Tracking the Impact of Koch‐Carbonylated Organics During the Zeolite ZSM‐5 Catalyzed Methanol‐to‐Hydrocarbons Process

A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ag...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 10; pp. e202318250 - n/a
Main Authors Zhou, Hexun, Gong, Xuan, Abou‐Hamad, Edy, Ye, Yiru, Zhang, Xin, Ma, Pandong, Gascon, Jorge, Chowdhury, Abhishek Dutta
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.03.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM‐5, the practical application of this process in a CO2‐neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM‐5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch‐carbonylation‐led) direct and dual cycle mechanisms, which operate during the early and steady‐state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid‐state NMR spectroscopic‐based investigations on the MTH process, involving co‐feeding methanol and acetone (cf. a key Koch‐carbonylated species), including selective isotope‐labeling studies. Our iterative research approach revealed that (Koch−)carbonyl group selectively promotes the side‐chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene‐toluene‐xylene) primarily. The complementary research strategy (involving catalysis, operando UV/Vis, and solid‐state NMR spectroscopy) bridges the mechanistic gap between Koch‐type carbonylation‐led direct and dual cycle mechanisms during the zeolite‐catalyzed methanol‐to‐hydrocarbons process.
AbstractList A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM‐5, the practical application of this process in a CO2‐neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM‐5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch‐carbonylation‐led) direct and dual cycle mechanisms, which operate during the early and steady‐state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid‐state NMR spectroscopic‐based investigations on the MTH process, involving co‐feeding methanol and acetone (cf. a key Koch‐carbonylated species), including selective isotope‐labeling studies. Our iterative research approach revealed that (Koch−)carbonyl group selectively promotes the side‐chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene‐toluene‐xylene) primarily.
A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM‐5, the practical application of this process in a CO2‐neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM‐5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch‐carbonylation‐led) direct and dual cycle mechanisms, which operate during the early and steady‐state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid‐state NMR spectroscopic‐based investigations on the MTH process, involving co‐feeding methanol and acetone (cf. a key Koch‐carbonylated species), including selective isotope‐labeling studies. Our iterative research approach revealed that (Koch−)carbonyl group selectively promotes the side‐chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene‐toluene‐xylene) primarily. The complementary research strategy (involving catalysis, operando UV/Vis, and solid‐state NMR spectroscopy) bridges the mechanistic gap between Koch‐type carbonylation‐led direct and dual cycle mechanisms during the zeolite‐catalyzed methanol‐to‐hydrocarbons process.
A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM‐5, the practical application of this process in a CO 2 ‐neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM‐5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch‐carbonylation‐led) direct and dual cycle mechanisms, which operate during the early and steady‐state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid‐state NMR spectroscopic‐based investigations on the MTH process, involving co‐feeding methanol and acetone (cf. a key Koch‐carbonylated species), including selective isotope‐labeling studies. Our iterative research approach revealed that (Koch−)carbonyl group selectively promotes the side‐chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene‐toluene‐xylene) primarily.
A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily.
A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO2 -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily.A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH) process would be a key enabler in yielding synthetic fuels/chemicals from renewable sources. Despite its original discovery over half a century ago over the zeolite ZSM-5, the practical application of this process in a CO2 -neutral scenario has faced several obstacles. One prominent challenge has been the intricate mechanistic complexities inherent in the MTH process over the zeolite ZSM-5, impeding its widespread adoption. This work takes a significant step forward by providing critical insights that bridge the gap in our understanding of the MTH process. It accomplishes this by connecting the (Koch-carbonylation-led) direct and dual cycle mechanisms, which operate during the early and steady-state phases of MTH catalysis, respectively. To unravel these mechanistic intricacies, we have performed catalytic and operando (i.e., UV/Vis coupled with an online mass spectrometer) and solid-state NMR spectroscopic-based investigations on the MTH process, involving co-feeding methanol and acetone (cf. a key Koch-carbonylated species), including selective isotope-labeling studies. Our iterative research approach revealed that (Koch-)carbonyl group selectively promotes the side-chain mechanism within the arene cycle of the dual cycle mechanism, impacting the preferential formation of BTX fraction (i.e., benzene-toluene-xylene) primarily.
Author Gong, Xuan
Zhang, Xin
Chowdhury, Abhishek Dutta
Ye, Yiru
Ma, Pandong
Gascon, Jorge
Zhou, Hexun
Abou‐Hamad, Edy
Author_xml – sequence: 1
  givenname: Hexun
  orcidid: 0009-0008-9910-7540
  surname: Zhou
  fullname: Zhou, Hexun
  organization: Wuhan University
– sequence: 2
  givenname: Xuan
  orcidid: 0000-0001-7308-6931
  surname: Gong
  fullname: Gong, Xuan
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Edy
  surname: Abou‐Hamad
  fullname: Abou‐Hamad, Edy
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Yiru
  surname: Ye
  fullname: Ye, Yiru
  organization: Wuhan University
– sequence: 5
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: Wuhan University
– sequence: 6
  givenname: Pandong
  surname: Ma
  fullname: Ma, Pandong
  organization: Wuhan University
– sequence: 7
  givenname: Jorge
  orcidid: 0000-0001-7558-7123
  surname: Gascon
  fullname: Gascon, Jorge
  email: jorge.gascon@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Abhishek Dutta
  orcidid: 0000-0002-4121-7375
  surname: Chowdhury
  fullname: Chowdhury, Abhishek Dutta
  email: abhishek@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38253820$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rVDEUhoNU7IduXcoFN27umI_7uSxjbQdbK1g3bsK5uSed1MzNNMlFbkHwJ_gb_SVmnI5CQVwk5xCe9z1J3kOyN7gBCXnO6IxRyl_DYHDGKRes4SV9RA5YyVku6lrspb4QIq-bku2TwxBuEt80tHpC9kWC06IH5NuVB_XFDNdZXGK2WK1Bxczp7J1Ty5_ff8zBd26YLETss0t_ncapkL0Z_U7xGZ01MdWPFwkvszlEsNNdoi8wLmFwNh1Hl7azqfdO_fYL2YfUYghPyWMNNuCz-3pEPr09uZqf5eeXp4v58XmuRC1ozhva1LztS4pVemWlEUTH-xKFwppzaNu-0B1qTTVTqqOga8Z0W4kOBIVSiyPyauu79u52xBDlygSF1sKAbgySt6xuKsqLIqEvH6A3bvRDul2iBCsawdiGenFPjd0Ke7n2ZgV-kruPTUCxBZR3IXjUUpkI0bghejBWMio3-clNfvJPfkk2eyDbOf9T0G4FX43F6T-0PH6_OPmr_QXHp7Gs
CitedBy_id crossref_primary_10_1016_j_fuel_2025_134280
crossref_primary_10_1039_D4CY01168F
crossref_primary_10_1007_s11705_024_2505_2
crossref_primary_10_1002_anie_202414724
crossref_primary_10_1002_ange_202414724
crossref_primary_10_1038_s41467_024_52999_8
crossref_primary_10_1007_s11426_024_2266_8
Cites_doi 10.1021/acscatal.9b00641
10.1002/anie.201807814
10.1016/j.cej.2021.134228
10.1038/s41929-018-0078-5
10.1021/ja00181a008
10.1002/anie.201303586
10.1038/s41467-018-07882-8
10.1021/ja00497a058
10.1016/j.checat.2023.100597
10.1073/pnas.1821029116
10.1016/S0167-2991(08)62006-6
10.1021/acscatal.3c00059
10.1002/anie.201103657
10.1021/acscatal.2c04600
10.1016/j.jcat.2018.10.022
10.1002/anie.201703902
10.1021/jp0041407
10.1016/j.jcat.2013.04.015
10.1002/anie.201511678
10.1007/s11244-005-3798-0
10.1021/cs5015749
10.1021/acscatal.7b03114
10.1016/j.chempr.2021.05.023
10.1016/j.jcat.2018.08.019
10.1002/anie.201510920
10.1021/ja0530164
10.1021/acs.chemrev.2c00076
10.1021/ja035923j
10.1002/ange.202207777
10.1016/S1387-1811(98)00319-9
10.1016/j.fmre.2021.08.002
10.1016/j.checat.2022.07.026
10.1016/j.jcat.2007.04.006
10.1002/anie.202009139
10.1002/anie.200705453
10.1021/cen-v081n038.p005
10.1038/s41929-017-0002-4
10.1021/acs.energyfuels.2c01858
10.1016/j.jcat.2014.06.017
10.1016/j.apcata.2011.06.029
10.1002/ange.200503898
10.1021/ja065810a
10.1021/j100130a003
10.1016/j.apcata.2004.09.012
10.1016/j.mtchem.2022.101061
10.1021/jacs.1c08036
10.1016/j.cattod.2009.01.015
10.1002/anie.201814268
10.1006/jcat.1998.1987
10.1021/ja002195g
10.1002/anie.201808480
10.1002/anie.201803279
10.1002/chem.200901723
10.1002/anie.201608643
10.1002/anie.201801397
10.1007/BF00769305
10.1021/ja00117a032
10.1021/acscatal.5b01577
10.1016/j.jcat.2021.03.006
10.1038/s41467-020-20314-w
10.1021/acscatal.5b00007
10.1021/jacs.2c03478
10.1039/C5CS00304K
10.1021/cs3006583
10.1002/anie.201410974
10.1021/jacs.9b00585
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202318250
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38253820
10_1002_anie_202318250
ANIE202318250
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  funderid: 22350610243, 22050410276
– fundername: King Abdullah University of Science and Technology
– fundername: China Postdoctoral Science Foundation
  funderid: 2021M702515/2022T150493
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2042023kf0126
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M702515/2022T150493
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2042023kf0126
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 22350610243, 22050410276
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3730-2808729d50e62506fea3b2d5e3ce722a99d4fbeff0f1ccb0af711f963ba30a5f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:37:23 EDT 2025
Fri Jul 25 11:44:52 EDT 2025
Thu Apr 03 07:06:46 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Tue Jul 01 05:10:40 EDT 2025
Wed Aug 20 07:26:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Hydrocarbon pool
Side-chain mechanism
Zeolite
Dual-cycle mechanism
Methanol-to-hydrocarbons
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-2808729d50e62506fea3b2d5e3ce722a99d4fbeff0f1ccb0af711f963ba30a5f3
Notes These authors contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7308-6931
0000-0001-7558-7123
0009-0008-9910-7540
0000-0002-4121-7375
PMID 38253820
PQID 2931483114
PQPubID 946352
PageCount 11
ParticipantIDs proquest_miscellaneous_2917860244
proquest_journals_2931483114
pubmed_primary_38253820
crossref_citationtrail_10_1002_anie_202318250
crossref_primary_10_1002_anie_202318250
wiley_primary_10_1002_anie_202318250_ANIE202318250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 4, 2024
PublicationDateYYYYMMDD 2024-03-04
PublicationDate_xml – month: 03
  year: 2024
  text: March 4, 2024
  day: 04
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 134
2017; 7
2013; 3
2004; 126
2019; 10
1993; 20
2018; 367
2019; 58
1975
2019; 369
2022; 26
2023; 3
1989; 49
2019; 166
1979
2012; 51
1977
2001; 105
2022; 122
2011; 403
2018; 1
2015; 44
2013; 52
2022; 36
2000; 122
2021; 396
2006; 128
2005; 34
2009; 15
2014; 317
2022; 431
2021; 7
2019; 9
2023; 13
2015; 5
2003; 81
2007; 249
1999; 29
2013; 305
2015; 54
1995; 117
2016; 128
2021; 143
2019; 141
1998; 176
2006; 118
2016; 55
2022; 144
2004; 277
2021; 12
2023
1993; 97
2005; 127
2017; 56
2022; 12
2008; 47
2022; 2
2009; 142
1990; 112
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
Chang C. D. (e_1_2_7_8_1) 1975
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Ye Y. (e_1_2_7_53_1) 2023
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
Chang C. D. (e_1_2_7_9_1) 1977
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 34
  start-page: 41
  year: 2005
  end-page: 48
  publication-title: Top. Catal.
– volume: 5
  start-page: 317
  year: 2015
  end-page: 326
  publication-title: ACS Catal.
– volume: 7
  start-page: 7987
  year: 2017
  end-page: 7994
  publication-title: ACS Catal.
– volume: 144
  start-page: 18251
  year: 2022
  end-page: 18258
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 6078
  year: 2015
  end-page: 6085
  publication-title: ACS Catal.
– volume: 1
  start-page: 398
  year: 2018
  end-page: 411
  publication-title: Nat. Catal.
– volume: 126
  start-page: 2991
  year: 2004
  end-page: 3001
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2415
  year: 2021
  end-page: 2428
  publication-title: Chem
– volume: 26
  year: 2022
  publication-title: Mater. Today Chem.
– volume: 117
  start-page: 3615
  year: 1995
  end-page: 3616
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 6491
  year: 2019
  end-page: 6501
  publication-title: ACS Catal.
– volume: 5
  start-page: 1922
  year: 2015
  end-page: 1938
  publication-title: ACS Catal.
– volume: 122
  start-page: 14275
  year: 2022
  end-page: 14345
  publication-title: Chem. Rev.
– volume: 44
  start-page: 7155
  year: 2015
  end-page: 7176
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 15840
  year: 2016
  end-page: 15845
  publication-title: Angew. Chem. Int. Ed.
– volume: 97
  start-page: 7135
  year: 1993
  end-page: 7137
  publication-title: J. Phys. Chem.
– volume: 141
  start-page: 5908
  year: 2019
  end-page: 5915
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 12965
  year: 2005
  end-page: 12974
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 2507
  year: 2016
  end-page: 2511
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 184
  year: 2022
  end-page: 192
  publication-title: Fundam. Res.
– volume: 403
  start-page: 183
  year: 2011
  end-page: 191
  publication-title: Appl. Catal. A
– volume: 122
  start-page: 10726
  year: 2000
  end-page: 10727
  publication-title: J. Am. Chem. Soc.
– volume: 166
  start-page: 11187
  year: 2019
  end-page: 11194
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 105
  start-page: 4317
  year: 2001
  end-page: 4323
  publication-title: J. Phys. Chem. B.
– volume: 249
  start-page: 195
  year: 2007
  end-page: 207
  publication-title: J. Catal.
– volume: 396
  start-page: 360
  year: 2021
  end-page: 373
  publication-title: J. Catal.
– volume: 1
  start-page: 23
  year: 2018
  end-page: 31
  publication-title: Nat. Catal.
– volume: 367
  start-page: 7
  year: 2018
  end-page: 15
  publication-title: J. Catal.
– volume: 52
  start-page: 11564
  year: 2013
  end-page: 11568
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 15463
  year: 2022
  end-page: 15500
  publication-title: ACS Catal.
– volume: 36
  start-page: 12708
  year: 2022
  end-page: 12718
  publication-title: Energy Fuels
– volume: 13
  start-page: 3471
  year: 2023
  end-page: 3484
  publication-title: ACS Catal.
– volume: 57
  start-page: 4692
  year: 2018
  end-page: 4696
  publication-title: Angew. Chem. Int. Ed.
– volume: 317
  start-page: 185
  year: 2014
  end-page: 197
  publication-title: J. Catal.
– volume: 20
  start-page: 329
  year: 1993
  end-page: 336
  publication-title: Catal. Lett.
– volume: 2
  start-page: 2328
  year: 2022
  end-page: 2345
  publication-title: Chem Catal.
– volume: 176
  start-page: 68
  year: 1998
  end-page: 75
  publication-title: J. Catal.
– volume: 3
  year: 2023
  publication-title: Chem Catal.
– volume: 51
  start-page: 5810
  year: 2012
  end-page: 5831
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 18
  year: 2013
  end-page: 31
  publication-title: ACS Catal.
– volume: 118
  start-page: 1647
  year: 2006
  end-page: 1650
  publication-title: Angew. Chem. Int. Ed.
– volume: 369
  start-page: 86
  year: 2019
  end-page: 94
  publication-title: J. Catal.
– volume: 81
  start-page: 5
  year: 2003
  publication-title: Chem. Eng. News
– volume: 47
  start-page: 5179
  year: 2008
  end-page: 5182
  publication-title: Angew. Chem. Int. Ed.
– year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 128
  start-page: 14770
  year: 2006
  end-page: 14771
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1
  year: 2021
  end-page: 13
  publication-title: Nat. Commun.
– volume: 134
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  publication-title: Nat. Commun.
– year: 1975
  publication-title: United States Pat.
– volume: 54
  start-page: 7261
  year: 2015
  end-page: 7264
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 3908
  year: 2019
  end-page: 3912
  publication-title: Angew. Chem. Int. Ed.
– volume: 143
  start-page: 15440
  year: 2021
  end-page: 15452
  publication-title: J. Am. Chem. Soc.
– start-page: 760
  year: 1979
  end-page: 762
  publication-title: J. Am. Chem. Soc.
– volume: 277
  start-page: 191
  year: 2004
  end-page: 199
  publication-title: Appl. Catal. A
– year: 1977
  publication-title: United States Pat.
– volume: 56
  start-page: 9039
  year: 2017
  end-page: 9043
  publication-title: Angew. Chem. Int. Ed.
– volume: 112
  start-page: 9085
  year: 1990
  end-page: 9092
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 1203
  year: 1989
  end-page: 1212
  publication-title: Stud. Surf. Sci. Catal.
– volume: 57
  start-page: 8095
  year: 2018
  end-page: 8099
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 10803
  year: 2009
  end-page: 10808
  publication-title: Chem. Eur. J.
– volume: 142
  start-page: 90
  year: 2009
  end-page: 97
  publication-title: Catal. Today
– volume: 305
  start-page: 76
  year: 2013
  end-page: 80
  publication-title: J. Catal.
– volume: 57
  start-page: 12549
  year: 2018
  end-page: 12553
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 14982
  year: 2018
  end-page: 14985
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 3
  year: 1999
  end-page: 48
  publication-title: Microporous Mesoporous Mater.
– volume: 128
  start-page: 5723
  year: 2016
  end-page: 5726
  publication-title: Angew. Chem. Int. Ed.
– volume: 431
  start-page: 134
  year: 2022
  end-page: 228
  publication-title: Chem. Eng. J.
– ident: e_1_2_7_42_1
  doi: 10.1021/acscatal.9b00641
– year: 2023
  ident: e_1_2_7_53_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_68_1
  doi: 10.1002/anie.201807814
– ident: e_1_2_7_58_1
  doi: 10.1016/j.cej.2021.134228
– ident: e_1_2_7_1_1
  doi: 10.1038/s41929-018-0078-5
– ident: e_1_2_7_39_1
  doi: 10.1021/ja00181a008
– ident: e_1_2_7_63_1
  doi: 10.1002/anie.201303586
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-018-07882-8
– ident: e_1_2_7_55_1
  doi: 10.1021/ja00497a058
– ident: e_1_2_7_11_1
  doi: 10.1016/j.checat.2023.100597
– ident: e_1_2_7_7_1
  doi: 10.1073/pnas.1821029116
– ident: e_1_2_7_59_1
  doi: 10.1016/S0167-2991(08)62006-6
– ident: e_1_2_7_34_1
  doi: 10.1021/acscatal.3c00059
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201103657
– ident: e_1_2_7_22_1
  doi: 10.1021/acscatal.2c04600
– ident: e_1_2_7_65_1
  doi: 10.1016/j.jcat.2018.10.022
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.201703902
– ident: e_1_2_7_36_1
  doi: 10.1021/jp0041407
– ident: e_1_2_7_64_1
  doi: 10.1016/j.jcat.2013.04.015
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201511678
– ident: e_1_2_7_51_1
  doi: 10.1007/s11244-005-3798-0
– ident: e_1_2_7_52_1
  doi: 10.1021/cs5015749
– ident: e_1_2_7_21_1
  doi: 10.1021/acscatal.7b03114
– ident: e_1_2_7_54_1
  doi: 10.1016/j.chempr.2021.05.023
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jcat.2018.08.019
– ident: e_1_2_7_38_1
– year: 1975
  ident: e_1_2_7_8_1
  publication-title: United States Pat.
– ident: e_1_2_7_49_1
  doi: 10.1002/anie.201510920
– ident: e_1_2_7_56_1
  doi: 10.1021/ja0530164
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.chemrev.2c00076
– ident: e_1_2_7_62_1
  doi: 10.1021/ja035923j
– ident: e_1_2_7_18_1
  doi: 10.1002/ange.202207777
– ident: e_1_2_7_14_1
  doi: 10.1016/S1387-1811(98)00319-9
– ident: e_1_2_7_32_1
  doi: 10.1016/j.fmre.2021.08.002
– ident: e_1_2_7_43_1
  doi: 10.1016/j.checat.2022.07.026
– ident: e_1_2_7_67_1
  doi: 10.1016/j.jcat.2007.04.006
– ident: e_1_2_7_70_1
  doi: 10.1002/anie.202009139
– ident: e_1_2_7_60_1
  doi: 10.1002/anie.200705453
– ident: e_1_2_7_5_1
  doi: 10.1021/cen-v081n038.p005
– ident: e_1_2_7_57_1
  doi: 10.1038/s41929-017-0002-4
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.energyfuels.2c01858
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jcat.2014.06.017
– ident: e_1_2_7_46_1
  doi: 10.1016/j.apcata.2011.06.029
– ident: e_1_2_7_41_1
  doi: 10.1002/ange.200503898
– ident: e_1_2_7_13_1
  doi: 10.1021/ja065810a
– ident: e_1_2_7_29_1
  doi: 10.1021/j100130a003
– ident: e_1_2_7_48_1
  doi: 10.1016/j.apcata.2004.09.012
– ident: e_1_2_7_10_1
  doi: 10.1016/j.mtchem.2022.101061
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.1c08036
– ident: e_1_2_7_44_1
  doi: 10.1016/j.cattod.2009.01.015
– ident: e_1_2_7_66_1
  doi: 10.1002/anie.201814268
– ident: e_1_2_7_47_1
  doi: 10.1006/jcat.1998.1987
– ident: e_1_2_7_50_1
  doi: 10.1021/ja002195g
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201808480
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201803279
– ident: e_1_2_7_61_1
  doi: 10.1002/chem.200901723
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.201608643
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201801397
– ident: e_1_2_7_12_1
  doi: 10.1007/BF00769305
– ident: e_1_2_7_40_1
  doi: 10.1021/ja00117a032
– ident: e_1_2_7_69_1
  doi: 10.1021/acscatal.5b01577
– year: 1977
  ident: e_1_2_7_9_1
  publication-title: United States Pat.
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jcat.2021.03.006
– ident: e_1_2_7_31_1
  doi: 10.1038/s41467-020-20314-w
– ident: e_1_2_7_4_1
  doi: 10.1021/acscatal.5b00007
– ident: e_1_2_7_24_1
  doi: 10.1021/jacs.2c03478
– ident: e_1_2_7_2_1
  doi: 10.1039/C5CS00304K
– ident: e_1_2_7_3_1
  doi: 10.1021/cs3006583
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.201410974
– ident: e_1_2_7_20_1
  doi: 10.1021/jacs.9b00585
SSID ssj0028806
Score 2.4898531
Snippet A methanol‐based economy offers an efficient solution to current energy transition challenges, where the zeolite‐catalyzed methanol‐to‐hydrocarbons (MTH)...
A methanol-based economy offers an efficient solution to current energy transition challenges, where the zeolite-catalyzed methanol-to-hydrocarbons (MTH)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202318250
SubjectTerms Benzene
Carbon dioxide
Carbonyl compounds
Carbonyl groups
Carbonyls
Catalysis
Dual-cycle mechanism
Energy transition
Hydrocarbon pool
Hydrocarbons
Methanol
Methanol-to-hydrocarbons
NMR
Nuclear magnetic resonance
Side-chain mechanism
Synthetic fuels
Toluene
Xylene
Zeolite
Zeolites
Title Tracking the Impact of Koch‐Carbonylated Organics During the Zeolite ZSM‐5 Catalyzed Methanol‐to‐Hydrocarbons Process
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202318250
https://www.ncbi.nlm.nih.gov/pubmed/38253820
https://www.proquest.com/docview/2931483114
https://www.proquest.com/docview/2917860244
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iRS_uy7gRQfDUsU3aSXuUURmV8eAC4qUkaYLgMBVn5qAg-BP8jf4S30sXHUUEPXSbeUm395Lvvb6FkB2ptQ2EaXlMWO2FNk48xaQCuUpYFGdJbFwtgu5Zq3MVnlxH15-i-Iv8ELXBDSXDjdco4FIN9j6ShmIEdhOLfwNCdko7OmwhKjqv80cxYM4ivIhzD6vQV1kbfbY33nx8VvoGNceRq5t6jmaJrC668Di5a46GqqmfvuRz_M9dzZGZEpfS_YKR5smE6S-QqXZVDm6RPMOsptGuTgEy0mMXXElzS09zffv28tqWDwqd3AG6ZrQI8NQDeuCCIF2LG4OedrC96AJ5RNtoN3p8AuquQfN93oOfhzmsOo8ZzKquvwEtAxmWyNXR4WW745W1GzzNYdDwWOzHgNuzyDegYfktayRXLIsM10YwJpMkC60y1vo20Fr50oogsDAaKMl9GVm-TCb7ed-sEsoFsBGo8TZh-NXRJoDoWolC25UQIgsaxKveXarLxOZYX6OXFimZWYoPNa0faoPs1vT3RUqPHyk3KlZIS9EepICPQIXkoEc2yHb9N7wM_NIi-yYfIU0gsLhXCDQrBQvVp-LQMyzQOXOM8Ms1pPtnx4f10dpfGq2TadgPnedcuEEmhw8jswlQaqi2nLi8AzkfGJU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqOMCFQgt06Za6UqWesiR2EidHlF2022X30IKEuES2YwupaFOxuweQkPoT-I38ks44D7RFVSV6SKIkY-c1Y38zmQchn6XWNhAm9piw2gttknqKSQVylbIoKdLEuFoEk2k8PA-_XkSNNyHGwlT5IVqDG0qGG69RwNEgffSUNRRDsHtY_RsgMmrt61jWG9Pn97-1GaQYsGcVYMS5h3Xom7yNPjtabb86Lz0Dm6vY1U0-J6-Jam678jn50VsuVE_f_ZHR8b-ea5ts1dCUHle8tENemdkbspE1FeHeknuY2DSa1imgRjpy8ZW0tHRc6qvHXw-ZvFHo5w7otaBVjKee076Lg3QtLg0628H2-wTII5qh6ej2DqgnBi345TUcXpSwGt4WMLG6_ua0jmXYJecng7Ns6NXlGzzNYdzwWOInAN2LyDegZPmxNZIrVkSGayMYk2lahFYZa30baK18aUUQWBgQlOS-jCzfI2uzcmbeEcoFcBJo8jZl-OPRpgDq4lSh-UoIUQQd4jUfL9d1bnMssXGdV1mZWY4vNW9faod8ael_Vlk9_krZbXghr6V7ngNEAi2SgyrZIZ_a0_Ax8GeLnJlyiTSBwPpeIdDsVzzUXopDz7BA58xxwj_uIT-ejgbt3sFLGn0kG8OzyWl-OpqO35NNOB46R7qwS9YWN0vzAZDVQh062fkNsrYcsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcQk9heGLANusHmSZP2lJLYSRw_opaqHWs1bUNCe4lsxxYSqEG0fQBpEh-Bz7hPwp3zB7oJTdoekijJ2XGcO_t3F98dIR-UMS4SNg2YcCaIXSYDzZQGuZIsyQqZWZ-LYDxJh8fxp5Pk5IEXfxUfojW4oWT48RoF_KJw-_dBQ9EDu4vJvwEho9L-JE5Dickb-l_bAFIMuLPyL-I8wDT0TdjGkO0vl1-elv7AmsvQ1c89g-dENa2ulpycdRdz3TXXvwV0_J_X2iDrNTClBxUnbZIVO90iT3tNPrgX5CdMawYN6xQwIx1570paOnpUmtNfN7c9dalxlTtg14JWHp5mRvveC9KX-GFxqR0cv42BPKE9NBxdXQP12KL9vjyHy_MSdsOrAqZVX9-M1p4ML8nx4PB7bxjUyRsCw2HUCFgWZgDciyS0oGKFqbOKa1YklhsrGFNSFrHT1rnQRcboUDkRRQ6GA614qBLHX5HVaTm1O4RyAXwEeryTDH87OgmQLpUajVdCiCLqkKD5drmpI5tjgo3zvIrJzHLs1Lzt1A752NJfVDE9HqXcbVghr2V7lgNAAh2SgyLZIe_b2_Ax8FeLmtpygTSRwOxeMdBsVyzUPopDzbBB5cwzwl_akB9MRoft2et_KfSOrH3pD_LPo8nRG_IMLsd-FV28S1bnlwu7B7Bqrt96ybkDR8wbYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tracking+the+Impact+of+Koch-Carbonylated+Organics+During+the+Zeolite+ZSM-5+Catalyzed+Methanol-to-Hydrocarbons+Process&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Hexun&rft.au=Gong%2C+Xuan&rft.au=Abou-Hamad%2C+Edy&rft.au=Ye%2C+Yiru&rft.date=2024-03-04&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=63&rft.issue=10&rft.spage=e202318250&rft_id=info:doi/10.1002%2Fanie.202318250&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon