Heterostructures Regulating Lithium Polysulfides for Advanced Lithium‐Sulfur Batteries
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single‐component materials in regulating lithium po...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 47; pp. e2303520 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single‐component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium‐sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium‐sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium‐sulfur batteries.
Heterostructures could regulate lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. This review systematically and detailedly analyzes the principle and the application of heterostructures as sulfur host, interlayer, and separator modifier to promote the performance of lithium‐sulfur batteries. |
---|---|
AbstractList | Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single‐component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium‐sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium‐sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium‐sulfur batteries.
Heterostructures could regulate lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. This review systematically and detailedly analyzes the principle and the application of heterostructures as sulfur host, interlayer, and separator modifier to promote the performance of lithium‐sulfur batteries. Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single‐component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium‐sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium‐sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium‐sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium‐sulfur batteries. Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries are systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium sulfur batteries. This article is protected by copyright. All rights reserved. Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries. |
Author | Lu, Bingan Zhu, Zhi Cheng, Xin‐Bing Zhu, Jian Wang, Tao He, Jiarui Wu, Yuping |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0003-0454-7081 surname: Wang fullname: Wang, Tao organization: Southeast University – sequence: 2 givenname: Jiarui orcidid: 0000-0003-4665-2306 surname: He fullname: He, Jiarui organization: Southeast University – sequence: 3 givenname: Zhi surname: Zhu fullname: Zhu, Zhi organization: Southeast University – sequence: 4 givenname: Xin‐Bing orcidid: 0000-0001-7567-1210 surname: Cheng fullname: Cheng, Xin‐Bing organization: Southeast University – sequence: 5 givenname: Jian orcidid: 0000-0001-9852-1645 surname: Zhu fullname: Zhu, Jian organization: Hunan University – sequence: 6 givenname: Bingan orcidid: 0000-0002-0075-5898 surname: Lu fullname: Lu, Bingan organization: Hunan University – sequence: 7 givenname: Yuping orcidid: 0000-0002-0833-1205 surname: Wu fullname: Wu, Yuping email: wuyp@fudan.edu.cn organization: Southeast University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37254027$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOHDEQRa0IFAaSbZaoJTZseijbbbu9HF4h0qBEeUjZtUx3NRj1A_wAzY5P4BvzJfFoBpCQEKta1LlVV_duk41hHJCQLxSmFIAdmKY3UwaMAxcMPpAJFYzmBWixQSaguci1LMotsu39NQBoCfIj2eKKiQKYmpC_ZxjQjT64WIfo0Gc_8TJ2JtjhMpvbcGVjn_0Yu4WPXWubtG9Hl82aOzPU2DwR_x4ef6V9dNmhCemeRf-JbLam8_h5PXfIn9OT30dn-fz7129Hs3lec8UhZ0zwWkCphVbYcKpFIbVUJVLZIiBXSrayLC8MBd5So5humESgrEBWUtXyHbK_unvjxtuIPlS99TV2nRlwjL5iJaO8YLqkCd17hV6P0Q3JXaJ0MpI8iETtrql40WNT3TjbG7eonjJLwHQF1Ck377B9RihUy1KqZSnVcylJULwS1DakhMchOGO7t2V6Jbu3HS7eeVLNjs9nL9r_iRigYA |
CitedBy_id | crossref_primary_10_1021_acsnano_4c06270 crossref_primary_10_1016_j_apsusc_2023_158850 crossref_primary_10_1002_advs_202501940 crossref_primary_10_1007_s12274_024_6563_y crossref_primary_10_1002_batt_202400544 crossref_primary_10_1039_D3CP05761E crossref_primary_10_1063_5_0224095 crossref_primary_10_1021_acsnano_4c08728 crossref_primary_10_1016_j_jallcom_2024_174419 crossref_primary_10_3390_ma18051141 crossref_primary_10_1002_advs_202412038 crossref_primary_10_1016_j_jcis_2024_01_020 crossref_primary_10_1002_adfm_202409303 crossref_primary_10_3390_batteries11020063 crossref_primary_10_1002_adma_202418295 crossref_primary_10_1002_smll_202402412 crossref_primary_10_1021_acsami_4c13619 crossref_primary_10_1021_acs_iecr_4c02394 crossref_primary_10_1002_smll_202409674 crossref_primary_10_1007_s12274_024_6789_9 crossref_primary_10_1021_acs_energyfuels_4c04659 crossref_primary_10_1039_D4NJ02374A crossref_primary_10_1016_j_jallcom_2024_176146 crossref_primary_10_1016_j_cej_2024_154658 crossref_primary_10_1002_adfm_202414714 crossref_primary_10_1039_D3TA05859J crossref_primary_10_1002_cssc_202400538 crossref_primary_10_1021_acsnano_4c17661 crossref_primary_10_1016_j_jcis_2024_04_182 crossref_primary_10_1016_j_jelechem_2024_118382 crossref_primary_10_1002_adfm_202420679 crossref_primary_10_1016_j_est_2024_115205 crossref_primary_10_1016_j_indcrop_2024_118806 crossref_primary_10_3390_catal15020106 crossref_primary_10_1016_j_jcis_2024_07_079 crossref_primary_10_1002_adfm_202405486 crossref_primary_10_1002_smll_202502194 crossref_primary_10_1002_adfm_202408113 crossref_primary_10_1016_j_jcis_2024_05_140 crossref_primary_10_1002_aenm_202303546 crossref_primary_10_1002_app_56147 crossref_primary_10_1016_j_ccr_2024_215836 crossref_primary_10_1021_acsanm_3c04558 crossref_primary_10_1002_advs_202409842 crossref_primary_10_1016_j_jallcom_2024_173969 crossref_primary_10_1016_j_est_2024_113833 crossref_primary_10_1002_adfm_202418022 crossref_primary_10_1016_j_cej_2024_151132 crossref_primary_10_1002_smll_202310907 crossref_primary_10_1039_D3TA07189H crossref_primary_10_1039_D4GC05753H crossref_primary_10_1016_j_jallcom_2023_173394 crossref_primary_10_1021_acsami_3c10104 crossref_primary_10_3389_fbael_2024_1377192 crossref_primary_10_1016_j_nanoen_2024_109611 crossref_primary_10_1021_acsami_3c12121 crossref_primary_10_1002_smll_202412586 crossref_primary_10_1002_advs_202404328 crossref_primary_10_1002_anie_202414244 crossref_primary_10_1007_s10934_025_01761_6 crossref_primary_10_1002_cey2_708 crossref_primary_10_1002_adma_202413525 crossref_primary_10_1039_D4EE01426J crossref_primary_10_1039_D4TA08542F crossref_primary_10_1002_anie_202423357 crossref_primary_10_1002_batt_202400224 crossref_primary_10_1002_smll_202311799 crossref_primary_10_1002_adfm_202405814 crossref_primary_10_3390_en17071559 crossref_primary_10_1002_celc_202400481 crossref_primary_10_1039_D4CY00594E crossref_primary_10_1002_smll_202307579 crossref_primary_10_1002_smll_202412496 crossref_primary_10_1039_D3NR03035K crossref_primary_10_1016_j_nxmate_2024_100450 crossref_primary_10_1002_advs_202406475 crossref_primary_10_1007_s11771_024_5837_7 crossref_primary_10_1016_j_est_2024_112889 crossref_primary_10_1002_smll_202406415 crossref_primary_10_1039_D4SC01628A crossref_primary_10_1002_adma_202419918 crossref_primary_10_1016_j_cej_2024_155541 crossref_primary_10_1007_s10854_024_12444_4 crossref_primary_10_1002_smll_202411838 crossref_primary_10_1016_j_jcis_2024_07_149 crossref_primary_10_1016_j_jelechem_2024_118396 crossref_primary_10_1002_cssc_202301110 crossref_primary_10_1016_j_cej_2025_159406 crossref_primary_10_1002_adma_202411197 crossref_primary_10_1021_acsnano_4c11701 crossref_primary_10_1016_j_cej_2025_160356 crossref_primary_10_1039_D4TA03797A crossref_primary_10_1002_adma_202402644 crossref_primary_10_1016_j_matlet_2024_136492 crossref_primary_10_1016_j_jcis_2024_11_211 crossref_primary_10_1002_adfm_202422013 crossref_primary_10_1021_acsami_4c20169 crossref_primary_10_1002_anie_202408026 crossref_primary_10_1021_acs_nanolett_4c05606 crossref_primary_10_3390_batteries10120430 crossref_primary_10_1002_cnl2_70003 crossref_primary_10_1002_smll_202402344 crossref_primary_10_3390_batteries11030089 crossref_primary_10_3390_nano14040384 crossref_primary_10_1016_j_jcis_2024_08_192 crossref_primary_10_1016_j_cej_2025_161019 crossref_primary_10_1021_acsami_4c11693 crossref_primary_10_1002_adma_202311127 crossref_primary_10_1002_adfm_202410742 crossref_primary_10_1002_ange_202414244 crossref_primary_10_1016_j_apsusc_2024_159915 crossref_primary_10_1039_D3QM01023F crossref_primary_10_1016_j_jechem_2024_05_031 crossref_primary_10_1016_j_cej_2023_146126 crossref_primary_10_1016_j_jallcom_2024_177171 crossref_primary_10_1016_j_diamond_2024_111287 crossref_primary_10_3390_en17215258 crossref_primary_10_1016_j_cej_2024_150488 crossref_primary_10_1002_ange_202423357 crossref_primary_10_1021_acs_langmuir_4c04102 crossref_primary_10_1002_ange_202408026 crossref_primary_10_3390_en16217327 crossref_primary_10_1016_j_est_2024_112543 crossref_primary_10_3390_electrochem5040033 crossref_primary_10_1002_adma_202414047 crossref_primary_10_1039_D3TA03527A crossref_primary_10_3390_ma18030604 crossref_primary_10_1002_adfm_202401470 crossref_primary_10_1002_adfm_202411941 crossref_primary_10_1002_cnma_202400311 crossref_primary_10_1039_D4TA07103D crossref_primary_10_1002_adfm_202315012 |
Cites_doi | 10.1002/adma.201606823 10.1016/j.joule.2021.06.009 10.1021/acsnano.0c10603 10.1002/aenm.202002893 10.1016/j.cej.2020.126775 10.1038/s41586-020-2098-y 10.1002/adma.201603401 10.1021/acs.nanolett.8b01882 10.1016/j.cej.2019.122189 10.1002/aenm.201802107 10.1021/acsenergylett.8b00066 10.1007/s40820-022-00954-x 10.1002/adfm.201504695 10.1016/j.jechem.2021.04.008 10.20517/energymater.2022.62 10.1039/D1NR04506G 10.1002/aenm.201800709 10.1038/nenergy.2017.89 10.1016/j.nantod.2020.100991 10.1021/acsnano.0c05030 10.1002/aenm.201904273 10.1002/aenm.202003314 10.1021/acsami.9b15586 10.1063/1.4900193 10.1038/s41467-018-07975-4 10.1016/j.jechem.2020.08.039 10.1016/j.ensm.2021.09.024 10.1038/ncomms14627 10.1039/D0NR03528A 10.1039/C9NH00532C 10.1039/C8EE01402G 10.1016/j.ensm.2017.08.005 10.1002/adfm.202100457 10.1002/ange.201708748 10.1039/D2TA01215D 10.1002/smll.201701034 10.1016/j.nanoen.2018.06.052 10.1002/aenm.202202860 10.1002/aenm.202000082 10.1021/acsami.6b09027 10.1016/j.cej.2019.122595 10.1002/adfm.201906661 10.1002/eem2.12250 10.1016/j.cej.2020.124983 10.1039/C9NR08751F 10.1002/advs.202201823 10.1038/s41929-022-00804-4 10.1002/anie.201605676 10.1002/smll.201803134 10.20517/energymater.2022.46 10.1021/acsnano.0c07999 10.1002/adma.202101204 10.1002/chem.201806231 10.1021/acsami.9b11419 10.1007/s10008-010-1264-9 10.1002/adfm.202100586 10.1039/C8NH00170G 10.1016/j.jpowsour.2018.05.061 10.1039/C9TA00975B 10.1039/C8TA05612A 10.1016/j.electacta.2018.12.075 10.1002/adma.202000315 10.1002/adma.202100855 10.1016/j.nanoen.2017.07.012 10.1016/j.electacta.2021.139723 10.1002/adfm.202102314 10.1002/ange.201411109 10.1021/nl404721h 10.1021/acsnano.1c00270 10.1016/j.cej.2020.128079 10.1016/j.jechem.2020.06.009 10.1002/adma.202105067 10.1016/j.ensm.2020.05.002 10.1039/D0TA01664K 10.1021/acsaem.8b02196 10.1021/acs.chemrev.7b00536 10.1016/j.nanoen.2016.04.053 10.1126/science.aac9439 10.1007/s12274-020-2827-4 10.1038/s41929-020-0498-x 10.1016/j.nanoen.2017.01.040 10.1016/j.matt.2020.01.001 10.1002/aenm.202100448 10.1016/j.ensm.2018.06.015 10.1038/s41524-020-0273-1 10.1016/j.nanoen.2021.105928 10.1016/j.ccr.2022.214879 10.1007/s12274-018-2023-y 10.1021/acsami.8b19501 10.1002/advs.201700270 10.1021/acsnano.1c01250 10.1007/s12274-018-2243-1 10.1088/1755-1315/804/3/032039 10.1039/D1TA05657C 10.1002/anie.201909339 10.1002/anie.201810579 10.1021/cr900070d 10.1016/j.cej.2021.129407 10.1088/2040-8986/aac1d8 10.1021/acsenergylett.1c02132 10.1002/ange.201410174 10.1038/s41565-019-0438-6 10.1103/PhysRevB.76.165119 10.1002/smll.202100065 10.1016/j.ensm.2020.05.033 10.1038/s41560-022-01001-0 10.1016/j.mattod.2018.04.007 10.1038/s41467-021-23819-0 10.1021/acsnano.9b06267 10.1039/C8NR03846E 10.1039/C8TA06288A 10.1002/advs.202103456 10.1021/acsnano.9b02231 10.1021/acsnano.2c02810 10.1016/j.nanoen.2014.12.029 10.1016/j.joule.2019.01.003 10.1016/j.cej.2019.123734 10.1039/C9TA11451C 10.1039/C7EE01047H 10.1002/admt.202001136 10.1002/adma.201905658 10.1021/acsenergylett.8b00856 10.1021/am3026294 10.1002/aenm.202000091 10.1002/aenm.201801868 10.1002/aenm.202100432 10.1038/nenergy.2016.132 10.1039/C7TA00290D 10.1039/C7CS00556C 10.1038/s41467-021-23155-3 10.1039/C9NJ04581C 10.1039/C8TA10422K 10.1016/j.apsusc.2021.151586 10.1021/acsenergylett.2c02179 10.1016/j.electacta.2019.135311 10.1016/j.apcatb.2018.01.069 10.1002/adma.201802121 10.1039/D0TA04187D 10.20517/energymater.2022.63 10.1021/acs.nanolett.9b00996 10.1002/adfm.201806611 10.1021/acsami.2c04734 10.1016/j.nanoen.2019.104190 10.1021/acsnano.9b01079 10.1039/C5CS00410A 10.1039/C7CS00160F 10.1039/C9CS00381A 10.1002/aenm.201903008 10.1039/D0NR04189K 10.1039/C9TA01500K 10.1016/j.nanoen.2020.105602 10.1038/ncomms6381 10.1016/j.nanoen.2019.104356 10.1002/adma.202005967 10.1039/D2TA09594G 10.1002/anie.201810104 10.1002/smll.202004806 10.1002/aenm.201601630 10.1007/s12274-019-2381-0 10.1016/j.pmatsci.2022.101019 10.1038/natrevmats.2016.64 10.1039/C2CC37117K 10.1039/c3ta12846f 10.1039/C8EE03252A 10.1016/j.cej.2019.122672 10.1021/acsnano.9b00816 10.1016/j.cej.2020.128177 10.1039/C7EE01430A 10.1002/ange.201500110 10.1021/cr500062v 10.1002/smtd.201800317 10.1039/C7TA04937D 10.1038/nmat4703 10.1039/C8NR04661A 10.1007/s11664-023-10355-4 10.1039/D0EE03206A 10.1039/D1EE03396D 10.1021/acsenergylett.2c02232 10.1021/acsenergylett.6b00603 10.1016/j.ensm.2021.05.034 10.1002/smll.202006374 10.1021/acsnano.7b01507 10.1021/acsnano.0c07332 10.1016/j.nanoen.2019.03.060 10.1016/j.cej.2021.129388 10.1002/cssc.201901958 10.1002/adma.202003955 10.1016/j.cej.2021.133629 10.1021/acs.chemrev.9b00463 10.1039/c0cs00222d 10.1016/j.jpowsour.2019.227364 10.1016/j.cclet.2020.12.051 10.1016/j.nantod.2018.02.006 10.1002/anie.201402315 10.1038/nmat1849 10.1016/j.mtcomm.2021.102323 10.1038/ncomms11203 10.1039/C9TA07342F 10.1016/j.nanoen.2017.08.039 10.1002/adfm.201707536 10.1016/j.nanoen.2021.105891 10.1021/acsnano.0c01124 10.1021/acsnano.1c00896 10.1002/adma.202102338 10.1038/s41563-019-0366-8 10.1016/j.apsusc.2019.07.270 10.1016/j.cej.2018.10.026 10.1002/aenm.201900219 10.1039/C9EE02049G 10.1039/C8TA07352J 10.1016/j.ensm.2020.01.002 10.1039/C8CC06924G 10.1002/aenm.201700260 10.1021/acssuschemeng.1c04036 10.1016/j.ensm.2019.04.038 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH This article is protected by copyright. All rights reserved. 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: This article is protected by copyright. All rights reserved. – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202303520 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 37254027 10_1002_adma_202303520 ADMA202303520 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2242023R10001 – fundername: Start‐up Research Fund of Southeast University funderid: RF1028623005 – fundername: Project on Carbon Emission Peak and Neutrality of Jiangsu Province funderid: BE2022031‐4 – fundername: Natural Science Foundation of Hunan Province funderid: 2021JJ40046 – fundername: National Natural Science Foundation of China funderid: 22279016; 22005092; 52073143; 52131306 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3730-2253c5089597ed3195469678e16fe0e3776f688ba103f1a729d26e0124e2817f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:01:12 EDT 2025 Sat Jul 26 01:24:35 EDT 2025 Mon Jul 21 05:44:07 EDT 2025 Tue Jul 01 02:33:35 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Sun Jul 06 04:45:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | catalysis adsorption lithium-sulfur battery shuttling effect heterostructure |
Language | English |
License | This article is protected by copyright. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-2253c5089597ed3195469678e16fe0e3776f688ba103f1a729d26e0124e2817f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0075-5898 0000-0003-4665-2306 0000-0003-0454-7081 0000-0001-9852-1645 0000-0001-7567-1210 0000-0002-0833-1205 |
PMID | 37254027 |
PQID | 2892535975 |
PQPubID | 2045203 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_2821342981 proquest_journals_2892535975 pubmed_primary_37254027 crossref_primary_10_1002_adma_202303520 crossref_citationtrail_10_1002_adma_202303520 wiley_primary_10_1002_adma_202303520_ADMA202303520 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 574 2013; 1 2019; 11 2019; 10 2019; 13 2019; 12 2019; 14 2019; 16 2020; 16 2019; 19 2019; 18 2020; 14 2020; 447 2020; 13 2020; 12 2020; 10 2007; 76 2013; 5 2018; 47 2018; 6 2018; 8 2018; 3 2018; 5 2019; 20 2019; 22 2020; 330 2019; 25 2010; 110 2014; 14 2007; 6 2019; 29 2020; 579 2018; 30 2021; 84 2016; 45 2021; 81 2019; 7 2019; 9 2018; 28 2023; 52 2019; 4 2019; 3 2018; 227 2015; 127 2019; 2 2020; 381 2020; 380 2020; 35 2020; 33 2020; 32 2018; 20 2021; 418 2018; 19 2021; 57 2018; 18 2016; 7 2021; 54 2016; 1 2020; 394 2020; 30 2022; 5 2018; 118 2019; 43 2022; 7 2022; 8 2019; 48 2022; 9 2020; 392 2022; 14 2020; 26 2022; 15 2022; 10 2022; 2 2018; 11 2016; 28 2018; 10 2016; 26 2021; 62 2016; 25 2019; 298 2016; 8 2022; 16 2018; 14 2017; 5 2017; 40 2021; 406 2017; 7 2021; 409 2022; 131 2021; 27 2021; 804 2017; 8 2017; 2 2020; 120 2017; 46 2019; 58 2020; 59 2011; 15 2023; 3 2020; 8 2018; 130 2020; 7 2020; 6 2020; 5 2014; 5 2021; 32 2019; 60 2020; 3 2021; 31 2020; 2 2021; 33 2019; 66 2017; 39 2017; 33 2019; 358 2016; 353 2022; 403 2021; 40 2014; 53 2021; 9 2015; 12 2021; 7 2014; 116 2021; 6 2021; 5 2023; 13 2023; 11 2013; 49 2011; 40 2017; 29 2022; 44 2014; 114 2022; 433 2016; 55 2018; 395 2021; 13 2021; 15 2021; 12 2021; 11 2017; 16 2017; 11 2023; 475 2017; 10 2021; 17 2017; 13 1962 2019; 378 2020; 68 2018; 51 2018; 54 2018; 57 2019; 495 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_211_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 Wang Y. (e_1_2_9_168_1) 2020; 7 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_212_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 7 year: 2020 publication-title: Adv. Mater. – volume: 57 start-page: 41 year: 2021 publication-title: J. Energy Chem. – volume: 227 start-page: 530 year: 2018 publication-title: Appl. Catal., B – volume: 14 start-page: 408 year: 2019 publication-title: Nat. Nanotechnol. – volume: 40 start-page: 4506 year: 2011 publication-title: Chem. Soc. Rev. – volume: 418 year: 2021 publication-title: Chem. Eng. J. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 14 year: 2018 publication-title: Small – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 81 year: 2021 publication-title: Nano Energy – volume: 15 start-page: 1423 year: 2022 publication-title: Energy Environ. Sci. – volume: 6 start-page: 8 year: 2020 publication-title: npj Comput. Mater. – volume: 5 start-page: 731 year: 2022 publication-title: Energy Environ. Mater. – volume: 40 start-page: 360 year: 2017 publication-title: Nano Energy – volume: 358 start-page: 1253 year: 2019 publication-title: Chem. Eng. J. – volume: 116 year: 2014 publication-title: J. Appl. Phys. – volume: 12 start-page: 3563 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 1476 year: 2017 publication-title: Energy Environ. Sci. – volume: 60 start-page: 332 year: 2019 publication-title: Nano Energy – volume: 48 start-page: 5432 year: 2019 publication-title: Chem. Soc. Rev. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 10 start-page: 1694 year: 2017 publication-title: Energy Environ. Sci. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3413 year: 2017 publication-title: ACS Nano – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 127 start-page: 3979 year: 2015 publication-title: Angew. Chem. – volume: 51 start-page: 340 year: 2018 publication-title: Nano Energy – volume: 394 year: 2020 publication-title: Chem. Eng. J. – volume: 15 start-page: 7114 year: 2021 publication-title: ACS Nano – volume: 43 year: 2019 publication-title: New J. Chem. – volume: 27 year: 2021 publication-title: Mater. Today Commun. – volume: 13 start-page: 4834 year: 2020 publication-title: Energy Environ. Sci. – volume: 2 start-page: 2570 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 3 start-page: 779 year: 2018 publication-title: ACS Energy Lett. – volume: 13 start-page: 5635 year: 2019 publication-title: ACS Nano – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 22 start-page: 142 year: 2019 publication-title: Mater. Today – volume: 118 start-page: 6091 year: 2018 publication-title: Chem. Rev. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 381 year: 2020 publication-title: Chem. Eng. J. – volume: 5 start-page: 5381 year: 2014 publication-title: Nat. Commun. – volume: 3 year: 2023 publication-title: Energy Mater. – volume: 33 start-page: 306 year: 2017 publication-title: Nano Energy – volume: 7 start-page: 4190 year: 2022 publication-title: ACS Energy Lett. – volume: 3 start-page: 762 year: 2020 publication-title: Nat. Catal. – volume: 39 start-page: 291 year: 2017 publication-title: Nano Energy – volume: 19 start-page: 84 year: 2018 publication-title: Nano Today – volume: 447 year: 2020 publication-title: J. Power Sources – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 15 start-page: 6849 year: 2021 publication-title: ACS Nano – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 58 start-page: 4484 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 17 year: 2021 publication-title: Small – volume: 406 year: 2021 publication-title: Chem. Eng. J. – volume: 13 start-page: 1049 year: 2020 publication-title: Energy Environ. Sci. – volume: 46 start-page: 4572 year: 2017 publication-title: Chem. Soc. Rev. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 361 year: 2019 publication-title: Joule – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 35 year: 2022 publication-title: Energy Mater. – volume: 8 start-page: 116 year: 2022 publication-title: ACS Energy Lett. – volume: 298 start-page: 43 year: 2019 publication-title: Electrochim. Acta – volume: 18 start-page: 541 year: 2019 publication-title: Nat. Mater. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 12 start-page: 240 year: 2015 publication-title: Nano Energy – volume: 5 start-page: 555 year: 2022 publication-title: Nat. Catal. – volume: 20 start-page: 55 year: 2019 publication-title: Energy Storage Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 76 year: 2007 publication-title: Phys. Rev. B – volume: 19 start-page: 4384 year: 2019 publication-title: Nano Lett. – volume: 330 year: 2020 publication-title: Electrochim. Acta – volume: 353 year: 2016 publication-title: Science – volume: 10 start-page: 188 year: 2019 publication-title: Nat. Commun. – volume: 378 year: 2019 publication-title: Chem. Eng. J. – volume: 84 year: 2021 publication-title: Nano Energy – volume: 28 start-page: 9551 year: 2016 publication-title: Adv. Mater. – volume: 403 year: 2022 publication-title: Electrochim. Acta – volume: 53 start-page: 7860 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 409 year: 2021 publication-title: Chem. Eng. J. – volume: 475 year: 2023 publication-title: Coord. Chem. Rev. – volume: 16 start-page: 170 year: 2017 publication-title: Nat. Mater. – volume: 26 start-page: 1428 year: 2016 publication-title: Adv. Funct. Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2017 publication-title: Small – volume: 579 start-page: 368 year: 2020 publication-title: Nature – volume: 2 start-page: 327 year: 2017 publication-title: ACS Energy Lett. – volume: 32 start-page: 2249 year: 2021 publication-title: Chin. Chem. Lett. – volume: 9 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 12 start-page: 4671 year: 2019 publication-title: ChemSusChem – year: 1962 – volume: 33 start-page: 73 year: 2020 publication-title: Energy Storage Mater. – volume: 10 start-page: 56 year: 2018 publication-title: Energy Storage Mater. – volume: 2 start-page: 526 year: 2020 publication-title: Matter – volume: 5 start-page: 530 year: 2020 publication-title: Nanoscale Horiz. – volume: 40 start-page: 439 year: 2021 publication-title: Energy Storage Mater. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 12 start-page: 463 year: 2019 publication-title: Nano Res. – volume: 7 start-page: 1658 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 start-page: 77 year: 2019 publication-title: Nanoscale Horiz. – volume: 44 start-page: 180 year: 2022 publication-title: Energy Storage Mater. – volume: 14 start-page: 2345 year: 2014 publication-title: Nano Lett. – volume: 16 year: 2020 publication-title: Small – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 11 start-page: 2620 year: 2018 publication-title: Energy Environ. Sci. – volume: 5 start-page: 981 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 5055 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 4598 year: 2018 publication-title: Nano Lett. – volume: 7 start-page: 312 year: 2022 publication-title: Nat. Energy – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 110 start-page: 132 year: 2010 publication-title: Chem. Rev. – volume: 380 year: 2020 publication-title: Chem. Eng. J. – volume: 574 year: 2022 publication-title: Appl. Surf. Sci. – volume: 395 start-page: 77 year: 2018 publication-title: J. Power Sources – volume: 11 start-page: 3480 year: 2018 publication-title: Nano Res. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 13 year: 2021 publication-title: Nanoscale – volume: 45 start-page: 5605 year: 2016 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 120 start-page: 6358 year: 2020 publication-title: Chem. Rev. – volume: 15 start-page: 649 year: 2011 publication-title: J. Solid State Electrochem. – volume: 11 start-page: 3682 year: 2023 publication-title: J. Mater. Chem. A – volume: 16 start-page: 344 year: 2019 publication-title: Energy Storage Mater. – volume: 1 year: 2013 publication-title: J. Mater. Chem. A – volume: 13 start-page: 1856 year: 2020 publication-title: Nano Res. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 7 start-page: 9230 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 15 start-page: 7491 year: 2021 publication-title: ACS Nano – volume: 392 year: 2020 publication-title: Chem. Eng. J. – volume: 5 start-page: 2323 year: 2021 publication-title: Joule – volume: 20 year: 2018 publication-title: J. Opt. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 12 start-page: 344 year: 2019 publication-title: Energy Environ. Sci. – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 49 start-page: 137 year: 2013 publication-title: Chem. Commun. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 5 start-page: 5222 year: 2017 publication-title: J. Mater. Chem. A – volume: 13 year: 2019 publication-title: ACS Nano – volume: 12 start-page: 1193 year: 2019 publication-title: Nano Res. – volume: 66 year: 2019 publication-title: Nano Energy – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2021 publication-title: Adv. Mater. Technol. – volume: 52 start-page: 3526 year: 2023 publication-title: J. Electron. Mater. – volume: 14 start-page: 5917 year: 2020 publication-title: ACS Nano – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 47 start-page: 53 year: 2018 publication-title: Chem. Soc. Rev. – volume: 3 year: 2019 publication-title: Small Methods – volume: 54 start-page: 434 year: 2021 publication-title: J. Energy Chem. – volume: 25 start-page: 5416 year: 2019 publication-title: Chemistry – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 13 start-page: 4731 year: 2019 publication-title: ACS Nano – volume: 12 start-page: 3031 year: 2021 publication-title: Nat. Commun. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 433 year: 2020 publication-title: J. Mater. Chem. A – volume: 14 start-page: 222 year: 2022 publication-title: Nano‐Micro Lett. – volume: 127 start-page: 4399 year: 2015 publication-title: Angew. Chem. – volume: 130 start-page: 505 year: 2018 publication-title: Angew. Chem. – volume: 26 start-page: 203 year: 2020 publication-title: Energy Storage Mater. – volume: 127 start-page: 4892 year: 2015 publication-title: Angew. Chem. – volume: 12 start-page: 326 year: 2020 publication-title: Nanoscale – volume: 131 year: 2022 publication-title: Prog. Mater. Sci. – volume: 62 start-page: 508 year: 2021 publication-title: J. Energy Chem. – volume: 495 year: 2019 publication-title: Appl. Surf. Sci. – volume: 30 start-page: 187 year: 2020 publication-title: Energy Storage Mater. – volume: 3 start-page: 1627 year: 2018 publication-title: ACS Energy Lett. – volume: 7 start-page: 78 year: 2021 publication-title: ACS Energy Lett. – volume: 25 start-page: 203 year: 2016 publication-title: Nano Energy – volume: 35 year: 2020 publication-title: Nano Today – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 804 year: 2021 publication-title: IOP Conf. Ser.: Earth Environ. Sci. – ident: e_1_2_9_10_1 doi: 10.1002/adma.201606823 – ident: e_1_2_9_18_1 doi: 10.1016/j.joule.2021.06.009 – ident: e_1_2_9_188_1 doi: 10.1021/acsnano.0c10603 – ident: e_1_2_9_31_1 doi: 10.1002/aenm.202002893 – ident: e_1_2_9_158_1 doi: 10.1016/j.cej.2020.126775 – ident: e_1_2_9_63_1 doi: 10.1038/s41586-020-2098-y – ident: e_1_2_9_154_1 doi: 10.1002/adma.201603401 – ident: e_1_2_9_100_1 doi: 10.1021/acs.nanolett.8b01882 – ident: e_1_2_9_120_1 doi: 10.1016/j.cej.2019.122189 – ident: e_1_2_9_20_1 doi: 10.1002/aenm.201802107 – ident: e_1_2_9_145_1 doi: 10.1021/acsenergylett.8b00066 – ident: e_1_2_9_46_1 doi: 10.1007/s40820-022-00954-x – ident: e_1_2_9_110_1 doi: 10.1002/adfm.201504695 – ident: e_1_2_9_118_1 doi: 10.1016/j.jechem.2021.04.008 – ident: e_1_2_9_12_1 doi: 10.20517/energymater.2022.62 – ident: e_1_2_9_81_1 doi: 10.1039/D1NR04506G – ident: e_1_2_9_74_1 doi: 10.1002/aenm.201800709 – ident: e_1_2_9_55_1 doi: 10.1038/nenergy.2017.89 – ident: e_1_2_9_190_1 doi: 10.1016/j.nantod.2020.100991 – ident: e_1_2_9_184_1 doi: 10.1021/acsnano.0c05030 – ident: e_1_2_9_180_1 doi: 10.1002/aenm.201904273 – ident: e_1_2_9_152_1 doi: 10.1002/aenm.202003314 – ident: e_1_2_9_126_1 doi: 10.1021/acsami.9b15586 – ident: e_1_2_9_195_1 doi: 10.1063/1.4900193 – ident: e_1_2_9_5_1 doi: 10.1038/s41467-018-07975-4 – ident: e_1_2_9_202_1 doi: 10.1016/j.jechem.2020.08.039 – ident: e_1_2_9_98_1 doi: 10.1016/j.ensm.2021.09.024 – ident: e_1_2_9_162_1 doi: 10.1038/ncomms14627 – ident: e_1_2_9_131_1 doi: 10.1039/D0NR03528A – ident: e_1_2_9_174_1 doi: 10.1039/C9NH00532C – ident: e_1_2_9_102_1 doi: 10.1039/C8EE01402G – ident: e_1_2_9_155_1 doi: 10.1016/j.ensm.2017.08.005 – ident: e_1_2_9_42_1 doi: 10.1002/adfm.202100457 – ident: e_1_2_9_167_1 doi: 10.1002/ange.201708748 – ident: e_1_2_9_38_1 doi: 10.1039/D2TA01215D – ident: e_1_2_9_60_1 doi: 10.1002/smll.201701034 – ident: e_1_2_9_157_1 doi: 10.1016/j.nanoen.2018.06.052 – ident: e_1_2_9_206_1 doi: 10.1002/aenm.202202860 – ident: e_1_2_9_43_1 doi: 10.1002/aenm.202000082 – ident: e_1_2_9_129_1 doi: 10.1021/acsami.6b09027 – ident: e_1_2_9_138_1 doi: 10.1016/j.cej.2019.122595 – ident: e_1_2_9_196_1 doi: 10.1002/adfm.201906661 – ident: e_1_2_9_37_1 doi: 10.1002/eem2.12250 – ident: e_1_2_9_144_1 doi: 10.1016/j.cej.2020.124983 – ident: e_1_2_9_181_1 doi: 10.1039/C9NR08751F – ident: e_1_2_9_101_1 doi: 10.1002/advs.202201823 – ident: e_1_2_9_8_1 doi: 10.1038/s41929-022-00804-4 – ident: e_1_2_9_199_1 doi: 10.1002/anie.201605676 – ident: e_1_2_9_159_1 doi: 10.1002/smll.201803134 – ident: e_1_2_9_14_1 doi: 10.20517/energymater.2022.46 – ident: e_1_2_9_132_1 doi: 10.1021/acsnano.0c07999 – ident: e_1_2_9_191_1 doi: 10.1002/adma.202101204 – ident: e_1_2_9_89_1 doi: 10.1002/chem.201806231 – ident: e_1_2_9_197_1 doi: 10.1021/acsami.9b11419 – ident: e_1_2_9_204_1 doi: 10.1007/s10008-010-1264-9 – ident: e_1_2_9_99_1 doi: 10.1002/adfm.202100586 – ident: e_1_2_9_29_1 doi: 10.1039/C8NH00170G – ident: e_1_2_9_106_1 doi: 10.1016/j.jpowsour.2018.05.061 – ident: e_1_2_9_71_1 doi: 10.1039/C9TA00975B – ident: e_1_2_9_112_1 doi: 10.1039/C8TA05612A – ident: e_1_2_9_123_1 doi: 10.1016/j.electacta.2018.12.075 – ident: e_1_2_9_95_1 doi: 10.1002/adma.202000315 – ident: e_1_2_9_64_1 doi: 10.1002/adma.202100855 – ident: e_1_2_9_2_1 – ident: e_1_2_9_212_1 doi: 10.1016/j.nanoen.2017.07.012 – ident: e_1_2_9_84_1 doi: 10.1016/j.electacta.2021.139723 – ident: e_1_2_9_113_1 doi: 10.1002/adfm.202102314 – ident: e_1_2_9_121_1 doi: 10.1002/ange.201411109 – ident: e_1_2_9_75_1 doi: 10.1021/nl404721h – ident: e_1_2_9_210_1 doi: 10.1021/acsnano.1c00270 – ident: e_1_2_9_185_1 doi: 10.1016/j.cej.2020.128079 – ident: e_1_2_9_40_1 doi: 10.1016/j.jechem.2020.06.009 – ident: e_1_2_9_69_1 doi: 10.1002/adma.202105067 – ident: e_1_2_9_96_1 doi: 10.1016/j.ensm.2020.05.002 – ident: e_1_2_9_80_1 doi: 10.1039/D0TA01664K – ident: e_1_2_9_109_1 doi: 10.1021/acsaem.8b02196 – ident: e_1_2_9_51_1 doi: 10.1021/acs.chemrev.7b00536 – ident: e_1_2_9_114_1 doi: 10.1016/j.nanoen.2016.04.053 – ident: e_1_2_9_50_1 doi: 10.1126/science.aac9439 – ident: e_1_2_9_44_1 doi: 10.1007/s12274-020-2827-4 – ident: e_1_2_9_30_1 doi: 10.1038/s41929-020-0498-x – ident: e_1_2_9_216_1 doi: 10.1016/j.nanoen.2017.01.040 – ident: e_1_2_9_66_1 doi: 10.1016/j.matt.2020.01.001 – volume: 7 year: 2020 ident: e_1_2_9_168_1 publication-title: Adv. Mater. – ident: e_1_2_9_16_1 doi: 10.1002/aenm.202100448 – ident: e_1_2_9_86_1 doi: 10.1016/j.ensm.2018.06.015 – ident: e_1_2_9_73_1 doi: 10.1038/s41524-020-0273-1 – ident: e_1_2_9_33_1 doi: 10.1016/j.nanoen.2021.105928 – ident: e_1_2_9_41_1 doi: 10.1016/j.ccr.2022.214879 – ident: e_1_2_9_177_1 doi: 10.1007/s12274-018-2023-y – ident: e_1_2_9_82_1 doi: 10.1021/acsami.8b19501 – ident: e_1_2_9_13_1 doi: 10.1002/advs.201700270 – ident: e_1_2_9_104_1 doi: 10.1021/acsnano.1c01250 – ident: e_1_2_9_62_1 doi: 10.1007/s12274-018-2243-1 – ident: e_1_2_9_161_1 doi: 10.1088/1755-1315/804/3/032039 – ident: e_1_2_9_124_1 doi: 10.1039/D1TA05657C – ident: e_1_2_9_23_1 doi: 10.1002/anie.201909339 – ident: e_1_2_9_146_1 doi: 10.1002/anie.201810579 – ident: e_1_2_9_115_1 doi: 10.1021/cr900070d – ident: e_1_2_9_119_1 doi: 10.1016/j.cej.2021.129407 – ident: e_1_2_9_148_1 doi: 10.1088/2040-8986/aac1d8 – ident: e_1_2_9_67_1 doi: 10.1021/acsenergylett.1c02132 – ident: e_1_2_9_127_1 doi: 10.1002/ange.201410174 – ident: e_1_2_9_49_1 doi: 10.1038/s41565-019-0438-6 – ident: e_1_2_9_111_1 doi: 10.1103/PhysRevB.76.165119 – ident: e_1_2_9_147_1 doi: 10.1002/smll.202100065 – ident: e_1_2_9_164_1 doi: 10.1016/j.ensm.2020.05.033 – ident: e_1_2_9_6_1 doi: 10.1038/s41560-022-01001-0 – ident: e_1_2_9_22_1 doi: 10.1016/j.mattod.2018.04.007 – ident: e_1_2_9_68_1 doi: 10.1038/s41467-021-23819-0 – ident: e_1_2_9_137_1 doi: 10.1021/acsnano.9b06267 – ident: e_1_2_9_166_1 doi: 10.1039/C8NR03846E – ident: e_1_2_9_214_1 doi: 10.1039/C8TA06288A – ident: e_1_2_9_183_1 doi: 10.1002/advs.202103456 – ident: e_1_2_9_103_1 doi: 10.1021/acsnano.9b02231 – ident: e_1_2_9_211_1 doi: 10.1021/acsnano.2c02810 – ident: e_1_2_9_215_1 doi: 10.1016/j.nanoen.2014.12.029 – ident: e_1_2_9_25_1 doi: 10.1016/j.joule.2019.01.003 – ident: e_1_2_9_140_1 doi: 10.1016/j.cej.2019.123734 – ident: e_1_2_9_142_1 doi: 10.1039/C9TA11451C – ident: e_1_2_9_94_1 doi: 10.1039/C7EE01047H – ident: e_1_2_9_203_1 doi: 10.1002/admt.202001136 – ident: e_1_2_9_160_1 doi: 10.1002/adma.201905658 – ident: e_1_2_9_107_1 doi: 10.1021/acsenergylett.8b00856 – ident: e_1_2_9_77_1 doi: 10.1021/am3026294 – ident: e_1_2_9_92_1 doi: 10.1002/aenm.202000091 – ident: e_1_2_9_93_1 doi: 10.1002/aenm.201801868 – ident: e_1_2_9_170_1 doi: 10.1002/aenm.202100432 – ident: e_1_2_9_1_1 doi: 10.1038/nenergy.2016.132 – ident: e_1_2_9_26_1 doi: 10.1039/C7TA00290D – ident: e_1_2_9_57_1 doi: 10.1039/C7CS00556C – ident: e_1_2_9_7_1 doi: 10.1038/s41467-021-23155-3 – ident: e_1_2_9_78_1 doi: 10.1039/C9NJ04581C – ident: e_1_2_9_122_1 doi: 10.1039/C8TA10422K – ident: e_1_2_9_139_1 doi: 10.1016/j.apsusc.2021.151586 – ident: e_1_2_9_15_1 doi: 10.1021/acsenergylett.2c02179 – ident: e_1_2_9_141_1 doi: 10.1016/j.electacta.2019.135311 – ident: e_1_2_9_97_1 doi: 10.1016/j.apcatb.2018.01.069 – ident: e_1_2_9_178_1 doi: 10.1002/adma.201802121 – ident: e_1_2_9_133_1 doi: 10.1039/D0TA04187D – ident: e_1_2_9_19_1 doi: 10.20517/energymater.2022.63 – ident: e_1_2_9_17_1 doi: 10.1021/acs.nanolett.9b00996 – ident: e_1_2_9_61_1 doi: 10.1002/adfm.201806611 – ident: e_1_2_9_135_1 doi: 10.1021/acsami.2c04734 – ident: e_1_2_9_192_1 doi: 10.1016/j.nanoen.2019.104190 – ident: e_1_2_9_175_1 doi: 10.1021/acsnano.9b01079 – ident: e_1_2_9_3_1 doi: 10.1039/C5CS00410A – ident: e_1_2_9_54_1 doi: 10.1039/C7CS00160F – ident: e_1_2_9_27_1 doi: 10.1039/C9CS00381A – ident: e_1_2_9_32_1 doi: 10.1002/aenm.201903008 – ident: e_1_2_9_143_1 doi: 10.1039/D0NR04189K – ident: e_1_2_9_187_1 doi: 10.1039/C9TA01500K – ident: e_1_2_9_134_1 doi: 10.1016/j.nanoen.2020.105602 – ident: e_1_2_9_153_1 doi: 10.1038/ncomms6381 – ident: e_1_2_9_105_1 doi: 10.1016/j.nanoen.2019.104356 – ident: e_1_2_9_125_1 doi: 10.1002/adma.202005967 – ident: e_1_2_9_72_1 doi: 10.1039/D2TA09594G – ident: e_1_2_9_165_1 doi: 10.1002/anie.201810104 – ident: e_1_2_9_87_1 doi: 10.1002/smll.202004806 – ident: e_1_2_9_172_1 doi: 10.1002/aenm.201601630 – ident: e_1_2_9_176_1 doi: 10.1007/s12274-019-2381-0 – ident: e_1_2_9_53_1 doi: 10.1016/j.pmatsci.2022.101019 – ident: e_1_2_9_58_1 doi: 10.1038/natrevmats.2016.64 – ident: e_1_2_9_76_1 doi: 10.1039/C2CC37117K – ident: e_1_2_9_217_1 doi: 10.1039/c3ta12846f – ident: e_1_2_9_149_1 doi: 10.1039/C8EE03252A – ident: e_1_2_9_136_1 doi: 10.1016/j.cej.2019.122672 – ident: e_1_2_9_179_1 doi: 10.1021/acsnano.9b00816 – ident: e_1_2_9_39_1 doi: 10.1016/j.cej.2020.128177 – ident: e_1_2_9_156_1 doi: 10.1039/C7EE01430A – ident: e_1_2_9_128_1 doi: 10.1002/ange.201500110 – ident: e_1_2_9_4_1 doi: 10.1021/cr500062v – ident: e_1_2_9_182_1 doi: 10.1002/smtd.201800317 – ident: e_1_2_9_108_1 doi: 10.1039/C7TA04937D – ident: e_1_2_9_56_1 doi: 10.1038/nmat4703 – ident: e_1_2_9_90_1 doi: 10.1039/C8NR04661A – ident: e_1_2_9_208_1 doi: 10.1007/s11664-023-10355-4 – ident: e_1_2_9_65_1 doi: 10.1039/D0EE03206A – ident: e_1_2_9_28_1 doi: 10.1039/D1EE03396D – ident: e_1_2_9_36_1 doi: 10.1021/acsenergylett.2c02232 – ident: e_1_2_9_35_1 doi: 10.1021/acsenergylett.6b00603 – ident: e_1_2_9_201_1 doi: 10.1016/j.ensm.2021.05.034 – ident: e_1_2_9_169_1 doi: 10.1002/smll.202006374 – ident: e_1_2_9_59_1 doi: 10.1021/acsnano.7b01507 – ident: e_1_2_9_200_1 doi: 10.1021/acsnano.0c07332 – ident: e_1_2_9_213_1 doi: 10.1016/j.nanoen.2019.03.060 – ident: e_1_2_9_70_1 doi: 10.1016/j.cej.2021.129388 – ident: e_1_2_9_88_1 doi: 10.1002/cssc.201901958 – ident: e_1_2_9_45_1 doi: 10.1002/adma.202003955 – ident: e_1_2_9_163_1 doi: 10.1016/j.cej.2021.133629 – ident: e_1_2_9_209_1 doi: 10.1021/acs.chemrev.9b00463 – ident: e_1_2_9_48_1 doi: 10.1039/c0cs00222d – ident: e_1_2_9_150_1 doi: 10.1016/j.jpowsour.2019.227364 – ident: e_1_2_9_194_1 doi: 10.1016/j.cclet.2020.12.051 – ident: e_1_2_9_21_1 doi: 10.1016/j.nantod.2018.02.006 – ident: e_1_2_9_91_1 doi: 10.1002/anie.201402315 – ident: e_1_2_9_116_1 doi: 10.1038/nmat1849 – ident: e_1_2_9_207_1 doi: 10.1016/j.mtcomm.2021.102323 – ident: e_1_2_9_198_1 doi: 10.1038/ncomms11203 – ident: e_1_2_9_117_1 doi: 10.1039/C9TA07342F – ident: e_1_2_9_186_1 doi: 10.1016/j.nanoen.2017.08.039 – ident: e_1_2_9_205_1 doi: 10.1002/adfm.201707536 – ident: e_1_2_9_47_1 doi: 10.1016/j.nanoen.2021.105891 – ident: e_1_2_9_151_1 doi: 10.1021/acsnano.0c01124 – ident: e_1_2_9_34_1 doi: 10.1021/acsnano.1c00896 – ident: e_1_2_9_189_1 doi: 10.1002/adma.202102338 – ident: e_1_2_9_52_1 doi: 10.1038/s41563-019-0366-8 – ident: e_1_2_9_173_1 doi: 10.1016/j.apsusc.2019.07.270 – ident: e_1_2_9_130_1 doi: 10.1016/j.cej.2018.10.026 – ident: e_1_2_9_193_1 doi: 10.1002/aenm.201900219 – ident: e_1_2_9_24_1 doi: 10.1039/C9EE02049G – ident: e_1_2_9_171_1 doi: 10.1039/C8TA07352J – ident: e_1_2_9_85_1 doi: 10.1016/j.ensm.2020.01.002 – ident: e_1_2_9_83_1 doi: 10.1039/C8CC06924G – ident: e_1_2_9_9_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_9_79_1 doi: 10.1021/acssuschemeng.1c04036 – ident: e_1_2_9_11_1 doi: 10.1016/j.ensm.2019.04.038 |
SSID | ssj0009606 |
Score | 2.7194188 |
SecondaryResourceType | review_article |
Snippet | Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium‐sulfur batteries. Heterostructures,... Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2303520 |
SubjectTerms | adsorption catalysis heterostructure Heterostructures Interlayers Lithium sulfur batteries lithium‐sulfur battery Materials science Polysulfides Reaction kinetics shuttling effect |
Title | Heterostructures Regulating Lithium Polysulfides for Advanced Lithium‐Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202303520 https://www.ncbi.nlm.nih.gov/pubmed/37254027 https://www.proquest.com/docview/2892535975 https://www.proquest.com/docview/2821342981 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7InvTB-6U6pYLgU7e26fWxqGOIE5kO9laSNsHh3MStD_rkT_A3-ks8adpuU0TQt5YktEnOOfm-9uQLwEngpLZHWWpwzpjhpI5tUIqsNbRESgXGyiSXFOpce-2ec9l3-3O7-JU-RPXBTXpGHq-lg1M2ac5EQ2ma6wYhhEYMIUm7TNiSqKg704-S8DwX2yOuEXpOUKo2mnZzsfniqvQNai4i13zpaa0BLV9aZZw8NLIpaySvX_Qc_9OrdVgtcKkeKUPagCU-2oSVObXCLei3ZerMWCnOZkjT9a46yB5L9avB9H6QPeo34-HLJBuKQYrlCIj1qEgyKGt8vL3fYnn2rCtpT2Tq29BrXdydtY3iYAYjIRgRDIwBJEFkFyIb4SmRonFeiKsetzzBTU583xNeEDBqmURYFPE7GgTHpdDhdmD5guxAbTQe8T3QE4IMzeemyxmajeOGLmMMA4XctpIIEWpglBMTJ4VquTw8YxgrvWU7liMWVyOmwWlV_0npdfxYs17Oc1z47SRG-ol9w265GhxXxehx8jcKHfFxJutIFTw7DCwNdpV9VI8iPhJuZPoa2Pks__IOcXTeiaq7_b80OoBlea22R9ahhjbADxEnTdlR7gufSqcJBg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD4x-KA-eL9MUWdi4tOArbs-EpGgAjEICW_LurWRiGCEPeiTP8Hf6C_xdN2GaIyJPm5ts17OOf2-rv0KcOqakWEHNNIYo1QzI9PQggBZq6fzKOAYK8NEUqjVths986pvZbsJxVkYqQ-RL7gJz0jitXBwsSBdnqmGBlEiHIQYGkEEsvZFca23kM-vdWYKUgKgJ3J7xNI823Qz3caKUZ4vPz8vfQOb89g1mXzqa0Czass9J_eleEpL4csXRcd_tWsdVlNoqlalLW3AAhttwsonwcIt6DfE7pmxFJ2NkamrHXmXPaaqzcH0bhA_qDfj4fMkHvJBhOmIidVqus8gy_H--naL6fGTKtU9kaxvQ69-0T1vaOndDFpIMChoGAZIiODOQ0LCIiJ042wPJz6m25xVGHEcm9uuSwO9QrgeIIRHm2A4G5rMcHWHkx0ojMYjtgdqSJCkOaxiMYqWY1qeRSnFWCFOroScewpo2cj4YSpcLu7PGPpSctnwRY_5eY8pcJbnf5SSHT_mLGYD7aeuO_GRgWLbsFmWAid5Mjqd-JMSjNg4FnmEEJ7huboCu9JA8k8RBzk3kn0FjGSYf6mDX621qvnT_l8KHcNSo9tq-s3L9vUBLIv38rRkEQpoD-wQYdOUHiWO8QHhBw0i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IguiD90t1agXBp2rb9Po4nGPqlDEV9laSNsHh3ETXB33yJ_gb_SWeNG23KSLoY5sT2iTnnHxfm3wBOAicxPYoSwzOGTOcxLENSpG1hpZIqMBcGWeSQpdXXuPWOe-4nbFd_EofovzgJiMjy9cywB8TcTwSDaVJphuEEBoxBJL2GcczQ3l4Q609EpCS-DxT2yOuEXpOUMg2mvbxZP3Jaekb1pyErtncU18EWry1WnJyf5QO2VH8-kXQ8T_NWoKFHJjqVeVJyzDF-yswPyZXuAqdhlw7M1CSsynydL2tTrLHUr3ZHd510we9Nei9PKc90U2wHBGxXs1XGRQWH2_v11iePulK2xOp-hrc1k9vThpGfjKDERNMCQYmARIjtAuRjvCESNU4L8Rpj1ue4CYnvu8JLwgYtUwiLIoAHj2C41zocDuwfEHWYbo_6PNN0GOCFM3npssZ-o3jhi5jDDOF3LcSCxFqYBQDE8W5bLk8PaMXKcFlO5I9FpU9psFhaf-oBDt-tKwU4xzlgfscIf_EtmGzXA32y2IMOfkfhfb5IJU2UgbPDgNLgw3lH-WjiI-MG6m-BnY2yr-8Q1StXVbLq62_VNqD2VatHjXPri62YU7eVlslKzCN7sB3EDMN2W4WFp-mXwvR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterostructures+Regulating+Lithium+Polysulfides+for+Advanced+Lithium%E2%80%90Sulfur+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Tao&rft.au=He%2C+Jiarui&rft.au=Zhu%2C+Zhi&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.date=2023-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202303520&rft.externalDBID=10.1002%252Fadma.202303520&rft.externalDocID=ADMA202303520 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |