Tracking the Impact of Koch‐Carbonylated Organics During the Zeolite ZSM‐5 Catalyzed Methanol‐to‐Hydrocarbons Process
A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ag...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 10; pp. e202318250 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.03.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM‐5, the practical application of this process in a CO2‐neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM‐5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch‐carbonylation‐led) direct and dual cycle mechanisms, which operate during the early and steady‐state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid‐state NMR spectroscopic‐based investigations on the MTH process, involving co‐feeding methanol and acetone (cf. a key Koch‐carbonylated species), including selective isotope‐labeling studies. Our iterative research approach revealed that (Koch−)carbonyl group selectively promotes the side‐chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene‐toluene‐xylene) primarily.
The complementary research strategy (involving catalysis, operando UV/Vis, and solid‐state NMR spectroscopy) bridges the mechanistic gap between Koch‐type carbonylation‐led direct and dual cycle mechanisms during the zeolite‐catalyzed methanol‐to‐hydrocarbons process. |
---|---|
AbstractList | A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM‐5, the practical application of this process in a CO2‐neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM‐5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch‐carbonylation‐led) direct and dual cycle mechanisms, which operate during the early and steady‐state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid‐state NMR spectroscopic‐based investigations on the MTH process, involving co‐feeding methanol and acetone (cf. a key Koch‐carbonylated species), including selective isotope‐labeling studies. Our iterative research approach revealed that (Koch−)carbonyl group selectively promotes the side‐chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene‐toluene‐xylene) primarily. A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM‐5, the practical application of this process in a CO2‐neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM‐5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch‐carbonylation‐led) direct and dual cycle mechanisms, which operate during the early and steady‐state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid‐state NMR spectroscopic‐based investigations on the MTH process, involving co‐feeding methanol and acetone (cf. a key Koch‐carbonylated species), including selective isotope‐labeling studies. Our iterative research approach revealed that (Koch−)carbonyl group selectively promotes the side‐chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene‐toluene‐xylene) primarily. The complementary research strategy (involving catalysis, operando UV/Vis, and solid‐state NMR spectroscopy) bridges the mechanistic gap between Koch‐type carbonylation‐led direct and dual cycle mechanisms during the zeolite‐catalyzed methanol‐to‐hydrocarbons process. A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM‐5, the practical application of this process in a CO 2 ‐neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM‐5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch‐carbonylation‐led) direct and dual cycle mechanisms, which operate during the early and steady‐state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid‐state NMR spectroscopic‐based investigations on the MTH process, involving co‐feeding methanol and acetone (cf. a key Koch‐carbonylated species), including selective isotope‐labeling studies. Our iterative research approach revealed that (Koch−)carbonyl group selectively promotes the side‐chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene‐toluene‐xylene) primarily. A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily. A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO2 -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily.A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO2 -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily. |
Author | Gong, Xuan Zhang, Xin Chowdhury, Abhishek Dutta Ye, Yiru Ma, Pandong Gascon, Jorge Zhou, Hexun Abou‐Hamad, Edy |
Author_xml | – sequence: 1 givenname: Hexun orcidid: 0009-0008-9910-7540 surname: Zhou fullname: Zhou, Hexun organization: Wuhan University – sequence: 2 givenname: Xuan orcidid: 0000-0001-7308-6931 surname: Gong fullname: Gong, Xuan organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Edy surname: Abou‐Hamad fullname: Abou‐Hamad, Edy organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Yiru surname: Ye fullname: Ye, Yiru organization: Wuhan University – sequence: 5 givenname: Xin surname: Zhang fullname: Zhang, Xin organization: Wuhan University – sequence: 6 givenname: Pandong surname: Ma fullname: Ma, Pandong organization: Wuhan University – sequence: 7 givenname: Jorge orcidid: 0000-0001-7558-7123 surname: Gascon fullname: Gascon, Jorge email: jorge.gascon@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Abhishek Dutta orcidid: 0000-0002-4121-7375 surname: Chowdhury fullname: Chowdhury, Abhishek Dutta email: abhishek@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38253820$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rVDEUhoNU7IduXcoFN27umI_7uSxjbQdbK1g3bsK5uSed1MzNNMlFbkHwJ_gb_SVmnI5CQVwk5xCe9z1J3kOyN7gBCXnO6IxRyl_DYHDGKRes4SV9RA5YyVku6lrspb4QIq-bku2TwxBuEt80tHpC9kWC06IH5NuVB_XFDNdZXGK2WK1Bxczp7J1Ty5_ff8zBd26YLETss0t_ncapkL0Z_U7xGZ01MdWPFwkvszlEsNNdoi8wLmFwNh1Hl7azqfdO_fYL2YfUYghPyWMNNuCz-3pEPr09uZqf5eeXp4v58XmuRC1ozhva1LztS4pVemWlEUTH-xKFwppzaNu-0B1qTTVTqqOga8Z0W4kOBIVSiyPyauu79u52xBDlygSF1sKAbgySt6xuKsqLIqEvH6A3bvRDul2iBCsawdiGenFPjd0Ke7n2ZgV-kruPTUCxBZR3IXjUUpkI0bghejBWMio3-clNfvJPfkk2eyDbOf9T0G4FX43F6T-0PH6_OPmr_QXHp7Gs |
CitedBy_id | crossref_primary_10_1016_j_fuel_2025_134280 crossref_primary_10_1039_D4CY01168F crossref_primary_10_1007_s11705_024_2505_2 crossref_primary_10_1002_anie_202414724 crossref_primary_10_1002_ange_202414724 crossref_primary_10_1038_s41467_024_52999_8 crossref_primary_10_1007_s11426_024_2266_8 |
Cites_doi | 10.1021/acscatal.9b00641 10.1002/anie.201807814 10.1016/j.cej.2021.134228 10.1038/s41929-018-0078-5 10.1021/ja00181a008 10.1002/anie.201303586 10.1038/s41467-018-07882-8 10.1021/ja00497a058 10.1016/j.checat.2023.100597 10.1073/pnas.1821029116 10.1016/S0167-2991(08)62006-6 10.1021/acscatal.3c00059 10.1002/anie.201103657 10.1021/acscatal.2c04600 10.1016/j.jcat.2018.10.022 10.1002/anie.201703902 10.1021/jp0041407 10.1016/j.jcat.2013.04.015 10.1002/anie.201511678 10.1007/s11244-005-3798-0 10.1021/cs5015749 10.1021/acscatal.7b03114 10.1016/j.chempr.2021.05.023 10.1016/j.jcat.2018.08.019 10.1002/anie.201510920 10.1021/ja0530164 10.1021/acs.chemrev.2c00076 10.1021/ja035923j 10.1002/ange.202207777 10.1016/S1387-1811(98)00319-9 10.1016/j.fmre.2021.08.002 10.1016/j.checat.2022.07.026 10.1016/j.jcat.2007.04.006 10.1002/anie.202009139 10.1002/anie.200705453 10.1021/cen-v081n038.p005 10.1038/s41929-017-0002-4 10.1021/acs.energyfuels.2c01858 10.1016/j.jcat.2014.06.017 10.1016/j.apcata.2011.06.029 10.1002/ange.200503898 10.1021/ja065810a 10.1021/j100130a003 10.1016/j.apcata.2004.09.012 10.1016/j.mtchem.2022.101061 10.1021/jacs.1c08036 10.1016/j.cattod.2009.01.015 10.1002/anie.201814268 10.1006/jcat.1998.1987 10.1021/ja002195g 10.1002/anie.201808480 10.1002/anie.201803279 10.1002/chem.200901723 10.1002/anie.201608643 10.1002/anie.201801397 10.1007/BF00769305 10.1021/ja00117a032 10.1021/acscatal.5b01577 10.1016/j.jcat.2021.03.006 10.1038/s41467-020-20314-w 10.1021/acscatal.5b00007 10.1021/jacs.2c03478 10.1039/C5CS00304K 10.1021/cs3006583 10.1002/anie.201410974 10.1021/jacs.9b00585 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202318250 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38253820 10_1002_anie_202318250 ANIE202318250 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) funderid: 22350610243, 22050410276 – fundername: King Abdullah University of Science and Technology – fundername: China Postdoctoral Science Foundation funderid: 2021M702515/2022T150493 – fundername: Fundamental Research Funds for the Central Universities funderid: 2042023kf0126 – fundername: China Postdoctoral Science Foundation grantid: 2021M702515/2022T150493 – fundername: Fundamental Research Funds for the Central Universities grantid: 2042023kf0126 – fundername: National Natural Science Foundation of China (NSFC) grantid: 22350610243, 22050410276 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-2808729d50e62506fea3b2d5e3ce722a99d4fbeff0f1ccb0af711f963ba30a5f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:37:23 EDT 2025 Fri Jul 25 11:44:52 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Tue Jul 01 05:10:40 EDT 2025 Wed Aug 20 07:26:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Hydrocarbon pool Side-chain mechanism Zeolite Dual-cycle mechanism Methanol-to-hydrocarbons |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-2808729d50e62506fea3b2d5e3ce722a99d4fbeff0f1ccb0af711f963ba30a5f3 |
Notes | These authors contributed equally. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7308-6931 0000-0001-7558-7123 0009-0008-9910-7540 0000-0002-4121-7375 |
PMID | 38253820 |
PQID | 2931483114 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2917860244 proquest_journals_2931483114 pubmed_primary_38253820 crossref_citationtrail_10_1002_anie_202318250 crossref_primary_10_1002_anie_202318250 wiley_primary_10_1002_anie_202318250_ANIE202318250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 4, 2024 |
PublicationDateYYYYMMDD | 2024-03-04 |
PublicationDate_xml | – month: 03 year: 2024 text: March 4, 2024 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 134 2017; 7 2013; 3 2004; 126 2019; 10 1993; 20 2018; 367 2019; 58 1975 2019; 369 2022; 26 2023; 3 1989; 49 2019; 166 1979 2012; 51 1977 2001; 105 2022; 122 2011; 403 2018; 1 2015; 44 2013; 52 2022; 36 2000; 122 2021; 396 2006; 128 2005; 34 2009; 15 2014; 317 2022; 431 2021; 7 2019; 9 2023; 13 2015; 5 2003; 81 2007; 249 1999; 29 2013; 305 2015; 54 1995; 117 2016; 128 2021; 143 2019; 141 1998; 176 2006; 118 2016; 55 2022; 144 2004; 277 2021; 12 2023 1993; 97 2005; 127 2017; 56 2022; 12 2008; 47 2022; 2 2009; 142 1990; 112 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 Chang C. D. (e_1_2_7_8_1) 1975 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Ye Y. (e_1_2_7_53_1) 2023 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 Chang C. D. (e_1_2_7_9_1) 1977 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 34 start-page: 41 year: 2005 end-page: 48 publication-title: Top. Catal. – volume: 5 start-page: 317 year: 2015 end-page: 326 publication-title: ACS Catal. – volume: 7 start-page: 7987 year: 2017 end-page: 7994 publication-title: ACS Catal. – volume: 144 start-page: 18251 year: 2022 end-page: 18258 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 6078 year: 2015 end-page: 6085 publication-title: ACS Catal. – volume: 1 start-page: 398 year: 2018 end-page: 411 publication-title: Nat. Catal. – volume: 126 start-page: 2991 year: 2004 end-page: 3001 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2415 year: 2021 end-page: 2428 publication-title: Chem – volume: 26 year: 2022 publication-title: Mater. Today Chem. – volume: 117 start-page: 3615 year: 1995 end-page: 3616 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 6491 year: 2019 end-page: 6501 publication-title: ACS Catal. – volume: 5 start-page: 1922 year: 2015 end-page: 1938 publication-title: ACS Catal. – volume: 122 start-page: 14275 year: 2022 end-page: 14345 publication-title: Chem. Rev. – volume: 44 start-page: 7155 year: 2015 end-page: 7176 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 15840 year: 2016 end-page: 15845 publication-title: Angew. Chem. Int. Ed. – volume: 97 start-page: 7135 year: 1993 end-page: 7137 publication-title: J. Phys. Chem. – volume: 141 start-page: 5908 year: 2019 end-page: 5915 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 12965 year: 2005 end-page: 12974 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 2507 year: 2016 end-page: 2511 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 184 year: 2022 end-page: 192 publication-title: Fundam. Res. – volume: 403 start-page: 183 year: 2011 end-page: 191 publication-title: Appl. Catal. A – volume: 122 start-page: 10726 year: 2000 end-page: 10727 publication-title: J. Am. Chem. Soc. – volume: 166 start-page: 11187 year: 2019 end-page: 11194 publication-title: Proc. Natl. Acad. Sci. USA. – volume: 105 start-page: 4317 year: 2001 end-page: 4323 publication-title: J. Phys. Chem. B. – volume: 249 start-page: 195 year: 2007 end-page: 207 publication-title: J. Catal. – volume: 396 start-page: 360 year: 2021 end-page: 373 publication-title: J. Catal. – volume: 1 start-page: 23 year: 2018 end-page: 31 publication-title: Nat. Catal. – volume: 367 start-page: 7 year: 2018 end-page: 15 publication-title: J. Catal. – volume: 52 start-page: 11564 year: 2013 end-page: 11568 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 15463 year: 2022 end-page: 15500 publication-title: ACS Catal. – volume: 36 start-page: 12708 year: 2022 end-page: 12718 publication-title: Energy Fuels – volume: 13 start-page: 3471 year: 2023 end-page: 3484 publication-title: ACS Catal. – volume: 57 start-page: 4692 year: 2018 end-page: 4696 publication-title: Angew. Chem. Int. Ed. – volume: 317 start-page: 185 year: 2014 end-page: 197 publication-title: J. Catal. – volume: 20 start-page: 329 year: 1993 end-page: 336 publication-title: Catal. Lett. – volume: 2 start-page: 2328 year: 2022 end-page: 2345 publication-title: Chem Catal. – volume: 176 start-page: 68 year: 1998 end-page: 75 publication-title: J. Catal. – volume: 3 year: 2023 publication-title: Chem Catal. – volume: 51 start-page: 5810 year: 2012 end-page: 5831 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 18 year: 2013 end-page: 31 publication-title: ACS Catal. – volume: 118 start-page: 1647 year: 2006 end-page: 1650 publication-title: Angew. Chem. Int. Ed. – volume: 369 start-page: 86 year: 2019 end-page: 94 publication-title: J. Catal. – volume: 81 start-page: 5 year: 2003 publication-title: Chem. Eng. News – volume: 47 start-page: 5179 year: 2008 end-page: 5182 publication-title: Angew. Chem. Int. Ed. – year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 128 start-page: 14770 year: 2006 end-page: 14771 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1 year: 2021 end-page: 13 publication-title: Nat. Commun. – volume: 134 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 1 year: 2019 end-page: 9 publication-title: Nat. Commun. – year: 1975 publication-title: United States Pat. – volume: 54 start-page: 7261 year: 2015 end-page: 7264 publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 3908 year: 2019 end-page: 3912 publication-title: Angew. Chem. Int. Ed. – volume: 143 start-page: 15440 year: 2021 end-page: 15452 publication-title: J. Am. Chem. Soc. – start-page: 760 year: 1979 end-page: 762 publication-title: J. Am. Chem. Soc. – volume: 277 start-page: 191 year: 2004 end-page: 199 publication-title: Appl. Catal. A – year: 1977 publication-title: United States Pat. – volume: 56 start-page: 9039 year: 2017 end-page: 9043 publication-title: Angew. Chem. Int. Ed. – volume: 112 start-page: 9085 year: 1990 end-page: 9092 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 1203 year: 1989 end-page: 1212 publication-title: Stud. Surf. Sci. Catal. – volume: 57 start-page: 8095 year: 2018 end-page: 8099 publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 10803 year: 2009 end-page: 10808 publication-title: Chem. Eur. J. – volume: 142 start-page: 90 year: 2009 end-page: 97 publication-title: Catal. Today – volume: 305 start-page: 76 year: 2013 end-page: 80 publication-title: J. Catal. – volume: 57 start-page: 12549 year: 2018 end-page: 12553 publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 14982 year: 2018 end-page: 14985 publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 3 year: 1999 end-page: 48 publication-title: Microporous Mesoporous Mater. – volume: 128 start-page: 5723 year: 2016 end-page: 5726 publication-title: Angew. Chem. Int. Ed. – volume: 431 start-page: 134 year: 2022 end-page: 228 publication-title: Chem. Eng. J. – ident: e_1_2_7_42_1 doi: 10.1021/acscatal.9b00641 – year: 2023 ident: e_1_2_7_53_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_68_1 doi: 10.1002/anie.201807814 – ident: e_1_2_7_58_1 doi: 10.1016/j.cej.2021.134228 – ident: e_1_2_7_1_1 doi: 10.1038/s41929-018-0078-5 – ident: e_1_2_7_39_1 doi: 10.1021/ja00181a008 – ident: e_1_2_7_63_1 doi: 10.1002/anie.201303586 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_7_55_1 doi: 10.1021/ja00497a058 – ident: e_1_2_7_11_1 doi: 10.1016/j.checat.2023.100597 – ident: e_1_2_7_7_1 doi: 10.1073/pnas.1821029116 – ident: e_1_2_7_59_1 doi: 10.1016/S0167-2991(08)62006-6 – ident: e_1_2_7_34_1 doi: 10.1021/acscatal.3c00059 – ident: e_1_2_7_6_1 doi: 10.1002/anie.201103657 – ident: e_1_2_7_22_1 doi: 10.1021/acscatal.2c04600 – ident: e_1_2_7_65_1 doi: 10.1016/j.jcat.2018.10.022 – ident: e_1_2_7_17_1 doi: 10.1002/anie.201703902 – ident: e_1_2_7_36_1 doi: 10.1021/jp0041407 – ident: e_1_2_7_64_1 doi: 10.1016/j.jcat.2013.04.015 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201511678 – ident: e_1_2_7_51_1 doi: 10.1007/s11244-005-3798-0 – ident: e_1_2_7_52_1 doi: 10.1021/cs5015749 – ident: e_1_2_7_21_1 doi: 10.1021/acscatal.7b03114 – ident: e_1_2_7_54_1 doi: 10.1016/j.chempr.2021.05.023 – ident: e_1_2_7_37_1 doi: 10.1016/j.jcat.2018.08.019 – ident: e_1_2_7_38_1 – year: 1975 ident: e_1_2_7_8_1 publication-title: United States Pat. – ident: e_1_2_7_49_1 doi: 10.1002/anie.201510920 – ident: e_1_2_7_56_1 doi: 10.1021/ja0530164 – ident: e_1_2_7_23_1 doi: 10.1021/acs.chemrev.2c00076 – ident: e_1_2_7_62_1 doi: 10.1021/ja035923j – ident: e_1_2_7_18_1 doi: 10.1002/ange.202207777 – ident: e_1_2_7_14_1 doi: 10.1016/S1387-1811(98)00319-9 – ident: e_1_2_7_32_1 doi: 10.1016/j.fmre.2021.08.002 – ident: e_1_2_7_43_1 doi: 10.1016/j.checat.2022.07.026 – ident: e_1_2_7_67_1 doi: 10.1016/j.jcat.2007.04.006 – ident: e_1_2_7_70_1 doi: 10.1002/anie.202009139 – ident: e_1_2_7_60_1 doi: 10.1002/anie.200705453 – ident: e_1_2_7_5_1 doi: 10.1021/cen-v081n038.p005 – ident: e_1_2_7_57_1 doi: 10.1038/s41929-017-0002-4 – ident: e_1_2_7_33_1 doi: 10.1021/acs.energyfuels.2c01858 – ident: e_1_2_7_45_1 doi: 10.1016/j.jcat.2014.06.017 – ident: e_1_2_7_46_1 doi: 10.1016/j.apcata.2011.06.029 – ident: e_1_2_7_41_1 doi: 10.1002/ange.200503898 – ident: e_1_2_7_13_1 doi: 10.1021/ja065810a – ident: e_1_2_7_29_1 doi: 10.1021/j100130a003 – ident: e_1_2_7_48_1 doi: 10.1016/j.apcata.2004.09.012 – ident: e_1_2_7_10_1 doi: 10.1016/j.mtchem.2022.101061 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.1c08036 – ident: e_1_2_7_44_1 doi: 10.1016/j.cattod.2009.01.015 – ident: e_1_2_7_66_1 doi: 10.1002/anie.201814268 – ident: e_1_2_7_47_1 doi: 10.1006/jcat.1998.1987 – ident: e_1_2_7_50_1 doi: 10.1021/ja002195g – ident: e_1_2_7_19_1 doi: 10.1002/anie.201808480 – ident: e_1_2_7_25_1 doi: 10.1002/anie.201803279 – ident: e_1_2_7_61_1 doi: 10.1002/chem.200901723 – ident: e_1_2_7_15_1 doi: 10.1002/anie.201608643 – ident: e_1_2_7_26_1 doi: 10.1002/anie.201801397 – ident: e_1_2_7_12_1 doi: 10.1007/BF00769305 – ident: e_1_2_7_40_1 doi: 10.1021/ja00117a032 – ident: e_1_2_7_69_1 doi: 10.1021/acscatal.5b01577 – year: 1977 ident: e_1_2_7_9_1 publication-title: United States Pat. – ident: e_1_2_7_30_1 doi: 10.1016/j.jcat.2021.03.006 – ident: e_1_2_7_31_1 doi: 10.1038/s41467-020-20314-w – ident: e_1_2_7_4_1 doi: 10.1021/acscatal.5b00007 – ident: e_1_2_7_24_1 doi: 10.1021/jacs.2c03478 – ident: e_1_2_7_2_1 doi: 10.1039/C5CS00304K – ident: e_1_2_7_3_1 doi: 10.1021/cs3006583 – ident: e_1_2_7_28_1 doi: 10.1002/anie.201410974 – ident: e_1_2_7_20_1 doi: 10.1021/jacs.9b00585 |
SSID | ssj0028806 |
Score | 2.4898531 |
Snippet | A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH)... A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH)... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202318250 |
SubjectTerms | Benzene Carbon dioxide Carbonyl compounds Carbonyl groups Carbonyls Catalysis Dual-cycle mechanism Energy transition Hydrocarbon pool Hydrocarbons Methanol Methanol-to-hydrocarbons NMR Nuclear magnetic resonance Side-chain mechanism Synthetic fuels Toluene Xylene Zeolite Zeolites |
Title | Tracking the Impact of Koch‐Carbonylated Organics During the Zeolite ZSM‐5 Catalyzed Methanol‐to‐Hydrocarbons Process |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202318250 https://www.ncbi.nlm.nih.gov/pubmed/38253820 https://www.proquest.com/docview/2931483114 https://www.proquest.com/docview/2917860244 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iRS_uy7gRQfDUsU3aSXuUURmV8eAC4qUkaYLgMBVn5qAg-BP8jf4S30sXHUUEPXSbeUm395Lvvb6FkB2ptQ2EaXlMWO2FNk48xaQCuUpYFGdJbFwtgu5Zq3MVnlxH15-i-Iv8ELXBDSXDjdco4FIN9j6ShmIEdhOLfwNCdko7OmwhKjqv80cxYM4ivIhzD6vQV1kbfbY33nx8VvoGNceRq5t6jmaJrC668Di5a46GqqmfvuRz_M9dzZGZEpfS_YKR5smE6S-QqXZVDm6RPMOsptGuTgEy0mMXXElzS09zffv28tqWDwqd3AG6ZrQI8NQDeuCCIF2LG4OedrC96AJ5RNtoN3p8AuquQfN93oOfhzmsOo8ZzKquvwEtAxmWyNXR4WW745W1GzzNYdDwWOzHgNuzyDegYfktayRXLIsM10YwJpMkC60y1vo20Fr50oogsDAaKMl9GVm-TCb7ed-sEsoFsBGo8TZh-NXRJoDoWolC25UQIgsaxKveXarLxOZYX6OXFimZWYoPNa0faoPs1vT3RUqPHyk3KlZIS9EepICPQIXkoEc2yHb9N7wM_NIi-yYfIU0gsLhXCDQrBQvVp-LQMyzQOXOM8Ms1pPtnx4f10dpfGq2TadgPnedcuEEmhw8jswlQaqi2nLi8AzkfGJU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqOMCFQgt06Za6UqWesiR2EidHlF2022X30IKEuES2YwupaFOxuweQkPoT-I38ks44D7RFVSV6SKIkY-c1Y38zmQchn6XWNhAm9piw2gttknqKSQVylbIoKdLEuFoEk2k8PA-_XkSNNyHGwlT5IVqDG0qGG69RwNEgffSUNRRDsHtY_RsgMmrt61jWG9Pn97-1GaQYsGcVYMS5h3Xom7yNPjtabb86Lz0Dm6vY1U0-J6-Jam678jn50VsuVE_f_ZHR8b-ea5ts1dCUHle8tENemdkbspE1FeHeknuY2DSa1imgRjpy8ZW0tHRc6qvHXw-ZvFHo5w7otaBVjKee076Lg3QtLg0628H2-wTII5qh6ej2DqgnBi345TUcXpSwGt4WMLG6_ua0jmXYJecng7Ns6NXlGzzNYdzwWOInAN2LyDegZPmxNZIrVkSGayMYk2lahFYZa30baK18aUUQWBgQlOS-jCzfI2uzcmbeEcoFcBJo8jZl-OPRpgDq4lSh-UoIUQQd4jUfL9d1bnMssXGdV1mZWY4vNW9faod8ael_Vlk9_krZbXghr6V7ngNEAi2SgyrZIZ_a0_Ax8GeLnJlyiTSBwPpeIdDsVzzUXopDz7BA58xxwj_uIT-ejgbt3sFLGn0kG8OzyWl-OpqO35NNOB46R7qwS9YWN0vzAZDVQh062fkNsrYcsQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcQk9heGLANusHmSZP2lJLYSRw_opaqHWs1bUNCe4lsxxYSqEG0fQBpEh-Bz7hPwp3zB7oJTdoekijJ2XGcO_t3F98dIR-UMS4SNg2YcCaIXSYDzZQGuZIsyQqZWZ-LYDxJh8fxp5Pk5IEXfxUfojW4oWT48RoF_KJw-_dBQ9EDu4vJvwEho9L-JE5Dickb-l_bAFIMuLPyL-I8wDT0TdjGkO0vl1-elv7AmsvQ1c89g-dENa2ulpycdRdz3TXXvwV0_J_X2iDrNTClBxUnbZIVO90iT3tNPrgX5CdMawYN6xQwIx1570paOnpUmtNfN7c9dalxlTtg14JWHp5mRvveC9KX-GFxqR0cv42BPKE9NBxdXQP12KL9vjyHy_MSdsOrAqZVX9-M1p4ML8nx4PB7bxjUyRsCw2HUCFgWZgDciyS0oGKFqbOKa1YklhsrGFNSFrHT1rnQRcboUDkRRQ6GA614qBLHX5HVaTm1O4RyAXwEeryTDH87OgmQLpUajVdCiCLqkKD5drmpI5tjgo3zvIrJzHLs1Lzt1A752NJfVDE9HqXcbVghr2V7lgNAAh2SgyLZIe_b2_Ax8FeLmtpygTSRwOxeMdBsVyzUPopDzbBB5cwzwl_akB9MRoft2et_KfSOrH3pD_LPo8nRG_IMLsd-FV28S1bnlwu7B7Bqrt96ybkDR8wbYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+the+Impact+of+Koch-Carbonylated+Organics+During+the+Zeolite+ZSM-5+Catalyzed+Methanol-to-Hydrocarbons+Process&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Hexun&rft.au=Gong%2C+Xuan&rft.au=Abou-Hamad%2C+Edy&rft.au=Ye%2C+Yiru&rft.date=2024-03-04&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=63&rft.issue=10&rft.spage=e202318250&rft_id=info:doi/10.1002%2Fanie.202318250&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |