Heterostructures Regulating Lithium Polysulfides for Advanced Lithium‐Sulfur Batteries

Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single‐component materials in regulating lithium po...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 47; pp. e2303520 - n/a
Main Authors Wang, Tao, He, Jiarui, Zhu, Zhi, Cheng, Xin‐Bing, Zhu, Jian, Lu, Bingan, Wu, Yuping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single‐component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium‐sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium‐sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium‐sulfur batteries. Heterostructures could regulate lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. This review systematically and detailedly analyzes the principle and the application of heterostructures as sulfur host, interlayer, and separator modifier to promote the performance of lithium‐sulfur batteries.
AbstractList Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single‐component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium‐sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium‐sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium‐sulfur batteries. Heterostructures could regulate lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. This review systematically and detailedly analyzes the principle and the application of heterostructures as sulfur host, interlayer, and separator modifier to promote the performance of lithium‐sulfur batteries.
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single‐component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium‐sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium‐sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium‐sulfur batteries.
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries are systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium sulfur batteries. This article is protected by copyright. All rights reserved.
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.
Author Lu, Bingan
Zhu, Zhi
Cheng, Xin‐Bing
Zhu, Jian
Wang, Tao
He, Jiarui
Wu, Yuping
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0003-0454-7081
  surname: Wang
  fullname: Wang, Tao
  organization: Southeast University
– sequence: 2
  givenname: Jiarui
  orcidid: 0000-0003-4665-2306
  surname: He
  fullname: He, Jiarui
  organization: Southeast University
– sequence: 3
  givenname: Zhi
  surname: Zhu
  fullname: Zhu, Zhi
  organization: Southeast University
– sequence: 4
  givenname: Xin‐Bing
  orcidid: 0000-0001-7567-1210
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  organization: Southeast University
– sequence: 5
  givenname: Jian
  orcidid: 0000-0001-9852-1645
  surname: Zhu
  fullname: Zhu, Jian
  organization: Hunan University
– sequence: 6
  givenname: Bingan
  orcidid: 0000-0002-0075-5898
  surname: Lu
  fullname: Lu, Bingan
  organization: Hunan University
– sequence: 7
  givenname: Yuping
  orcidid: 0000-0002-0833-1205
  surname: Wu
  fullname: Wu, Yuping
  email: wuyp@fudan.edu.cn
  organization: Southeast University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37254027$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOHDEQRa0IFAaSbZaoJTZseijbbbu9HF4h0qBEeUjZtUx3NRj1A_wAzY5P4BvzJfFoBpCQEKta1LlVV_duk41hHJCQLxSmFIAdmKY3UwaMAxcMPpAJFYzmBWixQSaguci1LMotsu39NQBoCfIj2eKKiQKYmpC_ZxjQjT64WIfo0Gc_8TJ2JtjhMpvbcGVjn_0Yu4WPXWubtG9Hl82aOzPU2DwR_x4ef6V9dNmhCemeRf-JbLam8_h5PXfIn9OT30dn-fz7129Hs3lec8UhZ0zwWkCphVbYcKpFIbVUJVLZIiBXSrayLC8MBd5So5humESgrEBWUtXyHbK_unvjxtuIPlS99TV2nRlwjL5iJaO8YLqkCd17hV6P0Q3JXaJ0MpI8iETtrql40WNT3TjbG7eonjJLwHQF1Ck377B9RihUy1KqZSnVcylJULwS1DakhMchOGO7t2V6Jbu3HS7eeVLNjs9nL9r_iRigYA
CitedBy_id crossref_primary_10_1021_acsnano_4c06270
crossref_primary_10_1016_j_apsusc_2023_158850
crossref_primary_10_1002_advs_202501940
crossref_primary_10_1007_s12274_024_6563_y
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1039_D3CP05761E
crossref_primary_10_1063_5_0224095
crossref_primary_10_1021_acsnano_4c08728
crossref_primary_10_1016_j_jallcom_2024_174419
crossref_primary_10_3390_ma18051141
crossref_primary_10_1002_advs_202412038
crossref_primary_10_1016_j_jcis_2024_01_020
crossref_primary_10_1002_adfm_202409303
crossref_primary_10_3390_batteries11020063
crossref_primary_10_1002_adma_202418295
crossref_primary_10_1002_smll_202402412
crossref_primary_10_1021_acsami_4c13619
crossref_primary_10_1021_acs_iecr_4c02394
crossref_primary_10_1002_smll_202409674
crossref_primary_10_1007_s12274_024_6789_9
crossref_primary_10_1021_acs_energyfuels_4c04659
crossref_primary_10_1039_D4NJ02374A
crossref_primary_10_1016_j_jallcom_2024_176146
crossref_primary_10_1016_j_cej_2024_154658
crossref_primary_10_1002_adfm_202414714
crossref_primary_10_1039_D3TA05859J
crossref_primary_10_1002_cssc_202400538
crossref_primary_10_1021_acsnano_4c17661
crossref_primary_10_1016_j_jcis_2024_04_182
crossref_primary_10_1016_j_jelechem_2024_118382
crossref_primary_10_1002_adfm_202420679
crossref_primary_10_1016_j_est_2024_115205
crossref_primary_10_1016_j_indcrop_2024_118806
crossref_primary_10_3390_catal15020106
crossref_primary_10_1016_j_jcis_2024_07_079
crossref_primary_10_1002_adfm_202405486
crossref_primary_10_1002_smll_202502194
crossref_primary_10_1002_adfm_202408113
crossref_primary_10_1016_j_jcis_2024_05_140
crossref_primary_10_1002_aenm_202303546
crossref_primary_10_1002_app_56147
crossref_primary_10_1016_j_ccr_2024_215836
crossref_primary_10_1021_acsanm_3c04558
crossref_primary_10_1002_advs_202409842
crossref_primary_10_1016_j_jallcom_2024_173969
crossref_primary_10_1016_j_est_2024_113833
crossref_primary_10_1002_adfm_202418022
crossref_primary_10_1016_j_cej_2024_151132
crossref_primary_10_1002_smll_202310907
crossref_primary_10_1039_D3TA07189H
crossref_primary_10_1039_D4GC05753H
crossref_primary_10_1016_j_jallcom_2023_173394
crossref_primary_10_1021_acsami_3c10104
crossref_primary_10_3389_fbael_2024_1377192
crossref_primary_10_1016_j_nanoen_2024_109611
crossref_primary_10_1021_acsami_3c12121
crossref_primary_10_1002_smll_202412586
crossref_primary_10_1002_advs_202404328
crossref_primary_10_1002_anie_202414244
crossref_primary_10_1007_s10934_025_01761_6
crossref_primary_10_1002_cey2_708
crossref_primary_10_1002_adma_202413525
crossref_primary_10_1039_D4EE01426J
crossref_primary_10_1039_D4TA08542F
crossref_primary_10_1002_anie_202423357
crossref_primary_10_1002_batt_202400224
crossref_primary_10_1002_smll_202311799
crossref_primary_10_1002_adfm_202405814
crossref_primary_10_3390_en17071559
crossref_primary_10_1002_celc_202400481
crossref_primary_10_1039_D4CY00594E
crossref_primary_10_1002_smll_202307579
crossref_primary_10_1002_smll_202412496
crossref_primary_10_1039_D3NR03035K
crossref_primary_10_1016_j_nxmate_2024_100450
crossref_primary_10_1002_advs_202406475
crossref_primary_10_1007_s11771_024_5837_7
crossref_primary_10_1016_j_est_2024_112889
crossref_primary_10_1002_smll_202406415
crossref_primary_10_1039_D4SC01628A
crossref_primary_10_1002_adma_202419918
crossref_primary_10_1016_j_cej_2024_155541
crossref_primary_10_1007_s10854_024_12444_4
crossref_primary_10_1002_smll_202411838
crossref_primary_10_1016_j_jcis_2024_07_149
crossref_primary_10_1016_j_jelechem_2024_118396
crossref_primary_10_1002_cssc_202301110
crossref_primary_10_1016_j_cej_2025_159406
crossref_primary_10_1002_adma_202411197
crossref_primary_10_1021_acsnano_4c11701
crossref_primary_10_1016_j_cej_2025_160356
crossref_primary_10_1039_D4TA03797A
crossref_primary_10_1002_adma_202402644
crossref_primary_10_1016_j_matlet_2024_136492
crossref_primary_10_1016_j_jcis_2024_11_211
crossref_primary_10_1002_adfm_202422013
crossref_primary_10_1021_acsami_4c20169
crossref_primary_10_1002_anie_202408026
crossref_primary_10_1021_acs_nanolett_4c05606
crossref_primary_10_3390_batteries10120430
crossref_primary_10_1002_cnl2_70003
crossref_primary_10_1002_smll_202402344
crossref_primary_10_3390_batteries11030089
crossref_primary_10_3390_nano14040384
crossref_primary_10_1016_j_jcis_2024_08_192
crossref_primary_10_1016_j_cej_2025_161019
crossref_primary_10_1021_acsami_4c11693
crossref_primary_10_1002_adma_202311127
crossref_primary_10_1002_adfm_202410742
crossref_primary_10_1002_ange_202414244
crossref_primary_10_1016_j_apsusc_2024_159915
crossref_primary_10_1039_D3QM01023F
crossref_primary_10_1016_j_jechem_2024_05_031
crossref_primary_10_1016_j_cej_2023_146126
crossref_primary_10_1016_j_jallcom_2024_177171
crossref_primary_10_1016_j_diamond_2024_111287
crossref_primary_10_3390_en17215258
crossref_primary_10_1016_j_cej_2024_150488
crossref_primary_10_1002_ange_202423357
crossref_primary_10_1021_acs_langmuir_4c04102
crossref_primary_10_1002_ange_202408026
crossref_primary_10_3390_en16217327
crossref_primary_10_1016_j_est_2024_112543
crossref_primary_10_3390_electrochem5040033
crossref_primary_10_1002_adma_202414047
crossref_primary_10_1039_D3TA03527A
crossref_primary_10_3390_ma18030604
crossref_primary_10_1002_adfm_202401470
crossref_primary_10_1002_adfm_202411941
crossref_primary_10_1002_cnma_202400311
crossref_primary_10_1039_D4TA07103D
crossref_primary_10_1002_adfm_202315012
Cites_doi 10.1002/adma.201606823
10.1016/j.joule.2021.06.009
10.1021/acsnano.0c10603
10.1002/aenm.202002893
10.1016/j.cej.2020.126775
10.1038/s41586-020-2098-y
10.1002/adma.201603401
10.1021/acs.nanolett.8b01882
10.1016/j.cej.2019.122189
10.1002/aenm.201802107
10.1021/acsenergylett.8b00066
10.1007/s40820-022-00954-x
10.1002/adfm.201504695
10.1016/j.jechem.2021.04.008
10.20517/energymater.2022.62
10.1039/D1NR04506G
10.1002/aenm.201800709
10.1038/nenergy.2017.89
10.1016/j.nantod.2020.100991
10.1021/acsnano.0c05030
10.1002/aenm.201904273
10.1002/aenm.202003314
10.1021/acsami.9b15586
10.1063/1.4900193
10.1038/s41467-018-07975-4
10.1016/j.jechem.2020.08.039
10.1016/j.ensm.2021.09.024
10.1038/ncomms14627
10.1039/D0NR03528A
10.1039/C9NH00532C
10.1039/C8EE01402G
10.1016/j.ensm.2017.08.005
10.1002/adfm.202100457
10.1002/ange.201708748
10.1039/D2TA01215D
10.1002/smll.201701034
10.1016/j.nanoen.2018.06.052
10.1002/aenm.202202860
10.1002/aenm.202000082
10.1021/acsami.6b09027
10.1016/j.cej.2019.122595
10.1002/adfm.201906661
10.1002/eem2.12250
10.1016/j.cej.2020.124983
10.1039/C9NR08751F
10.1002/advs.202201823
10.1038/s41929-022-00804-4
10.1002/anie.201605676
10.1002/smll.201803134
10.20517/energymater.2022.46
10.1021/acsnano.0c07999
10.1002/adma.202101204
10.1002/chem.201806231
10.1021/acsami.9b11419
10.1007/s10008-010-1264-9
10.1002/adfm.202100586
10.1039/C8NH00170G
10.1016/j.jpowsour.2018.05.061
10.1039/C9TA00975B
10.1039/C8TA05612A
10.1016/j.electacta.2018.12.075
10.1002/adma.202000315
10.1002/adma.202100855
10.1016/j.nanoen.2017.07.012
10.1016/j.electacta.2021.139723
10.1002/adfm.202102314
10.1002/ange.201411109
10.1021/nl404721h
10.1021/acsnano.1c00270
10.1016/j.cej.2020.128079
10.1016/j.jechem.2020.06.009
10.1002/adma.202105067
10.1016/j.ensm.2020.05.002
10.1039/D0TA01664K
10.1021/acsaem.8b02196
10.1021/acs.chemrev.7b00536
10.1016/j.nanoen.2016.04.053
10.1126/science.aac9439
10.1007/s12274-020-2827-4
10.1038/s41929-020-0498-x
10.1016/j.nanoen.2017.01.040
10.1016/j.matt.2020.01.001
10.1002/aenm.202100448
10.1016/j.ensm.2018.06.015
10.1038/s41524-020-0273-1
10.1016/j.nanoen.2021.105928
10.1016/j.ccr.2022.214879
10.1007/s12274-018-2023-y
10.1021/acsami.8b19501
10.1002/advs.201700270
10.1021/acsnano.1c01250
10.1007/s12274-018-2243-1
10.1088/1755-1315/804/3/032039
10.1039/D1TA05657C
10.1002/anie.201909339
10.1002/anie.201810579
10.1021/cr900070d
10.1016/j.cej.2021.129407
10.1088/2040-8986/aac1d8
10.1021/acsenergylett.1c02132
10.1002/ange.201410174
10.1038/s41565-019-0438-6
10.1103/PhysRevB.76.165119
10.1002/smll.202100065
10.1016/j.ensm.2020.05.033
10.1038/s41560-022-01001-0
10.1016/j.mattod.2018.04.007
10.1038/s41467-021-23819-0
10.1021/acsnano.9b06267
10.1039/C8NR03846E
10.1039/C8TA06288A
10.1002/advs.202103456
10.1021/acsnano.9b02231
10.1021/acsnano.2c02810
10.1016/j.nanoen.2014.12.029
10.1016/j.joule.2019.01.003
10.1016/j.cej.2019.123734
10.1039/C9TA11451C
10.1039/C7EE01047H
10.1002/admt.202001136
10.1002/adma.201905658
10.1021/acsenergylett.8b00856
10.1021/am3026294
10.1002/aenm.202000091
10.1002/aenm.201801868
10.1002/aenm.202100432
10.1038/nenergy.2016.132
10.1039/C7TA00290D
10.1039/C7CS00556C
10.1038/s41467-021-23155-3
10.1039/C9NJ04581C
10.1039/C8TA10422K
10.1016/j.apsusc.2021.151586
10.1021/acsenergylett.2c02179
10.1016/j.electacta.2019.135311
10.1016/j.apcatb.2018.01.069
10.1002/adma.201802121
10.1039/D0TA04187D
10.20517/energymater.2022.63
10.1021/acs.nanolett.9b00996
10.1002/adfm.201806611
10.1021/acsami.2c04734
10.1016/j.nanoen.2019.104190
10.1021/acsnano.9b01079
10.1039/C5CS00410A
10.1039/C7CS00160F
10.1039/C9CS00381A
10.1002/aenm.201903008
10.1039/D0NR04189K
10.1039/C9TA01500K
10.1016/j.nanoen.2020.105602
10.1038/ncomms6381
10.1016/j.nanoen.2019.104356
10.1002/adma.202005967
10.1039/D2TA09594G
10.1002/anie.201810104
10.1002/smll.202004806
10.1002/aenm.201601630
10.1007/s12274-019-2381-0
10.1016/j.pmatsci.2022.101019
10.1038/natrevmats.2016.64
10.1039/C2CC37117K
10.1039/c3ta12846f
10.1039/C8EE03252A
10.1016/j.cej.2019.122672
10.1021/acsnano.9b00816
10.1016/j.cej.2020.128177
10.1039/C7EE01430A
10.1002/ange.201500110
10.1021/cr500062v
10.1002/smtd.201800317
10.1039/C7TA04937D
10.1038/nmat4703
10.1039/C8NR04661A
10.1007/s11664-023-10355-4
10.1039/D0EE03206A
10.1039/D1EE03396D
10.1021/acsenergylett.2c02232
10.1021/acsenergylett.6b00603
10.1016/j.ensm.2021.05.034
10.1002/smll.202006374
10.1021/acsnano.7b01507
10.1021/acsnano.0c07332
10.1016/j.nanoen.2019.03.060
10.1016/j.cej.2021.129388
10.1002/cssc.201901958
10.1002/adma.202003955
10.1016/j.cej.2021.133629
10.1021/acs.chemrev.9b00463
10.1039/c0cs00222d
10.1016/j.jpowsour.2019.227364
10.1016/j.cclet.2020.12.051
10.1016/j.nantod.2018.02.006
10.1002/anie.201402315
10.1038/nmat1849
10.1016/j.mtcomm.2021.102323
10.1038/ncomms11203
10.1039/C9TA07342F
10.1016/j.nanoen.2017.08.039
10.1002/adfm.201707536
10.1016/j.nanoen.2021.105891
10.1021/acsnano.0c01124
10.1021/acsnano.1c00896
10.1002/adma.202102338
10.1038/s41563-019-0366-8
10.1016/j.apsusc.2019.07.270
10.1016/j.cej.2018.10.026
10.1002/aenm.201900219
10.1039/C9EE02049G
10.1039/C8TA07352J
10.1016/j.ensm.2020.01.002
10.1039/C8CC06924G
10.1002/aenm.201700260
10.1021/acssuschemeng.1c04036
10.1016/j.ensm.2019.04.038
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
This article is protected by copyright. All rights reserved.
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: This article is protected by copyright. All rights reserved.
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202303520
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37254027
10_1002_adma_202303520
ADMA202303520
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2242023R10001
– fundername: Start‐up Research Fund of Southeast University
  funderid: RF1028623005
– fundername: Project on Carbon Emission Peak and Neutrality of Jiangsu Province
  funderid: BE2022031‐4
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2021JJ40046
– fundername: National Natural Science Foundation of China
  funderid: 22279016; 22005092; 52073143; 52131306
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3730-2253c5089597ed3195469678e16fe0e3776f688ba103f1a729d26e0124e2817f3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:01:12 EDT 2025
Sat Jul 26 01:24:35 EDT 2025
Mon Jul 21 05:44:07 EDT 2025
Tue Jul 01 02:33:35 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Sun Jul 06 04:45:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords catalysis
adsorption
lithium-sulfur battery
shuttling effect
heterostructure
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-2253c5089597ed3195469678e16fe0e3776f688ba103f1a729d26e0124e2817f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0075-5898
0000-0003-4665-2306
0000-0003-0454-7081
0000-0001-9852-1645
0000-0001-7567-1210
0000-0002-0833-1205
PMID 37254027
PQID 2892535975
PQPubID 2045203
PageCount 32
ParticipantIDs proquest_miscellaneous_2821342981
proquest_journals_2892535975
pubmed_primary_37254027
crossref_primary_10_1002_adma_202303520
crossref_citationtrail_10_1002_adma_202303520
wiley_primary_10_1002_adma_202303520_ADMA202303520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 574
2013; 1
2019; 11
2019; 10
2019; 13
2019; 12
2019; 14
2019; 16
2020; 16
2019; 19
2019; 18
2020; 14
2020; 447
2020; 13
2020; 12
2020; 10
2007; 76
2013; 5
2018; 47
2018; 6
2018; 8
2018; 3
2018; 5
2019; 20
2019; 22
2020; 330
2019; 25
2010; 110
2014; 14
2007; 6
2019; 29
2020; 579
2018; 30
2021; 84
2016; 45
2021; 81
2019; 7
2019; 9
2018; 28
2023; 52
2019; 4
2019; 3
2018; 227
2015; 127
2019; 2
2020; 381
2020; 380
2020; 35
2020; 33
2020; 32
2018; 20
2021; 418
2018; 19
2021; 57
2018; 18
2016; 7
2021; 54
2016; 1
2020; 394
2020; 30
2022; 5
2018; 118
2019; 43
2022; 7
2022; 8
2019; 48
2022; 9
2020; 392
2022; 14
2020; 26
2022; 15
2022; 10
2022; 2
2018; 11
2016; 28
2018; 10
2016; 26
2021; 62
2016; 25
2019; 298
2016; 8
2022; 16
2018; 14
2017; 5
2017; 40
2021; 406
2017; 7
2021; 409
2022; 131
2021; 27
2021; 804
2017; 8
2017; 2
2020; 120
2017; 46
2019; 58
2020; 59
2011; 15
2023; 3
2020; 8
2018; 130
2020; 7
2020; 6
2020; 5
2014; 5
2021; 32
2019; 60
2020; 3
2021; 31
2020; 2
2021; 33
2019; 66
2017; 39
2017; 33
2019; 358
2016; 353
2022; 403
2021; 40
2014; 53
2021; 9
2015; 12
2021; 7
2014; 116
2021; 6
2021; 5
2023; 13
2023; 11
2013; 49
2011; 40
2017; 29
2022; 44
2014; 114
2022; 433
2016; 55
2018; 395
2021; 13
2021; 15
2021; 12
2021; 11
2017; 16
2017; 11
2023; 475
2017; 10
2021; 17
2017; 13
1962
2019; 378
2020; 68
2018; 51
2018; 54
2018; 57
2019; 495
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_211_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
Wang Y. (e_1_2_9_168_1) 2020; 7
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_212_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Mater.
– volume: 57
  start-page: 41
  year: 2021
  publication-title: J. Energy Chem.
– volume: 227
  start-page: 530
  year: 2018
  publication-title: Appl. Catal., B
– volume: 14
  start-page: 408
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 40
  start-page: 4506
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 418
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 14
  year: 2018
  publication-title: Small
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 81
  year: 2021
  publication-title: Nano Energy
– volume: 15
  start-page: 1423
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 8
  year: 2020
  publication-title: npj Comput. Mater.
– volume: 5
  start-page: 731
  year: 2022
  publication-title: Energy Environ. Mater.
– volume: 40
  start-page: 360
  year: 2017
  publication-title: Nano Energy
– volume: 358
  start-page: 1253
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 116
  year: 2014
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 3563
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1476
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 60
  start-page: 332
  year: 2019
  publication-title: Nano Energy
– volume: 48
  start-page: 5432
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1694
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3413
  year: 2017
  publication-title: ACS Nano
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 127
  start-page: 3979
  year: 2015
  publication-title: Angew. Chem.
– volume: 51
  start-page: 340
  year: 2018
  publication-title: Nano Energy
– volume: 394
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 7114
  year: 2021
  publication-title: ACS Nano
– volume: 43
  year: 2019
  publication-title: New J. Chem.
– volume: 27
  year: 2021
  publication-title: Mater. Today Commun.
– volume: 13
  start-page: 4834
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 2570
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  start-page: 779
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 5635
  year: 2019
  publication-title: ACS Nano
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 142
  year: 2019
  publication-title: Mater. Today
– volume: 118
  start-page: 6091
  year: 2018
  publication-title: Chem. Rev.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 381
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 5381
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  year: 2023
  publication-title: Energy Mater.
– volume: 33
  start-page: 306
  year: 2017
  publication-title: Nano Energy
– volume: 7
  start-page: 4190
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 762
  year: 2020
  publication-title: Nat. Catal.
– volume: 39
  start-page: 291
  year: 2017
  publication-title: Nano Energy
– volume: 19
  start-page: 84
  year: 2018
  publication-title: Nano Today
– volume: 447
  year: 2020
  publication-title: J. Power Sources
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 15
  start-page: 6849
  year: 2021
  publication-title: ACS Nano
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 58
  start-page: 4484
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 17
  year: 2021
  publication-title: Small
– volume: 406
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 1049
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 4572
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 361
  year: 2019
  publication-title: Joule
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 35
  year: 2022
  publication-title: Energy Mater.
– volume: 8
  start-page: 116
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 298
  start-page: 43
  year: 2019
  publication-title: Electrochim. Acta
– volume: 18
  start-page: 541
  year: 2019
  publication-title: Nat. Mater.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 240
  year: 2015
  publication-title: Nano Energy
– volume: 5
  start-page: 555
  year: 2022
  publication-title: Nat. Catal.
– volume: 20
  start-page: 55
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 4384
  year: 2019
  publication-title: Nano Lett.
– volume: 330
  year: 2020
  publication-title: Electrochim. Acta
– volume: 353
  year: 2016
  publication-title: Science
– volume: 10
  start-page: 188
  year: 2019
  publication-title: Nat. Commun.
– volume: 378
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 84
  year: 2021
  publication-title: Nano Energy
– volume: 28
  start-page: 9551
  year: 2016
  publication-title: Adv. Mater.
– volume: 403
  year: 2022
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 7860
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 409
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 475
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 16
  start-page: 170
  year: 2017
  publication-title: Nat. Mater.
– volume: 26
  start-page: 1428
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 579
  start-page: 368
  year: 2020
  publication-title: Nature
– volume: 2
  start-page: 327
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 32
  start-page: 2249
  year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 9
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 12
  start-page: 4671
  year: 2019
  publication-title: ChemSusChem
– year: 1962
– volume: 33
  start-page: 73
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 56
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 526
  year: 2020
  publication-title: Matter
– volume: 5
  start-page: 530
  year: 2020
  publication-title: Nanoscale Horiz.
– volume: 40
  start-page: 439
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 12
  start-page: 463
  year: 2019
  publication-title: Nano Res.
– volume: 7
  start-page: 1658
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 77
  year: 2019
  publication-title: Nanoscale Horiz.
– volume: 44
  start-page: 180
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 14
  start-page: 2345
  year: 2014
  publication-title: Nano Lett.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2620
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 981
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 5055
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 4598
  year: 2018
  publication-title: Nano Lett.
– volume: 7
  start-page: 312
  year: 2022
  publication-title: Nat. Energy
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 110
  start-page: 132
  year: 2010
  publication-title: Chem. Rev.
– volume: 380
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 574
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 395
  start-page: 77
  year: 2018
  publication-title: J. Power Sources
– volume: 11
  start-page: 3480
  year: 2018
  publication-title: Nano Res.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 45
  start-page: 5605
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 120
  start-page: 6358
  year: 2020
  publication-title: Chem. Rev.
– volume: 15
  start-page: 649
  year: 2011
  publication-title: J. Solid State Electrochem.
– volume: 11
  start-page: 3682
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 344
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 1856
  year: 2020
  publication-title: Nano Res.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 9230
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 15
  start-page: 7491
  year: 2021
  publication-title: ACS Nano
– volume: 392
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 2323
  year: 2021
  publication-title: Joule
– volume: 20
  year: 2018
  publication-title: J. Opt.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 12
  start-page: 344
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 49
  start-page: 137
  year: 2013
  publication-title: Chem. Commun.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 5
  start-page: 5222
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 12
  start-page: 1193
  year: 2019
  publication-title: Nano Res.
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 52
  start-page: 3526
  year: 2023
  publication-title: J. Electron. Mater.
– volume: 14
  start-page: 5917
  year: 2020
  publication-title: ACS Nano
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 47
  start-page: 53
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 54
  start-page: 434
  year: 2021
  publication-title: J. Energy Chem.
– volume: 25
  start-page: 5416
  year: 2019
  publication-title: Chemistry
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 13
  start-page: 4731
  year: 2019
  publication-title: ACS Nano
– volume: 12
  start-page: 3031
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 433
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 222
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 127
  start-page: 4399
  year: 2015
  publication-title: Angew. Chem.
– volume: 130
  start-page: 505
  year: 2018
  publication-title: Angew. Chem.
– volume: 26
  start-page: 203
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 127
  start-page: 4892
  year: 2015
  publication-title: Angew. Chem.
– volume: 12
  start-page: 326
  year: 2020
  publication-title: Nanoscale
– volume: 131
  year: 2022
  publication-title: Prog. Mater. Sci.
– volume: 62
  start-page: 508
  year: 2021
  publication-title: J. Energy Chem.
– volume: 495
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 30
  start-page: 187
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 1627
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 78
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 25
  start-page: 203
  year: 2016
  publication-title: Nano Energy
– volume: 35
  year: 2020
  publication-title: Nano Today
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 804
  year: 2021
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– ident: e_1_2_9_10_1
  doi: 10.1002/adma.201606823
– ident: e_1_2_9_18_1
  doi: 10.1016/j.joule.2021.06.009
– ident: e_1_2_9_188_1
  doi: 10.1021/acsnano.0c10603
– ident: e_1_2_9_31_1
  doi: 10.1002/aenm.202002893
– ident: e_1_2_9_158_1
  doi: 10.1016/j.cej.2020.126775
– ident: e_1_2_9_63_1
  doi: 10.1038/s41586-020-2098-y
– ident: e_1_2_9_154_1
  doi: 10.1002/adma.201603401
– ident: e_1_2_9_100_1
  doi: 10.1021/acs.nanolett.8b01882
– ident: e_1_2_9_120_1
  doi: 10.1016/j.cej.2019.122189
– ident: e_1_2_9_20_1
  doi: 10.1002/aenm.201802107
– ident: e_1_2_9_145_1
  doi: 10.1021/acsenergylett.8b00066
– ident: e_1_2_9_46_1
  doi: 10.1007/s40820-022-00954-x
– ident: e_1_2_9_110_1
  doi: 10.1002/adfm.201504695
– ident: e_1_2_9_118_1
  doi: 10.1016/j.jechem.2021.04.008
– ident: e_1_2_9_12_1
  doi: 10.20517/energymater.2022.62
– ident: e_1_2_9_81_1
  doi: 10.1039/D1NR04506G
– ident: e_1_2_9_74_1
  doi: 10.1002/aenm.201800709
– ident: e_1_2_9_55_1
  doi: 10.1038/nenergy.2017.89
– ident: e_1_2_9_190_1
  doi: 10.1016/j.nantod.2020.100991
– ident: e_1_2_9_184_1
  doi: 10.1021/acsnano.0c05030
– ident: e_1_2_9_180_1
  doi: 10.1002/aenm.201904273
– ident: e_1_2_9_152_1
  doi: 10.1002/aenm.202003314
– ident: e_1_2_9_126_1
  doi: 10.1021/acsami.9b15586
– ident: e_1_2_9_195_1
  doi: 10.1063/1.4900193
– ident: e_1_2_9_5_1
  doi: 10.1038/s41467-018-07975-4
– ident: e_1_2_9_202_1
  doi: 10.1016/j.jechem.2020.08.039
– ident: e_1_2_9_98_1
  doi: 10.1016/j.ensm.2021.09.024
– ident: e_1_2_9_162_1
  doi: 10.1038/ncomms14627
– ident: e_1_2_9_131_1
  doi: 10.1039/D0NR03528A
– ident: e_1_2_9_174_1
  doi: 10.1039/C9NH00532C
– ident: e_1_2_9_102_1
  doi: 10.1039/C8EE01402G
– ident: e_1_2_9_155_1
  doi: 10.1016/j.ensm.2017.08.005
– ident: e_1_2_9_42_1
  doi: 10.1002/adfm.202100457
– ident: e_1_2_9_167_1
  doi: 10.1002/ange.201708748
– ident: e_1_2_9_38_1
  doi: 10.1039/D2TA01215D
– ident: e_1_2_9_60_1
  doi: 10.1002/smll.201701034
– ident: e_1_2_9_157_1
  doi: 10.1016/j.nanoen.2018.06.052
– ident: e_1_2_9_206_1
  doi: 10.1002/aenm.202202860
– ident: e_1_2_9_43_1
  doi: 10.1002/aenm.202000082
– ident: e_1_2_9_129_1
  doi: 10.1021/acsami.6b09027
– ident: e_1_2_9_138_1
  doi: 10.1016/j.cej.2019.122595
– ident: e_1_2_9_196_1
  doi: 10.1002/adfm.201906661
– ident: e_1_2_9_37_1
  doi: 10.1002/eem2.12250
– ident: e_1_2_9_144_1
  doi: 10.1016/j.cej.2020.124983
– ident: e_1_2_9_181_1
  doi: 10.1039/C9NR08751F
– ident: e_1_2_9_101_1
  doi: 10.1002/advs.202201823
– ident: e_1_2_9_8_1
  doi: 10.1038/s41929-022-00804-4
– ident: e_1_2_9_199_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_9_159_1
  doi: 10.1002/smll.201803134
– ident: e_1_2_9_14_1
  doi: 10.20517/energymater.2022.46
– ident: e_1_2_9_132_1
  doi: 10.1021/acsnano.0c07999
– ident: e_1_2_9_191_1
  doi: 10.1002/adma.202101204
– ident: e_1_2_9_89_1
  doi: 10.1002/chem.201806231
– ident: e_1_2_9_197_1
  doi: 10.1021/acsami.9b11419
– ident: e_1_2_9_204_1
  doi: 10.1007/s10008-010-1264-9
– ident: e_1_2_9_99_1
  doi: 10.1002/adfm.202100586
– ident: e_1_2_9_29_1
  doi: 10.1039/C8NH00170G
– ident: e_1_2_9_106_1
  doi: 10.1016/j.jpowsour.2018.05.061
– ident: e_1_2_9_71_1
  doi: 10.1039/C9TA00975B
– ident: e_1_2_9_112_1
  doi: 10.1039/C8TA05612A
– ident: e_1_2_9_123_1
  doi: 10.1016/j.electacta.2018.12.075
– ident: e_1_2_9_95_1
  doi: 10.1002/adma.202000315
– ident: e_1_2_9_64_1
  doi: 10.1002/adma.202100855
– ident: e_1_2_9_2_1
– ident: e_1_2_9_212_1
  doi: 10.1016/j.nanoen.2017.07.012
– ident: e_1_2_9_84_1
  doi: 10.1016/j.electacta.2021.139723
– ident: e_1_2_9_113_1
  doi: 10.1002/adfm.202102314
– ident: e_1_2_9_121_1
  doi: 10.1002/ange.201411109
– ident: e_1_2_9_75_1
  doi: 10.1021/nl404721h
– ident: e_1_2_9_210_1
  doi: 10.1021/acsnano.1c00270
– ident: e_1_2_9_185_1
  doi: 10.1016/j.cej.2020.128079
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jechem.2020.06.009
– ident: e_1_2_9_69_1
  doi: 10.1002/adma.202105067
– ident: e_1_2_9_96_1
  doi: 10.1016/j.ensm.2020.05.002
– ident: e_1_2_9_80_1
  doi: 10.1039/D0TA01664K
– ident: e_1_2_9_109_1
  doi: 10.1021/acsaem.8b02196
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.chemrev.7b00536
– ident: e_1_2_9_114_1
  doi: 10.1016/j.nanoen.2016.04.053
– ident: e_1_2_9_50_1
  doi: 10.1126/science.aac9439
– ident: e_1_2_9_44_1
  doi: 10.1007/s12274-020-2827-4
– ident: e_1_2_9_30_1
  doi: 10.1038/s41929-020-0498-x
– ident: e_1_2_9_216_1
  doi: 10.1016/j.nanoen.2017.01.040
– ident: e_1_2_9_66_1
  doi: 10.1016/j.matt.2020.01.001
– volume: 7
  year: 2020
  ident: e_1_2_9_168_1
  publication-title: Adv. Mater.
– ident: e_1_2_9_16_1
  doi: 10.1002/aenm.202100448
– ident: e_1_2_9_86_1
  doi: 10.1016/j.ensm.2018.06.015
– ident: e_1_2_9_73_1
  doi: 10.1038/s41524-020-0273-1
– ident: e_1_2_9_33_1
  doi: 10.1016/j.nanoen.2021.105928
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ccr.2022.214879
– ident: e_1_2_9_177_1
  doi: 10.1007/s12274-018-2023-y
– ident: e_1_2_9_82_1
  doi: 10.1021/acsami.8b19501
– ident: e_1_2_9_13_1
  doi: 10.1002/advs.201700270
– ident: e_1_2_9_104_1
  doi: 10.1021/acsnano.1c01250
– ident: e_1_2_9_62_1
  doi: 10.1007/s12274-018-2243-1
– ident: e_1_2_9_161_1
  doi: 10.1088/1755-1315/804/3/032039
– ident: e_1_2_9_124_1
  doi: 10.1039/D1TA05657C
– ident: e_1_2_9_23_1
  doi: 10.1002/anie.201909339
– ident: e_1_2_9_146_1
  doi: 10.1002/anie.201810579
– ident: e_1_2_9_115_1
  doi: 10.1021/cr900070d
– ident: e_1_2_9_119_1
  doi: 10.1016/j.cej.2021.129407
– ident: e_1_2_9_148_1
  doi: 10.1088/2040-8986/aac1d8
– ident: e_1_2_9_67_1
  doi: 10.1021/acsenergylett.1c02132
– ident: e_1_2_9_127_1
  doi: 10.1002/ange.201410174
– ident: e_1_2_9_49_1
  doi: 10.1038/s41565-019-0438-6
– ident: e_1_2_9_111_1
  doi: 10.1103/PhysRevB.76.165119
– ident: e_1_2_9_147_1
  doi: 10.1002/smll.202100065
– ident: e_1_2_9_164_1
  doi: 10.1016/j.ensm.2020.05.033
– ident: e_1_2_9_6_1
  doi: 10.1038/s41560-022-01001-0
– ident: e_1_2_9_22_1
  doi: 10.1016/j.mattod.2018.04.007
– ident: e_1_2_9_68_1
  doi: 10.1038/s41467-021-23819-0
– ident: e_1_2_9_137_1
  doi: 10.1021/acsnano.9b06267
– ident: e_1_2_9_166_1
  doi: 10.1039/C8NR03846E
– ident: e_1_2_9_214_1
  doi: 10.1039/C8TA06288A
– ident: e_1_2_9_183_1
  doi: 10.1002/advs.202103456
– ident: e_1_2_9_103_1
  doi: 10.1021/acsnano.9b02231
– ident: e_1_2_9_211_1
  doi: 10.1021/acsnano.2c02810
– ident: e_1_2_9_215_1
  doi: 10.1016/j.nanoen.2014.12.029
– ident: e_1_2_9_25_1
  doi: 10.1016/j.joule.2019.01.003
– ident: e_1_2_9_140_1
  doi: 10.1016/j.cej.2019.123734
– ident: e_1_2_9_142_1
  doi: 10.1039/C9TA11451C
– ident: e_1_2_9_94_1
  doi: 10.1039/C7EE01047H
– ident: e_1_2_9_203_1
  doi: 10.1002/admt.202001136
– ident: e_1_2_9_160_1
  doi: 10.1002/adma.201905658
– ident: e_1_2_9_107_1
  doi: 10.1021/acsenergylett.8b00856
– ident: e_1_2_9_77_1
  doi: 10.1021/am3026294
– ident: e_1_2_9_92_1
  doi: 10.1002/aenm.202000091
– ident: e_1_2_9_93_1
  doi: 10.1002/aenm.201801868
– ident: e_1_2_9_170_1
  doi: 10.1002/aenm.202100432
– ident: e_1_2_9_1_1
  doi: 10.1038/nenergy.2016.132
– ident: e_1_2_9_26_1
  doi: 10.1039/C7TA00290D
– ident: e_1_2_9_57_1
  doi: 10.1039/C7CS00556C
– ident: e_1_2_9_7_1
  doi: 10.1038/s41467-021-23155-3
– ident: e_1_2_9_78_1
  doi: 10.1039/C9NJ04581C
– ident: e_1_2_9_122_1
  doi: 10.1039/C8TA10422K
– ident: e_1_2_9_139_1
  doi: 10.1016/j.apsusc.2021.151586
– ident: e_1_2_9_15_1
  doi: 10.1021/acsenergylett.2c02179
– ident: e_1_2_9_141_1
  doi: 10.1016/j.electacta.2019.135311
– ident: e_1_2_9_97_1
  doi: 10.1016/j.apcatb.2018.01.069
– ident: e_1_2_9_178_1
  doi: 10.1002/adma.201802121
– ident: e_1_2_9_133_1
  doi: 10.1039/D0TA04187D
– ident: e_1_2_9_19_1
  doi: 10.20517/energymater.2022.63
– ident: e_1_2_9_17_1
  doi: 10.1021/acs.nanolett.9b00996
– ident: e_1_2_9_61_1
  doi: 10.1002/adfm.201806611
– ident: e_1_2_9_135_1
  doi: 10.1021/acsami.2c04734
– ident: e_1_2_9_192_1
  doi: 10.1016/j.nanoen.2019.104190
– ident: e_1_2_9_175_1
  doi: 10.1021/acsnano.9b01079
– ident: e_1_2_9_3_1
  doi: 10.1039/C5CS00410A
– ident: e_1_2_9_54_1
  doi: 10.1039/C7CS00160F
– ident: e_1_2_9_27_1
  doi: 10.1039/C9CS00381A
– ident: e_1_2_9_32_1
  doi: 10.1002/aenm.201903008
– ident: e_1_2_9_143_1
  doi: 10.1039/D0NR04189K
– ident: e_1_2_9_187_1
  doi: 10.1039/C9TA01500K
– ident: e_1_2_9_134_1
  doi: 10.1016/j.nanoen.2020.105602
– ident: e_1_2_9_153_1
  doi: 10.1038/ncomms6381
– ident: e_1_2_9_105_1
  doi: 10.1016/j.nanoen.2019.104356
– ident: e_1_2_9_125_1
  doi: 10.1002/adma.202005967
– ident: e_1_2_9_72_1
  doi: 10.1039/D2TA09594G
– ident: e_1_2_9_165_1
  doi: 10.1002/anie.201810104
– ident: e_1_2_9_87_1
  doi: 10.1002/smll.202004806
– ident: e_1_2_9_172_1
  doi: 10.1002/aenm.201601630
– ident: e_1_2_9_176_1
  doi: 10.1007/s12274-019-2381-0
– ident: e_1_2_9_53_1
  doi: 10.1016/j.pmatsci.2022.101019
– ident: e_1_2_9_58_1
  doi: 10.1038/natrevmats.2016.64
– ident: e_1_2_9_76_1
  doi: 10.1039/C2CC37117K
– ident: e_1_2_9_217_1
  doi: 10.1039/c3ta12846f
– ident: e_1_2_9_149_1
  doi: 10.1039/C8EE03252A
– ident: e_1_2_9_136_1
  doi: 10.1016/j.cej.2019.122672
– ident: e_1_2_9_179_1
  doi: 10.1021/acsnano.9b00816
– ident: e_1_2_9_39_1
  doi: 10.1016/j.cej.2020.128177
– ident: e_1_2_9_156_1
  doi: 10.1039/C7EE01430A
– ident: e_1_2_9_128_1
  doi: 10.1002/ange.201500110
– ident: e_1_2_9_4_1
  doi: 10.1021/cr500062v
– ident: e_1_2_9_182_1
  doi: 10.1002/smtd.201800317
– ident: e_1_2_9_108_1
  doi: 10.1039/C7TA04937D
– ident: e_1_2_9_56_1
  doi: 10.1038/nmat4703
– ident: e_1_2_9_90_1
  doi: 10.1039/C8NR04661A
– ident: e_1_2_9_208_1
  doi: 10.1007/s11664-023-10355-4
– ident: e_1_2_9_65_1
  doi: 10.1039/D0EE03206A
– ident: e_1_2_9_28_1
  doi: 10.1039/D1EE03396D
– ident: e_1_2_9_36_1
  doi: 10.1021/acsenergylett.2c02232
– ident: e_1_2_9_35_1
  doi: 10.1021/acsenergylett.6b00603
– ident: e_1_2_9_201_1
  doi: 10.1016/j.ensm.2021.05.034
– ident: e_1_2_9_169_1
  doi: 10.1002/smll.202006374
– ident: e_1_2_9_59_1
  doi: 10.1021/acsnano.7b01507
– ident: e_1_2_9_200_1
  doi: 10.1021/acsnano.0c07332
– ident: e_1_2_9_213_1
  doi: 10.1016/j.nanoen.2019.03.060
– ident: e_1_2_9_70_1
  doi: 10.1016/j.cej.2021.129388
– ident: e_1_2_9_88_1
  doi: 10.1002/cssc.201901958
– ident: e_1_2_9_45_1
  doi: 10.1002/adma.202003955
– ident: e_1_2_9_163_1
  doi: 10.1016/j.cej.2021.133629
– ident: e_1_2_9_209_1
  doi: 10.1021/acs.chemrev.9b00463
– ident: e_1_2_9_48_1
  doi: 10.1039/c0cs00222d
– ident: e_1_2_9_150_1
  doi: 10.1016/j.jpowsour.2019.227364
– ident: e_1_2_9_194_1
  doi: 10.1016/j.cclet.2020.12.051
– ident: e_1_2_9_21_1
  doi: 10.1016/j.nantod.2018.02.006
– ident: e_1_2_9_91_1
  doi: 10.1002/anie.201402315
– ident: e_1_2_9_116_1
  doi: 10.1038/nmat1849
– ident: e_1_2_9_207_1
  doi: 10.1016/j.mtcomm.2021.102323
– ident: e_1_2_9_198_1
  doi: 10.1038/ncomms11203
– ident: e_1_2_9_117_1
  doi: 10.1039/C9TA07342F
– ident: e_1_2_9_186_1
  doi: 10.1016/j.nanoen.2017.08.039
– ident: e_1_2_9_205_1
  doi: 10.1002/adfm.201707536
– ident: e_1_2_9_47_1
  doi: 10.1016/j.nanoen.2021.105891
– ident: e_1_2_9_151_1
  doi: 10.1021/acsnano.0c01124
– ident: e_1_2_9_34_1
  doi: 10.1021/acsnano.1c00896
– ident: e_1_2_9_189_1
  doi: 10.1002/adma.202102338
– ident: e_1_2_9_52_1
  doi: 10.1038/s41563-019-0366-8
– ident: e_1_2_9_173_1
  doi: 10.1016/j.apsusc.2019.07.270
– ident: e_1_2_9_130_1
  doi: 10.1016/j.cej.2018.10.026
– ident: e_1_2_9_193_1
  doi: 10.1002/aenm.201900219
– ident: e_1_2_9_24_1
  doi: 10.1039/C9EE02049G
– ident: e_1_2_9_171_1
  doi: 10.1039/C8TA07352J
– ident: e_1_2_9_85_1
  doi: 10.1016/j.ensm.2020.01.002
– ident: e_1_2_9_83_1
  doi: 10.1039/C8CC06924G
– ident: e_1_2_9_9_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_9_79_1
  doi: 10.1021/acssuschemeng.1c04036
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ensm.2019.04.038
SSID ssj0009606
Score 2.7194188
SecondaryResourceType review_article
Snippet Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures,...
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2303520
SubjectTerms adsorption
catalysis
heterostructure
Heterostructures
Interlayers
Lithium sulfur batteries
lithium‐sulfur battery
Materials science
Polysulfides
Reaction kinetics
shuttling effect
Title Heterostructures Regulating Lithium Polysulfides for Advanced Lithium‐Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202303520
https://www.ncbi.nlm.nih.gov/pubmed/37254027
https://www.proquest.com/docview/2892535975
https://www.proquest.com/docview/2821342981
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7InvTB-6U6pYLgU7e26fWxqGOIE5kO9laSNsHh3MStD_rkT_A3-ks8adpuU0TQt5YktEnOOfm-9uQLwEngpLZHWWpwzpjhpI5tUIqsNbRESgXGyiSXFOpce-2ec9l3-3O7-JU-RPXBTXpGHq-lg1M2ac5EQ2ma6wYhhEYMIUm7TNiSqKg704-S8DwX2yOuEXpOUKo2mnZzsfniqvQNai4i13zpaa0BLV9aZZw8NLIpaySvX_Qc_9OrdVgtcKkeKUPagCU-2oSVObXCLei3ZerMWCnOZkjT9a46yB5L9avB9H6QPeo34-HLJBuKQYrlCIj1qEgyKGt8vL3fYnn2rCtpT2Tq29BrXdydtY3iYAYjIRgRDIwBJEFkFyIb4SmRonFeiKsetzzBTU583xNeEDBqmURYFPE7GgTHpdDhdmD5guxAbTQe8T3QE4IMzeemyxmajeOGLmMMA4XctpIIEWpglBMTJ4VquTw8YxgrvWU7liMWVyOmwWlV_0npdfxYs17Oc1z47SRG-ol9w265GhxXxehx8jcKHfFxJutIFTw7DCwNdpV9VI8iPhJuZPoa2Pks__IOcXTeiaq7_b80OoBlea22R9ahhjbADxEnTdlR7gufSqcJBg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD4x-KA-eL9MUWdi4tOArbs-EpGgAjEICW_LurWRiGCEPeiTP8Hf6C_xdN2GaIyJPm5ts17OOf2-rv0KcOqakWEHNNIYo1QzI9PQggBZq6fzKOAYK8NEUqjVths986pvZbsJxVkYqQ-RL7gJz0jitXBwsSBdnqmGBlEiHIQYGkEEsvZFca23kM-vdWYKUgKgJ3J7xNI823Qz3caKUZ4vPz8vfQOb89g1mXzqa0Czass9J_eleEpL4csXRcd_tWsdVlNoqlalLW3AAhttwsonwcIt6DfE7pmxFJ2NkamrHXmXPaaqzcH0bhA_qDfj4fMkHvJBhOmIidVqus8gy_H--naL6fGTKtU9kaxvQ69-0T1vaOndDFpIMChoGAZIiODOQ0LCIiJ042wPJz6m25xVGHEcm9uuSwO9QrgeIIRHm2A4G5rMcHWHkx0ojMYjtgdqSJCkOaxiMYqWY1qeRSnFWCFOroScewpo2cj4YSpcLu7PGPpSctnwRY_5eY8pcJbnf5SSHT_mLGYD7aeuO_GRgWLbsFmWAid5Mjqd-JMSjNg4FnmEEJ7huboCu9JA8k8RBzk3kn0FjGSYf6mDX621qvnT_l8KHcNSo9tq-s3L9vUBLIv38rRkEQpoD-wQYdOUHiWO8QHhBw0i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IguiD90t1agXBp2rb9Po4nGPqlDEV9laSNsHh3ETXB33yJ_gb_SWeNG23KSLoY5sT2iTnnHxfm3wBOAicxPYoSwzOGTOcxLENSpG1hpZIqMBcGWeSQpdXXuPWOe-4nbFd_EofovzgJiMjy9cywB8TcTwSDaVJphuEEBoxBJL2GcczQ3l4Q609EpCS-DxT2yOuEXpOUMg2mvbxZP3Jaekb1pyErtncU18EWry1WnJyf5QO2VH8-kXQ8T_NWoKFHJjqVeVJyzDF-yswPyZXuAqdhlw7M1CSsynydL2tTrLHUr3ZHd510we9Nei9PKc90U2wHBGxXs1XGRQWH2_v11iePulK2xOp-hrc1k9vThpGfjKDERNMCQYmARIjtAuRjvCESNU4L8Rpj1ue4CYnvu8JLwgYtUwiLIoAHj2C41zocDuwfEHWYbo_6PNN0GOCFM3npssZ-o3jhi5jDDOF3LcSCxFqYBQDE8W5bLk8PaMXKcFlO5I9FpU9psFhaf-oBDt-tKwU4xzlgfscIf_EtmGzXA32y2IMOfkfhfb5IJU2UgbPDgNLgw3lH-WjiI-MG6m-BnY2yr-8Q1StXVbLq62_VNqD2VatHjXPri62YU7eVlslKzCN7sB3EDMN2W4WFp-mXwvR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterostructures+Regulating+Lithium+Polysulfides+for+Advanced+Lithium%E2%80%90Sulfur+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Tao&rft.au=He%2C+Jiarui&rft.au=Zhu%2C+Zhi&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.date=2023-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202303520&rft.externalDBID=10.1002%252Fadma.202303520&rft.externalDocID=ADMA202303520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon