Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data
A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through i...
Saved in:
Published in | Journal of exposure science & environmental epidemiology Vol. 29; no. 2; pp. 238 - 247 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.03.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1559-0631 1559-064X 1559-064X |
DOI | 10.1038/s41370-018-0038-9 |
Cover
Loading…
Abstract | A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM
2.5
. Spatiotemporal PM
2.5
concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM
2.5
levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM
2.5
exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies. |
---|---|
AbstractList | A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM2.5. Spatiotemporal PM2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies. A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM 2.5 . Spatiotemporal PM 2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM 2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM 2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies. A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM . Spatiotemporal PM concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies. A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM2.5. Spatiotemporal PM2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies.A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM2.5. Spatiotemporal PM2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies. |
Author | Britter, R. Kloog, I. Ratti, C. Koutrakis, P. Nyhan, M. M. |
Author_xml | – sequence: 1 givenname: M. M. surname: Nyhan fullname: Nyhan, M. M. email: nyhan@hsph.harvard.edu organization: Department of Environmental Health, Harvard School of Public Health, Harvard University, Senseable City Laboratory, Department of Urban Studies & Planning, Massachusetts Institute of Technology, Harvard School of Public Health, Harvard University – sequence: 2 givenname: I. surname: Kloog fullname: Kloog, I. organization: Geography and Environment Development Department, Ben-Gurion University of the Negev – sequence: 3 givenname: R. surname: Britter fullname: Britter, R. organization: Senseable City Laboratory, Department of Urban Studies & Planning, Massachusetts Institute of Technology – sequence: 4 givenname: C. surname: Ratti fullname: Ratti, C. organization: Senseable City Laboratory, Department of Urban Studies & Planning, Massachusetts Institute of Technology – sequence: 5 givenname: P. surname: Koutrakis fullname: Koutrakis, P. organization: Department of Environmental Health, Harvard School of Public Health, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29700403$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1L3zAYxYM4pv63D7CbEfBmN92SPE3TXoq4FxDGYIPdhbRNNZImNS_i_9svtc6B4K6ScH4nz-E5J-jQeacRekfJR0qg_RRrCoJUhLYVKe-qO0DHlPOuIk39-_DpDvQIncR4Q0hdi4a8RkesE-VB4BjFH1m5ZKa9cVd48Uu2KhnvsL5ffMxB4-SxMqFI1uYHJccVNW40d2bMyuLZ98aatMeLSkkHF4s46RD0iKfg503XeLku4fGoknqDXk3KRv328dyhX58vfp5_rS6_f_l2fnZZDSBYqqaxaUhLWTuscYHUinLgk-AdHVtGdMvZwClvoIdpqPUwAghKmrbrec8VCNihD9u_S_C3WcckZxMHba1y2ucoGQFWQ8dFV9DTZ-iNz8GVdJLRFhitoex6h94_Urmf9SiXYGYV9vLvOgtAN2AIPsagpyeEErlWJrfKZKlMrpXJdbR45hlMeighBWXsf51sc8YyxV3p8C_0y6Y_uqqqcQ |
CitedBy_id | crossref_primary_10_1080_24694452_2020_1756208 crossref_primary_10_1016_j_scitotenv_2021_146283 crossref_primary_10_1177_03611981211043813 crossref_primary_10_3389_fenvs_2022_785129 crossref_primary_10_1289_EHP7679 crossref_primary_10_1016_j_envint_2020_105786 crossref_primary_10_1016_j_uclim_2021_100972 crossref_primary_10_1109_ACCESS_2019_2958684 crossref_primary_10_1016_j_envres_2020_110519 crossref_primary_10_1093_jtm_taz019 crossref_primary_10_1016_j_compenvurbsys_2021_101682 crossref_primary_10_3390_atmos11020122 crossref_primary_10_1016_j_envres_2020_110423 crossref_primary_10_1016_j_lana_2023_100500 crossref_primary_10_1021_acs_est_3c05000 crossref_primary_10_1016_j_dcan_2021_08_003 crossref_primary_10_2139_ssrn_4198082 crossref_primary_10_3390_ijerph18042194 crossref_primary_10_1039_D3EA00051F crossref_primary_10_1016_j_scitotenv_2024_174759 crossref_primary_10_3389_fenvs_2023_1223160 crossref_primary_10_3390_ijgi10090599 crossref_primary_10_1016_j_compenvurbsys_2022_101823 crossref_primary_10_1371_journal_pone_0263649 crossref_primary_10_1038_s44284_024_00093_x crossref_primary_10_1016_j_comcom_2020_04_014 crossref_primary_10_1093_jrsssc_qlad090 crossref_primary_10_1186_s12940_022_00939_8 crossref_primary_10_1186_s12940_024_01111_0 crossref_primary_10_1145_3485125 crossref_primary_10_1016_j_atmosenv_2023_119820 crossref_primary_10_1016_j_envres_2020_110653 crossref_primary_10_1016_j_envpol_2019_07_034 crossref_primary_10_3390_toxics8030074 crossref_primary_10_1016_j_apr_2022_101421 crossref_primary_10_1080_23748834_2024_2376389 crossref_primary_10_1098_rsos_230408 crossref_primary_10_1016_j_envres_2021_111549 crossref_primary_10_1016_j_jval_2023_05_012 crossref_primary_10_3390_su12187440 crossref_primary_10_1542_peds_2023_062292E crossref_primary_10_1016_j_scs_2022_104346 crossref_primary_10_1007_s11869_023_01404_2 crossref_primary_10_2139_ssrn_4118255 crossref_primary_10_1016_j_jclepro_2019_118192 crossref_primary_10_1016_j_envres_2023_116242 crossref_primary_10_1016_j_uclim_2020_100687 crossref_primary_10_1021_acs_est_3c07926 crossref_primary_10_1016_j_healthplace_2022_102803 crossref_primary_10_3390_atmos11121284 crossref_primary_10_3390_ijerph191912614 |
Cites_doi | 10.1038/jes.2010.14 10.1016/j.scitotenv.2013.08.096 10.1038/jes.2014.78 10.1289/ehp.1104660 10.1038/nature06958 10.1186/1476-069X-11-40 10.1016/j.eiar.2008.10.001 10.1029/2007JD009641 10.1016/j.scitotenv.2014.11.022 10.1145/2505821.2505828 10.1038/sj.jea.7500188 10.1289/ehp.0900572 10.1289/ehp.0800108 10.1289/ehp.1206337 10.1021/acs.est.6b02385 10.1002/env.1014 10.1093/aje/kwh109 10.1016/j.atmosenv.2010.08.011 10.1097/EDE.0b013e3181cb41f7 10.1038/jes.2013.62 10.1097/00001648-199503000-00012 10.1016/j.eiar.2012.03.004 10.1016/j.atmosenv.2011.08.066 10.1080/10473289.2006.10464485 10.1021/es302673e 10.1056/NEJMsa0805646 10.1161/CIR.0b013e3181dbece1 10.1016/j.atmosenv.2011.03.064 10.1038/jes.2013.15 10.1289/isee.2011.00165 10.1016/j.trd.2010.03.007 10.1093/oxfordjournals.aje.a115761 10.1186/s12942-016-0042-z 10.1016/S0140-6736(02)11274-8 10.1021/acs.est.5b02765 10.1016/j.scitotenv.2011.03.017 10.1164/rccm.200503-443OC 10.1088/1751-8113/41/22/224015 10.1016/j.trc.2012.09.009 10.1289/ehp.5181 10.1016/j.envpol.2012.12.032 10.1021/acs.est.6b01817 10.1097/01.ede.0000181630.15826.7d |
ContentType | Journal Article |
Copyright | Nature America, Inc., part of Springer Nature 2018 Copyright Nature Publishing Group Mar 2019 |
Copyright_xml | – notice: Nature America, Inc., part of Springer Nature 2018 – notice: Copyright Nature Publishing Group Mar 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7ST 7T2 7U7 7X7 7XB 88E 88I 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M2P M7P M7S P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7X8 |
DOI | 10.1038/s41370-018-0038-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Environment Abstracts Health and Safety Science Abstracts (Full archive) Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection Health & Safety Science Abstracts ProQuest Public Health ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1559-064X |
EndPage | 247 |
ExternalDocumentID | 29700403 10_1038_s41370_018_0038_9 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- -Q- 0R~ 29K 2WC 36B 39C 3V. 4.4 406 53G 5GY 70F 7X7 7XC 88E 88I 8AO 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAYZH AAZLF ABAKF ABDBF ABJCF ABJNI ABUWG ABZZP ACAOD ACGFO ACGFS ACGOD ACIWK ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AEMSY AENEX AEUYN AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF ATCPS AXYYD AZQEC B0M BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 D-I DNIVK DPUIP DU5 DWQXO E3Z EAD EAP EBC EBD EBLON EBS EE. EIOEI EJD EMB EMK EMOBN EPL ESX F5P FDQFY FERAY FIGPU FIZPM FSGXE FYUFA GNUQQ HCIFZ HMCUK HZ~ IAO IEP IGS IHR IHW INH INR ITC IWAJR JSO JZLTJ KQ8 L6V M1P M2P M7P M7S NAO NQJWS O9- OVD PATMY PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT ROL SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TEORI TR2 TSG TUS UKHRP ~8M AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7ST 7T2 7U7 7XB 8FD 8FK ABRTQ C1K FR3 K9. LK8 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U SOI 7X8 |
ID | FETCH-LOGICAL-c372t-fd6608128c2970304a1535f7591d820e852c51563b3fc4ecd33710689b5b5a373 |
IEDL.DBID | BENPR |
ISSN | 1559-0631 1559-064X |
IngestDate | Thu Jul 10 20:42:47 EDT 2025 Fri Jul 25 09:08:16 EDT 2025 Wed Feb 19 02:30:30 EST 2025 Thu Apr 24 22:52:18 EDT 2025 Tue Jul 01 02:36:15 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Population exposure Mobility Cellular network data Air pollution PM PM2.5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-fd6608128c2970304a1535f7591d820e852c51563b3fc4ecd33710689b5b5a373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29700403 |
PQID | 2183214341 |
PQPubID | 29347 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2032439579 proquest_journals_2183214341 pubmed_primary_29700403 crossref_primary_10_1038_s41370_018_0038_9 crossref_citationtrail_10_1038_s41370_018_0038_9 springer_journals_10_1038_s41370_018_0038_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Tuxedo |
PublicationSubtitle | Official journal of the International Society of Exposure Science |
PublicationTitle | Journal of exposure science & environmental epidemiology |
PublicationTitleAbbrev | J Expo Sci Environ Epidemiol |
PublicationTitleAlternate | J Expo Sci Environ Epidemiol |
PublicationYear | 2019 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | WacholderSWhen measurement errors correlate with truth - surprising effects of nondifferential misclassificationEpidemiology19956157611:STN:280:DyaK2M3mtV2jsw%3D%3D10.1097/00001648-199503000-00012 USEPA (United States Environmental Protection Agency). Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model (APEX) Documentation: TRIM.Expo/APEX, Version 4; User Guide, 2012. GonzalezMHidalgoCBarabasiALUnderstanding individual human mobility patternsNature2008453779821:CAS:528:DC%2BD1cXmvVGmsLg%3D10.1038/nature06958 ArmstrongBGThe effects of measurement on relative risk regressionsAm J Epidemiol19901321176841:STN:280:DyaK3M%2Fot1OqsQ%3D%3D10.1093/oxfordjournals.aje.a115761 PopeCAIIIDockeryDWHealth effects of fine particulate air pollution: lines that connectJ Air Waste Manag200656709421:CAS:528:DC%2BD28Xmt1ygs7k%3D10.1080/10473289.2006.10464485 Lindström J, Szpiro AA, Sampson PD, Sheppard L, Oron A, Richards M et al. A flexible spatio-temporal model for air pollution: allowing for spatio-temporal covariates (January 19, 2011). UW Biostatistics Working Paper Series. Working Paper 370. 2010; http://www.bepress.com/uwbiostat/paper370 USEPA (United States Environmental Protection Agency). Air quality system data; United States Environmental Protection Agency Website. 2016; www.epa.gov. BaxterLKDionisioKLBurkeJSarnetSESarnetJAHodasNExposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendationsJ Expo Sci Environ Epidemiol20132365491:CAS:528:DC%2BC3sXhsFymsr7P10.1038/jes.2013.62 DewulfBNeutensTLefebvreWSeyneaveGVanpouckeCBeckxCDynamic assessment of exposure to air pollution using mobile phone dataInt J Health Geogr2016151410.1186/s12942-016-0042-z JiangSFioreGAYangYFerreiraJJrFrazzoliEGonzalezMCA review of urban computing for mobile phone traces: Current methods, challenges and opportunities2013Chicago, IL, USAProceedings of the ACM SIGKDD International Workshop on Urban Computing10.1145/2505821.2505828 BeckxCInt PanisLArentzeTJanssensDTorfsRBroekxSA dynamic activity-based population modelling approach to evaluate exposure to air pollution: methods and application to a Dutch urban areaEnviron Impact Asses2009291798510.1016/j.eiar.2008.10.001 HatzopoulouMMillerEJLinking an activity-based travel demand model with traffic emission and dispersion models: transport’s contribution to air pollution in TorontoTransp Res D- TR E2010153152510.1016/j.trd.2010.03.007 Burnett RT, Goldberg MS. Size-fractionated particulate mass and daily mortality in eight Canadian cities. Revised Analyses of Time-Series of Air Pollution and Health. Special Report, Health Effects Institute: Boston, 2003, pp 85–90. SmithJDMitsakouCKitwiroonNBarrattBMWaltonHATaylorJGLondon hybrid exposure model: improving human exposure estimates to NO2 and PM2.5 in an urban settingEnviron Sci Technol2016501176081:CAS:528:DC%2BC28Xhs1altrjF10.1021/acs.est.6b01817 PopeCAIIIEzzatiMDockeryDWFine-particulate air pollution and life expectancy in the United StatesN Engl J Med2009360376861:CAS:528:DC%2BD1MXhtVSltr8%3D10.1056/NEJMsa0805646 PuettRCHartJEYanoskyJDPaciorekCSchwartzJSuhHChronic fine and coarse particulate exposure, mortality and coronary heart disease in the Nurses’ Health StudyEnviron Health Persp2009117169770110.1289/ehp.0900572 HajatADiez-RouxAVAdarSDAuchinclossAHLovasiGSO’NeillMSAir pollution and individual and neighborhood socioeconomic status: evidence from the Multi-Ethnic Study of AtherosclerosisEnviron Health Perspect201312113253310.1289/ehp.1206337 BrunekreefBHolgateSTAir pollution and healthLancet20023601233421:CAS:528:DC%2BD38XotVWgsbk%3D10.1016/S0140-6736(02)11274-8 KloogIMellySJRidgwayWLCoullBASchwartzJUsing new satellite based exposure methods to study the association between pregnancy PM2.5 exposure, premature birth and birth weight in MassachusettsEnviron Health20121110.1186/1476-069X-11-40 DhondtSBeckxCDegraeuweBLefebvreWKochanBBellemansTHealth impact assessment of air pollution using a dynamic exposure profile: implications for exposure and health impact estimatesEnviron Impact Asses201236425110.1016/j.eiar.2012.03.004 LyapustinAWangYFreyRAn automatic cloud mask algorithm based on time series of MODIS measurementsJ Geophys Res Atmos2008113D1620710.1029/2007JD009641 CandiaJGonzalezMGWangPSchoenharlTMadeyGBarabasiALUncovering individual and collective human dynamics from mobile phone recordsJ Phys A-Math Theor20084122401510.1088/1751-8113/41/22/224015 SettonEMarshallJDBrauerMLundquistKRHystadPKellerPThe impact of daily mobility on exposure to traffic-related air pollution health effect estimatesJ Expo Sci Environ Epidemiol20112142810.1038/jes.2010.14 NyhanMargueriteGrauwinSebastianBritterRexMisstearBruceMcNabolaAonghusLadenFrancineBarrettSteven R. H.RattiCarlo“Exposure Track”—The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air PollutionEnvironmental Science & Technology20165017967196811:CAS:528:DC%2BC28XhtlaktbvF10.1021/acs.est.6b02385 AveryCLMillsKTWilliamsRMcGrawKAPooleCSmithRLEstimating error in using ambient PM2.5 concentrations as proxies for personal exposures: a reviewEpidemiology2010212152310.1097/EDE.0b013e3181cb41f7 De NazelleASetoEDonaire-GonzalezDMendezMMatamalaJNieuwenhuijsenMJJerrettMImproving estimates of air pollution exposure through ubiquitous sensing technologiesEnviron Pollut201317692910.1016/j.envpol.2012.12.032 BrookRDRajagopalanSPopeCABrookJRBhatnagarADiez-RouzAVParticulate matter air pollution and cardiovascular disease, an update to the scientific statement from the American Heart AssociationCirculation20101212331781:CAS:528:DC%2BC3cXmslGmu78%3D10.1161/CIR.0b013e3181dbece1 LepeuleJLadenFDockeryDWSchwartzJChronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities Study from 1974 to 2009Environ Health Persp20121209657010.1289/ehp.1104660 NyhanMMisstearBDMcNabolaAComparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengersSci Total Environ2014468-469821311:CAS:528:DC%2BC3sXhvFOjt7%2FP10.1016/j.scitotenv.2013.08.096 LiaoDDuanYWhitselEAZhengZJHeissGChinchilliVMAssociation of higher levels of ambient criteria pollutants with impaired cardiac autonomic control: a population-based studyAm J Epidemiol20031597687710.1093/aje/kwh109 DonsEInt PanisLVan PoppelMTheunisJWillemsHTorfsRImpact of time–activity patterns on personal exposure to black carbonAtmos Environ20114535946021:CAS:528:DC%2BC3MXmtlens78%3D10.1016/j.atmosenv.2011.03.064 KloogIKoutrakisPCoullBALeeHJSchwartzJAssessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurementsAtmos Environ2011456267751:CAS:528:DC%2BC3MXhtFOmur7F10.1016/j.atmosenv.2011.08.066 LyapustinAWangYLaszloIKahnRKorkinSRemerLMultiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithmJ Geophys Res Atmos2011116D03211 JerrettMBurnettRTMaRPopeCAKrewskiDNewboldKBSpatial analysis of air pollution and mortality in Los AngelesEpidemiology2005167273610.1097/01.ede.0000181630.15826.7d GlasgowMLRudraCBYooEDemirbasMMerrimanJNayakPUsing smartphones to collect time-activity data for long-term personal-level air pollution exposure assessmentJ Expo Sci Environ Epidemiol2014263566410.1038/jes.2014.78 SzpiroAASampsonPDSheppardLLumleyTAdarSDKaufmanJDPredicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependenciesEnvironmetrics201021606311:CAS:528:DC%2BC3cXht12rurbF LadenFSchwartzJSpeizerFEDockeryDWReduction in fine particulate air pollution and mortality extended follow-up of the Harvard six cities studyAm J Resp Crit Care2006173667721:CAS:528:DC%2BD28XmslSrurk%3D10.1164/rccm.200503-443OC BreenMSLongTCSchultzBDWilliamsRWRichard-BryantJBreenMAir pollution exposure model for individuals (EMI) in health studies: evaluation for ambient PM2.5 in Central North AmericaEnviron Sci Technol20154914184941:CAS:528:DC%2BC2MXhslCqsbnF10.1021/acs.est.5b02765 DominiciFMcDermottAZegerSLSametJMNational maps of the effects of particulate matter on mortality: exploring geographical variationEnviron Health Persp2003111394310.1289/ehp.5181 CalabreseFDiaoMiDi LorenzoGFerreiraJJrRattiCUnderstanding individual mobility patterns from urban sensing data: A mobile phone trace exampleTransp Res C-EMER2013263011310.1016/j.trc.2012.09.009 LyapustinAMartonchikJWangYLaszloIKorkinSMultiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tablesJ Geophys Res Atmos2011116D03210 ZanobettiASchwartzJThe effects of fine and coarse particulate air pollution on mortality: a national analysisEnviron Health Persp200911789890310.1289/ehp.0800108 OzkaynakHBaxterLKDionisioKLBurkeJAir pollution exposure prediction approaches used in air pollution epidemiology studiesJ Expo Sci Environ Epidemiol201323566721:CAS:528:DC%2BC3sXhs1yitLjK10.1038/jes.2013.15 BurkeJMZufallMÖzkaynakHA population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PAJ Expo Sci Environ Epidemiol200111470891:CAS:528:DC%2BD38XltlGktw%3D%3D10.1038/sj.jea.7500188 KloogINordioFCoullBASchwartzJIncorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic statesEnviron Sci Technol20124611913211:CAS:528:DC%2BC38XhsVWhurzI10.1021/es302673e GurjarBRSharmaJAAgarwalAGuptaPNagpureASLelieveldJHuman health risks in megacities due to air pollutionAtmos Environ2010444606131:CAS:528:DC%2BC3cXht1SntbvO10.1016/j.atmosenv.2010.08.011 SuJGJerrettMMengYPickettMRitzBIntegrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessmentSci Total Environ2015506-507518261:CAS:528:DC%2BC2cXhvFars7fI10.1016/j.scitotenv.2014.11.022 WHO (World Health Organization). Over 7 million premature deaths annually linked to air pollution. 2016; http://www.who.int. MaYChenRPanGXuXSongWFine particulate air pollution and 38_CR1 F Calabrese (38_CR24) 2013; 26 38_CR42 F Dominici (38_CR11) 2003; 111 I Kloog (38_CR46) 2011; 45 M Jerrett (38_CR12) 2005; 16 CL Avery (38_CR15) 2010; 21 CA Pope III (38_CR6) 2009; 360 M Hatzopoulou (38_CR32) 2010; 15 S Wacholder (38_CR49) 1995; 6 RD Brook (38_CR9) 2010; 121 M Nyhan (38_CR8) 2014; 468-469 E Setton (38_CR26) 2011; 21 J Lepeule (38_CR17) 2012; 120 MS Breen (38_CR29) 2015; 49 C Beckx (38_CR31) 2009; 29 I Kloog (38_CR47) 2012; 46 38_CR10 I Kloog (38_CR20) 2012; 11 F Laden (38_CR5) 2006; 173 S Jiang (38_CR25) 2013 D Liao (38_CR3) 2003; 159 CA Pope III (38_CR4) 2006; 56 A Nazelle De (38_CR39) 2013; 176 J Candia (38_CR23) 2008; 41 38_CR18 E Dons (38_CR33) 2011; 45 Y Ma (38_CR16) 2011; 409 A Lyapustin (38_CR45) 2008; 113 ML Glasgow (38_CR40) 2014; 26 S Dhondt (38_CR34) 2012; 36 JM Burke (38_CR30) 2001; 11 BR Gurjar (38_CR7) 2010; 44 AA Szpiro (38_CR19) 2010; 21 Marguerite Nyhan (38_CR37) 2016; 50 H Ozkaynak (38_CR27) 2013; 23 B Brunekreef (38_CR2) 2002; 360 LK Baxter (38_CR28) 2013; 23 B Dewulf (38_CR38) 2016; 15 A Zanobetti (38_CR14) 2009; 117 RC Puett (38_CR13) 2009; 117 A Lyapustin (38_CR44) 2011; 116 JD Smith (38_CR36) 2016; 50 38_CR35 JG Su (38_CR41) 2015; 506-507 BG Armstrong (38_CR48) 1990; 132 M Gonzalez (38_CR22) 2008; 453 A Hajat (38_CR21) 2013; 121 A Lyapustin (38_CR43) 2011; 116 |
References_xml | – reference: DominiciFMcDermottAZegerSLSametJMNational maps of the effects of particulate matter on mortality: exploring geographical variationEnviron Health Persp2003111394310.1289/ehp.5181 – reference: ArmstrongBGThe effects of measurement on relative risk regressionsAm J Epidemiol19901321176841:STN:280:DyaK3M%2Fot1OqsQ%3D%3D10.1093/oxfordjournals.aje.a115761 – reference: GlasgowMLRudraCBYooEDemirbasMMerrimanJNayakPUsing smartphones to collect time-activity data for long-term personal-level air pollution exposure assessmentJ Expo Sci Environ Epidemiol2014263566410.1038/jes.2014.78 – reference: NyhanMMisstearBDMcNabolaAComparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengersSci Total Environ2014468-469821311:CAS:528:DC%2BC3sXhvFOjt7%2FP10.1016/j.scitotenv.2013.08.096 – reference: CalabreseFDiaoMiDi LorenzoGFerreiraJJrRattiCUnderstanding individual mobility patterns from urban sensing data: A mobile phone trace exampleTransp Res C-EMER2013263011310.1016/j.trc.2012.09.009 – reference: Lindström J, Szpiro AA, Sampson PD, Sheppard L, Oron A, Richards M et al. A flexible spatio-temporal model for air pollution: allowing for spatio-temporal covariates (January 19, 2011). UW Biostatistics Working Paper Series. Working Paper 370. 2010; http://www.bepress.com/uwbiostat/paper370 – reference: USEPA (United States Environmental Protection Agency). Air quality system data; United States Environmental Protection Agency Website. 2016; www.epa.gov. – reference: BrunekreefBHolgateSTAir pollution and healthLancet20023601233421:CAS:528:DC%2BD38XotVWgsbk%3D10.1016/S0140-6736(02)11274-8 – reference: LiaoDDuanYWhitselEAZhengZJHeissGChinchilliVMAssociation of higher levels of ambient criteria pollutants with impaired cardiac autonomic control: a population-based studyAm J Epidemiol20031597687710.1093/aje/kwh109 – reference: HajatADiez-RouxAVAdarSDAuchinclossAHLovasiGSO’NeillMSAir pollution and individual and neighborhood socioeconomic status: evidence from the Multi-Ethnic Study of AtherosclerosisEnviron Health Perspect201312113253310.1289/ehp.1206337 – reference: SmithJDMitsakouCKitwiroonNBarrattBMWaltonHATaylorJGLondon hybrid exposure model: improving human exposure estimates to NO2 and PM2.5 in an urban settingEnviron Sci Technol2016501176081:CAS:528:DC%2BC28Xhs1altrjF10.1021/acs.est.6b01817 – reference: WacholderSWhen measurement errors correlate with truth - surprising effects of nondifferential misclassificationEpidemiology19956157611:STN:280:DyaK2M3mtV2jsw%3D%3D10.1097/00001648-199503000-00012 – reference: DhondtSBeckxCDegraeuweBLefebvreWKochanBBellemansTHealth impact assessment of air pollution using a dynamic exposure profile: implications for exposure and health impact estimatesEnviron Impact Asses201236425110.1016/j.eiar.2012.03.004 – reference: HatzopoulouMMillerEJLinking an activity-based travel demand model with traffic emission and dispersion models: transport’s contribution to air pollution in TorontoTransp Res D- TR E2010153152510.1016/j.trd.2010.03.007 – reference: PuettRCHartJEYanoskyJDPaciorekCSchwartzJSuhHChronic fine and coarse particulate exposure, mortality and coronary heart disease in the Nurses’ Health StudyEnviron Health Persp2009117169770110.1289/ehp.0900572 – reference: JerrettMBurnettRTMaRPopeCAKrewskiDNewboldKBSpatial analysis of air pollution and mortality in Los AngelesEpidemiology2005167273610.1097/01.ede.0000181630.15826.7d – reference: KloogIMellySJRidgwayWLCoullBASchwartzJUsing new satellite based exposure methods to study the association between pregnancy PM2.5 exposure, premature birth and birth weight in MassachusettsEnviron Health20121110.1186/1476-069X-11-40 – reference: CandiaJGonzalezMGWangPSchoenharlTMadeyGBarabasiALUncovering individual and collective human dynamics from mobile phone recordsJ Phys A-Math Theor20084122401510.1088/1751-8113/41/22/224015 – reference: SettonEMarshallJDBrauerMLundquistKRHystadPKellerPThe impact of daily mobility on exposure to traffic-related air pollution health effect estimatesJ Expo Sci Environ Epidemiol20112142810.1038/jes.2010.14 – reference: LepeuleJLadenFDockeryDWSchwartzJChronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities Study from 1974 to 2009Environ Health Persp20121209657010.1289/ehp.1104660 – reference: NyhanMargueriteGrauwinSebastianBritterRexMisstearBruceMcNabolaAonghusLadenFrancineBarrettSteven R. H.RattiCarlo“Exposure Track”—The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air PollutionEnvironmental Science & Technology20165017967196811:CAS:528:DC%2BC28XhtlaktbvF10.1021/acs.est.6b02385 – reference: DewulfBNeutensTLefebvreWSeyneaveGVanpouckeCBeckxCDynamic assessment of exposure to air pollution using mobile phone dataInt J Health Geogr2016151410.1186/s12942-016-0042-z – reference: SzpiroAASampsonPDSheppardLLumleyTAdarSDKaufmanJDPredicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependenciesEnvironmetrics201021606311:CAS:528:DC%2BC3cXht12rurbF – reference: LyapustinAWangYFreyRAn automatic cloud mask algorithm based on time series of MODIS measurementsJ Geophys Res Atmos2008113D1620710.1029/2007JD009641 – reference: De NazelleASetoEDonaire-GonzalezDMendezMMatamalaJNieuwenhuijsenMJJerrettMImproving estimates of air pollution exposure through ubiquitous sensing technologiesEnviron Pollut201317692910.1016/j.envpol.2012.12.032 – reference: BrookRDRajagopalanSPopeCABrookJRBhatnagarADiez-RouzAVParticulate matter air pollution and cardiovascular disease, an update to the scientific statement from the American Heart AssociationCirculation20101212331781:CAS:528:DC%2BC3cXmslGmu78%3D10.1161/CIR.0b013e3181dbece1 – reference: BreenMSLongTCSchultzBDWilliamsRWRichard-BryantJBreenMAir pollution exposure model for individuals (EMI) in health studies: evaluation for ambient PM2.5 in Central North AmericaEnviron Sci Technol20154914184941:CAS:528:DC%2BC2MXhslCqsbnF10.1021/acs.est.5b02765 – reference: PopeCAIIIDockeryDWHealth effects of fine particulate air pollution: lines that connectJ Air Waste Manag200656709421:CAS:528:DC%2BD28Xmt1ygs7k%3D10.1080/10473289.2006.10464485 – reference: KloogIKoutrakisPCoullBALeeHJSchwartzJAssessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurementsAtmos Environ2011456267751:CAS:528:DC%2BC3MXhtFOmur7F10.1016/j.atmosenv.2011.08.066 – reference: AveryCLMillsKTWilliamsRMcGrawKAPooleCSmithRLEstimating error in using ambient PM2.5 concentrations as proxies for personal exposures: a reviewEpidemiology2010212152310.1097/EDE.0b013e3181cb41f7 – reference: WHO (World Health Organization). Over 7 million premature deaths annually linked to air pollution. 2016; http://www.who.int. – reference: MaYChenRPanGXuXSongWFine particulate air pollution and daily mortality in Shenyang, ChinaSci Total Environ2011409247371:CAS:528:DC%2BC3MXlvVChsL4%3D10.1016/j.scitotenv.2011.03.017 – reference: ZanobettiASchwartzJThe effects of fine and coarse particulate air pollution on mortality: a national analysisEnviron Health Persp200911789890310.1289/ehp.0800108 – reference: USEPA (United States Environmental Protection Agency). Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model (APEX) Documentation: TRIM.Expo/APEX, Version 4; User Guide, 2012. – reference: Burnett RT, Goldberg MS. Size-fractionated particulate mass and daily mortality in eight Canadian cities. Revised Analyses of Time-Series of Air Pollution and Health. Special Report, Health Effects Institute: Boston, 2003, pp 85–90. – reference: GonzalezMHidalgoCBarabasiALUnderstanding individual human mobility patternsNature2008453779821:CAS:528:DC%2BD1cXmvVGmsLg%3D10.1038/nature06958 – reference: JiangSFioreGAYangYFerreiraJJrFrazzoliEGonzalezMCA review of urban computing for mobile phone traces: Current methods, challenges and opportunities2013Chicago, IL, USAProceedings of the ACM SIGKDD International Workshop on Urban Computing10.1145/2505821.2505828 – reference: DonsEInt PanisLVan PoppelMTheunisJWillemsHTorfsRImpact of time–activity patterns on personal exposure to black carbonAtmos Environ20114535946021:CAS:528:DC%2BC3MXmtlens78%3D10.1016/j.atmosenv.2011.03.064 – reference: PopeCAIIIEzzatiMDockeryDWFine-particulate air pollution and life expectancy in the United StatesN Engl J Med2009360376861:CAS:528:DC%2BD1MXhtVSltr8%3D10.1056/NEJMsa0805646 – reference: KloogINordioFCoullBASchwartzJIncorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic statesEnviron Sci Technol20124611913211:CAS:528:DC%2BC38XhsVWhurzI10.1021/es302673e – reference: BaxterLKDionisioKLBurkeJSarnetSESarnetJAHodasNExposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendationsJ Expo Sci Environ Epidemiol20132365491:CAS:528:DC%2BC3sXhsFymsr7P10.1038/jes.2013.62 – reference: SuJGJerrettMMengYPickettMRitzBIntegrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessmentSci Total Environ2015506-507518261:CAS:528:DC%2BC2cXhvFars7fI10.1016/j.scitotenv.2014.11.022 – reference: BurkeJMZufallMÖzkaynakHA population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PAJ Expo Sci Environ Epidemiol200111470891:CAS:528:DC%2BD38XltlGktw%3D%3D10.1038/sj.jea.7500188 – reference: LyapustinAWangYLaszloIKahnRKorkinSRemerLMultiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithmJ Geophys Res Atmos2011116D03211 – reference: LadenFSchwartzJSpeizerFEDockeryDWReduction in fine particulate air pollution and mortality extended follow-up of the Harvard six cities studyAm J Resp Crit Care2006173667721:CAS:528:DC%2BD28XmslSrurk%3D10.1164/rccm.200503-443OC – reference: GurjarBRSharmaJAAgarwalAGuptaPNagpureASLelieveldJHuman health risks in megacities due to air pollutionAtmos Environ2010444606131:CAS:528:DC%2BC3cXht1SntbvO10.1016/j.atmosenv.2010.08.011 – reference: BeckxCInt PanisLArentzeTJanssensDTorfsRBroekxSA dynamic activity-based population modelling approach to evaluate exposure to air pollution: methods and application to a Dutch urban areaEnviron Impact Asses2009291798510.1016/j.eiar.2008.10.001 – reference: OzkaynakHBaxterLKDionisioKLBurkeJAir pollution exposure prediction approaches used in air pollution epidemiology studiesJ Expo Sci Environ Epidemiol201323566721:CAS:528:DC%2BC3sXhs1yitLjK10.1038/jes.2013.15 – reference: LyapustinAMartonchikJWangYLaszloIKorkinSMultiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tablesJ Geophys Res Atmos2011116D03210 – volume: 21 start-page: 42 year: 2011 ident: 38_CR26 publication-title: J Expo Sci Environ Epidemiol doi: 10.1038/jes.2010.14 – volume: 468-469 start-page: 821 year: 2014 ident: 38_CR8 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2013.08.096 – volume: 26 start-page: 356 year: 2014 ident: 38_CR40 publication-title: J Expo Sci Environ Epidemiol doi: 10.1038/jes.2014.78 – ident: 38_CR10 – volume: 120 start-page: 965 year: 2012 ident: 38_CR17 publication-title: Environ Health Persp doi: 10.1289/ehp.1104660 – volume: 453 start-page: 779 year: 2008 ident: 38_CR22 publication-title: Nature doi: 10.1038/nature06958 – volume: 11 year: 2012 ident: 38_CR20 publication-title: Environ Health doi: 10.1186/1476-069X-11-40 – volume: 29 start-page: 179 year: 2009 ident: 38_CR31 publication-title: Environ Impact Asses doi: 10.1016/j.eiar.2008.10.001 – volume: 116 start-page: D03210 year: 2011 ident: 38_CR43 publication-title: J Geophys Res Atmos – ident: 38_CR1 – volume: 113 start-page: D16207 year: 2008 ident: 38_CR45 publication-title: J Geophys Res Atmos doi: 10.1029/2007JD009641 – volume: 506-507 start-page: 518 year: 2015 ident: 38_CR41 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2014.11.022 – volume-title: A review of urban computing for mobile phone traces: Current methods, challenges and opportunities year: 2013 ident: 38_CR25 doi: 10.1145/2505821.2505828 – volume: 11 start-page: 470 year: 2001 ident: 38_CR30 publication-title: J Expo Sci Environ Epidemiol doi: 10.1038/sj.jea.7500188 – volume: 117 start-page: 1697 year: 2009 ident: 38_CR13 publication-title: Environ Health Persp doi: 10.1289/ehp.0900572 – volume: 117 start-page: 898 year: 2009 ident: 38_CR14 publication-title: Environ Health Persp doi: 10.1289/ehp.0800108 – volume: 121 start-page: 1325 year: 2013 ident: 38_CR21 publication-title: Environ Health Perspect doi: 10.1289/ehp.1206337 – volume: 50 start-page: 9671 issue: 17 year: 2016 ident: 38_CR37 publication-title: Environmental Science & Technology doi: 10.1021/acs.est.6b02385 – volume: 21 start-page: 606 year: 2010 ident: 38_CR19 publication-title: Environmetrics doi: 10.1002/env.1014 – volume: 159 start-page: 768 year: 2003 ident: 38_CR3 publication-title: Am J Epidemiol doi: 10.1093/aje/kwh109 – volume: 44 start-page: 4606 year: 2010 ident: 38_CR7 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2010.08.011 – volume: 21 start-page: 215 year: 2010 ident: 38_CR15 publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181cb41f7 – volume: 23 start-page: 654 year: 2013 ident: 38_CR28 publication-title: J Expo Sci Environ Epidemiol doi: 10.1038/jes.2013.62 – volume: 6 start-page: 157 year: 1995 ident: 38_CR49 publication-title: Epidemiology doi: 10.1097/00001648-199503000-00012 – volume: 36 start-page: 42 year: 2012 ident: 38_CR34 publication-title: Environ Impact Asses doi: 10.1016/j.eiar.2012.03.004 – volume: 45 start-page: 6267 year: 2011 ident: 38_CR46 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2011.08.066 – volume: 56 start-page: 709 year: 2006 ident: 38_CR4 publication-title: J Air Waste Manag doi: 10.1080/10473289.2006.10464485 – volume: 46 start-page: 11913 year: 2012 ident: 38_CR47 publication-title: Environ Sci Technol doi: 10.1021/es302673e – volume: 360 start-page: 376 year: 2009 ident: 38_CR6 publication-title: N Engl J Med doi: 10.1056/NEJMsa0805646 – volume: 116 start-page: D03211 year: 2011 ident: 38_CR44 publication-title: J Geophys Res Atmos – volume: 121 start-page: 2331 year: 2010 ident: 38_CR9 publication-title: Circulation doi: 10.1161/CIR.0b013e3181dbece1 – ident: 38_CR35 – volume: 45 start-page: 3594 year: 2011 ident: 38_CR33 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2011.03.064 – volume: 23 start-page: 566 year: 2013 ident: 38_CR27 publication-title: J Expo Sci Environ Epidemiol doi: 10.1038/jes.2013.15 – ident: 38_CR18 doi: 10.1289/isee.2011.00165 – volume: 15 start-page: 315 year: 2010 ident: 38_CR32 publication-title: Transp Res D- TR E doi: 10.1016/j.trd.2010.03.007 – volume: 132 start-page: 1176 year: 1990 ident: 38_CR48 publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a115761 – volume: 15 start-page: 14 year: 2016 ident: 38_CR38 publication-title: Int J Health Geogr doi: 10.1186/s12942-016-0042-z – volume: 360 start-page: 1233 year: 2002 ident: 38_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(02)11274-8 – volume: 49 start-page: 14184 year: 2015 ident: 38_CR29 publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b02765 – volume: 409 start-page: 2473 year: 2011 ident: 38_CR16 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2011.03.017 – volume: 173 start-page: 667 year: 2006 ident: 38_CR5 publication-title: Am J Resp Crit Care doi: 10.1164/rccm.200503-443OC – volume: 41 start-page: 224015 year: 2008 ident: 38_CR23 publication-title: J Phys A-Math Theor doi: 10.1088/1751-8113/41/22/224015 – volume: 26 start-page: 301 year: 2013 ident: 38_CR24 publication-title: Transp Res C-EMER doi: 10.1016/j.trc.2012.09.009 – volume: 111 start-page: 39 year: 2003 ident: 38_CR11 publication-title: Environ Health Persp doi: 10.1289/ehp.5181 – volume: 176 start-page: 92 year: 2013 ident: 38_CR39 publication-title: Environ Pollut doi: 10.1016/j.envpol.2012.12.032 – volume: 50 start-page: 11760 year: 2016 ident: 38_CR36 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b01817 – volume: 16 start-page: 727 year: 2005 ident: 38_CR12 publication-title: Epidemiology doi: 10.1097/01.ede.0000181630.15826.7d – ident: 38_CR42 |
SSID | ssj0044760 |
Score | 2.4632623 |
Snippet | A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 238 |
SubjectTerms | Aerosols Air Pollutants - analysis Air pollution Air Pollution - analysis Cell Phone Cell phones Cellular communication Cellular telephones Environmental Exposure - analysis Environmental Monitoring - methods Epidemiology Exposure Female Human populations Humans Land pollution Land use Male Medicine Medicine & Public Health Mobile communication systems Mobility Optical analysis Particulate matter Particulate Matter - analysis Populations Prospective Studies Regression models |
Title | Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data |
URI | https://link.springer.com/article/10.1038/s41370-018-0038-9 https://www.ncbi.nlm.nih.gov/pubmed/29700403 https://www.proquest.com/docview/2183214341 https://www.proquest.com/docview/2032439579 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEB68vRdBxN9WzyOCT0q4tkna5En0uPUQPFQ82LeSJulxcG7rdhf0v3emaXvI4b30JWkTMsnM15lvMgBvnA2FLrTjxumUy7IpeV0rz32ToblIfe4a-lH8clacnsvPK7UaHW79SKucdOKgqH3ryEd-RKY8R-Mus_fdL05Voyi6OpbQ2IN9VMFaLWD_48nZ1--TLpayjHnCiJs5GuNsimsKfdSj-qaiK5nmFB7j5l_LdANu3giVDhZo-QDuj9CRfYiyfgh3wvoR3It-NxbTiR5D_21nif9D2Uusm6tzsfC7a8kZyLYts5cbbLqKe44R8_2CXc6JWexnOxBm_7BuuHtz3TNibG02wTNKRontgRGpPTBimD6B8-XJj-NTPhZW4E6U-ZY3vigQCuTa5YZOvLSo91RTKpN5RARBq9whzilELRong_NCIBAptKlVrawoxVNYrHGM58Bs7pyxJkgSrlOulog_bNCpEbXXTZpAOi1q5cZbx6n4xVU1RL-FrqIcKpQD3VOqK5PA2_mVLl65cVvng0lS1Xj6-up6ryTwem7Gc0PBELsO7Q77pAglhyBlAs-ihOfRaFVQuYkE3k0iv_74f6fy4vapvIS7CLZM5K8dwGK72YVXCGi29SHslasSn_o4o-fy0-G4j_8Cddr0kw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAJIZ4lpYCR4AKymthOYh8QQsCypQ8JqZV6C4ntoEplk252Bf1T_EZm4k0qVNFbz3Zsy_P4Jp4XwCtb-kxn2nJjdcxVXue8qlLHXZ0gXMRO2Jp-FPcPsumR-nqcHq_BnyEXhsIqB53YK2rXWHoj3yYoFwjuKnnfnnHqGkXe1aGFRmCLXX_-C3_Zunc7n5C-r4WYfD78OOWrrgLcylwseO2yDHFQaCsMsbsqUejTOk9N4hAOvU6FRZDPZCVrq7x1UiIKZ9pUaZWWMpe47g24qaQ0VKtfT74Mml-pPGQlo5XOEfqTwYsq9XaHYEEtXhLNyRnHzb84eMm4veSY7fFucg_urgxV9iFw1n1Y87MHcCe88rGQvPQQum_LkqKNKFeKtWMvMOZ_tw09PbJFw8qTOQ6dBg5nFGf_g52MaWDsZ9OH556ztq_0OesYxYfN594xSn0J455RCL1nFM_6CI6u5cIfw_oM93gCrBTWmtJ4RaxkU1sptHZKr2MjK6frOIJ4uNTCrmqcU6uN06L3tUtdBDoUSAeqiqoLE8Gb8ZM2FPi4avLWQKliJetdccGZEbwch1FKyfVSznyzxDkxGq69SzSCjUDhcTe6FVSlMoK3A8kvFv_vUTavPsoLuDU93N8r9nYOdp_CbTTzTIic24L1xXzpn6Eptaie9_zL4Pt1C8xfPYsqrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYSQEOKbQAEjwQVkbRI7iX1ACGhXLYVVQVTqLSS2gyqVTdjsCvrX-HXMxEkqVNFbz3ZsyzP2m3jezAA8N4VLVaoM10aFXGZVxssysdxWEcJFaGNT0Y_ip3m6eyg_HCVHG_BniIUhWuVwJ3YXta0NvZFPCcpjBHcZTaueFnGwPXvT_ORUQYo8rUM5Da8i--70F_6-ta_3tlHWL-J4tvP1_S7vKwxwI7J4xSubpoiJsTKxJtWXBV4ASZUlOrIIjU4lsUHAT0UpKiOdsUIgIqdKl0mZFCITOO4V2MwQFdUENt_tzA--DDggZeZjlNFm52gIRINPVahpi9BBBV8ixck1x_W_qHjO1D3npu3Qb3YTbvRmK3vr9ewWbLjFbbju3_yYD2W6A-3ndUHcI4qcYs1YGYy5301ND5FsVbPieIlNJ17fGbHuv7PjMSiM_ag7su4pa7q8n4uWEVtsuXSWUSCMb3eMCPWOEbv1Lhxeypbfg8kC53gArIiN0YV2khTLJKaUaPsUToValFZVYQDhsKm56TOeU-GNk7zzvAuVeznkKAfKkapyHcDL8ZPGp_u4qPPWIKm8P_ltfqanATwbm_HMkiOmWLh6jX1CNGM7B2kA972Ex9loV_BiFQG8GkR-Nvh_l_Lw4qU8hat4WPKPe_P9R3ANbT7taXRbMFkt1-4x2lWr8kmvwAy-XfaZ-QuMTjBJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+population+exposure+to+air+pollution+using+individual+mobility+patterns+inferred+from+mobile+phone+data&rft.jtitle=Journal+of+exposure+science+%26+environmental+epidemiology&rft.au=Nyhan%2C+M+M&rft.au=Kloog%2C+I&rft.au=Britter%2C+R&rft.au=Ratti%2C+C&rft.date=2019-03-01&rft.eissn=1559-064X&rft.volume=29&rft.issue=2&rft.spage=238&rft_id=info:doi/10.1038%2Fs41370-018-0038-9&rft_id=info%3Apmid%2F29700403&rft.externalDocID=29700403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-0631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-0631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-0631&client=summon |