 2023 |
PublicationDateYYYYMMDD | 2023-03-27 |
PublicationDate_xml | – month: 03 year: 2023 text: March 27, 2023 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 8 2004; 126 2004; 29 2013; 22 2000 2000; 39 112 2020; 120 2020 2020; 59 132 1999; 121 2012; 18 2020; 11 1979 1979; 18 91 2011; 111 2013 2013; 52 125 2019; 363 1995; 63 2018; 9 2022 2022; 61 134 2018; 374 2021; 32 2018; 4 2015; 137 2002 2002; 41 114 1986; 42 2015; 44 2020; 49 2015 2015; 54 127 2005; 38 2016; 45 2021; 8 1997; 62 2004 2004; 43 116 2019; 3 2013; 49 2020; 142 2002; 295 2014; 47 2006 2017 2017; 56 129 1988 1988; 27 100 2019; 141 2019 2019; 58 131 2011; 133 2021; 13 2006 2006; 45 118 2021; 57 2004; 53 2021; 12 2012; 112 2016; 3 2021; 11 2022; 4 1995 1995; 34 107 2022; 13 2016; 63 1988; 61 2018; 51 2016; 138 2000; 100 2008; 41 2001 2001; 40 113 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_41_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_56_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_46_2 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 e_1_2_7_59_2 (000939452900001.39) 1979; 91 Ubasart, E (WOS:000640474700003) 2021; 13 Lehn, JM (WOS:000315503800016) 2013; 52 Gong, WJ (WOS:000388471700018) 2016; 22 Parac, TN (WOS:000086418600015) 2000; 39 (000939452900001.9) 2022; 134 ODELL, B (WOS:A1988R924700029) 1988; 27 (000939452900001.57) 2006; 118 Gao, WX (WOS:000550644700012) 2020; 120 KAMITORI, S (WOS:A1988R103900006) 1988; 61 Wu, H (WOS:000577115100038) 2020; 142 Forgan, RS (WOS:000295542700007) 2011; 111 Saha, S (WOS:000443664800001) 2018; 374 JONES, S (WOS:A1995QN61000002) 1995; 63 Li, YC (WOS:000635538300026) 2021; 32 Chichili, VPR (WOS:000314216100004) 2013; 22 Liu, Y (WOS:000374274100020) 2016; 138 Pullen, S (WOS:000648683800001) 2021; 12 (000939452900001.22) 2017; 129 (000939452900001.69) 2004; 116 Fu, JH (WOS:000354260000020) 2015; 54 Chen, Q (WOS:000739496900001) 2022; 13 Qi, ZH (WOS:000346703600009) 2015; 44 Bannwarth, C (WOS:000557338100001) 2021; 11 Wang, XP (WOS:000545930500012) 2020; 49 Pieters, BJGE (WOS:000367250700003) 2016; 45 Gong, B (WOS:000260254300015) 2008; 41 Li, XW (WOS:000395906900050) 2017; 8 Cai, K (WOS:000452633700015) 2018; 9 Forgan, RS (WOS:000298547800026) 2012; 18 (000939452900001.51) 2015; 127 BERNSTEIN, J (WOS:A1995RT72600002) 1995; 34 Yuan, LH (WOS:000223799900003) 2004; 126 Rousseaux, SAL (WOS:000362628300045) 2015; 137 Sun, B (WOS:000349138600030) 2015; 137 Müller-Dethlefs, K (WOS:000085235400009) 2000; 100 Zhang, DW (WOS:000469292300042) 2019; 141 (000939452900001.49) 2000; 112 (000939452900001.73) 2019; 131 Lipke, MC (WOS:000428801200011) 2018; 4 Kim, SY (WOS:000169168100029) 2001; 40 Zhang, W (WOS:000238927000004) 2006; 45 Nowick, JS (WOS:000260254300010) 2008; 41 Vantomme, G (WOS:000462738000017) 2019; 363 Cantrill, SJ (WOS:000226474200001) 2005; 38 Ye, ZC (WOS:000479792300001) 2019; 58 (000939452900001.11) 2013; 125 Bols, PS (WOS:000445441200020) 2018; 51 (000939452900001.18) 2020; 132 GEUDER, W (WOS:A1986A952000016) 1986; 42 Kalenius, E (WOS:000455454200004) 2019; 3 Day, AI (WOS:000173523400007) 2002; 41 Sauvage, JP (WOS:000408605300014) 2017; 56 Klosterman, JK (WOS:000377257800002) 2016; 3 Bindl, D (WOS:000748182600001) 2022; 61 Dalgarno, SJ (WOS:000241786500001) 2006 Lützen, A (WOS:000082250000044) 1999; 121 Zhang, DW (WOS:000309628100007) 2012; 112 Dumartin, M (WOS:000498281600046) 2019; 141 Malgowska, M (WOS:000392603500002) 2016; 63 Yang, YA (WOS:000297398900024) 2011; 133 (000939452900001.67) 1988; 100 (000939452900001.26) 2001; 113 Gil-Ramírez, G (WOS:000354260000004) 2015; 54 Lei, ZQ (WOS:000379455600032) 2016; 138 (000939452900001.20) 2015; 127 Davis, JT (WOS:000188833000005) 2004; 43 Mitkina, TV (WOS:000228070800015) 2004; 53 Gafni, A (WOS:A1997WC12200018) 1997; 62 VOGTLE, F (WOS:A1979HV62500016) 1979; 18 Whitesides, GM (WOS:000174712600045) 2002; 295 Xu, YZ (WOS:000486877600001) 2020; 59 Marianayagam, NJ (WOS:000225148800011) 2004; 29 Liu, ZJ (WOS:000678218100001) 2021; 8 (000939452900001.43) 2002; 114 Zhou, YD (WOS:000721886800001) 2021; 57 Jin, YH (WOS:000336415700013) 2014; 47 Luo, D (WOS:000644739200009) 2021; 32 (000939452900001.76) 1995; 107 Fu, HL (WOS:000317931500004) 2013; 49 Wang, H (WOS:000794308100003) 2022; 4 Xie, JL (WOS:000546623500048) 2020; 11 |
References_xml | – volume: 4 start-page: 785 year: 2022 end-page: 808 publication-title: CCS Chem. – volume: 3 start-page: 4 year: 2019 end-page: 14 publication-title: Nat. Chem. Rev. – volume: 8 start-page: 2091 year: 2017 end-page: 2100 publication-title: Chem. Sci. – volume: 121 start-page: 7455 year: 1999 end-page: 7456 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 6288 year: 2020 end-page: 6325 publication-title: Chem. Rev. – volume: 44 start-page: 515 year: 2015 end-page: 531 publication-title: Chem. Soc. Rev. – volume: 63 start-page: 31 year: 1995 end-page: 65 publication-title: Prog. Biophys. Mol. Biol. – volume: 22 start-page: 17612 year: 2016 end-page: 17618 publication-title: Chem. Eur. J. – volume: 3 start-page: 661 year: 2016 end-page: 666 publication-title: Org. Chem. Front. – volume: 137 start-page: 1556 year: 2015 end-page: 1564 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 1376 year: 2008 end-page: 1386 publication-title: Acc. Chem. Res. – volume: 49 start-page: 4176 year: 2020 end-page: 4188 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 12713 year: 2015 end-page: 12718 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 8339 year: 2019 end-page: 8345 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 6110 6208 year: 2015 2015 end-page: 6150 6249 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 start-page: 24 year: 2016 end-page: 39 publication-title: Chem. Soc. Rev. – volume: 32 start-page: 1397 year: 2021 end-page: 1399 publication-title: Chin. Chem. Lett. – volume: 363 start-page: 1396 year: 2019 publication-title: Science – volume: 41 start-page: 1319 year: 2008 end-page: 1330 publication-title: Acc. Chem. Res. – volume: 142 start-page: 16849 year: 2020 end-page: 16860 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 153 year: 2013 end-page: 167 publication-title: Protein Sci. – volume: 59 132 start-page: 559 567 year: 2020 2020 end-page: 573 582 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 18590 year: 2011 end-page: 18593 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 6231 6329 year: 2015 2015 end-page: 6235 6333 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 4567 year: 2006 end-page: 4574 publication-title: Chem. Commun. – volume: 138 start-page: 8253 year: 2016 end-page: 8258 publication-title: J. Am. Chem. Soc. – volume: 45 118 start-page: 4416 4524 year: 2006 2006 end-page: 4439 4548 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 112 start-page: 1239 1288 year: 2000 2000 end-page: 1242 1291 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 4127 year: 2013 end-page: 4144 publication-title: Chem. Commun. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 113 start-page: 2119 2177 year: 2001 2001 end-page: 2121 2179 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 112 start-page: 5271 year: 2012 end-page: 5316 publication-title: Chem. Rev. – volume: 43 116 start-page: 668 684 year: 2004 2004 end-page: 698 716 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 100 start-page: 143 year: 2000 end-page: 168 publication-title: Chem. Rev. – volume: 111 start-page: 5434 year: 2011 end-page: 5464 publication-title: Chem. Rev. – volume: 374 start-page: 1 year: 2018 end-page: 14 publication-title: Coord. Chem. Rev. – volume: 42 start-page: 1665 year: 1986 end-page: 1677 publication-title: Tetrahedron – volume: 38 start-page: 1 year: 2005 end-page: 9 publication-title: Acc. Chem. Res. – volume: 141 start-page: 18308 year: 2019 end-page: 18317 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3348 year: 2020 publication-title: Nat. Commun. – volume: 57 start-page: 13506 year: 2021 end-page: 13509 publication-title: Chem. Commun. – volume: 13 start-page: 420 year: 2021 end-page: 427 publication-title: Nat. Chem. – volume: 4 start-page: 362 year: 2018 end-page: 371 publication-title: ACS Cent. Sci. – volume: 53 start-page: 2519 year: 2004 end-page: 2524 publication-title: Russ. Chem. Bull. – volume: 126 start-page: 11120 year: 2004 end-page: 11121 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2083 year: 2018 end-page: 2092 publication-title: Acc. Chem. Res. – volume: 29 start-page: 618 year: 2004 end-page: 625 publication-title: Trends Biochem. Sci. – volume: 8 start-page: 5271 year: 2021 end-page: 5279 publication-title: Org. Chem. Front. – volume: 11 year: 2021 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 18 start-page: 202 year: 2012 end-page: 212 publication-title: Chem. Eur. J. – volume: 18 91 start-page: 623 676 year: 1979 1979 end-page: 624 677 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 58 131 start-page: 12519 12649 year: 2019 2019 end-page: 12523 12653 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 62 start-page: 120 year: 1997 end-page: 125 publication-title: J. Org. Chem. – volume: 56 129 start-page: 11080 11228 year: 2017 2017 end-page: 11093 11242 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 start-page: 735 year: 2021 end-page: 739 publication-title: Chin. Chem. Lett. – volume: 63 start-page: 609 year: 2016 end-page: 621 publication-title: Acta Biochim. Pol. – volume: 34 107 start-page: 1555 1689 year: 1995 1995 end-page: 1573 1708 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 12 start-page: 7269 year: 2021 end-page: 7293 publication-title: Chem. Sci. – volume: 138 start-page: 4843 year: 2016 end-page: 4851 publication-title: J. Am. Chem. Soc. – volume: 27 100 start-page: 1547 1605 year: 1988 1988 end-page: 1550 1608 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 61 start-page: 3825 year: 1988 end-page: 3830 publication-title: Bull. Chem. Soc. Jpn. – volume: 52 125 start-page: 2836 2906 year: 2013 2013 end-page: 2850 2921 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 5275 year: 2018 publication-title: Nat. Commun. – volume: 13 start-page: 798 year: 2022 end-page: 803 publication-title: Chem. Sci. – volume: 295 start-page: 2418 year: 2002 end-page: 2421 publication-title: Science – volume: 47 start-page: 1575 year: 2014 end-page: 1586 publication-title: Acc. Chem. Res. – volume: 41 114 start-page: 275 285 year: 2002 2002 end-page: 277 287 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_7_46_1 doi: 10.1002/anie.200503988 – ident: e_1_2_7_42_1 doi: 10.1021/ja511443p – ident: e_1_2_7_16_1 doi: 10.1002/anie.201411619 – ident: e_1_2_7_61_2 doi: 10.1002/ange.19951071505 – ident: e_1_2_7_7_1 doi: 10.1021/ar800064f – ident: e_1_2_7_18_1 doi: 10.1039/D1SC01226F – ident: e_1_2_7_20_2 doi: 10.1002/1521-3757(20010601)113:11<2177::AID-ANGE2177>3.0.CO;2-G – ident: e_1_2_7_54_1 doi: 10.1016/S0040-4020(01)87583-9 – ident: e_1_2_7_64_1 doi: 10.1039/C4CS00167B – ident: e_1_2_7_32_1 doi: 10.1002/anie.197906231 – ident: e_1_2_7_48_1 doi: 10.1021/jacs.6b00712 – ident: e_1_2_7_4_1 doi: 10.1016/j.tibs.2004.09.006 – ident: e_1_2_7_49_1 doi: 10.1021/ja0474547 – ident: e_1_2_7_12_1 doi: 10.1021/cr200034u – ident: e_1_2_7_8_2 doi: 10.1002/ange.202116509 – ident: e_1_2_7_41_1 doi: 10.1002/anie.201501507 – ident: e_1_2_7_17_2 doi: 10.1002/ange.201702992 – ident: e_1_2_7_23_1 doi: 10.1002/chem.201604149 – ident: e_1_2_7_39_1 doi: 10.1021/ja991747w – ident: e_1_2_7_2_1 doi: 10.1126/science.1070821 – ident: e_1_2_7_26_1 doi: 10.1021/jacs.9b02866 – ident: e_1_2_7_45_1 doi: 10.1016/j.cclet.2020.11.002 – ident: e_1_2_7_36_1 doi: 10.1007/s11172-005-0148-0 – ident: e_1_2_7_46_2 doi: 10.1002/ange.200503988 – ident: e_1_2_7_61_1 doi: 10.1002/anie.199515551 – ident: e_1_2_7_55_2 doi: 10.1002/ange.19881001132 – ident: e_1_2_7_9_2 doi: 10.1002/ange.201208397 – ident: e_1_2_7_31_1 doi: 10.1021/jacs.0c07745 – ident: e_1_2_7_10_1 doi: 10.1126/science.aav4677 – ident: e_1_2_7_5_1 doi: 10.1016/0079-6107(94)00008-W – ident: e_1_2_7_67_1 doi: 10.1039/D1QO00764E – ident: e_1_2_7_62_1 doi: 10.1039/D0CS00341G – ident: e_1_2_7_38_1 doi: 10.1038/s41467-020-17134-3 – ident: e_1_2_7_41_2 doi: 10.1002/ange.201501507 – ident: e_1_2_7_43_1 doi: 10.1038/s41557-021-00658-6 – ident: e_1_2_7_13_1 doi: 10.1021/acs.accounts.8b00313 – ident: e_1_2_7_27_1 doi: 10.1002/chem.201102919 – ident: e_1_2_7_37_1 doi: 10.1039/D1SC06236K – ident: e_1_2_7_55_1 doi: 10.1002/anie.198815471 – ident: e_1_2_7_19_1 doi: 10.1016/j.ccr.2018.06.010 – ident: e_1_2_7_20_1 doi: 10.1002/1521-3773(20010601)40:11<2119::AID-ANIE2119>3.0.CO;2-4 – ident: e_1_2_7_25_1 doi: 10.1038/s41467-018-07673-1 – ident: e_1_2_7_30_1 doi: 10.1021/jacs.9b09756 – ident: e_1_2_7_63_1 doi: 10.1021/ja208548b – ident: e_1_2_7_58_1 doi: 10.1039/C6SC04714A – ident: e_1_2_7_9_1 doi: 10.1002/anie.201208397 – ident: e_1_2_7_57_1 doi: 10.18388/abp.2016_1335 – ident: e_1_2_7_6_1 doi: 10.1002/pro.2206 – ident: e_1_2_7_14_1 doi: 10.1021/acs.chemrev.0c00321 – ident: e_1_2_7_50_1 doi: 10.1021/ar700266f – ident: e_1_2_7_35_2 doi: 10.1002/1521-3757(20020118)114:2<285::AID-ANGE285>3.0.CO;2-6 – ident: e_1_2_7_33_1 doi: 10.1246/bcsj.61.3825 – ident: e_1_2_7_15_2 doi: 10.1002/ange.201906069 – ident: e_1_2_7_52_1 doi: 10.1039/c2cc36698c – ident: e_1_2_7_56_1 doi: 10.1002/anie.200300589 – ident: e_1_2_7_21_1 doi: 10.1039/B606803K – ident: e_1_2_7_34_1 doi: 10.1021/jo961758x – ident: e_1_2_7_22_1 doi: 10.1021/jacs.5b07956 – ident: e_1_2_7_60_1 doi: 10.1002/wcms.1493 – ident: e_1_2_7_59_1 doi: 10.1002/anie.201906912 – ident: e_1_2_7_29_1 doi: 10.1021/acscentsci.7b00535 – ident: e_1_2_7_1_1 doi: 10.1021/cr9900331 – ident: e_1_2_7_11_1 doi: 10.1021/ar040226x – ident: e_1_2_7_32_2 doi: 10.1002/ange.19790910831 – ident: e_1_2_7_3_1 doi: 10.1039/C5CS00157A – ident: e_1_2_7_65_1 doi: 10.31635/ccschem.021.202101408 – ident: e_1_2_7_51_1 doi: 10.1021/cr300116k – ident: e_1_2_7_53_1 doi: 10.1039/D1CC05501A – ident: e_1_2_7_40_2 doi: 10.1002/(SICI)1521-3757(20000403)112:7<1288::AID-ANGE1288>3.0.CO;2-J – ident: e_1_2_7_15_1 doi: 10.1002/anie.201906069 – ident: e_1_2_7_40_1 doi: 10.1002/(SICI)1521-3773(20000403)39:7<1239::AID-ANIE1239>3.0.CO;2-1 – ident: e_1_2_7_56_2 doi: 10.1002/ange.200300589 – ident: e_1_2_7_8_1 doi: 10.1002/anie.202116509 – ident: e_1_2_7_44_1 doi: 10.1016/j.cclet.2020.07.028 – ident: e_1_2_7_17_1 doi: 10.1002/anie.201702992 – ident: e_1_2_7_24_1 doi: 10.1021/jacs.6b04436 – ident: e_1_2_7_66_1 doi: 10.1038/s41570-018-0062-2 – ident: e_1_2_7_47_1 doi: 10.1021/ar500037v – ident: e_1_2_7_35_1 doi: 10.1002/1521-3773(20020118)41:2<275::AID-ANIE275>3.0.CO;2-M – ident: e_1_2_7_16_2 doi: 10.1002/ange.201411619 – ident: e_1_2_7_59_2 doi: 10.1002/ange.201906912 – ident: e_1_2_7_28_1 doi: 10.1039/C6QO00024J – volume: 107 start-page: 1689 year: 1995 ident: 000939452900001.76 publication-title: Angew. Chem – volume: 114 start-page: 285 year: 2002 ident: 000939452900001.43 publication-title: Angew. Chem – volume: 9 start-page: ARTN 5275 year: 2018 ident: WOS:000452633700015 article-title: Molecular Russian dolls publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-07673-1 – volume: 141 start-page: 18308 year: 2019 ident: WOS:000498281600046 article-title: A Redox-Switchable Molecular Zipper publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b09756 – volume: 32 start-page: 735 year: 2021 ident: WOS:000635538300026 article-title: Phenoxazine-based supramolecular tetrahedron as biomimetic lectin for glucosamine recognition publication-title: CHINESE CHEMICAL LETTERS doi: 10.1016/j.cclet.2020.07.028 – volume: 112 start-page: 5271 year: 2012 ident: WOS:000309628100007 article-title: Aromatic Amide Foldamers: Structures, Properties, and Functions publication-title: CHEMICAL REVIEWS doi: 10.1021/cr300116k – volume: 363 start-page: 1396 year: 2019 ident: WOS:000462738000017 article-title: The construction of supramolecular systems publication-title: SCIENCE doi: 10.1126/science.aav4677 – volume: 59 start-page: 559 year: 2020 ident: WOS:000486877600001 article-title: The Supramolecular Chemistry of Strained Carbon Nanohoops publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201906069 – volume: 127 start-page: 6329 year: 2015 ident: 000939452900001.51 publication-title: Angew. Chem – volume: 8 start-page: 2091 year: 2017 ident: WOS:000395906900050 article-title: Macrocyclic shape-persistency of cyclo[6] aramide results in enhanced multipoint recognition for the highly efficient template-directed synthesis of rotaxanes publication-title: CHEMICAL SCIENCE doi: 10.1039/c6sc04714a – volume: 62 start-page: 120 year: 1997 ident: WOS:A1997WC12200018 article-title: Complexes of macrocycles with gamma-cyclodextrin as deduced from NMR diffusion measurements publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 43 start-page: 668 year: 2004 ident: WOS:000188833000005 article-title: G-quartets 40 years later:: From 5′-GMP to molecular biology and supramolecular chemistry publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 131 start-page: 12649 year: 2019 ident: 000939452900001.73 publication-title: Angew. Chem – volume: 112 start-page: 1288 year: 2000 ident: 000939452900001.49 publication-title: Angew. Chem – volume: 118 start-page: 4524 year: 2006 ident: 000939452900001.57 publication-title: Angew. Chem – volume: 126 start-page: 11120 year: 2004 ident: WOS:000223799900003 article-title: Highly efficient, one-step macrocyclizations assisted by the folding and preorganization of precursor oligomers publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0474547 – volume: 45 start-page: 4416 year: 2006 ident: WOS:000238927000004 article-title: Shape-persistent macrocycles: Structures and synthetic approaches from arylene and ethynylene building blocks publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200503988 – volume: 127 start-page: 6208 year: 2015 ident: 000939452900001.20 publication-title: Angew. Chem – volume: 113 start-page: 2177 year: 2001 ident: 000939452900001.26 publication-title: Angew. Chem – volume: 38 start-page: 1 year: 2005 ident: WOS:000226474200001 article-title: Nanoscale borromean rings publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar040226x – volume: 47 start-page: 1575 year: 2014 ident: WOS:000336415700013 article-title: Dynamic Covalent Chemistry Approaches Toward Macrocycles, Molecular Cages, and Polymers publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar500037v – volume: 53 start-page: 2519 year: 2004 ident: WOS:000228070800015 article-title: Inclusion of nickel(II) and copper(II) complexes with aliphatic polyamines in cucurbit[8]uril publication-title: RUSSIAN CHEMICAL BULLETIN – volume: 91 start-page: 676 year: 1979 ident: 000939452900001.39 publication-title: Angew. Chem – volume: 41 start-page: 275 year: 2002 ident: WOS:000173523400007 article-title: A cucurbituril-based gyroscane: A new supramolecular form publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 63 start-page: 609 year: 2016 ident: WOS:000392603500002 article-title: Overview of the RNA G-quadruplex structures publication-title: ACTA BIOCHIMICA POLONICA doi: 10.18388/abp.2016_1335 – volume: 61 start-page: ARTN e202116509 year: 2022 ident: WOS:000748182600001 article-title: Discrete Stacked Dimers of Aromatic Oligoamide Helices publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202116509 – volume: 52 start-page: 2836 year: 2013 ident: WOS:000315503800016 article-title: Perspectives in Chemistry - Steps towards Complex Matter publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201208397 – volume: 29 start-page: 618 year: 2004 ident: WOS:000225148800011 article-title: The power of two: protein dimerization in biology publication-title: TRENDS IN BIOCHEMICAL SCIENCES doi: 10.1016/j.tibs.2004.09.006 – volume: 54 start-page: 6110 year: 2015 ident: WOS:000354260000004 article-title: Catenanes: Fifty Years of Molecular Links publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201411619 – volume: 134 year: 2022 ident: 000939452900001.9 publication-title: Angew. Chem – volume: 45 start-page: 24 year: 2016 ident: WOS:000367250700003 article-title: Natural supramolecular protein assemblies publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00157a – start-page: 4567 year: 2006 ident: WOS:000241786500001 article-title: Sulfonatocalixarenes: molecular capsule and 'Russian doll' arrays to structures mimicking viral geometry publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b606803k – volume: 100 start-page: 1605 year: 1988 ident: 000939452900001.67 publication-title: Angew. Chem – volume: 137 start-page: 1556 year: 2015 ident: WOS:000349138600030 article-title: From Ring-in-Ring to Sphere-in-Sphere: Self-Assembly of Discrete 2D and 3D Architectures with Increasing Stability publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja511443p – volume: 3 start-page: 661 year: 2016 ident: WOS:000377257800002 article-title: Conformations of large macrocycles and ring-in-ring complexes publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/c6qo00024j – volume: 13 start-page: 420 year: 2021 ident: WOS:000640474700003 article-title: A three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C60 publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-021-00658-6 – volume: 11 year: 2020 ident: WOS:000546623500048 article-title: Heteroatom-bridged molecular belts as containers publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-17134-3 – volume: 63 start-page: 31 year: 1995 ident: WOS:A1995QN61000002 article-title: PROTEIN-PROTEIN INTERACTIONS - A REVIEW OF PROTEIN DIMER STRUCTURES publication-title: PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY – volume: 100 start-page: 143 year: 2000 ident: WOS:000085235400009 article-title: Noncovalent interactions:: A challenge for experiment and theory publication-title: CHEMICAL REVIEWS – volume: 120 start-page: 6288 year: 2020 ident: WOS:000550644700012 article-title: Coordination-Directed Construction of Molecular Links publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.0c00321 – volume: 3 start-page: 4 year: 2019 ident: WOS:000455454200004 article-title: Ion mobility-mass spectrometry of supramolecular complexes and assemblies publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-018-0062-2 – volume: 22 start-page: 153 year: 2013 ident: WOS:000314216100004 article-title: Linkers in the structural biology of protein-protein interactions publication-title: PROTEIN SCIENCE doi: 10.1002/pro.2206 – volume: 13 start-page: 798 year: 2022 ident: WOS:000739496900001 article-title: Ultramacrocyclization in water via external templation publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc06236k – volume: 132 start-page: 567 year: 2020 ident: 000939452900001.18 publication-title: Angew. Chem – volume: 22 start-page: 17612 year: 2016 ident: WOS:000388471700018 article-title: From Packed "Sandwich" to "Russian Doll": Assembly by Charge-Transfer Interactions in Cucurbit[10]uril publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201604149 – volume: 49 start-page: 4176 year: 2020 ident: WOS:000545930500012 article-title: Conformationally adaptive macrocycles with flipping aromatic sidewalls publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs00341g – volume: 125 start-page: 2906 year: 2013 ident: 000939452900001.11 publication-title: Angew. Chem – volume: 111 start-page: 5434 year: 2011 ident: WOS:000295542700007 article-title: Chemical Topology: Complex Molecular Knots, Links, and Entanglements publication-title: CHEMICAL REVIEWS doi: 10.1021/cr200034u – volume: 137 start-page: 12713 year: 2015 ident: WOS:000362628300045 article-title: Self-Assembly of Russian Doll Concentric Porphyrin Nanorings publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b07956 – volume: 12 start-page: 7269 year: 2021 ident: WOS:000648683800001 article-title: Increasing structural and functional complexity in self-assembled coordination cages publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc01226f – volume: 40 start-page: 2119 year: 2001 ident: WOS:000169168100029 article-title: Macrocycles within macrocycles: Cyclen, cyclam, and their transition metal complexes encapsulated in cucurbit[8]uril publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 27 start-page: 1547 year: 1988 ident: WOS:A1988R924700029 article-title: CYCLOBIS(PARAQUAT-PARA-PHENYLENE) - A TETRACATIONIC MULTIPURPOSE RECEPTOR publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH – volume: 41 start-page: 1319 year: 2008 ident: WOS:000260254300010 article-title: Exploring β-Sheet Structure and Interactions with Chemical Model Systems publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar800064f – volume: 18 start-page: 202 year: 2012 ident: WOS:000298547800026 article-title: Donor-Acceptor Ring-in-Ring Complexes publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201102919 – volume: 374 start-page: 1 year: 2018 ident: WOS:000443664800001 article-title: Structure relationships between bis-monodentate ligands and coordination driven self-assemblies publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2018.06.010 – volume: 41 start-page: 1376 year: 2008 ident: WOS:000260254300015 article-title: Hollow Crescents, Helices, and Macrocycles from Enforced Folding and Folding-Assisted Macrocyclization publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar700266f – volume: 18 start-page: 623 year: 1979 ident: WOS:A1979HV62500016 article-title: COMPLEXES OF GAMMA-CYCLODEXTRIN WITH CROWN ETHERS, CRYPTANDS, CORONATES, AND CRYPTATES publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH – volume: 8 start-page: 5271 year: 2021 ident: WOS:000678218100001 article-title: Switchable supramolecular ensemble for anion binding with ditopic hydrogen-bonded macrocycles publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d1qo00764e – volume: 4 start-page: 785 year: 2022 ident: WOS:000794308100003 article-title: Multidimensional Mass Spectrometry Assisted Metallo-Supramolecular Chemistry publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.021.202101408 – volume: 49 start-page: 4127 year: 2013 ident: WOS:000317931500004 article-title: Shape-persistent H-bonded macrocyclic aromatic pentamers publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c2cc36698c – volume: 141 start-page: 8339 year: 2019 ident: WOS:000469292300042 article-title: Enantiopure [Cs+/Xe⊂Cryptophane]⊂FeII4L4 Hierarchical Superstructures publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b02866 – volume: 138 start-page: 8253 year: 2016 ident: WOS:000379455600032 article-title: Russian Nesting Doll Complexes of Molecular Baskets and Zinc Containing TPA Ligands publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b04436 – volume: 133 start-page: 18590 year: 2011 ident: WOS:000297398900024 article-title: Strong Aggregation and Directional Assembly of Aromatic Oligoamide Macrocycles publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja208548b – volume: 116 start-page: 684 year: 2004 ident: 000939452900001.69 publication-title: Angew. Chem – volume: 54 start-page: 6231 year: 2015 ident: WOS:000354260000020 article-title: Facile Self-Assembly of Metallo-Supramolecular Ring-in-Ring and Spiderweb Structures Using Multivalent Terpyridine Ligands publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201501507 – volume: 61 start-page: 3825 year: 1988 ident: WOS:A1988R103900006 article-title: CRYSTAL AND MOLECULAR-STRUCTURE OF DOUBLE MACROCYCLIC INCLUSION COMPLEXES, GAMMA-CYCLODEXTRIN.12-CROWN-4.NACL, A MODEL FOR THE TRANSPORT OF IONS THROUGH MEMBRANES publication-title: BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN – volume: 51 start-page: 2083 year: 2018 ident: WOS:000445441200020 article-title: Template-Directed Synthesis of Molecular Nanorings and Cages publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.8b00313 – volume: 32 start-page: 1397 year: 2021 ident: WOS:000644739200009 article-title: An interlocked coordination cage based on aromatic amide ligands publication-title: CHINESE CHEMICAL LETTERS doi: 10.1016/j.cclet.2020.11.002 – volume: 295 start-page: 2418 year: 2002 ident: WOS:000174712600045 article-title: Self-assembly at all scales publication-title: SCIENCE – volume: 58 start-page: 12519 year: 2019 ident: WOS:000479792300001 article-title: A Dynamic Hydrogen-Bonded Azo-Macrocycle for Precisely Photo-Controlled Molecular Encapsulation and Release publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201906912 – volume: 129 start-page: 11228 year: 2017 ident: 000939452900001.22 publication-title: Angew. Chem – volume: 142 start-page: 16849 year: 2020 ident: WOS:000577115100038 article-title: Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c07745 – volume: 44 start-page: 515 year: 2015 ident: WOS:000346703600009 article-title: Gas-phase chemistry of molecular containers publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00167b – volume: 39 start-page: 1239 year: 2000 ident: WOS:000086418600015 article-title: Host within a host:: Encapsulation of alkali ion-crown ether complexes into a [Ga4L6]12- supramolecular cluster publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 56 start-page: 11080 year: 2017 ident: WOS:000408605300014 article-title: From Chemical Topology to Molecular Machines (Nobel Lecture) publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201702992 – volume: 121 start-page: 7455 year: 1999 ident: WOS:000082250000044 article-title: Encapsulation of ion-molecule complexes:: Second-sphere supramolecular chemistry publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 4 start-page: 362 year: 2018 ident: WOS:000428801200011 article-title: Shuttling Rates, Electronic States, and Hysteresis in a Ring-in-Ring Rotaxane publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.7b00535 – volume: 57 start-page: 13506 year: 2021 ident: WOS:000721886800001 article-title: Threading of three rings on two stations: a convergent approach to [4]rotaxane publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d1cc05501a – volume: 138 start-page: 4843 year: 2016 ident: WOS:000374274100020 article-title: Flexibility Coexists with Shape-Persistence in Cyanostar Macrocycles publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b00712 – volume: 42 start-page: 1665 year: 1986 ident: WOS:A1986A952000016 article-title: SINGLE AND DOUBLE BRIDGED VIOLOGENES AND INTRAMOLECULAR PIMERIZATION OF THEIR CATION RADICALS publication-title: TETRAHEDRON – volume: 11 start-page: ARTN e01493 year: 2021 ident: WOS:000557338100001 article-title: Extendedtight-bindingquantum chemistry methods publication-title: WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE doi: 10.1002/wcms.1493 – volume: 34 start-page: 1555 year: 1995 ident: WOS:A1995RT72600002 article-title: PATTERNS IN HYDROGEN BONDING - FUNCTIONALITY AND GRAPH SET ANALYSIS IN CRYSTALS publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION |
SSID | ssj0028806 |
Score | 2.5025578 |
Snippet | Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring‐in‐ring(s) system comprising a... Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202216690 |
SubjectTerms | Chemistry Chemistry, Multidisciplinary Computer applications Conformation Dimers Host–Guest Systems Magnetic resonance spectroscopy Mass spectrometry Mass spectroscopy NMR NMR spectroscopy Nuclear magnetic resonance Paraquat Physical Sciences Pseudo-Rotaxanes Ring-in-Rings Science & Technology Self-Assembly Smart structures Superstructures Supramolecular Chemistry |
Title | Supramolecular Shish Kebabs: Higher Order Dimeric Structures from Ring‐in‐Rings Complexes with Conformational Adaptivity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202216690 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000939452900001 https://www.ncbi.nlm.nih.gov/pubmed/36652350 https://www.proquest.com/docview/2788349046 https://www.proquest.com/docview/2766721175 |
Volume | 62 |
WOS | 000939452900001 |
WOSCitedRecordID | wos000939452900001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5IX_TF-yVaZYSCT2mTuSXjW1lbqmKFroW-hZlkhi7WdHF3QcQHf4K_0V_iOZkkdiui6EtIyMllkm_mfHM53wHYklaXKniRWteYVKKPSykfDhI5oQL648zUFDv85lAfHMtXJ-rkQhR_1IcYB9yoZnTtNVVw6xY7P0VDKQIb-3ec5xp7eNgI04ItYkVHo34UR3DG8CIhUspCP6g2Znxn_fJ1r_QL1bzkldaJbOeJ9m-AHcoQF6C8314t3Xb9-ZK84_8U8iZc72kq2424ugVXfHsbrk6G7HB34Mt0Nf9oPwzJddn0dLY4Za-9wzs_Z3H1CHtLup7sxaybFWLTTqp2hf17RkEt7Ai95vev32Ytbmh_wahxOvOf0ICGhxlFIw6xlfQyjZ3HXBd34Xh_793kIO0zOaS1wCYk5aFUxnipSf1PubosnWsC4oRbhIM2QVmXu5AZ4Qsrha5DqAsd8lA00iKWxD3YaM9b_wBYXTYCKZhE2hlk3lgnMxkKbXlj8oDkJoF0-JNV3cucU7aNsyoKNPOKvmk1ftMEno328yjw8VvLzQEYVV_RFxUvylJIk0mdwNPxNP4LmnexrT9fkY3W1NEuVAL3I6DGRwmtFRcKb751EWHj-W7IydDseDcPk0D-N2aTvuCka7BMgHcQ-0Pxqt3Dl3vj0cN_uegRXMN9QUv0eLEJGwgr_xg529I96erlD7puOUQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL70eggJEqcUqb2I4T91Ytrba0XaRuK3GL7CRWV5R0xe5KCHHgJ_Ab-0uYiZO0W4RAcImSePJw8tkzY3u-AViXRmWJq0RobKlDiToupHw4aMiJxKE-jnRBscOHIzU8ke8-JN1qQoqF8fwQ_YAbtYymv6YGTgPSm5esoRSCjQ4e57FCF-8m3KK03o1XddQzSHGEpw8wEiKkPPQdb2PEN5evX9ZLvxib1_TSsinb6KLdu2C7WvglKB83FnO7UXy9RvD4X9W8B3daS5Vte2jdhxtV_QBWB12CuIfwbbyYfjafuvy6bHw6mZ2y_coaO9tifgEJe0_UnuztpJkYYuOGrXaBLj6juBZ2hIrz4vuPSY0b2p8x6p_Oqi8oQCPEjAISu_BKepnSTH26i0dwsrtzPBiGbTKHsBDYi4TcZYnWlVREAJjYIsusLR1ChRtEhNIuMTa2LtKiSo0UqnCuSJWLXVpKg3ASj2GlPq-rp8CKrBRohUm0PJ2MS2NlJF2qDC917NC-CSDsfmVetEznlHDjLPcczTynb5r33zSAN7381HN8_FZyrUNG3rb1Wc7TLBNSR1IF8Lovxn9BUy-mrs4XJKMU-dppEsATj6j-UUKphIsEb75-FWJ9eTPqpGmCvJmKCSD-G7FBW3GiNpgHwBuM_aF6-fZob6c_evYvF72C1eHx4UF-sDfafw638bygFXs8XYMVhFj1Ak24uX3ZNNKfMX09Xw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL70KggJEqcUqb-JWEW7XbVUthQV0q9RbZSayuKOmK3ZUQ4sBP4DfyS5iJk9AtQiC4REk8edj-7Bk_5huATWl0qlwlQmPLLJSo40KKh4OGnFAO9XGUFeQ7_Hqs947ky2N1fM6L3_ND9BNu1DKa_poa-Kx02z9JQ8kDG8d3nMcaR3iX4YrUUUq4Hh72BFIc0en9i4QIKQx9R9sY8e3V51fV0i-25gW1tGrJNqpodBNMlwm_A-X91nJht4rPF_gd_yeXt-BGa6eyHQ-s23Cpqu_AtUEXHu4ufJksZx_Nhy66LpucTOcn7KCyxs5fML99hL0hYk82nDbLQmzScNUucYDPyKuFHaLa_P7127TGA53PGfVOp9UnFKD5YUbuiJ1zJf1MaWY-2MU9OBrtvhvshW0oh7AQ2IeE3KUqyyqpif5P2SJNrS0dAoUbxIPOnDI2ti7KRJUYKXThXJFoF7uklAbBJNZhrT6rqwfAirQUaINJtDudjEtjZSRdog0vs9ihdRNA2NVkXrQ85xRu4zT3DM08pzLN-zIN4HkvP_MMH7-V3OiAkbctfZ7zJE2FzCKpA3jWJ2Nd0MKLqauzJcloTSPtRAVw3wOq_5TQWnGh8OWb5xHWpzdzThktjzcLMQHEfyM2aDNOxAaLAHgDsT9kL98Z7-_2Vw__5aGncPXtcJS_2h8fPILreFvQdj2ebMAaIqx6jPbbwj5pmugPZe88Fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Shish+Kebabs%3A+Higher+Order+Dimeric+Structures+from+Ring-in-Rings+Complexes+with+Conformational+Adaptivity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Zhenwen&rft.au=Mei%2C+Lei&rft.au=Guo%2C+Chenxing&rft.au=Huang%2C+Song&rft.date=2023-03-27&rft.eissn=1521-3773&rft.volume=62&rft.issue=14&rft.spage=e202216690&rft_id=info:doi/10.1002%2Fanie.202216690&rft_id=info%3Apmid%2F36652350&rft.externalDocID=36652350 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |