Sub‐Nanometer Mono‐Layered Metal–Organic Frameworks Nanosheets for Simulated Flue Gas Photoreduction

The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 27; pp. e2403920 - n/a
Main Authors He, Dong, Wang, Qian, Rong, Yan, Xin, Zhifeng, Liu, Jing‐Jing, Li, Qiang, Shen, Kejing, Chen, Yifa
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed Co3 cluster‐based metal–organic frameworks (MOFs) is reported. The sub‐nanometer thickness and inherent light‐sensitivity endow Co‐MOF MNSs with fully exposed Janus Co3 sites that can selectively photo‐reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co‐MOF MNSs (0.85 mmol g−1 h−1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g−1 h−1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono‐layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo‐reduction in potential flue gas treatment. A kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) is successfully prepared with remarkable performance in selective CO2 photo‐reduction into formic acid under simulated flue gas.
AbstractList The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced photo-catalysis applications. Here, we report a kind of sub-nanometer mono-layered nanosheets (Co-MOF MNSs) through the exfoliation of a specifically designed Co cluster-based metal-organic frameworks (MOFs). The sub-nanometer thickness and inherent light-sensitivity endow Co-MOF MNSs with fully exposed Janus Co sites that can selectively photo-reduce CO into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co-MOF MNSs (0.85 mmol g h ) is ∼13 times higher than that of bulk counterpart (0.065 mmol g h ) under simulated flue gas atmosphere, which is highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono-layered nanosheet morphology. Our results might facilitate the development of functional nanosheet materials for CO photo-reduction in potential flue gas treatment. This article is protected by copyright. All rights reserved.
The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed Co3 cluster‐based metal–organic frameworks (MOFs) is reported. The sub‐nanometer thickness and inherent light‐sensitivity endow Co‐MOF MNSs with fully exposed Janus Co3 sites that can selectively photo‐reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co‐MOF MNSs (0.85 mmol g−1 h−1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g−1 h−1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono‐layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo‐reduction in potential flue gas treatment. A kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) is successfully prepared with remarkable performance in selective CO2 photo‐reduction into formic acid under simulated flue gas.
The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced photo-catalysis applications. Here, a kind of sub-nanometer mono-layered nanosheets (Co-MOF MNSs) through the exfoliation of specifically designed Co3 cluster-based metal-organic frameworks (MOFs) is reported. The sub-nanometer thickness and inherent light-sensitivity endow Co-MOF MNSs with fully exposed Janus Co3 sites that can selectively photo-reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co-MOF MNSs (0.85 mmol g-1 h-1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g-1 h-1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono-layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo-reduction in potential flue gas treatment.The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced photo-catalysis applications. Here, a kind of sub-nanometer mono-layered nanosheets (Co-MOF MNSs) through the exfoliation of specifically designed Co3 cluster-based metal-organic frameworks (MOFs) is reported. The sub-nanometer thickness and inherent light-sensitivity endow Co-MOF MNSs with fully exposed Janus Co3 sites that can selectively photo-reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co-MOF MNSs (0.85 mmol g-1 h-1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g-1 h-1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono-layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo-reduction in potential flue gas treatment.
The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed Co3 cluster‐based metal–organic frameworks (MOFs) is reported. The sub‐nanometer thickness and inherent light‐sensitivity endow Co‐MOF MNSs with fully exposed Janus Co3 sites that can selectively photo‐reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co‐MOF MNSs (0.85 mmol g−1 h−1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g−1 h−1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono‐layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo‐reduction in potential flue gas treatment.
The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed Co 3 cluster‐based metal–organic frameworks (MOFs) is reported. The sub‐nanometer thickness and inherent light‐sensitivity endow Co‐MOF MNSs with fully exposed Janus Co 3 sites that can selectively photo‐reduce CO 2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co‐MOF MNSs (0.85 mmol g −1  h −1 ) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g −1  h −1 ) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co 3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono‐layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO 2 photo‐reduction in potential flue gas treatment.
Author Li, Qiang
Chen, Yifa
Rong, Yan
He, Dong
Xin, Zhifeng
Wang, Qian
Shen, Kejing
Liu, Jing‐Jing
Author_xml – sequence: 1
  givenname: Dong
  surname: He
  fullname: He, Dong
  organization: Anhui University of Technology
– sequence: 2
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: Anhui University of Technology
– sequence: 3
  givenname: Yan
  surname: Rong
  fullname: Rong, Yan
  organization: Anhui University of Technology
– sequence: 4
  givenname: Zhifeng
  surname: Xin
  fullname: Xin, Zhifeng
  email: xinzf521@ahut.edu.cn
  organization: Anhui University of Technology
– sequence: 5
  givenname: Jing‐Jing
  surname: Liu
  fullname: Liu, Jing‐Jing
  organization: South China Normal University
– sequence: 6
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  email: qiang.li@seu.edu.cn
  organization: Southeast University
– sequence: 7
  givenname: Kejing
  surname: Shen
  fullname: Shen, Kejing
  organization: Anhui University of Technology
– sequence: 8
  givenname: Yifa
  orcidid: 0000-0002-1718-6871
  surname: Chen
  fullname: Chen, Yifa
  email: 20200698@m.scnu.edu.cn
  organization: South China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38635463$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAURkVJaSZJt10WQzfdeHpl_dhaDmknLcw0gaRrIcvXjae2lUoyYXZ5hELfME9SDZO0EChZCS7nfFzd74gcjG5EQt5QmFOA4oNpBjMvoODAVAEvyIyKguYclDggM1BM5Ery6pAchbABACVBviKHrJJMcMlmZHM51fd3v76a0Q0Y0WdrN7o0WJktemyyNUbT39_9PvffzdjZbOnNgLfO_wjZzgnXiDFkrfPZZTdMvYnJWfYTZmcmZBfXLrqUMtnYufGEvGxNH_D1w3tMvi0_XZ1-zlfnZ19OF6vcspJBTlFILFGWNbWihtZWFnlLa6WEQCsapEo2shWVqqGsZMWqAmzdmlKWnKJS7Ji83-feePdzwhD10AWLfW9GdFPQDDiDklJRJvTdE3TjJj-m7RJVClmB4EWi3j5QUz1go298Nxi_1Y9XTADfA9a7EDy22nbR7P4cvel6TUHvytK7svTfspI2f6I9Jv9XUHvhtutx-wytFx_Xi3_uH3OJqa8
CitedBy_id crossref_primary_10_1021_jacs_4c09034
crossref_primary_10_1002_ange_202423200
crossref_primary_10_1002_chem_202403231
crossref_primary_10_1039_D4QI01273A
crossref_primary_10_1016_j_apcatb_2024_125012
crossref_primary_10_1039_D4CC04464A
crossref_primary_10_1039_D5CC00481K
crossref_primary_10_1002_smsc_202400132
crossref_primary_10_1002_anie_202421353
crossref_primary_10_1002_anie_202423200
crossref_primary_10_1002_ange_202421353
Cites_doi 10.1021/acs.accounts.8b00521
10.1002/anie.202107457
10.1002/anie.202311265
10.1039/D1TA10440C
10.1002/anie.202316973
10.1039/C8CS00268A
10.1039/D0EE01834A
10.1016/j.ccr.2022.214777
10.1002/adma.202102690
10.1038/s41467-021-24647-y
10.1002/adma.201705512
10.1016/j.ccr.2021.213876
10.1039/C9EE03077H
10.1021/acsami.0c17926
10.1039/D2CS00701K
10.1002/anie.202102832
10.1021/jo971176v
10.1093/nsr/nwab197
10.1016/j.apenergy.2019.113879
10.1002/adma.201500116
10.1038/s41586-022-04407-8
10.1038/nclimate3231
10.1002/adma.201808135
10.1039/C4CS00003J
10.1038/s41467-019-08697-x
10.1021/jacs.2c06312
10.1002/adma.202204865
10.1039/D2CC02650C
10.1002/aenm.202300086
10.1021/acscatal.0c04495
10.1038/natrevmats.2017.45
10.1002/anie.202318874
10.1002/anie.202116282
10.1038/s41467-022-32449-z
10.1002/anie.202209446
10.1021/jacs.8b11042
10.1021/acsenergylett.1c01553
10.1038/s41586-019-1798-7
10.1039/D2EE03396H
10.1016/j.ccr.2020.213262
10.1002/adma.202209814
10.1021/jacs.5b08773
10.1016/j.coche.2012.12.003
10.1093/nsr/nwz096
10.1002/anie.202218868
10.1016/j.ccr.2019.03.019
10.1016/j.apcatb.2018.01.028
10.1002/aenm.202200389
10.1016/j.ccr.2021.213906
10.1002/adma.202107836
10.1002/anie.201814729
10.1002/adma.202201779
10.1039/D3NR00484H
10.1002/anie.202010601
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
This article is protected by copyright. All rights reserved.
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: This article is protected by copyright. All rights reserved.
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202403920
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 38635463
10_1002_adma_202403920
ADMA202403920
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Educational Commission of Anhui Province of China
  funderid: KJ2020A0240
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2023B1515020076
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA1500703
– fundername: National Natural Science Foundation of China
  funderid: 22171139; 22173018
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3730-1e56e7e67b1c5b0fc8ce4f1b9955ec5de196d6f589b078683820cbfa76741e993
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:04:42 EDT 2025
Fri Jul 25 21:55:45 EDT 2025
Thu Apr 03 07:00:03 EDT 2025
Tue Jul 01 05:28:34 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Wed Jun 11 08:25:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords Mono‐layered nanosheet
CO2 photo‐reduction
Flue gas
Formic acid
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-1e56e7e67b1c5b0fc8ce4f1b9955ec5de196d6f589b078683820cbfa76741e993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1718-6871
PMID 38635463
PQID 3075680542
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_3043071157
proquest_journals_3075680542
pubmed_primary_38635463
crossref_citationtrail_10_1002_adma_202403920
crossref_primary_10_1002_adma_202403920
wiley_primary_10_1002_adma_202403920_ADMA202403920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2022; 472
2021; 6
2023; 35
1997; 62
2023; 13
2019; 390
2017; 2
2013; 2
2018; 227
2019; 31
2019; 52
2023; 15
2019; 10
2022; 51
2019; 58
2020; 59
2020; 13
2019; 141
2014; 43
2018; 47
2022; 144
2021; 13
2020; 7
2023; 62
2015; 27
2021; 12
2021; 11
2021; 33
2015; 137
2022; 61
2021; 438
2022; 9
2022; 12
2022; 34
2022; 13
2020; 412
2022; 58
2024; 63
2022; 15
2019; 576
2018; 30
2022; 10
2021; 60
2022; 602
2019; 255
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 576
  start-page: 253
  year: 2019
  publication-title: Nature
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 356
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 255
  year: 2019
  publication-title: Appl. Energy
– volume: 27
  start-page: 1957
  year: 2015
  publication-title: Adv. Mater.
– volume: 58
  start-page: 5226
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 554
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 200
  year: 2013
  publication-title: Curr. Opin. Chem. Eng.
– volume: 15
  start-page: 5105
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 438
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 602
  start-page: 606
  year: 2022
  publication-title: Nature
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 7
  start-page: 53
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 9762
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 390
  start-page: 86
  year: 2019
  publication-title: Coord. Chem. Rev.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 412
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 13
  start-page: 3706
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 472
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 6456
  year: 2023
  publication-title: Nanoscale
– volume: 141
  start-page: 2054
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 51
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 243
  year: 2017
  publication-title: Nat. Clim. Change
– volume: 47
  start-page: 6267
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 4681
  year: 2022
  publication-title: Nat. Commun.
– volume: 9
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 43
  start-page: 5561
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 5899
  year: 2022
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 3352
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 227
  start-page: 54
  year: 2018
  publication-title: Appl. Catal., B
– volume: 10
  start-page: 788
  year: 2019
  publication-title: Nat. Commun.
– volume: 62
  start-page: 7512
  year: 1997
  publication-title: J. Org. Chem.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 7507
  year: 2022
  publication-title: Chem. Commun.
– volume: 12
  start-page: 4276
  year: 2021
  publication-title: Nat. Commun.
– volume: 11
  start-page: 4510
  year: 2021
  publication-title: ACS Catal.
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.accounts.8b00521
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.202107457
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.202311265
– ident: e_1_2_8_19_1
  doi: 10.1039/D1TA10440C
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.202316973
– ident: e_1_2_8_42_1
  doi: 10.1039/C8CS00268A
– ident: e_1_2_8_32_1
  doi: 10.1039/D0EE01834A
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ccr.2022.214777
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.202102690
– ident: e_1_2_8_43_1
  doi: 10.1038/s41467-021-24647-y
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201705512
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ccr.2021.213876
– ident: e_1_2_8_4_1
  doi: 10.1039/C9EE03077H
– ident: e_1_2_8_13_1
  doi: 10.1021/acsami.0c17926
– ident: e_1_2_8_51_1
  doi: 10.1039/D2CS00701K
– ident: e_1_2_8_45_1
  doi: 10.1002/anie.202102832
– ident: e_1_2_8_44_1
  doi: 10.1021/jo971176v
– ident: e_1_2_8_24_1
  doi: 10.1093/nsr/nwab197
– ident: e_1_2_8_1_1
  doi: 10.1016/j.apenergy.2019.113879
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.201500116
– ident: e_1_2_8_29_1
  doi: 10.1038/s41586-022-04407-8
– ident: e_1_2_8_6_1
  doi: 10.1038/nclimate3231
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201808135
– ident: e_1_2_8_17_1
  doi: 10.1039/C4CS00003J
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-019-08697-x
– ident: e_1_2_8_26_1
  doi: 10.1021/jacs.2c06312
– ident: e_1_2_8_46_1
  doi: 10.1002/adma.202204865
– ident: e_1_2_8_18_1
  doi: 10.1039/D2CC02650C
– ident: e_1_2_8_52_1
  doi: 10.1002/aenm.202300086
– ident: e_1_2_8_37_1
  doi: 10.1021/acscatal.0c04495
– ident: e_1_2_8_35_1
  doi: 10.1038/natrevmats.2017.45
– ident: e_1_2_8_53_1
  doi: 10.1002/anie.202318874
– ident: e_1_2_8_31_1
  doi: 10.1002/anie.202116282
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-022-32449-z
– ident: e_1_2_8_12_1
  doi: 10.1002/anie.202209446
– ident: e_1_2_8_40_1
  doi: 10.1021/jacs.8b11042
– ident: e_1_2_8_3_1
  doi: 10.1021/acsenergylett.1c01553
– ident: e_1_2_8_34_1
  doi: 10.1038/s41586-019-1798-7
– ident: e_1_2_8_2_1
  doi: 10.1039/D2EE03396H
– ident: e_1_2_8_50_1
  doi: 10.1016/j.ccr.2020.213262
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.202209814
– ident: e_1_2_8_39_1
  doi: 10.1021/jacs.5b08773
– ident: e_1_2_8_9_1
  doi: 10.1016/j.coche.2012.12.003
– ident: e_1_2_8_33_1
  doi: 10.1093/nsr/nwz096
– ident: e_1_2_8_36_1
  doi: 10.1002/anie.202218868
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ccr.2019.03.019
– ident: e_1_2_8_30_1
  doi: 10.1016/j.apcatb.2018.01.028
– ident: e_1_2_8_14_1
  doi: 10.1002/aenm.202200389
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ccr.2021.213906
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.202107836
– ident: e_1_2_8_54_1
  doi: 10.1002/anie.201814729
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.202201779
– ident: e_1_2_8_27_1
  doi: 10.1039/D3NR00484H
– ident: e_1_2_8_48_1
  doi: 10.1002/anie.202010601
SSID ssj0009606
Score 2.5154376
Snippet The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced...
The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2403920
SubjectTerms Carbon dioxide
CO2 photo‐reduction
Flue gas
Formic acid
Metal-organic frameworks
mono‐layered nanosheets
Nanosheets
Porous materials
Thickness
Title Sub‐Nanometer Mono‐Layered Metal–Organic Frameworks Nanosheets for Simulated Flue Gas Photoreduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202403920
https://www.ncbi.nlm.nih.gov/pubmed/38635463
https://www.proquest.com/docview/3075680542
https://www.proquest.com/docview/3043071157
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHiFM5tBRKm3ZBrlSpp8DGiU1yXAFbVHWrqgWJW2R7x-K5qcjuoZz4CEh8w_0kzCSbwBahSvSWh0d52DP-Oxn_DPCJuoTExFkSeplGDNXuhtZyoqt3zluvnZY8G3nwXe8fJl-P1NGDWfw1H6L94MaeUcVrdnBjy617aKgZVtwg5sllkgftnLDFqujnPT-K5XkF24tVmOkkbaiNXbk1bz7fKz2SmvPKtep6-q_ANDddZ5ycbU7GdtNd_cVz_J-nWoaXM10qenVDeg0LOFqBpQe0wlU4pSAzvb6heFxccBKNoHhQ0IFv5g8v-CkGSEJ-en1bT-90ot_kfZWCbcpjxHEpSCSLXycXvGoY2fTPJyi-mFL8OC5o9M8cWW4pb-Cwv3ewsx_OlmoIXUwxIoxQadxGvW0jpyxVdOow8ZHNMqXQqSGSow-1V2lmSZPoNCbh4aw3jBKKkDTSGiyOihG-A5E6L7uxz6RBn2DmzJAB4qQzfDeWZBJA2FRV7mYcc15O4zyvCcwy53eYt-8wgM9t-d81wePJkp2m5vOZJ5c5xUClUxK2MoCP7WnyQf6xYkZYTLhMQsUYWxTA27rFtJeKU5J0iY4DkFW9_-Me8t7uoNfuvX-O0Qd4wdt1TnEHFseXE1wn5TS2G5V33AGTxBK2
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9RAEMcnBh-UB_wFWEVZExKeCtdtd2kfL-J54h0hCAlvTXdvNqfCldDegz7xJ5j4H_KXONNei4chJPjYdif9sTuz37aznwHYoCkhysIk8p2MA4Zqd3xjONHVWeuM01ZLXo083Nf942jvRDXZhLwWpuZDtB_c2DOqeM0Ozh-kt6-podmoAgcxUC6R9Nb-kMt6Mz5_9_CaIMUCvcLthcpPdBQ33MaO3J63n5-X_hGb89q1mnx6T8A0l13nnHzfmpZmy_68QXT8r_t6CkszaSq69Vh6Bg9w8hwW_wIWvoBvFGeuLn9RSM7POI9GUEjIaccg-8E1P8UQSctfXf6uV3ha0WtSvwrBNsUYsSwE6WTx5esZFw4jm97pFMXHrBAH47zMLxgly4NlGY57H47e9_1ZtQbfhhQm_ACVxh3UOyawylBfxxYjF5gkUQqtGiH5-kg7FSeGZImOQ9Ie1riMaUIBkkxagYVJPsGXIGLrZCd0iczQRZjYbMQMcZIarhNKMvHAb_oqtTOUOVfUOE1rCLNM-Rmm7TP0YLNtf15DPG5tudZ0fTpz5iKlMKh0TNpWevCuPUxuyP9WsgnmU24TUTMmF3mwWg-Z9lRhTKou0qEHsur4O64h7e4Ou-3Wq_sYrcOj_tFwkA4-7X9-DY95f51ivAYL5cUU35CQKs3bylX-ALF1FtI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHqEgIDuW7BAoYCYlT2sSx3fi4YgkFulUFVOotsh1bBdpN1ewe4NRHQOIN-yTMJJu0C0JIcEziUT7sGf-TjH8D8BynBGEyLeLA85Sg2klsLSW6BueCDcopTquRJ7tqe1-8PZAHl1bxd3yI4YMbeUYbr8nBT6qweQENNVXLDSKenOb40n5VqERT8Ybx-wuAFOnzlraXyVgrkffYxoRvLtsvT0u_ac1l6drOPcVNMP1VdyknXzbmM7vhvv0CdPyf27oFqwthykbdSLoNV_z0Dty4hCu8C58xypyffceAXB9TFg3DgFDjjh3zlSp-solHJX9-9qNb3-lY0Sd-NYxsmkPvZw1Dlcw-fDqmsmFoUxzNPXttGrZ3WOPrP4Fkaajcg_3i1ceX2_GiVkPsMgwSceql8ltebdnUSYs9nTsvQmq1ltI7WXn09EoFmWuLokTlGSoPZ4MhllDqUSTdh5VpPfUPgOUu8CQLmhsfhNfOVEQQR6ERkoyjSQRx31WlW4DMqZ7GUdkhmHlJz7AcnmEEL4b2Jx3C448t1_ueLxeu3JQYBKXKUdnyCJ4Nh9EJ6c-Kmfp6Tm0ENiNuUQRr3YgZTpXlqOmEyiLgbb__5RrK0XgyGrYe_ovRU7i2Ny7KnTe77x7Bddrd5Revw8rsdO4fo4qa2Seto_wEXWUVgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub%E2%80%90Nanometer+Mono%E2%80%90Layered+Metal%E2%80%93Organic+Frameworks+Nanosheets+for+Simulated+Flue+Gas+Photoreduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Dong&rft.au=Wang%2C+Qian&rft.au=Rong%2C+Yan&rft.au=Xin%2C+Zhifeng&rft.date=2024-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202403920&rft.externalDBID=10.1002%252Fadma.202403920&rft.externalDocID=ADMA202403920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon