Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data

A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through i...

Full description

Saved in:
Bibliographic Details
Published inJournal of exposure science & environmental epidemiology Vol. 29; no. 2; pp. 238 - 247
Main Authors Nyhan, M. M., Kloog, I., Britter, R., Ratti, C., Koutrakis, P.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.03.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1559-0631
1559-064X
1559-064X
DOI10.1038/s41370-018-0038-9

Cover

Loading…
Abstract A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM 2.5 . Spatiotemporal PM 2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM 2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM 2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies.
AbstractList A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM2.5. Spatiotemporal PM2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies.
A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM 2.5 . Spatiotemporal PM 2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM 2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM 2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies.
A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM . Spatiotemporal PM concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies.
A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM2.5. Spatiotemporal PM2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies.A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based mobility patterns. Cellular network data has become an essential tool for understanding the movements of human populations. As such, through inferring the daily home and work locations of 407,435 mobile phone users whose positions are determined, we assess exposure to PM2.5. Spatiotemporal PM2.5 concentrations are predicted using an Aerosol Optical Depth- and Land Use Regression-combined model. Air pollution exposures of subjects are assigned considering modeled PM2.5 levels at both their home and work locations. These exposures are then compared to residence-only exposure metric, which does not consider daily mobility. In our study, we demonstrate that individual air pollution exposures can be quantified using mobile device data, for populations of unprecedented size. In examining mean annual PM2.5 exposures determined, bias for the residence-based exposures was 0.91, relative to the exposure metric considering the work location. Thus, we find that ignoring daily mobility potentially contributes to misclassification in health effect estimates. Our framework for understanding population exposure to environmental pollution could play a key role in prospective environmental epidemiological studies.
Author Britter, R.
Kloog, I.
Ratti, C.
Koutrakis, P.
Nyhan, M. M.
Author_xml – sequence: 1
  givenname: M. M.
  surname: Nyhan
  fullname: Nyhan, M. M.
  email: nyhan@hsph.harvard.edu
  organization: Department of Environmental Health, Harvard School of Public Health, Harvard University, Senseable City Laboratory, Department of Urban Studies & Planning, Massachusetts Institute of Technology, Harvard School of Public Health, Harvard University
– sequence: 2
  givenname: I.
  surname: Kloog
  fullname: Kloog, I.
  organization: Geography and Environment Development Department, Ben-Gurion University of the Negev
– sequence: 3
  givenname: R.
  surname: Britter
  fullname: Britter, R.
  organization: Senseable City Laboratory, Department of Urban Studies & Planning, Massachusetts Institute of Technology
– sequence: 4
  givenname: C.
  surname: Ratti
  fullname: Ratti, C.
  organization: Senseable City Laboratory, Department of Urban Studies & Planning, Massachusetts Institute of Technology
– sequence: 5
  givenname: P.
  surname: Koutrakis
  fullname: Koutrakis, P.
  organization: Department of Environmental Health, Harvard School of Public Health, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29700403$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1L3zAYxYM4pv63D7CbEfBmN92SPE3TXoq4FxDGYIPdhbRNNZImNS_i_9svtc6B4K6ScH4nz-E5J-jQeacRekfJR0qg_RRrCoJUhLYVKe-qO0DHlPOuIk39-_DpDvQIncR4Q0hdi4a8RkesE-VB4BjFH1m5ZKa9cVd48Uu2KhnvsL5ffMxB4-SxMqFI1uYHJccVNW40d2bMyuLZ98aatMeLSkkHF4s46RD0iKfg503XeLku4fGoknqDXk3KRv328dyhX58vfp5_rS6_f_l2fnZZDSBYqqaxaUhLWTuscYHUinLgk-AdHVtGdMvZwClvoIdpqPUwAghKmrbrec8VCNihD9u_S_C3WcckZxMHba1y2ucoGQFWQ8dFV9DTZ-iNz8GVdJLRFhitoex6h94_Urmf9SiXYGYV9vLvOgtAN2AIPsagpyeEErlWJrfKZKlMrpXJdbR45hlMeighBWXsf51sc8YyxV3p8C_0y6Y_uqqqcQ
CitedBy_id crossref_primary_10_1080_24694452_2020_1756208
crossref_primary_10_1016_j_scitotenv_2021_146283
crossref_primary_10_1177_03611981211043813
crossref_primary_10_3389_fenvs_2022_785129
crossref_primary_10_1289_EHP7679
crossref_primary_10_1016_j_envint_2020_105786
crossref_primary_10_1016_j_uclim_2021_100972
crossref_primary_10_1109_ACCESS_2019_2958684
crossref_primary_10_1016_j_envres_2020_110519
crossref_primary_10_1093_jtm_taz019
crossref_primary_10_1016_j_compenvurbsys_2021_101682
crossref_primary_10_3390_atmos11020122
crossref_primary_10_1016_j_envres_2020_110423
crossref_primary_10_1016_j_lana_2023_100500
crossref_primary_10_1021_acs_est_3c05000
crossref_primary_10_1016_j_dcan_2021_08_003
crossref_primary_10_2139_ssrn_4198082
crossref_primary_10_3390_ijerph18042194
crossref_primary_10_1039_D3EA00051F
crossref_primary_10_1016_j_scitotenv_2024_174759
crossref_primary_10_3389_fenvs_2023_1223160
crossref_primary_10_3390_ijgi10090599
crossref_primary_10_1016_j_compenvurbsys_2022_101823
crossref_primary_10_1371_journal_pone_0263649
crossref_primary_10_1038_s44284_024_00093_x
crossref_primary_10_1016_j_comcom_2020_04_014
crossref_primary_10_1093_jrsssc_qlad090
crossref_primary_10_1186_s12940_022_00939_8
crossref_primary_10_1186_s12940_024_01111_0
crossref_primary_10_1145_3485125
crossref_primary_10_1016_j_atmosenv_2023_119820
crossref_primary_10_1016_j_envres_2020_110653
crossref_primary_10_1016_j_envpol_2019_07_034
crossref_primary_10_3390_toxics8030074
crossref_primary_10_1016_j_apr_2022_101421
crossref_primary_10_1080_23748834_2024_2376389
crossref_primary_10_1098_rsos_230408
crossref_primary_10_1016_j_envres_2021_111549
crossref_primary_10_1016_j_jval_2023_05_012
crossref_primary_10_3390_su12187440
crossref_primary_10_1542_peds_2023_062292E
crossref_primary_10_1016_j_scs_2022_104346
crossref_primary_10_1007_s11869_023_01404_2
crossref_primary_10_2139_ssrn_4118255
crossref_primary_10_1016_j_jclepro_2019_118192
crossref_primary_10_1016_j_envres_2023_116242
crossref_primary_10_1016_j_uclim_2020_100687
crossref_primary_10_1021_acs_est_3c07926
crossref_primary_10_1016_j_healthplace_2022_102803
crossref_primary_10_3390_atmos11121284
crossref_primary_10_3390_ijerph191912614
Cites_doi 10.1038/jes.2010.14
10.1016/j.scitotenv.2013.08.096
10.1038/jes.2014.78
10.1289/ehp.1104660
10.1038/nature06958
10.1186/1476-069X-11-40
10.1016/j.eiar.2008.10.001
10.1029/2007JD009641
10.1016/j.scitotenv.2014.11.022
10.1145/2505821.2505828
10.1038/sj.jea.7500188
10.1289/ehp.0900572
10.1289/ehp.0800108
10.1289/ehp.1206337
10.1021/acs.est.6b02385
10.1002/env.1014
10.1093/aje/kwh109
10.1016/j.atmosenv.2010.08.011
10.1097/EDE.0b013e3181cb41f7
10.1038/jes.2013.62
10.1097/00001648-199503000-00012
10.1016/j.eiar.2012.03.004
10.1016/j.atmosenv.2011.08.066
10.1080/10473289.2006.10464485
10.1021/es302673e
10.1056/NEJMsa0805646
10.1161/CIR.0b013e3181dbece1
10.1016/j.atmosenv.2011.03.064
10.1038/jes.2013.15
10.1289/isee.2011.00165
10.1016/j.trd.2010.03.007
10.1093/oxfordjournals.aje.a115761
10.1186/s12942-016-0042-z
10.1016/S0140-6736(02)11274-8
10.1021/acs.est.5b02765
10.1016/j.scitotenv.2011.03.017
10.1164/rccm.200503-443OC
10.1088/1751-8113/41/22/224015
10.1016/j.trc.2012.09.009
10.1289/ehp.5181
10.1016/j.envpol.2012.12.032
10.1021/acs.est.6b01817
10.1097/01.ede.0000181630.15826.7d
ContentType Journal Article
Copyright Nature America, Inc., part of Springer Nature 2018
Copyright Nature Publishing Group Mar 2019
Copyright_xml – notice: Nature America, Inc., part of Springer Nature 2018
– notice: Copyright Nature Publishing Group Mar 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7ST
7T2
7U7
7X7
7XB
88E
88I
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7X8
DOI 10.1038/s41370-018-0038-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Environment Abstracts
Health and Safety Science Abstracts (Full archive)
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
Health & Safety Science Abstracts
ProQuest Public Health
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1559-064X
EndPage 247
ExternalDocumentID 29700403
10_1038_s41370_018_0038_9
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-Q-
0R~
29K
2WC
36B
39C
3V.
4.4
406
53G
5GY
70F
7X7
7XC
88E
88I
8AO
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAYZH
AAZLF
ABAKF
ABDBF
ABJCF
ABJNI
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACGOD
ACIWK
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
ATCPS
AXYYD
AZQEC
B0M
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-I
DNIVK
DPUIP
DU5
DWQXO
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FDQFY
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HZ~
IAO
IEP
IGS
IHR
IHW
INH
INR
ITC
IWAJR
JSO
JZLTJ
KQ8
L6V
M1P
M2P
M7P
M7S
NAO
NQJWS
O9-
OVD
PATMY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TEORI
TR2
TSG
TUS
UKHRP
~8M
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T2
7U7
7XB
8FD
8FK
ABRTQ
C1K
FR3
K9.
LK8
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
SOI
7X8
ID FETCH-LOGICAL-c372t-fd6608128c2970304a1535f7591d820e852c51563b3fc4ecd33710689b5b5a373
IEDL.DBID BENPR
ISSN 1559-0631
1559-064X
IngestDate Thu Jul 10 20:42:47 EDT 2025
Fri Jul 25 09:08:16 EDT 2025
Wed Feb 19 02:30:30 EST 2025
Thu Apr 24 22:52:18 EDT 2025
Tue Jul 01 02:36:15 EDT 2025
Fri Feb 21 02:39:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Population exposure
Mobility
Cellular network data
Air pollution
PM
PM2.5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-fd6608128c2970304a1535f7591d820e852c51563b3fc4ecd33710689b5b5a373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29700403
PQID 2183214341
PQPubID 29347
PageCount 10
ParticipantIDs proquest_miscellaneous_2032439579
proquest_journals_2183214341
pubmed_primary_29700403
crossref_primary_10_1038_s41370_018_0038_9
crossref_citationtrail_10_1038_s41370_018_0038_9
springer_journals_10_1038_s41370_018_0038_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Tuxedo
PublicationSubtitle Official journal of the International Society of Exposure Science
PublicationTitle Journal of exposure science & environmental epidemiology
PublicationTitleAbbrev J Expo Sci Environ Epidemiol
PublicationTitleAlternate J Expo Sci Environ Epidemiol
PublicationYear 2019
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References WacholderSWhen measurement errors correlate with truth - surprising effects of nondifferential misclassificationEpidemiology19956157611:STN:280:DyaK2M3mtV2jsw%3D%3D10.1097/00001648-199503000-00012
USEPA (United States Environmental Protection Agency). Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model (APEX) Documentation: TRIM.Expo/APEX, Version 4; User Guide, 2012.
GonzalezMHidalgoCBarabasiALUnderstanding individual human mobility patternsNature2008453779821:CAS:528:DC%2BD1cXmvVGmsLg%3D10.1038/nature06958
ArmstrongBGThe effects of measurement on relative risk regressionsAm J Epidemiol19901321176841:STN:280:DyaK3M%2Fot1OqsQ%3D%3D10.1093/oxfordjournals.aje.a115761
PopeCAIIIDockeryDWHealth effects of fine particulate air pollution: lines that connectJ Air Waste Manag200656709421:CAS:528:DC%2BD28Xmt1ygs7k%3D10.1080/10473289.2006.10464485
Lindström J, Szpiro AA, Sampson PD, Sheppard L, Oron A, Richards M et al. A flexible spatio-temporal model for air pollution: allowing for spatio-temporal covariates (January 19, 2011). UW Biostatistics Working Paper Series. Working Paper 370. 2010; http://www.bepress.com/uwbiostat/paper370
USEPA (United States Environmental Protection Agency). Air quality system data; United States Environmental Protection Agency Website. 2016; www.epa.gov.
BaxterLKDionisioKLBurkeJSarnetSESarnetJAHodasNExposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendationsJ Expo Sci Environ Epidemiol20132365491:CAS:528:DC%2BC3sXhsFymsr7P10.1038/jes.2013.62
DewulfBNeutensTLefebvreWSeyneaveGVanpouckeCBeckxCDynamic assessment of exposure to air pollution using mobile phone dataInt J Health Geogr2016151410.1186/s12942-016-0042-z
JiangSFioreGAYangYFerreiraJJrFrazzoliEGonzalezMCA review of urban computing for mobile phone traces: Current methods, challenges and opportunities2013Chicago, IL, USAProceedings of the ACM SIGKDD International Workshop on Urban Computing10.1145/2505821.2505828
BeckxCInt PanisLArentzeTJanssensDTorfsRBroekxSA dynamic activity-based population modelling approach to evaluate exposure to air pollution: methods and application to a Dutch urban areaEnviron Impact Asses2009291798510.1016/j.eiar.2008.10.001
HatzopoulouMMillerEJLinking an activity-based travel demand model with traffic emission and dispersion models: transport’s contribution to air pollution in TorontoTransp Res D- TR E2010153152510.1016/j.trd.2010.03.007
Burnett RT, Goldberg MS. Size-fractionated particulate mass and daily mortality in eight Canadian cities. Revised Analyses of Time-Series of Air Pollution and Health. Special Report, Health Effects Institute: Boston, 2003, pp 85–90.
SmithJDMitsakouCKitwiroonNBarrattBMWaltonHATaylorJGLondon hybrid exposure model: improving human exposure estimates to NO2 and PM2.5 in an urban settingEnviron Sci Technol2016501176081:CAS:528:DC%2BC28Xhs1altrjF10.1021/acs.est.6b01817
PopeCAIIIEzzatiMDockeryDWFine-particulate air pollution and life expectancy in the United StatesN Engl J Med2009360376861:CAS:528:DC%2BD1MXhtVSltr8%3D10.1056/NEJMsa0805646
PuettRCHartJEYanoskyJDPaciorekCSchwartzJSuhHChronic fine and coarse particulate exposure, mortality and coronary heart disease in the Nurses’ Health StudyEnviron Health Persp2009117169770110.1289/ehp.0900572
HajatADiez-RouxAVAdarSDAuchinclossAHLovasiGSO’NeillMSAir pollution and individual and neighborhood socioeconomic status: evidence from the Multi-Ethnic Study of AtherosclerosisEnviron Health Perspect201312113253310.1289/ehp.1206337
BrunekreefBHolgateSTAir pollution and healthLancet20023601233421:CAS:528:DC%2BD38XotVWgsbk%3D10.1016/S0140-6736(02)11274-8
KloogIMellySJRidgwayWLCoullBASchwartzJUsing new satellite based exposure methods to study the association between pregnancy PM2.5 exposure, premature birth and birth weight in MassachusettsEnviron Health20121110.1186/1476-069X-11-40
DhondtSBeckxCDegraeuweBLefebvreWKochanBBellemansTHealth impact assessment of air pollution using a dynamic exposure profile: implications for exposure and health impact estimatesEnviron Impact Asses201236425110.1016/j.eiar.2012.03.004
LyapustinAWangYFreyRAn automatic cloud mask algorithm based on time series of MODIS measurementsJ Geophys Res Atmos2008113D1620710.1029/2007JD009641
CandiaJGonzalezMGWangPSchoenharlTMadeyGBarabasiALUncovering individual and collective human dynamics from mobile phone recordsJ Phys A-Math Theor20084122401510.1088/1751-8113/41/22/224015
SettonEMarshallJDBrauerMLundquistKRHystadPKellerPThe impact of daily mobility on exposure to traffic-related air pollution health effect estimatesJ Expo Sci Environ Epidemiol20112142810.1038/jes.2010.14
NyhanMargueriteGrauwinSebastianBritterRexMisstearBruceMcNabolaAonghusLadenFrancineBarrettSteven R. H.RattiCarlo“Exposure Track”—The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air PollutionEnvironmental Science & Technology20165017967196811:CAS:528:DC%2BC28XhtlaktbvF10.1021/acs.est.6b02385
AveryCLMillsKTWilliamsRMcGrawKAPooleCSmithRLEstimating error in using ambient PM2.5 concentrations as proxies for personal exposures: a reviewEpidemiology2010212152310.1097/EDE.0b013e3181cb41f7
De NazelleASetoEDonaire-GonzalezDMendezMMatamalaJNieuwenhuijsenMJJerrettMImproving estimates of air pollution exposure through ubiquitous sensing technologiesEnviron Pollut201317692910.1016/j.envpol.2012.12.032
BrookRDRajagopalanSPopeCABrookJRBhatnagarADiez-RouzAVParticulate matter air pollution and cardiovascular disease, an update to the scientific statement from the American Heart AssociationCirculation20101212331781:CAS:528:DC%2BC3cXmslGmu78%3D10.1161/CIR.0b013e3181dbece1
LepeuleJLadenFDockeryDWSchwartzJChronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities Study from 1974 to 2009Environ Health Persp20121209657010.1289/ehp.1104660
NyhanMMisstearBDMcNabolaAComparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengersSci Total Environ2014468-469821311:CAS:528:DC%2BC3sXhvFOjt7%2FP10.1016/j.scitotenv.2013.08.096
LiaoDDuanYWhitselEAZhengZJHeissGChinchilliVMAssociation of higher levels of ambient criteria pollutants with impaired cardiac autonomic control: a population-based studyAm J Epidemiol20031597687710.1093/aje/kwh109
DonsEInt PanisLVan PoppelMTheunisJWillemsHTorfsRImpact of time–activity patterns on personal exposure to black carbonAtmos Environ20114535946021:CAS:528:DC%2BC3MXmtlens78%3D10.1016/j.atmosenv.2011.03.064
KloogIKoutrakisPCoullBALeeHJSchwartzJAssessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurementsAtmos Environ2011456267751:CAS:528:DC%2BC3MXhtFOmur7F10.1016/j.atmosenv.2011.08.066
LyapustinAWangYLaszloIKahnRKorkinSRemerLMultiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithmJ Geophys Res Atmos2011116D03211
JerrettMBurnettRTMaRPopeCAKrewskiDNewboldKBSpatial analysis of air pollution and mortality in Los AngelesEpidemiology2005167273610.1097/01.ede.0000181630.15826.7d
GlasgowMLRudraCBYooEDemirbasMMerrimanJNayakPUsing smartphones to collect time-activity data for long-term personal-level air pollution exposure assessmentJ Expo Sci Environ Epidemiol2014263566410.1038/jes.2014.78
SzpiroAASampsonPDSheppardLLumleyTAdarSDKaufmanJDPredicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependenciesEnvironmetrics201021606311:CAS:528:DC%2BC3cXht12rurbF
LadenFSchwartzJSpeizerFEDockeryDWReduction in fine particulate air pollution and mortality extended follow-up of the Harvard six cities studyAm J Resp Crit Care2006173667721:CAS:528:DC%2BD28XmslSrurk%3D10.1164/rccm.200503-443OC
BreenMSLongTCSchultzBDWilliamsRWRichard-BryantJBreenMAir pollution exposure model for individuals (EMI) in health studies: evaluation for ambient PM2.5 in Central North AmericaEnviron Sci Technol20154914184941:CAS:528:DC%2BC2MXhslCqsbnF10.1021/acs.est.5b02765
DominiciFMcDermottAZegerSLSametJMNational maps of the effects of particulate matter on mortality: exploring geographical variationEnviron Health Persp2003111394310.1289/ehp.5181
CalabreseFDiaoMiDi LorenzoGFerreiraJJrRattiCUnderstanding individual mobility patterns from urban sensing data: A mobile phone trace exampleTransp Res C-EMER2013263011310.1016/j.trc.2012.09.009
LyapustinAMartonchikJWangYLaszloIKorkinSMultiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tablesJ Geophys Res Atmos2011116D03210
ZanobettiASchwartzJThe effects of fine and coarse particulate air pollution on mortality: a national analysisEnviron Health Persp200911789890310.1289/ehp.0800108
OzkaynakHBaxterLKDionisioKLBurkeJAir pollution exposure prediction approaches used in air pollution epidemiology studiesJ Expo Sci Environ Epidemiol201323566721:CAS:528:DC%2BC3sXhs1yitLjK10.1038/jes.2013.15
BurkeJMZufallMÖzkaynakHA population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PAJ Expo Sci Environ Epidemiol200111470891:CAS:528:DC%2BD38XltlGktw%3D%3D10.1038/sj.jea.7500188
KloogINordioFCoullBASchwartzJIncorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic statesEnviron Sci Technol20124611913211:CAS:528:DC%2BC38XhsVWhurzI10.1021/es302673e
GurjarBRSharmaJAAgarwalAGuptaPNagpureASLelieveldJHuman health risks in megacities due to air pollutionAtmos Environ2010444606131:CAS:528:DC%2BC3cXht1SntbvO10.1016/j.atmosenv.2010.08.011
SuJGJerrettMMengYPickettMRitzBIntegrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessmentSci Total Environ2015506-507518261:CAS:528:DC%2BC2cXhvFars7fI10.1016/j.scitotenv.2014.11.022
WHO (World Health Organization). Over 7 million premature deaths annually linked to air pollution. 2016; http://www.who.int.
MaYChenRPanGXuXSongWFine particulate air pollution and
38_CR1
F Calabrese (38_CR24) 2013; 26
38_CR42
F Dominici (38_CR11) 2003; 111
I Kloog (38_CR46) 2011; 45
M Jerrett (38_CR12) 2005; 16
CL Avery (38_CR15) 2010; 21
CA Pope III (38_CR6) 2009; 360
M Hatzopoulou (38_CR32) 2010; 15
S Wacholder (38_CR49) 1995; 6
RD Brook (38_CR9) 2010; 121
M Nyhan (38_CR8) 2014; 468-469
E Setton (38_CR26) 2011; 21
J Lepeule (38_CR17) 2012; 120
MS Breen (38_CR29) 2015; 49
C Beckx (38_CR31) 2009; 29
I Kloog (38_CR47) 2012; 46
38_CR10
I Kloog (38_CR20) 2012; 11
F Laden (38_CR5) 2006; 173
S Jiang (38_CR25) 2013
D Liao (38_CR3) 2003; 159
CA Pope III (38_CR4) 2006; 56
A Nazelle De (38_CR39) 2013; 176
J Candia (38_CR23) 2008; 41
38_CR18
E Dons (38_CR33) 2011; 45
Y Ma (38_CR16) 2011; 409
A Lyapustin (38_CR45) 2008; 113
ML Glasgow (38_CR40) 2014; 26
S Dhondt (38_CR34) 2012; 36
JM Burke (38_CR30) 2001; 11
BR Gurjar (38_CR7) 2010; 44
AA Szpiro (38_CR19) 2010; 21
Marguerite Nyhan (38_CR37) 2016; 50
H Ozkaynak (38_CR27) 2013; 23
B Brunekreef (38_CR2) 2002; 360
LK Baxter (38_CR28) 2013; 23
B Dewulf (38_CR38) 2016; 15
A Zanobetti (38_CR14) 2009; 117
RC Puett (38_CR13) 2009; 117
A Lyapustin (38_CR44) 2011; 116
JD Smith (38_CR36) 2016; 50
38_CR35
JG Su (38_CR41) 2015; 506-507
BG Armstrong (38_CR48) 1990; 132
M Gonzalez (38_CR22) 2008; 453
A Hajat (38_CR21) 2013; 121
A Lyapustin (38_CR43) 2011; 116
References_xml – reference: DominiciFMcDermottAZegerSLSametJMNational maps of the effects of particulate matter on mortality: exploring geographical variationEnviron Health Persp2003111394310.1289/ehp.5181
– reference: ArmstrongBGThe effects of measurement on relative risk regressionsAm J Epidemiol19901321176841:STN:280:DyaK3M%2Fot1OqsQ%3D%3D10.1093/oxfordjournals.aje.a115761
– reference: GlasgowMLRudraCBYooEDemirbasMMerrimanJNayakPUsing smartphones to collect time-activity data for long-term personal-level air pollution exposure assessmentJ Expo Sci Environ Epidemiol2014263566410.1038/jes.2014.78
– reference: NyhanMMisstearBDMcNabolaAComparison of particulate matter dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengersSci Total Environ2014468-469821311:CAS:528:DC%2BC3sXhvFOjt7%2FP10.1016/j.scitotenv.2013.08.096
– reference: CalabreseFDiaoMiDi LorenzoGFerreiraJJrRattiCUnderstanding individual mobility patterns from urban sensing data: A mobile phone trace exampleTransp Res C-EMER2013263011310.1016/j.trc.2012.09.009
– reference: Lindström J, Szpiro AA, Sampson PD, Sheppard L, Oron A, Richards M et al. A flexible spatio-temporal model for air pollution: allowing for spatio-temporal covariates (January 19, 2011). UW Biostatistics Working Paper Series. Working Paper 370. 2010; http://www.bepress.com/uwbiostat/paper370
– reference: USEPA (United States Environmental Protection Agency). Air quality system data; United States Environmental Protection Agency Website. 2016; www.epa.gov.
– reference: BrunekreefBHolgateSTAir pollution and healthLancet20023601233421:CAS:528:DC%2BD38XotVWgsbk%3D10.1016/S0140-6736(02)11274-8
– reference: LiaoDDuanYWhitselEAZhengZJHeissGChinchilliVMAssociation of higher levels of ambient criteria pollutants with impaired cardiac autonomic control: a population-based studyAm J Epidemiol20031597687710.1093/aje/kwh109
– reference: HajatADiez-RouxAVAdarSDAuchinclossAHLovasiGSO’NeillMSAir pollution and individual and neighborhood socioeconomic status: evidence from the Multi-Ethnic Study of AtherosclerosisEnviron Health Perspect201312113253310.1289/ehp.1206337
– reference: SmithJDMitsakouCKitwiroonNBarrattBMWaltonHATaylorJGLondon hybrid exposure model: improving human exposure estimates to NO2 and PM2.5 in an urban settingEnviron Sci Technol2016501176081:CAS:528:DC%2BC28Xhs1altrjF10.1021/acs.est.6b01817
– reference: WacholderSWhen measurement errors correlate with truth - surprising effects of nondifferential misclassificationEpidemiology19956157611:STN:280:DyaK2M3mtV2jsw%3D%3D10.1097/00001648-199503000-00012
– reference: DhondtSBeckxCDegraeuweBLefebvreWKochanBBellemansTHealth impact assessment of air pollution using a dynamic exposure profile: implications for exposure and health impact estimatesEnviron Impact Asses201236425110.1016/j.eiar.2012.03.004
– reference: HatzopoulouMMillerEJLinking an activity-based travel demand model with traffic emission and dispersion models: transport’s contribution to air pollution in TorontoTransp Res D- TR E2010153152510.1016/j.trd.2010.03.007
– reference: PuettRCHartJEYanoskyJDPaciorekCSchwartzJSuhHChronic fine and coarse particulate exposure, mortality and coronary heart disease in the Nurses’ Health StudyEnviron Health Persp2009117169770110.1289/ehp.0900572
– reference: JerrettMBurnettRTMaRPopeCAKrewskiDNewboldKBSpatial analysis of air pollution and mortality in Los AngelesEpidemiology2005167273610.1097/01.ede.0000181630.15826.7d
– reference: KloogIMellySJRidgwayWLCoullBASchwartzJUsing new satellite based exposure methods to study the association between pregnancy PM2.5 exposure, premature birth and birth weight in MassachusettsEnviron Health20121110.1186/1476-069X-11-40
– reference: CandiaJGonzalezMGWangPSchoenharlTMadeyGBarabasiALUncovering individual and collective human dynamics from mobile phone recordsJ Phys A-Math Theor20084122401510.1088/1751-8113/41/22/224015
– reference: SettonEMarshallJDBrauerMLundquistKRHystadPKellerPThe impact of daily mobility on exposure to traffic-related air pollution health effect estimatesJ Expo Sci Environ Epidemiol20112142810.1038/jes.2010.14
– reference: LepeuleJLadenFDockeryDWSchwartzJChronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities Study from 1974 to 2009Environ Health Persp20121209657010.1289/ehp.1104660
– reference: NyhanMargueriteGrauwinSebastianBritterRexMisstearBruceMcNabolaAonghusLadenFrancineBarrettSteven R. H.RattiCarlo“Exposure Track”—The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air PollutionEnvironmental Science & Technology20165017967196811:CAS:528:DC%2BC28XhtlaktbvF10.1021/acs.est.6b02385
– reference: DewulfBNeutensTLefebvreWSeyneaveGVanpouckeCBeckxCDynamic assessment of exposure to air pollution using mobile phone dataInt J Health Geogr2016151410.1186/s12942-016-0042-z
– reference: SzpiroAASampsonPDSheppardLLumleyTAdarSDKaufmanJDPredicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependenciesEnvironmetrics201021606311:CAS:528:DC%2BC3cXht12rurbF
– reference: LyapustinAWangYFreyRAn automatic cloud mask algorithm based on time series of MODIS measurementsJ Geophys Res Atmos2008113D1620710.1029/2007JD009641
– reference: De NazelleASetoEDonaire-GonzalezDMendezMMatamalaJNieuwenhuijsenMJJerrettMImproving estimates of air pollution exposure through ubiquitous sensing technologiesEnviron Pollut201317692910.1016/j.envpol.2012.12.032
– reference: BrookRDRajagopalanSPopeCABrookJRBhatnagarADiez-RouzAVParticulate matter air pollution and cardiovascular disease, an update to the scientific statement from the American Heart AssociationCirculation20101212331781:CAS:528:DC%2BC3cXmslGmu78%3D10.1161/CIR.0b013e3181dbece1
– reference: BreenMSLongTCSchultzBDWilliamsRWRichard-BryantJBreenMAir pollution exposure model for individuals (EMI) in health studies: evaluation for ambient PM2.5 in Central North AmericaEnviron Sci Technol20154914184941:CAS:528:DC%2BC2MXhslCqsbnF10.1021/acs.est.5b02765
– reference: PopeCAIIIDockeryDWHealth effects of fine particulate air pollution: lines that connectJ Air Waste Manag200656709421:CAS:528:DC%2BD28Xmt1ygs7k%3D10.1080/10473289.2006.10464485
– reference: KloogIKoutrakisPCoullBALeeHJSchwartzJAssessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurementsAtmos Environ2011456267751:CAS:528:DC%2BC3MXhtFOmur7F10.1016/j.atmosenv.2011.08.066
– reference: AveryCLMillsKTWilliamsRMcGrawKAPooleCSmithRLEstimating error in using ambient PM2.5 concentrations as proxies for personal exposures: a reviewEpidemiology2010212152310.1097/EDE.0b013e3181cb41f7
– reference: WHO (World Health Organization). Over 7 million premature deaths annually linked to air pollution. 2016; http://www.who.int.
– reference: MaYChenRPanGXuXSongWFine particulate air pollution and daily mortality in Shenyang, ChinaSci Total Environ2011409247371:CAS:528:DC%2BC3MXlvVChsL4%3D10.1016/j.scitotenv.2011.03.017
– reference: ZanobettiASchwartzJThe effects of fine and coarse particulate air pollution on mortality: a national analysisEnviron Health Persp200911789890310.1289/ehp.0800108
– reference: USEPA (United States Environmental Protection Agency). Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model (APEX) Documentation: TRIM.Expo/APEX, Version 4; User Guide, 2012.
– reference: Burnett RT, Goldberg MS. Size-fractionated particulate mass and daily mortality in eight Canadian cities. Revised Analyses of Time-Series of Air Pollution and Health. Special Report, Health Effects Institute: Boston, 2003, pp 85–90.
– reference: GonzalezMHidalgoCBarabasiALUnderstanding individual human mobility patternsNature2008453779821:CAS:528:DC%2BD1cXmvVGmsLg%3D10.1038/nature06958
– reference: JiangSFioreGAYangYFerreiraJJrFrazzoliEGonzalezMCA review of urban computing for mobile phone traces: Current methods, challenges and opportunities2013Chicago, IL, USAProceedings of the ACM SIGKDD International Workshop on Urban Computing10.1145/2505821.2505828
– reference: DonsEInt PanisLVan PoppelMTheunisJWillemsHTorfsRImpact of time–activity patterns on personal exposure to black carbonAtmos Environ20114535946021:CAS:528:DC%2BC3MXmtlens78%3D10.1016/j.atmosenv.2011.03.064
– reference: PopeCAIIIEzzatiMDockeryDWFine-particulate air pollution and life expectancy in the United StatesN Engl J Med2009360376861:CAS:528:DC%2BD1MXhtVSltr8%3D10.1056/NEJMsa0805646
– reference: KloogINordioFCoullBASchwartzJIncorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic statesEnviron Sci Technol20124611913211:CAS:528:DC%2BC38XhsVWhurzI10.1021/es302673e
– reference: BaxterLKDionisioKLBurkeJSarnetSESarnetJAHodasNExposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendationsJ Expo Sci Environ Epidemiol20132365491:CAS:528:DC%2BC3sXhsFymsr7P10.1038/jes.2013.62
– reference: SuJGJerrettMMengYPickettMRitzBIntegrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessmentSci Total Environ2015506-507518261:CAS:528:DC%2BC2cXhvFars7fI10.1016/j.scitotenv.2014.11.022
– reference: BurkeJMZufallMÖzkaynakHA population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PAJ Expo Sci Environ Epidemiol200111470891:CAS:528:DC%2BD38XltlGktw%3D%3D10.1038/sj.jea.7500188
– reference: LyapustinAWangYLaszloIKahnRKorkinSRemerLMultiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithmJ Geophys Res Atmos2011116D03211
– reference: LadenFSchwartzJSpeizerFEDockeryDWReduction in fine particulate air pollution and mortality extended follow-up of the Harvard six cities studyAm J Resp Crit Care2006173667721:CAS:528:DC%2BD28XmslSrurk%3D10.1164/rccm.200503-443OC
– reference: GurjarBRSharmaJAAgarwalAGuptaPNagpureASLelieveldJHuman health risks in megacities due to air pollutionAtmos Environ2010444606131:CAS:528:DC%2BC3cXht1SntbvO10.1016/j.atmosenv.2010.08.011
– reference: BeckxCInt PanisLArentzeTJanssensDTorfsRBroekxSA dynamic activity-based population modelling approach to evaluate exposure to air pollution: methods and application to a Dutch urban areaEnviron Impact Asses2009291798510.1016/j.eiar.2008.10.001
– reference: OzkaynakHBaxterLKDionisioKLBurkeJAir pollution exposure prediction approaches used in air pollution epidemiology studiesJ Expo Sci Environ Epidemiol201323566721:CAS:528:DC%2BC3sXhs1yitLjK10.1038/jes.2013.15
– reference: LyapustinAMartonchikJWangYLaszloIKorkinSMultiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tablesJ Geophys Res Atmos2011116D03210
– volume: 21
  start-page: 42
  year: 2011
  ident: 38_CR26
  publication-title: J Expo Sci Environ Epidemiol
  doi: 10.1038/jes.2010.14
– volume: 468-469
  start-page: 821
  year: 2014
  ident: 38_CR8
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2013.08.096
– volume: 26
  start-page: 356
  year: 2014
  ident: 38_CR40
  publication-title: J Expo Sci Environ Epidemiol
  doi: 10.1038/jes.2014.78
– ident: 38_CR10
– volume: 120
  start-page: 965
  year: 2012
  ident: 38_CR17
  publication-title: Environ Health Persp
  doi: 10.1289/ehp.1104660
– volume: 453
  start-page: 779
  year: 2008
  ident: 38_CR22
  publication-title: Nature
  doi: 10.1038/nature06958
– volume: 11
  year: 2012
  ident: 38_CR20
  publication-title: Environ Health
  doi: 10.1186/1476-069X-11-40
– volume: 29
  start-page: 179
  year: 2009
  ident: 38_CR31
  publication-title: Environ Impact Asses
  doi: 10.1016/j.eiar.2008.10.001
– volume: 116
  start-page: D03210
  year: 2011
  ident: 38_CR43
  publication-title: J Geophys Res Atmos
– ident: 38_CR1
– volume: 113
  start-page: D16207
  year: 2008
  ident: 38_CR45
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2007JD009641
– volume: 506-507
  start-page: 518
  year: 2015
  ident: 38_CR41
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2014.11.022
– volume-title: A review of urban computing for mobile phone traces: Current methods, challenges and opportunities
  year: 2013
  ident: 38_CR25
  doi: 10.1145/2505821.2505828
– volume: 11
  start-page: 470
  year: 2001
  ident: 38_CR30
  publication-title: J Expo Sci Environ Epidemiol
  doi: 10.1038/sj.jea.7500188
– volume: 117
  start-page: 1697
  year: 2009
  ident: 38_CR13
  publication-title: Environ Health Persp
  doi: 10.1289/ehp.0900572
– volume: 117
  start-page: 898
  year: 2009
  ident: 38_CR14
  publication-title: Environ Health Persp
  doi: 10.1289/ehp.0800108
– volume: 121
  start-page: 1325
  year: 2013
  ident: 38_CR21
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1206337
– volume: 50
  start-page: 9671
  issue: 17
  year: 2016
  ident: 38_CR37
  publication-title: Environmental Science & Technology
  doi: 10.1021/acs.est.6b02385
– volume: 21
  start-page: 606
  year: 2010
  ident: 38_CR19
  publication-title: Environmetrics
  doi: 10.1002/env.1014
– volume: 159
  start-page: 768
  year: 2003
  ident: 38_CR3
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwh109
– volume: 44
  start-page: 4606
  year: 2010
  ident: 38_CR7
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2010.08.011
– volume: 21
  start-page: 215
  year: 2010
  ident: 38_CR15
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181cb41f7
– volume: 23
  start-page: 654
  year: 2013
  ident: 38_CR28
  publication-title: J Expo Sci Environ Epidemiol
  doi: 10.1038/jes.2013.62
– volume: 6
  start-page: 157
  year: 1995
  ident: 38_CR49
  publication-title: Epidemiology
  doi: 10.1097/00001648-199503000-00012
– volume: 36
  start-page: 42
  year: 2012
  ident: 38_CR34
  publication-title: Environ Impact Asses
  doi: 10.1016/j.eiar.2012.03.004
– volume: 45
  start-page: 6267
  year: 2011
  ident: 38_CR46
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.08.066
– volume: 56
  start-page: 709
  year: 2006
  ident: 38_CR4
  publication-title: J Air Waste Manag
  doi: 10.1080/10473289.2006.10464485
– volume: 46
  start-page: 11913
  year: 2012
  ident: 38_CR47
  publication-title: Environ Sci Technol
  doi: 10.1021/es302673e
– volume: 360
  start-page: 376
  year: 2009
  ident: 38_CR6
  publication-title: N Engl J Med
  doi: 10.1056/NEJMsa0805646
– volume: 116
  start-page: D03211
  year: 2011
  ident: 38_CR44
  publication-title: J Geophys Res Atmos
– volume: 121
  start-page: 2331
  year: 2010
  ident: 38_CR9
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e3181dbece1
– ident: 38_CR35
– volume: 45
  start-page: 3594
  year: 2011
  ident: 38_CR33
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.03.064
– volume: 23
  start-page: 566
  year: 2013
  ident: 38_CR27
  publication-title: J Expo Sci Environ Epidemiol
  doi: 10.1038/jes.2013.15
– ident: 38_CR18
  doi: 10.1289/isee.2011.00165
– volume: 15
  start-page: 315
  year: 2010
  ident: 38_CR32
  publication-title: Transp Res D- TR E
  doi: 10.1016/j.trd.2010.03.007
– volume: 132
  start-page: 1176
  year: 1990
  ident: 38_CR48
  publication-title: Am J Epidemiol
  doi: 10.1093/oxfordjournals.aje.a115761
– volume: 15
  start-page: 14
  year: 2016
  ident: 38_CR38
  publication-title: Int J Health Geogr
  doi: 10.1186/s12942-016-0042-z
– volume: 360
  start-page: 1233
  year: 2002
  ident: 38_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)11274-8
– volume: 49
  start-page: 14184
  year: 2015
  ident: 38_CR29
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b02765
– volume: 409
  start-page: 2473
  year: 2011
  ident: 38_CR16
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2011.03.017
– volume: 173
  start-page: 667
  year: 2006
  ident: 38_CR5
  publication-title: Am J Resp Crit Care
  doi: 10.1164/rccm.200503-443OC
– volume: 41
  start-page: 224015
  year: 2008
  ident: 38_CR23
  publication-title: J Phys A-Math Theor
  doi: 10.1088/1751-8113/41/22/224015
– volume: 26
  start-page: 301
  year: 2013
  ident: 38_CR24
  publication-title: Transp Res C-EMER
  doi: 10.1016/j.trc.2012.09.009
– volume: 111
  start-page: 39
  year: 2003
  ident: 38_CR11
  publication-title: Environ Health Persp
  doi: 10.1289/ehp.5181
– volume: 176
  start-page: 92
  year: 2013
  ident: 38_CR39
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2012.12.032
– volume: 50
  start-page: 11760
  year: 2016
  ident: 38_CR36
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b01817
– volume: 16
  start-page: 727
  year: 2005
  ident: 38_CR12
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000181630.15826.7d
– ident: 38_CR42
SSID ssj0044760
Score 2.4632623
Snippet A critical question in environmental epidemiology is whether air pollution exposures of large populations can be refined using individual mobile-device-based...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 238
SubjectTerms Aerosols
Air Pollutants - analysis
Air pollution
Air Pollution - analysis
Cell Phone
Cell phones
Cellular communication
Cellular telephones
Environmental Exposure - analysis
Environmental Monitoring - methods
Epidemiology
Exposure
Female
Human populations
Humans
Land pollution
Land use
Male
Medicine
Medicine & Public Health
Mobile communication systems
Mobility
Optical analysis
Particulate matter
Particulate Matter - analysis
Populations
Prospective Studies
Regression models
Title Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data
URI https://link.springer.com/article/10.1038/s41370-018-0038-9
https://www.ncbi.nlm.nih.gov/pubmed/29700403
https://www.proquest.com/docview/2183214341
https://www.proquest.com/docview/2032439579
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEB68vRdBxN9WzyOCT0q4tkna5En0uPUQPFQ82LeSJulxcG7rdhf0v3emaXvI4b30JWkTMsnM15lvMgBvnA2FLrTjxumUy7IpeV0rz32ToblIfe4a-lH8clacnsvPK7UaHW79SKucdOKgqH3ryEd-RKY8R-Mus_fdL05Voyi6OpbQ2IN9VMFaLWD_48nZ1--TLpayjHnCiJs5GuNsimsKfdSj-qaiK5nmFB7j5l_LdANu3giVDhZo-QDuj9CRfYiyfgh3wvoR3It-NxbTiR5D_21nif9D2Uusm6tzsfC7a8kZyLYts5cbbLqKe44R8_2CXc6JWexnOxBm_7BuuHtz3TNibG02wTNKRontgRGpPTBimD6B8-XJj-NTPhZW4E6U-ZY3vigQCuTa5YZOvLSo91RTKpN5RARBq9whzilELRong_NCIBAptKlVrawoxVNYrHGM58Bs7pyxJkgSrlOulog_bNCpEbXXTZpAOi1q5cZbx6n4xVU1RL-FrqIcKpQD3VOqK5PA2_mVLl65cVvng0lS1Xj6-up6ryTwem7Gc0PBELsO7Q77pAglhyBlAs-ihOfRaFVQuYkE3k0iv_74f6fy4vapvIS7CLZM5K8dwGK72YVXCGi29SHslasSn_o4o-fy0-G4j_8Cddr0kw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAJIZ4lpYCR4AKymthOYh8QQsCypQ8JqZV6C4ntoEplk252Bf1T_EZm4k0qVNFbz3Zsy_P4Jp4XwCtb-kxn2nJjdcxVXue8qlLHXZ0gXMRO2Jp-FPcPsumR-nqcHq_BnyEXhsIqB53YK2rXWHoj3yYoFwjuKnnfnnHqGkXe1aGFRmCLXX_-C3_Zunc7n5C-r4WYfD78OOWrrgLcylwseO2yDHFQaCsMsbsqUejTOk9N4hAOvU6FRZDPZCVrq7x1UiIKZ9pUaZWWMpe47g24qaQ0VKtfT74Mml-pPGQlo5XOEfqTwYsq9XaHYEEtXhLNyRnHzb84eMm4veSY7fFucg_urgxV9iFw1n1Y87MHcCe88rGQvPQQum_LkqKNKFeKtWMvMOZ_tw09PbJFw8qTOQ6dBg5nFGf_g52MaWDsZ9OH556ztq_0OesYxYfN594xSn0J455RCL1nFM_6CI6u5cIfw_oM93gCrBTWmtJ4RaxkU1sptHZKr2MjK6frOIJ4uNTCrmqcU6uN06L3tUtdBDoUSAeqiqoLE8Gb8ZM2FPi4avLWQKliJetdccGZEbwch1FKyfVSznyzxDkxGq69SzSCjUDhcTe6FVSlMoK3A8kvFv_vUTavPsoLuDU93N8r9nYOdp_CbTTzTIic24L1xXzpn6Eptaie9_zL4Pt1C8xfPYsqrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYSQEOKbQAEjwQVkbRI7iX1ACGhXLYVVQVTqLSS2gyqVTdjsCvrX-HXMxEkqVNFbz3ZsyzP2m3jezAA8N4VLVaoM10aFXGZVxssysdxWEcJFaGNT0Y_ip3m6eyg_HCVHG_BniIUhWuVwJ3YXta0NvZFPCcpjBHcZTaueFnGwPXvT_ORUQYo8rUM5Da8i--70F_6-ta_3tlHWL-J4tvP1_S7vKwxwI7J4xSubpoiJsTKxJtWXBV4ASZUlOrIIjU4lsUHAT0UpKiOdsUIgIqdKl0mZFCITOO4V2MwQFdUENt_tzA--DDggZeZjlNFm52gIRINPVahpi9BBBV8ixck1x_W_qHjO1D3npu3Qb3YTbvRmK3vr9ewWbLjFbbju3_yYD2W6A-3ndUHcI4qcYs1YGYy5301ND5FsVbPieIlNJ17fGbHuv7PjMSiM_ag7su4pa7q8n4uWEVtsuXSWUSCMb3eMCPWOEbv1Lhxeypbfg8kC53gArIiN0YV2khTLJKaUaPsUToValFZVYQDhsKm56TOeU-GNk7zzvAuVeznkKAfKkapyHcDL8ZPGp_u4qPPWIKm8P_ltfqanATwbm_HMkiOmWLh6jX1CNGM7B2kA972Ex9loV_BiFQG8GkR-Nvh_l_Lw4qU8hat4WPKPe_P9R3ANbT7taXRbMFkt1-4x2lWr8kmvwAy-XfaZ-QuMTjBJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+population+exposure+to+air+pollution+using+individual+mobility+patterns+inferred+from+mobile+phone+data&rft.jtitle=Journal+of+exposure+science+%26+environmental+epidemiology&rft.au=Nyhan%2C+M+M&rft.au=Kloog%2C+I&rft.au=Britter%2C+R&rft.au=Ratti%2C+C&rft.date=2019-03-01&rft.eissn=1559-064X&rft.volume=29&rft.issue=2&rft.spage=238&rft_id=info:doi/10.1038%2Fs41370-018-0038-9&rft_id=info%3Apmid%2F29700403&rft.externalDocID=29700403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-0631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-0631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-0631&client=summon