Sub‐Nanometer Mono‐Layered Metal–Organic Frameworks Nanosheets for Simulated Flue Gas Photoreduction
The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 27; pp. e2403920 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed Co3 cluster‐based metal–organic frameworks (MOFs) is reported. The sub‐nanometer thickness and inherent light‐sensitivity endow Co‐MOF MNSs with fully exposed Janus Co3 sites that can selectively photo‐reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co‐MOF MNSs (0.85 mmol g−1 h−1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g−1 h−1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono‐layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo‐reduction in potential flue gas treatment.
A kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) is successfully prepared with remarkable performance in selective CO2 photo‐reduction into formic acid under simulated flue gas. |
---|---|
AbstractList | The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced photo-catalysis applications. Here, we report a kind of sub-nanometer mono-layered nanosheets (Co-MOF MNSs) through the exfoliation of a specifically designed Co
cluster-based metal-organic frameworks (MOFs). The sub-nanometer thickness and inherent light-sensitivity endow Co-MOF MNSs with fully exposed Janus Co
sites that can selectively photo-reduce CO
into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co-MOF MNSs (0.85 mmol g
h
) is ∼13 times higher than that of bulk counterpart (0.065 mmol g
h
) under simulated flue gas atmosphere, which is highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co
sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono-layered nanosheet morphology. Our results might facilitate the development of functional nanosheet materials for CO
photo-reduction in potential flue gas treatment. This article is protected by copyright. All rights reserved. The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed Co3 cluster‐based metal–organic frameworks (MOFs) is reported. The sub‐nanometer thickness and inherent light‐sensitivity endow Co‐MOF MNSs with fully exposed Janus Co3 sites that can selectively photo‐reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co‐MOF MNSs (0.85 mmol g−1 h−1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g−1 h−1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono‐layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo‐reduction in potential flue gas treatment. A kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) is successfully prepared with remarkable performance in selective CO2 photo‐reduction into formic acid under simulated flue gas. The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced photo-catalysis applications. Here, a kind of sub-nanometer mono-layered nanosheets (Co-MOF MNSs) through the exfoliation of specifically designed Co3 cluster-based metal-organic frameworks (MOFs) is reported. The sub-nanometer thickness and inherent light-sensitivity endow Co-MOF MNSs with fully exposed Janus Co3 sites that can selectively photo-reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co-MOF MNSs (0.85 mmol g-1 h-1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g-1 h-1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono-layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo-reduction in potential flue gas treatment.The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced photo-catalysis applications. Here, a kind of sub-nanometer mono-layered nanosheets (Co-MOF MNSs) through the exfoliation of specifically designed Co3 cluster-based metal-organic frameworks (MOFs) is reported. The sub-nanometer thickness and inherent light-sensitivity endow Co-MOF MNSs with fully exposed Janus Co3 sites that can selectively photo-reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co-MOF MNSs (0.85 mmol g-1 h-1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g-1 h-1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono-layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo-reduction in potential flue gas treatment. The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed Co3 cluster‐based metal–organic frameworks (MOFs) is reported. The sub‐nanometer thickness and inherent light‐sensitivity endow Co‐MOF MNSs with fully exposed Janus Co3 sites that can selectively photo‐reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co‐MOF MNSs (0.85 mmol g−1 h−1) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g−1 h−1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono‐layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo‐reduction in potential flue gas treatment. The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced photo‐catalysis applications. Here, a kind of sub‐nanometer mono‐layered nanosheets (Co‐MOF MNSs) through the exfoliation of specifically designed Co 3 cluster‐based metal–organic frameworks (MOFs) is reported. The sub‐nanometer thickness and inherent light‐sensitivity endow Co‐MOF MNSs with fully exposed Janus Co 3 sites that can selectively photo‐reduce CO 2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co‐MOF MNSs (0.85 mmol g −1 h −1 ) is ≈13 times higher than that of the bulk counterpart (0.065 mmol g −1 h −1 ) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co 3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono‐layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO 2 photo‐reduction in potential flue gas treatment. |
Author | Li, Qiang Chen, Yifa Rong, Yan He, Dong Xin, Zhifeng Wang, Qian Shen, Kejing Liu, Jing‐Jing |
Author_xml | – sequence: 1 givenname: Dong surname: He fullname: He, Dong organization: Anhui University of Technology – sequence: 2 givenname: Qian surname: Wang fullname: Wang, Qian organization: Anhui University of Technology – sequence: 3 givenname: Yan surname: Rong fullname: Rong, Yan organization: Anhui University of Technology – sequence: 4 givenname: Zhifeng surname: Xin fullname: Xin, Zhifeng email: xinzf521@ahut.edu.cn organization: Anhui University of Technology – sequence: 5 givenname: Jing‐Jing surname: Liu fullname: Liu, Jing‐Jing organization: South China Normal University – sequence: 6 givenname: Qiang surname: Li fullname: Li, Qiang email: qiang.li@seu.edu.cn organization: Southeast University – sequence: 7 givenname: Kejing surname: Shen fullname: Shen, Kejing organization: Anhui University of Technology – sequence: 8 givenname: Yifa orcidid: 0000-0002-1718-6871 surname: Chen fullname: Chen, Yifa email: 20200698@m.scnu.edu.cn organization: South China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38635463$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1q3DAURkVJaSZJt10WQzfdeHpl_dhaDmknLcw0gaRrIcvXjae2lUoyYXZ5hELfME9SDZO0EChZCS7nfFzd74gcjG5EQt5QmFOA4oNpBjMvoODAVAEvyIyKguYclDggM1BM5Ery6pAchbABACVBviKHrJJMcMlmZHM51fd3v76a0Q0Y0WdrN7o0WJktemyyNUbT39_9PvffzdjZbOnNgLfO_wjZzgnXiDFkrfPZZTdMvYnJWfYTZmcmZBfXLrqUMtnYufGEvGxNH_D1w3tMvi0_XZ1-zlfnZ19OF6vcspJBTlFILFGWNbWihtZWFnlLa6WEQCsapEo2shWVqqGsZMWqAmzdmlKWnKJS7Ji83-feePdzwhD10AWLfW9GdFPQDDiDklJRJvTdE3TjJj-m7RJVClmB4EWi3j5QUz1go298Nxi_1Y9XTADfA9a7EDy22nbR7P4cvel6TUHvytK7svTfspI2f6I9Jv9XUHvhtutx-wytFx_Xi3_uH3OJqa8 |
CitedBy_id | crossref_primary_10_1021_jacs_4c09034 crossref_primary_10_1002_ange_202423200 crossref_primary_10_1002_chem_202403231 crossref_primary_10_1039_D4QI01273A crossref_primary_10_1016_j_apcatb_2024_125012 crossref_primary_10_1039_D4CC04464A crossref_primary_10_1039_D5CC00481K crossref_primary_10_1002_smsc_202400132 crossref_primary_10_1002_anie_202421353 crossref_primary_10_1002_anie_202423200 crossref_primary_10_1002_ange_202421353 |
Cites_doi | 10.1021/acs.accounts.8b00521 10.1002/anie.202107457 10.1002/anie.202311265 10.1039/D1TA10440C 10.1002/anie.202316973 10.1039/C8CS00268A 10.1039/D0EE01834A 10.1016/j.ccr.2022.214777 10.1002/adma.202102690 10.1038/s41467-021-24647-y 10.1002/adma.201705512 10.1016/j.ccr.2021.213876 10.1039/C9EE03077H 10.1021/acsami.0c17926 10.1039/D2CS00701K 10.1002/anie.202102832 10.1021/jo971176v 10.1093/nsr/nwab197 10.1016/j.apenergy.2019.113879 10.1002/adma.201500116 10.1038/s41586-022-04407-8 10.1038/nclimate3231 10.1002/adma.201808135 10.1039/C4CS00003J 10.1038/s41467-019-08697-x 10.1021/jacs.2c06312 10.1002/adma.202204865 10.1039/D2CC02650C 10.1002/aenm.202300086 10.1021/acscatal.0c04495 10.1038/natrevmats.2017.45 10.1002/anie.202318874 10.1002/anie.202116282 10.1038/s41467-022-32449-z 10.1002/anie.202209446 10.1021/jacs.8b11042 10.1021/acsenergylett.1c01553 10.1038/s41586-019-1798-7 10.1039/D2EE03396H 10.1016/j.ccr.2020.213262 10.1002/adma.202209814 10.1021/jacs.5b08773 10.1016/j.coche.2012.12.003 10.1093/nsr/nwz096 10.1002/anie.202218868 10.1016/j.ccr.2019.03.019 10.1016/j.apcatb.2018.01.028 10.1002/aenm.202200389 10.1016/j.ccr.2021.213906 10.1002/adma.202107836 10.1002/anie.201814729 10.1002/adma.202201779 10.1039/D3NR00484H 10.1002/anie.202010601 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH This article is protected by copyright. All rights reserved. 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: This article is protected by copyright. All rights reserved. – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202403920 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 38635463 10_1002_adma_202403920 ADMA202403920 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Educational Commission of Anhui Province of China funderid: KJ2020A0240 – fundername: Natural Science Foundation of Guangdong Province funderid: 2023B1515020076 – fundername: National Key Research and Development Program of China funderid: 2021YFA1500703 – fundername: National Natural Science Foundation of China funderid: 22171139; 22173018 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3730-1e56e7e67b1c5b0fc8ce4f1b9955ec5de196d6f589b078683820cbfa76741e993 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 06:04:42 EDT 2025 Fri Jul 25 21:55:45 EDT 2025 Thu Apr 03 07:00:03 EDT 2025 Tue Jul 01 05:28:34 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Wed Jun 11 08:25:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | Mono‐layered nanosheet CO2 photo‐reduction Flue gas Formic acid |
Language | English |
License | This article is protected by copyright. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-1e56e7e67b1c5b0fc8ce4f1b9955ec5de196d6f589b078683820cbfa76741e993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1718-6871 |
PMID | 38635463 |
PQID | 3075680542 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3043071157 proquest_journals_3075680542 pubmed_primary_38635463 crossref_citationtrail_10_1002_adma_202403920 crossref_primary_10_1002_adma_202403920 wiley_primary_10_1002_adma_202403920_ADMA202403920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2022; 472 2021; 6 2023; 35 1997; 62 2023; 13 2019; 390 2017; 2 2013; 2 2018; 227 2019; 31 2019; 52 2023; 15 2019; 10 2022; 51 2019; 58 2020; 59 2020; 13 2019; 141 2014; 43 2018; 47 2022; 144 2021; 13 2020; 7 2023; 62 2015; 27 2021; 12 2021; 11 2021; 33 2015; 137 2022; 61 2021; 438 2022; 9 2022; 12 2022; 34 2022; 13 2020; 412 2022; 58 2024; 63 2022; 15 2019; 576 2018; 30 2022; 10 2021; 60 2022; 602 2019; 255 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 576 start-page: 253 year: 2019 publication-title: Nature – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 356 year: 2019 publication-title: Acc. Chem. Res. – volume: 255 year: 2019 publication-title: Appl. Energy – volume: 27 start-page: 1957 year: 2015 publication-title: Adv. Mater. – volume: 58 start-page: 5226 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 554 year: 2020 publication-title: Energy Environ. Sci. – volume: 2 start-page: 200 year: 2013 publication-title: Curr. Opin. Chem. Eng. – volume: 15 start-page: 5105 year: 2022 publication-title: Energy Environ. Sci. – volume: 438 year: 2021 publication-title: Coord. Chem. Rev. – volume: 602 start-page: 606 year: 2022 publication-title: Nature – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 7 start-page: 53 year: 2020 publication-title: Natl. Sci. Rev. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 9762 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 390 start-page: 86 year: 2019 publication-title: Coord. Chem. Rev. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 412 year: 2020 publication-title: Coord. Chem. Rev. – volume: 13 start-page: 3706 year: 2020 publication-title: Energy Environ. Sci. – volume: 472 year: 2022 publication-title: Coord. Chem. Rev. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 6456 year: 2023 publication-title: Nanoscale – volume: 141 start-page: 2054 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 51 year: 2022 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 243 year: 2017 publication-title: Nat. Clim. Change – volume: 47 start-page: 6267 year: 2018 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 4681 year: 2022 publication-title: Nat. Commun. – volume: 9 year: 2022 publication-title: Natl. Sci. Rev. – volume: 43 start-page: 5561 year: 2014 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 5899 year: 2022 publication-title: J. Mater. Chem. – volume: 6 start-page: 3352 year: 2021 publication-title: ACS Energy Lett. – volume: 227 start-page: 54 year: 2018 publication-title: Appl. Catal., B – volume: 10 start-page: 788 year: 2019 publication-title: Nat. Commun. – volume: 62 start-page: 7512 year: 1997 publication-title: J. Org. Chem. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 58 start-page: 7507 year: 2022 publication-title: Chem. Commun. – volume: 12 start-page: 4276 year: 2021 publication-title: Nat. Commun. – volume: 11 start-page: 4510 year: 2021 publication-title: ACS Catal. – ident: e_1_2_8_15_1 doi: 10.1021/acs.accounts.8b00521 – ident: e_1_2_8_25_1 doi: 10.1002/anie.202107457 – ident: e_1_2_8_5_1 doi: 10.1002/anie.202311265 – ident: e_1_2_8_19_1 doi: 10.1039/D1TA10440C – ident: e_1_2_8_21_1 doi: 10.1002/anie.202316973 – ident: e_1_2_8_42_1 doi: 10.1039/C8CS00268A – ident: e_1_2_8_32_1 doi: 10.1039/D0EE01834A – ident: e_1_2_8_28_1 doi: 10.1016/j.ccr.2022.214777 – ident: e_1_2_8_41_1 doi: 10.1002/adma.202102690 – ident: e_1_2_8_43_1 doi: 10.1038/s41467-021-24647-y – ident: e_1_2_8_16_1 doi: 10.1002/adma.201705512 – ident: e_1_2_8_10_1 doi: 10.1016/j.ccr.2021.213876 – ident: e_1_2_8_4_1 doi: 10.1039/C9EE03077H – ident: e_1_2_8_13_1 doi: 10.1021/acsami.0c17926 – ident: e_1_2_8_51_1 doi: 10.1039/D2CS00701K – ident: e_1_2_8_45_1 doi: 10.1002/anie.202102832 – ident: e_1_2_8_44_1 doi: 10.1021/jo971176v – ident: e_1_2_8_24_1 doi: 10.1093/nsr/nwab197 – ident: e_1_2_8_1_1 doi: 10.1016/j.apenergy.2019.113879 – ident: e_1_2_8_7_1 doi: 10.1002/adma.201500116 – ident: e_1_2_8_29_1 doi: 10.1038/s41586-022-04407-8 – ident: e_1_2_8_6_1 doi: 10.1038/nclimate3231 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201808135 – ident: e_1_2_8_17_1 doi: 10.1039/C4CS00003J – ident: e_1_2_8_11_1 doi: 10.1038/s41467-019-08697-x – ident: e_1_2_8_26_1 doi: 10.1021/jacs.2c06312 – ident: e_1_2_8_46_1 doi: 10.1002/adma.202204865 – ident: e_1_2_8_18_1 doi: 10.1039/D2CC02650C – ident: e_1_2_8_52_1 doi: 10.1002/aenm.202300086 – ident: e_1_2_8_37_1 doi: 10.1021/acscatal.0c04495 – ident: e_1_2_8_35_1 doi: 10.1038/natrevmats.2017.45 – ident: e_1_2_8_53_1 doi: 10.1002/anie.202318874 – ident: e_1_2_8_31_1 doi: 10.1002/anie.202116282 – ident: e_1_2_8_49_1 doi: 10.1038/s41467-022-32449-z – ident: e_1_2_8_12_1 doi: 10.1002/anie.202209446 – ident: e_1_2_8_40_1 doi: 10.1021/jacs.8b11042 – ident: e_1_2_8_3_1 doi: 10.1021/acsenergylett.1c01553 – ident: e_1_2_8_34_1 doi: 10.1038/s41586-019-1798-7 – ident: e_1_2_8_2_1 doi: 10.1039/D2EE03396H – ident: e_1_2_8_50_1 doi: 10.1016/j.ccr.2020.213262 – ident: e_1_2_8_38_1 doi: 10.1002/adma.202209814 – ident: e_1_2_8_39_1 doi: 10.1021/jacs.5b08773 – ident: e_1_2_8_9_1 doi: 10.1016/j.coche.2012.12.003 – ident: e_1_2_8_33_1 doi: 10.1093/nsr/nwz096 – ident: e_1_2_8_36_1 doi: 10.1002/anie.202218868 – ident: e_1_2_8_20_1 doi: 10.1016/j.ccr.2019.03.019 – ident: e_1_2_8_30_1 doi: 10.1016/j.apcatb.2018.01.028 – ident: e_1_2_8_14_1 doi: 10.1002/aenm.202200389 – ident: e_1_2_8_8_1 doi: 10.1016/j.ccr.2021.213906 – ident: e_1_2_8_22_1 doi: 10.1002/adma.202107836 – ident: e_1_2_8_54_1 doi: 10.1002/anie.201814729 – ident: e_1_2_8_23_1 doi: 10.1002/adma.202201779 – ident: e_1_2_8_27_1 doi: 10.1039/D3NR00484H – ident: e_1_2_8_48_1 doi: 10.1002/anie.202010601 |
SSID | ssj0009606 |
Score | 2.5154376 |
Snippet | The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono‐layered structure for advanced... The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2403920 |
SubjectTerms | Carbon dioxide CO2 photo‐reduction Flue gas Formic acid Metal-organic frameworks mono‐layered nanosheets Nanosheets Porous materials Thickness |
Title | Sub‐Nanometer Mono‐Layered Metal–Organic Frameworks Nanosheets for Simulated Flue Gas Photoreduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202403920 https://www.ncbi.nlm.nih.gov/pubmed/38635463 https://www.proquest.com/docview/3075680542 https://www.proquest.com/docview/3043071157 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHiFM5tBRKm3ZBrlSpp8DGiU1yXAFbVHWrqgWJW2R7x-K5qcjuoZz4CEh8w_0kzCSbwBahSvSWh0d52DP-Oxn_DPCJuoTExFkSeplGDNXuhtZyoqt3zluvnZY8G3nwXe8fJl-P1NGDWfw1H6L94MaeUcVrdnBjy617aKgZVtwg5sllkgftnLDFqujnPT-K5XkF24tVmOkkbaiNXbk1bz7fKz2SmvPKtep6-q_ANDddZ5ycbU7GdtNd_cVz_J-nWoaXM10qenVDeg0LOFqBpQe0wlU4pSAzvb6heFxccBKNoHhQ0IFv5g8v-CkGSEJ-en1bT-90ot_kfZWCbcpjxHEpSCSLXycXvGoY2fTPJyi-mFL8OC5o9M8cWW4pb-Cwv3ewsx_OlmoIXUwxIoxQadxGvW0jpyxVdOow8ZHNMqXQqSGSow-1V2lmSZPoNCbh4aw3jBKKkDTSGiyOihG-A5E6L7uxz6RBn2DmzJAB4qQzfDeWZBJA2FRV7mYcc15O4zyvCcwy53eYt-8wgM9t-d81wePJkp2m5vOZJ5c5xUClUxK2MoCP7WnyQf6xYkZYTLhMQsUYWxTA27rFtJeKU5J0iY4DkFW9_-Me8t7uoNfuvX-O0Qd4wdt1TnEHFseXE1wn5TS2G5V33AGTxBK2 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9RAEMcnBh-UB_wFWEVZExKeCtdtd2kfL-J54h0hCAlvTXdvNqfCldDegz7xJ5j4H_KXONNei4chJPjYdif9sTuz37aznwHYoCkhysIk8p2MA4Zqd3xjONHVWeuM01ZLXo083Nf942jvRDXZhLwWpuZDtB_c2DOqeM0Ozh-kt6-podmoAgcxUC6R9Nb-kMt6Mz5_9_CaIMUCvcLthcpPdBQ33MaO3J63n5-X_hGb89q1mnx6T8A0l13nnHzfmpZmy_68QXT8r_t6CkszaSq69Vh6Bg9w8hwW_wIWvoBvFGeuLn9RSM7POI9GUEjIaccg-8E1P8UQSctfXf6uV3ha0WtSvwrBNsUYsSwE6WTx5esZFw4jm97pFMXHrBAH47zMLxgly4NlGY57H47e9_1ZtQbfhhQm_ACVxh3UOyawylBfxxYjF5gkUQqtGiH5-kg7FSeGZImOQ9Ie1riMaUIBkkxagYVJPsGXIGLrZCd0iczQRZjYbMQMcZIarhNKMvHAb_oqtTOUOVfUOE1rCLNM-Rmm7TP0YLNtf15DPG5tudZ0fTpz5iKlMKh0TNpWevCuPUxuyP9WsgnmU24TUTMmF3mwWg-Z9lRhTKou0qEHsur4O64h7e4Ou-3Wq_sYrcOj_tFwkA4-7X9-DY95f51ivAYL5cUU35CQKs3bylX-ALF1FtI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHqEgIDuW7BAoYCYlT2sSx3fi4YgkFulUFVOotsh1bBdpN1ewe4NRHQOIN-yTMJJu0C0JIcEziUT7sGf-TjH8D8BynBGEyLeLA85Sg2klsLSW6BueCDcopTquRJ7tqe1-8PZAHl1bxd3yI4YMbeUYbr8nBT6qweQENNVXLDSKenOb40n5VqERT8Ybx-wuAFOnzlraXyVgrkffYxoRvLtsvT0u_ac1l6drOPcVNMP1VdyknXzbmM7vhvv0CdPyf27oFqwthykbdSLoNV_z0Dty4hCu8C58xypyffceAXB9TFg3DgFDjjh3zlSp-solHJX9-9qNb3-lY0Sd-NYxsmkPvZw1Dlcw-fDqmsmFoUxzNPXttGrZ3WOPrP4Fkaajcg_3i1ceX2_GiVkPsMgwSceql8ltebdnUSYs9nTsvQmq1ltI7WXn09EoFmWuLokTlGSoPZ4MhllDqUSTdh5VpPfUPgOUu8CQLmhsfhNfOVEQQR6ERkoyjSQRx31WlW4DMqZ7GUdkhmHlJz7AcnmEEL4b2Jx3C448t1_ueLxeu3JQYBKXKUdnyCJ4Nh9EJ6c-Kmfp6Tm0ENiNuUQRr3YgZTpXlqOmEyiLgbb__5RrK0XgyGrYe_ovRU7i2Ny7KnTe77x7Bddrd5Revw8rsdO4fo4qa2Seto_wEXWUVgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub%E2%80%90Nanometer+Mono%E2%80%90Layered+Metal%E2%80%93Organic+Frameworks+Nanosheets+for+Simulated+Flue+Gas+Photoreduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Dong&rft.au=Wang%2C+Qian&rft.au=Rong%2C+Yan&rft.au=Xin%2C+Zhifeng&rft.date=2024-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202403920&rft.externalDBID=10.1002%252Fadma.202403920&rft.externalDocID=ADMA202403920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |