Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark

Recent deep learning based methods have achieved the state-of-the-art performance for handwritten Chinese character recognition (HCCR) by learning discriminative representations directly from raw data. Nevertheless, we believe that the long-and-well investigated domain-specific knowledge should stil...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 61; pp. 348 - 360
Main Authors Zhang, Xu-Yao, Bengio, Yoshua, Liu, Cheng-Lin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent deep learning based methods have achieved the state-of-the-art performance for handwritten Chinese character recognition (HCCR) by learning discriminative representations directly from raw data. Nevertheless, we believe that the long-and-well investigated domain-specific knowledge should still help to boost the performance of HCCR. By integrating the traditional normalization-cooperated direction-decomposed feature map (directMap) with the deep convolutional neural network (convNet), we are able to obtain new highest accuracies for both online and offline HCCR on the ICDAR-2013 competition database. With this new framework, we can eliminate the needs for data augmentation and model ensemble, which are widely used in other systems to achieve their best results. This makes our framework to be efficient and effective for both training and testing. Furthermore, although directMap+convNet can achieve the best results and surpass human-level performance, we show that writer adaptation in this case is still effective. A new adaptation layer is proposed to reduce the mismatch between training and test data on a particular source layer. The adaptation process can be efficiently and effectively implemented in an unsupervised manner. By adding the adaptation layer into the pre-trained convNet, it can adapt to the new handwriting styles of particular writers, and the recognition accuracy can be further improved consistently and significantly. This paper gives an overview and comparison of recent deep learning based approaches for HCCR, and also sets new benchmarks for both online and offline HCCR. •Comprehensive study of handwritten Chinese character recognition (HCCR).•New benchmarks for both online and offline HCCR under a general framework.•Combination of convNet and domain-specific knowledge of directMap.•Writer adaptation of deep convolutional neural networks.•State-of-the-art performance on the ICDAR-2013 competition database.
AbstractList Recent deep learning based methods have achieved the state-of-the-art performance for handwritten Chinese character recognition (HCCR) by learning discriminative representations directly from raw data. Nevertheless, we believe that the long-and-well investigated domain-specific knowledge should still help to boost the performance of HCCR. By integrating the traditional normalization-cooperated direction-decomposed feature map (directMap) with the deep convolutional neural network (convNet), we are able to obtain new highest accuracies for both online and offline HCCR on the ICDAR-2013 competition database. With this new framework, we can eliminate the needs for data augmentation and model ensemble, which are widely used in other systems to achieve their best results. This makes our framework to be efficient and effective for both training and testing. Furthermore, although directMap+convNet can achieve the best results and surpass human-level performance, we show that writer adaptation in this case is still effective. A new adaptation layer is proposed to reduce the mismatch between training and test data on a particular source layer. The adaptation process can be efficiently and effectively implemented in an unsupervised manner. By adding the adaptation layer into the pre-trained convNet, it can adapt to the new handwriting styles of particular writers, and the recognition accuracy can be further improved consistently and significantly. This paper gives an overview and comparison of recent deep learning based approaches for HCCR, and also sets new benchmarks for both online and offline HCCR. •Comprehensive study of handwritten Chinese character recognition (HCCR).•New benchmarks for both online and offline HCCR under a general framework.•Combination of convNet and domain-specific knowledge of directMap.•Writer adaptation of deep convolutional neural networks.•State-of-the-art performance on the ICDAR-2013 competition database.
Author Liu, Cheng-Lin
Zhang, Xu-Yao
Bengio, Yoshua
Author_xml – sequence: 1
  givenname: Xu-Yao
  surname: Zhang
  fullname: Zhang, Xu-Yao
  email: xyz@nlpr.ia.ac.cn
  organization: NLPR, Institute of Automation, Chinese Academy of Sciences, China
– sequence: 2
  givenname: Yoshua
  surname: Bengio
  fullname: Bengio, Yoshua
  email: yoshua.bengio@umontreal.ca
  organization: MILA, University of Montreal, Canada
– sequence: 3
  givenname: Cheng-Lin
  surname: Liu
  fullname: Liu, Cheng-Lin
  email: liucl@nlpr.ia.ac.cn
  organization: NLPR, Institute of Automation, Chinese Academy of Sciences, China
BookMark eNqFkEtPAjEUhRuDiYD-Axf9AzO203l0WJgQ4ishYaPrpo87ThE6pK0S_r0FXLnQVXvanHPv-SZo5AYHCN1SklNC67t1vpNRD-95kVROeE5IdYHGlDcsq2hZjNCYEEYzVhB2hSYhrAmhTfoYI1i5jXWApTN46LrTvU9i722M4PCiTy8BsO6llzqCxx7SJGejHdwMz7EetjsPPbhgvwCH-GkOpzAHe6zA6X4r_cc1uuzkJsDNzzlFb48Pr4vnbLl6elnMl5lmTRGzjnfStKpolGyZ4WXHCkoIKMUryXXLa1MoTmqgmpquVY3kbWlkK6E2uq2oYlNUnnO1H0Lw0Imdt2mBg6BEHFGJtTijEkdUgnCRUCXb7JdN2yiPDaOXdvOf-f5shlTsy4IXQdtUHIxNqKIwg_074BuOzYx3
CitedBy_id crossref_primary_10_3390_brainsci14050444
crossref_primary_10_1007_s10032_025_00512_2
crossref_primary_10_1109_ACCESS_2019_2930799
crossref_primary_10_1109_JPROC_2020_2989782
crossref_primary_10_37394_23201_2022_21_11
crossref_primary_10_31466_kfbd_1621840
crossref_primary_10_1016_j_compeleceng_2022_107857
crossref_primary_10_1016_j_patcog_2022_108859
crossref_primary_10_1016_j_patrec_2020_01_019
crossref_primary_10_1007_s42979_019_0001_4
crossref_primary_10_1002_widm_1255
crossref_primary_10_1007_s10796_021_10159_z
crossref_primary_10_1016_j_patcog_2020_107488
crossref_primary_10_3390_electronics12071693
crossref_primary_10_1109_JIOT_2019_2947448
crossref_primary_10_1088_1757_899X_530_1_012058
crossref_primary_10_1109_TNNLS_2019_2956965
crossref_primary_10_33889_IJMEMS_2022_7_5_042
crossref_primary_10_3390_app12146862
crossref_primary_10_20965_jaciii_2023_p0165
crossref_primary_10_1007_s11831_018_9278_z
crossref_primary_10_1016_j_patrec_2019_08_005
crossref_primary_10_3390_app14010225
crossref_primary_10_3390_app13031750
crossref_primary_10_1109_ACCESS_2020_2992614
crossref_primary_10_1016_j_patcog_2023_109534
crossref_primary_10_1016_j_patrec_2021_01_012
crossref_primary_10_1109_JBHI_2023_3238421
crossref_primary_10_1016_j_engappai_2020_103489
crossref_primary_10_20965_jaciii_2023_p0567
crossref_primary_10_1007_s40031_023_00917_9
crossref_primary_10_1109_TMM_2022_3143324
crossref_primary_10_1155_2022_5066994
crossref_primary_10_3390_app14198716
crossref_primary_10_11834_jig_220906
crossref_primary_10_4018_IJTHI_2019100106
crossref_primary_10_7717_peerj_cs_1093
crossref_primary_10_1007_s10032_018_0308_z
crossref_primary_10_1142_S0218001423500192
crossref_primary_10_1016_j_patcog_2024_111286
crossref_primary_10_1088_1742_6596_1684_1_012101
crossref_primary_10_1016_j_eij_2022_02_007
crossref_primary_10_1007_s11042_023_17987_y
crossref_primary_10_1049_iet_ipr_2019_0208
crossref_primary_10_1007_s11042_022_13228_w
crossref_primary_10_1049_joe_2019_0895
crossref_primary_10_1016_j_patcog_2019_07_002
crossref_primary_10_3390_info15090531
crossref_primary_10_1016_j_patcog_2018_01_013
crossref_primary_10_1016_j_patcog_2021_108513
crossref_primary_10_1007_s00500_019_04083_3
crossref_primary_10_1007_s10032_022_00419_2
crossref_primary_10_1016_j_gep_2022_119278
crossref_primary_10_3390_app13063500
crossref_primary_10_1007_s10462_020_09886_7
crossref_primary_10_1016_j_patcog_2023_109598
crossref_primary_10_1016_j_patrec_2019_11_028
crossref_primary_10_32604_cmc_2022_026531
crossref_primary_10_1016_j_patrec_2020_01_013
crossref_primary_10_1007_s00371_021_02230_2
crossref_primary_10_1155_2022_9297548
crossref_primary_10_1016_j_patcog_2020_107471
crossref_primary_10_1109_ACCESS_2019_2954475
crossref_primary_10_1007_s10032_020_00358_w
crossref_primary_10_1016_j_patcog_2018_10_029
crossref_primary_10_3233_JCM_226167
crossref_primary_10_1007_s10994_023_06450_6
crossref_primary_10_1109_ACCESS_2024_3455753
crossref_primary_10_1016_j_envpol_2020_115574
crossref_primary_10_1016_j_patcog_2018_07_029
crossref_primary_10_1016_j_chemolab_2017_12_010
crossref_primary_10_29109_gujsc_1141508
crossref_primary_10_1016_j_patcog_2018_11_003
crossref_primary_10_1016_j_patcog_2019_107025
crossref_primary_10_1186_s13677_020_0156_5
crossref_primary_10_1109_TPAMI_2017_2695539
crossref_primary_10_1016_j_patcog_2020_107722
crossref_primary_10_1080_21681163_2021_2018046
crossref_primary_10_1016_j_patcog_2021_108416
crossref_primary_10_1016_j_patrec_2017_02_011
crossref_primary_10_1016_j_patcog_2020_107566
crossref_primary_10_1109_ACCESS_2022_3206832
crossref_primary_10_1016_j_jksuci_2019_08_001
crossref_primary_10_1088_1742_6596_1651_1_012050
crossref_primary_10_1016_j_patcog_2022_108818
crossref_primary_10_1109_TMM_2022_3163517
crossref_primary_10_3390_app10113716
crossref_primary_10_1016_j_patcog_2017_09_044
crossref_primary_10_1007_s00371_023_02776_3
crossref_primary_10_1016_j_jksuci_2019_06_004
crossref_primary_10_1088_1742_6596_1820_1_012162
crossref_primary_10_20965_jaciii_2024_p0231
crossref_primary_10_1016_j_ins_2018_11_035
crossref_primary_10_1007_s10032_018_0311_4
crossref_primary_10_1051_e3sconf_202342601030
crossref_primary_10_1007_s00521_020_05261_3
crossref_primary_10_1016_j_patrec_2018_02_006
crossref_primary_10_1007_s11042_022_13114_5
crossref_primary_10_1016_j_patcog_2020_107697
crossref_primary_10_32604_cmc_2023_045741
crossref_primary_10_1007_s10032_022_00405_8
crossref_primary_10_1109_ACCESS_2024_3514319
crossref_primary_10_1016_j_patcog_2025_111373
crossref_primary_10_1016_j_eswa_2023_121881
crossref_primary_10_1007_s10032_021_00376_2
crossref_primary_10_1145_3364533
crossref_primary_10_1142_S0218001419530033
crossref_primary_10_1016_j_knosys_2023_110314
crossref_primary_10_1016_j_patcog_2021_107980
crossref_primary_10_1186_s13634_019_0636_2
crossref_primary_10_1145_3506700
crossref_primary_10_1016_j_patcog_2016_12_026
crossref_primary_10_1007_s00371_020_02032_y
crossref_primary_10_1111_cgf_142621
crossref_primary_10_1016_j_engappai_2024_109225
crossref_primary_10_1007_s00500_023_07883_w
crossref_primary_10_1016_j_patcog_2017_06_032
crossref_primary_10_1007_s00521_018_3854_x
crossref_primary_10_1021_acs_iecr_3c01212
crossref_primary_10_1088_1742_6596_1848_1_012015
crossref_primary_10_1049_iet_ipr_2017_0184
crossref_primary_10_1080_15481603_2018_1457201
crossref_primary_10_1109_TMM_2020_3025696
crossref_primary_10_1016_j_rser_2020_110223
crossref_primary_10_1007_s42979_022_01461_x
crossref_primary_10_1109_TMM_2023_3339589
crossref_primary_10_1145_3676883
crossref_primary_10_1007_s11042_019_7196_1
crossref_primary_10_14201_adcaij_31218
crossref_primary_10_1016_j_patcog_2023_109317
Cites_doi 10.1109/TPAMI.2012.239
10.1109/CVPR.2012.6248110
10.1016/S0031-3203(03)00085-2
10.1109/5.726791
10.1007/978-3-319-10593-2_34
10.1109/ACPR.2015.7486592
10.1109/ICFHR.2014.56
10.1117/12.2076119
10.1109/TPAMI.2005.18
10.1109/ICDAR.2015.7333746
10.1007/s11704-007-0012-5
10.1016/j.patcog.2016.04.007
10.1016/j.patcog.2012.06.021
10.1109/TPAMI.2007.1090
10.1109/ICDAR.2013.218
10.1109/TPAMI.2013.50
10.1109/ICDAR.2011.17
10.1109/CCPR.2010.5659229
10.1109/TNN.2004.824263
10.1609/aaai.v30i1.10465
10.1109/ICDAR.2011.291
10.1109/ICPR.2006.624
10.1109/TPAMI.2004.104
10.1109/34.57669
10.1109/TPAMI.2011.264
10.1162/neco.1995.7.6.1289
10.1016/0031-3203(93)90030-Z
10.1109/ICDAR.2015.7333822
10.1109/ICDAR.1997.620646
10.1109/ICDAR.2015.7333821
10.1109/CVPR.2016.90
10.1016/j.patcog.2013.01.036
10.25080/Majora-92bf1922-003
10.1109/34.824821
10.1109/TPAMI.1987.4767881
10.1109/ICPR.1988.28197
10.1007/s10032-014-0229-4
10.1038/nature14539
10.1109/DAS.2014.33
10.1109/PROC.1980.11675
10.1007/978-3-642-24797-2
10.1016/j.patcog.2005.04.019
10.1016/j.patcog.2008.03.015
10.1016/S0031-3203(96)00077-5
10.1109/ICDAR.2009.29
10.1109/34.990135
10.1109/ICDAR.2005.34
10.1016/S0031-3203(00)00018-2
10.1109/ICCV.2015.123
10.1109/TPAMI.2004.1262182
10.1109/ICDAR.2015.7333881
10.1109/CVPR.2015.7298594
10.1126/science.1127647
10.1109/ICDAR.2015.7333726
10.1109/ICDAR.2013.11
10.1038/323533a0
10.5244/C.29.150
10.1109/ICFHR.2014.49
10.1016/j.patcog.2013.01.021
10.1109/TPAMI.2002.1046151
10.1109/ICPR.2014.518
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2016.08.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 360
ExternalDocumentID 10_1016_j_patcog_2016_08_005
S0031320316302187
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-f8fad9b27ba93d84f32100ebb85a8c986d2b806e1c1df9b7a894da9ae6dc951b3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:07:47 EDT 2025
Thu Jul 03 08:46:12 EDT 2025
Fri Feb 23 02:25:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Handwriting recognition
Convolutional neural network
Offline
Online
Chinese characters
Directional feature map
Adaptation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-f8fad9b27ba93d84f32100ebb85a8c986d2b806e1c1df9b7a894da9ae6dc951b3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_patcog_2016_08_005
crossref_citationtrail_10_1016_j_patcog_2016_08_005
elsevier_sciencedirect_doi_10_1016_j_patcog_2016_08_005
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References X.-Y. Zhang, C.-L. Liu, Locally smoothed modified quadratic discriminant function, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 8–12.
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, in: Proceedings of IEEE, vol. 86, no. 11, 1998, pp. 2278–2324.
A. Graves, Supervised sequence labeling with recurrent neural networks, in: Studies in Computational Intelligence, Springer, 2012.
Bengio, Courville, Vincent (bib13) 2013; 35
J. Tsukumo and H. Tanaka, Classification of handprinted Chinese characters using non-linear normalization and correlation methods, in: Proceedings of International Conference on Pattern Recognition (ICPR), 1988, pp. 168–171.
Liu, Koga, Fujisawa (bib4) 2002; 24
Zhou, Wang, Tian, Liu, Nakagawa (bib5) 2013; 35
C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, Chinese handwriting recognition contest 2010, in: Proceedings of Chinese Conference on Pattern Recognition (CCPR), 2010.
W. Yang, L. Jin, M. Liu, Character-level Chinese writer identification using path signature feature, dropstroke and deep CNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015
Liu, Nakagawa (bib57) 2001; 34
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, DeCAF: a deep convolutional activation feature for generic visual recognition, in: Proceedings of International Conference on Machine Learning (ICML), 2014.
Zhang, Liu (bib64) 2013; 46
W. Yang, L. Jin, Z. Xie, Z. Feng, Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015.
S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, 2015
J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, T. Darrell, One-shot adaptation of supervised deep convolutional models, 2013
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of Python for Scientific Computing Conference (SciPy), 2010.
Liu, Yin, Wang, Wang (bib19) 2013; 46
Kim, Xie (bib42) 2015; 18
Hinton, Salakhutdinov (bib34) 2006; 313
B. Graham, Spatially-sparse convolutional neural networks, 2014
Fujisawa (bib33) 2008; 41
Wang, Yin, Liu (bib6) 2012; 34
Zhang, Liu (bib28) 2013; 35
B. Shi, X. Bai, C. Yao, An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition, 2015
Tappert, Suen, Wakahara (bib30) 1990; 12
Bengio, LeCun, Nohl, Burges (bib49) 1995; 7
Du, Huo (bib54) 2013; 46
Connell, Jain (bib27) 2002; 24
A. Maas, A. Hannun, A. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of International Conference on Machine Learning (ICML), 2013.
LeCun, Bengio, Hinton (bib35) 2015; 521
C.-L. Liu, High accuracy handwritten Chinese character recognition using quadratic classifiers with discriminative feature extraction, in: Proceedings of International Conference on Pattern Recognition (ICPR), 2006, pp. 942–945.
Liu, Sako, Fujisawa (bib66) 2004; 15
M. Okamoto, A. Nakamura, K. Yamamoto, On-line handwriting character recognition method with directional features and directional change features, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 1997, pp. 926–930.
K. Ding, G. Deng, L. Jin, An investigation of imaginary stroke technique for cursive online handwriting Chinese character recognition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2009, pp. 531–535.
Liu, Sako, Fujisawa (bib7) 2004; 26
M. Wang, Y. Chen, X. Wang, Recognition of handwritten characters in Chinese legal amounts by stacked autoencoders, in: Proceedings of International Conference on Pattern Recognition (ICPR), 2014.
C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, CASIA online and offline Chinese handwriting databases, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2011, pp. 37–41.
Liu, Marukawa (bib18) 2005; 38
Z. Zhong, L. Jin, Z. Xie, High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015.
P. He, W. Huang, Y. Qiao, C. Loy, X. Tang, Reading scene text in deep convolutional sequences, 2015
Heiden, Gren (bib63) 1997; 30
Rumelhart, Hinton, Williams (bib74) 1986; 323
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib68) 2014; 15
D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proceedings of Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3642–3649.
C.-L. Liu, F. Yin, Q.-F. Wang, D.-H. Wang, ICDAR 2011 Chinese handwriting recognition competition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2011, pp. 1464–1469.
B. Li, L. Peng, J. Ji, Historical Chinese character recognition method based on style transfer mapping, in: International Workshop on Document Analysis Systems (DAS), 2014, pp. 96–100.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 2015
Dai, Liu, Xiao (bib2) 2007; 1
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of Computer Vision and Pattern Recognition (CVPR), 2015.
C. Wu, W. Fan, Y. He, J. Sun, S. Naoi, Handwritten character recognition by alternately trained relaxation convolutional neural network, in: Proceedings of International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 291–296.
B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified activations in convolution network, 2015
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Proceedings of International Conference on Learning Representations (ICLR), 2015.
Liu, Nakashima, Sako, Fujisawa (bib60) 2003; 36
D. Ciresan, U. Meier, J. Masci, L. Gambardella, J. Schmidhuber, Flexible, high performance convolutional neural networks for image classification, in: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2011, pp. 1237–1242.
C.-L. Liu, H. Sako, H. Fujisawa, Handwritten Chinese character recognition: alternatives to nonlinear normalization, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2003, pp. 524–528.
Y. Wang, X. Li, C. Liu, X. Ding, Y. Chen, An MQDF-CNN hybrid model for offline handwritten Chinese character recognition, in: Proceedings of International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014.
Kimura, Takashina, Tsuruoka, Miyake (bib1) 1987; 1
Sarkar, Nagy (bib26) 2005; 27
W. Yang, L. Jin, D. Tao, Z. Xie, Z. Feng, DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition, 2015
X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), 2010, pp. 249–256.
C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. Tu, Deeply-supervised nets, in: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), 2015, pp. 562–570.
J. Feng, L. Peng, F. Lebourgeois, Gaussian process style transfer mapping for historical Chinese character recognition, in: Proceedings of SPIE, Document Recognition and Retrieval, 2015.
R. Messina, J. Louradour, Segmentation-free handwritten Chinese text recognition with LSTM-RNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015.
C. Suen, M. Berthod, S. Mori, Automatic recognition of handprinted characters: the state of the art, in: Proceedings of IEEE, vol. 68, no. 4, 1980, pp. 469–487.
A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep convolutional neural networks, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105.
L. Chen, S. Wang, W. Fan, J. Sun, S. Naoi, Beyond human recognition: A CNN-based framework for handwritten character recognition, in: Proceedings of Asian Conference on Pattern Recognition (ACPR), 2015.
B. Graham, Sparse arrays of signatures for online character recognition, 2013
Z. Bai, Q. Huo, A study on the use of 8-directional features for online handwritten Chinese character recognition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 262–266.
A. Graves, J. Schmidhuber, Offline handwriting recognition with multidimensional recurrent neural networks, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2008, pp. 545–552.
D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Proceedings of International Conference on Learning Representations (ICLR), 2015.
D. Ciresan, J. Schmidhuber, Multi-column deep neural networks for offline handwritten Chinese character classification, 2013
Plamondon, Srihari (bib32) 2000; 22
F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, Y. Bengio, Theano: new features and speed improvements, in: NIPS Deep Learning Workshop, 2012.
Liu, Jaeger, Nakagawa (bib3) 2004; 26
F. Yin, Q.-F. Wang, X.-Y. Zhang, C.-L. Liu, ICDAR 2013 Chinese handwriting recognition competition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 1095–1101.
K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, 2015
C.-L. Liu, X.-D. Zhou, Online Japanese character recognition using trajectory-based normalization and direction feature
10.1016/j.patcog.2016.08.005_bib38
Hinton (10.1016/j.patcog.2016.08.005_bib34) 2006; 313
10.1016/j.patcog.2016.08.005_bib37
Heiden (10.1016/j.patcog.2016.08.005_bib63) 1997; 30
Kimura (10.1016/j.patcog.2016.08.005_bib1) 1987; 1
Connell (10.1016/j.patcog.2016.08.005_bib27) 2002; 24
10.1016/j.patcog.2016.08.005_bib39
Du (10.1016/j.patcog.2016.08.005_bib54) 2013; 46
10.1016/j.patcog.2016.08.005_bib78
10.1016/j.patcog.2016.08.005_bib77
10.1016/j.patcog.2016.08.005_bib36
Liu (10.1016/j.patcog.2016.08.005_bib18) 2005; 38
10.1016/j.patcog.2016.08.005_bib79
Liu (10.1016/j.patcog.2016.08.005_bib3) 2004; 26
Liu (10.1016/j.patcog.2016.08.005_bib57) 2001; 34
Liu (10.1016/j.patcog.2016.08.005_bib19) 2013; 46
Liu (10.1016/j.patcog.2016.08.005_bib66) 2004; 15
10.1016/j.patcog.2016.08.005_bib41
Liu (10.1016/j.patcog.2016.08.005_bib60) 2003; 36
Bengio (10.1016/j.patcog.2016.08.005_bib13) 2013; 35
10.1016/j.patcog.2016.08.005_bib40
Bengio (10.1016/j.patcog.2016.08.005_bib49) 1995; 7
10.1016/j.patcog.2016.08.005_bib43
10.1016/j.patcog.2016.08.005_bib81
10.1016/j.patcog.2016.08.005_bib80
10.1016/j.patcog.2016.08.005_bib83
Zhang (10.1016/j.patcog.2016.08.005_bib64) 2013; 46
10.1016/j.patcog.2016.08.005_bib82
10.1016/j.patcog.2016.08.005_bib48
Zhou (10.1016/j.patcog.2016.08.005_bib5) 2013; 35
10.1016/j.patcog.2016.08.005_bib45
10.1016/j.patcog.2016.08.005_bib44
Wang (10.1016/j.patcog.2016.08.005_bib6) 2012; 34
10.1016/j.patcog.2016.08.005_bib47
Hildebrandt (10.1016/j.patcog.2016.08.005_bib31) 1993; 26
10.1016/j.patcog.2016.08.005_bib46
Liu (10.1016/j.patcog.2016.08.005_bib22) 2007; 29
10.1016/j.patcog.2016.08.005_bib52
10.1016/j.patcog.2016.08.005_bib51
10.1016/j.patcog.2016.08.005_bib10
10.1016/j.patcog.2016.08.005_bib53
10.1016/j.patcog.2016.08.005_bib50
Sarkar (10.1016/j.patcog.2016.08.005_bib26) 2005; 27
10.1016/j.patcog.2016.08.005_bib16
10.1016/j.patcog.2016.08.005_bib15
10.1016/j.patcog.2016.08.005_bib59
10.1016/j.patcog.2016.08.005_bib17
10.1016/j.patcog.2016.08.005_bib12
10.1016/j.patcog.2016.08.005_bib56
10.1016/j.patcog.2016.08.005_bib11
10.1016/j.patcog.2016.08.005_bib55
Rumelhart (10.1016/j.patcog.2016.08.005_bib74) 1986; 323
10.1016/j.patcog.2016.08.005_bib14
10.1016/j.patcog.2016.08.005_bib58
LeCun (10.1016/j.patcog.2016.08.005_bib35) 2015; 521
10.1016/j.patcog.2016.08.005_bib62
10.1016/j.patcog.2016.08.005_bib21
10.1016/j.patcog.2016.08.005_bib65
10.1016/j.patcog.2016.08.005_bib20
10.1016/j.patcog.2016.08.005_bib61
10.1016/j.patcog.2016.08.005_bib29
Zhang (10.1016/j.patcog.2016.08.005_bib28) 2013; 35
Plamondon (10.1016/j.patcog.2016.08.005_bib32) 2000; 22
10.1016/j.patcog.2016.08.005_bib23
10.1016/j.patcog.2016.08.005_bib67
Kim (10.1016/j.patcog.2016.08.005_bib42) 2015; 18
Srivastava (10.1016/j.patcog.2016.08.005_bib68) 2014; 15
10.1016/j.patcog.2016.08.005_bib25
10.1016/j.patcog.2016.08.005_bib69
10.1016/j.patcog.2016.08.005_bib24
Liu (10.1016/j.patcog.2016.08.005_bib7) 2004; 26
Tappert (10.1016/j.patcog.2016.08.005_bib30) 1990; 12
10.1016/j.patcog.2016.08.005_bib9
10.1016/j.patcog.2016.08.005_bib8
Fujisawa (10.1016/j.patcog.2016.08.005_bib33) 2008; 41
Liu (10.1016/j.patcog.2016.08.005_bib4) 2002; 24
Dai (10.1016/j.patcog.2016.08.005_bib2) 2007; 1
10.1016/j.patcog.2016.08.005_bib73
10.1016/j.patcog.2016.08.005_bib76
10.1016/j.patcog.2016.08.005_bib75
10.1016/j.patcog.2016.08.005_bib70
10.1016/j.patcog.2016.08.005_bib72
10.1016/j.patcog.2016.08.005_bib71
References_xml – volume: 26
  start-page: 205
  year: 1993
  end-page: 225
  ident: bib31
  article-title: Optical recognition of handwritten Chinese characters
  publication-title: Pattern Recognit.
– reference: A. Graves, Supervised sequence labeling with recurrent neural networks, in: Studies in Computational Intelligence, Springer, 2012.
– reference: C. Suen, M. Berthod, S. Mori, Automatic recognition of handprinted characters: the state of the art, in: Proceedings of IEEE, vol. 68, no. 4, 1980, pp. 469–487.
– reference: C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. Tu, Deeply-supervised nets, in: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), 2015, pp. 562–570.
– volume: 1
  start-page: 149
  year: 1987
  end-page: 153
  ident: bib1
  article-title: Modified quadratic discriminant functions and the application to Chinese character recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 329
  year: 2002
  end-page: 346
  ident: bib27
  article-title: Writer adaptation for online handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: M. Jaderberg, A. Vedaldi, A. Zisserman, Deep features for text spotting, in: Proceedings of European Conference on Computer Vision (ECCV), 2014.
– reference: M. Okamoto, A. Nakamura, K. Yamamoto, On-line handwriting character recognition method with directional features and directional change features, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 1997, pp. 926–930.
– reference: M. He, S. Zhang, H. Mao, L. Jin, Recognition confidence analysis of handwritten Chinese character with CNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015.
– reference: B. Graham, Sparse arrays of signatures for online character recognition, 2013,
– reference: J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, DeCAF: a deep convolutional activation feature for generic visual recognition, in: Proceedings of International Conference on Machine Learning (ICML), 2014.
– reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), 2010, pp. 249–256.
– reference: S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, 2015,
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Proceedings of International Conference on Learning Representations (ICLR), 2015.
– reference: J. Feng, L. Peng, F. Lebourgeois, Gaussian process style transfer mapping for historical Chinese character recognition, in: Proceedings of SPIE, Document Recognition and Retrieval, 2015.
– reference: D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Proceedings of International Conference on Learning Representations (ICLR), 2015.
– volume: 22
  start-page: 63
  year: 2000
  end-page: 84
  ident: bib32
  article-title: Online and offline handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, T. Darrell, One-shot adaptation of supervised deep convolutional models, 2013,
– reference: D. Ciresan, U. Meier, J. Masci, L. Gambardella, J. Schmidhuber, Flexible, high performance convolutional neural networks for image classification, in: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2011, pp. 1237–1242.
– reference: Z. Zhong, L. Jin, Z. Xie, High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib35
  article-title: Deep learning
  publication-title: Nature
– reference: M. Wang, Y. Chen, X. Wang, Recognition of handwritten characters in Chinese legal amounts by stacked autoencoders, in: Proceedings of International Conference on Pattern Recognition (ICPR), 2014.
– reference: R. Messina, J. Louradour, Segmentation-free handwritten Chinese text recognition with LSTM-RNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015.
– volume: 34
  start-page: 601
  year: 2001
  end-page: 615
  ident: bib57
  article-title: Evaluation of prototype learning algorithms for nearest neighbor classifier in application to handwritten character recognition
  publication-title: Pattern Recognit.
– reference: M. Long, Y. Cao, J. Wang, M. Jordan, Learning transferable features with deep adaptation networks, in: Proceedings of International Conference on Machine Learning (ICML), 2015.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib34
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 36
  start-page: 2271
  year: 2003
  end-page: 2285
  ident: bib60
  article-title: Handwritten digit recognition
  publication-title: Pattern Recognit.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 2015,
– volume: 34
  start-page: 1469
  year: 2012
  end-page: 1481
  ident: bib6
  article-title: Handwritten Chinese text recognition by integrating multiple contexts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proceedings of Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3642–3649.
– reference: L. Chen, S. Wang, W. Fan, J. Sun, S. Naoi, Beyond human recognition: A CNN-based framework for handwritten character recognition, in: Proceedings of Asian Conference on Pattern Recognition (ACPR), 2015.
– reference: J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of Python for Scientific Computing Conference (SciPy), 2010.
– reference: M. Zeiler, AdaDelta: an adaptive learning rate method, 2012,
– reference: W. Yang, L. Jin, Z. Xie, Z. Feng, Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015.
– reference: Y. Wang, X. Li, C. Liu, X. Ding, Y. Chen, An MQDF-CNN hybrid model for offline handwritten Chinese character recognition, in: Proceedings of International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014.
– volume: 46
  start-page: 2313
  year: 2013
  end-page: 2322
  ident: bib54
  article-title: A discriminative linear regression approach to adaptation of multi-prototype based classifiers and its applications for Chinese OCR
  publication-title: Pattern Recognit.
– volume: 46
  start-page: 2599
  year: 2013
  end-page: 2611
  ident: bib64
  article-title: Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition
  publication-title: Pattern Recognit.
– volume: 38
  start-page: 2242
  year: 2005
  end-page: 2255
  ident: bib18
  article-title: Pseudo two-dimensional shape normalization methods for handwritten Chinese character recognition
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib42
  article-title: Handwritten Hangul recognition using deep convolutional neural networks
  publication-title: Int. J. Doc. Anal. Recognit.
– reference: W. Yang, L. Jin, M. Liu, Character-level Chinese writer identification using path signature feature, dropstroke and deep CNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015
– reference: C. Wu, W. Fan, Y. He, J. Sun, S. Naoi, Handwritten character recognition by alternately trained relaxation convolutional neural network, in: Proceedings of International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 291–296.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib13
  article-title: Representation learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: F. Yin, Q.-F. Wang, X.-Y. Zhang, C.-L. Liu, ICDAR 2013 Chinese handwriting recognition competition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 1095–1101.
– volume: 15
  start-page: 430
  year: 2004
  end-page: 444
  ident: bib66
  article-title: Discriminative learning quadratic discriminant function for handwriting recognition
  publication-title: IEEE Trans. Neural Netw.
– volume: 26
  start-page: 198
  year: 2004
  end-page: 213
  ident: bib3
  article-title: Online recognition of Chinese characters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: C.-L. Liu, F. Yin, Q.-F. Wang, D.-H. Wang, ICDAR 2011 Chinese handwriting recognition competition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2011, pp. 1464–1469.
– volume: 29
  start-page: 1465
  year: 2007
  end-page: 1469
  ident: bib22
  article-title: Normalization-cooperated gradient feature extraction for handwritten character recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 12
  start-page: 787
  year: 1990
  end-page: 808
  ident: bib30
  article-title: The state of the art in online handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: B. Li, L. Peng, J. Ji, Historical Chinese character recognition method based on style transfer mapping, in: International Workshop on Document Analysis Systems (DAS), 2014, pp. 96–100.
– reference: Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, in: Proceedings of IEEE, vol. 86, no. 11, 1998, pp. 2278–2324.
– reference: A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep convolutional neural networks, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105.
– reference: W. Yang, L. Jin, D. Tao, Z. Xie, Z. Feng, DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition, 2015,
– reference: K. Ding, G. Deng, L. Jin, An investigation of imaginary stroke technique for cursive online handwriting Chinese character recognition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2009, pp. 531–535.
– reference: C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, Chinese handwriting recognition contest 2010, in: Proceedings of Chinese Conference on Pattern Recognition (CCPR), 2010.
– volume: 26
  start-page: 1395
  year: 2004
  end-page: 1407
  ident: bib7
  article-title: Effects of classifier structures and training regimes on integrated segmentation and recognition of handwritten numeral strings
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 46
  start-page: 155
  year: 2013
  end-page: 162
  ident: bib19
  article-title: Online and offline handwritten Chinese character recognition
  publication-title: Pattern Recognit.
– reference: B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified activations in convolution network, 2015,
– volume: 27
  start-page: 88
  year: 2005
  end-page: 98
  ident: bib26
  article-title: Style consistent classification of isogenous patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: P. He, W. Huang, Y. Qiao, C. Loy, X. Tang, Reading scene text in deep convolutional sequences, 2015,
– reference: C.-L. Liu, High accuracy handwritten Chinese character recognition using quadratic classifiers with discriminative feature extraction, in: Proceedings of International Conference on Pattern Recognition (ICPR), 2006, pp. 942–945.
– reference: J. Tsukumo and H. Tanaka, Classification of handprinted Chinese characters using non-linear normalization and correlation methods, in: Proceedings of International Conference on Pattern Recognition (ICPR), 1988, pp. 168–171.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib74
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– reference: B. Shi, X. Bai, C. Yao, An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition, 2015,
– reference: A. Maas, A. Hannun, A. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of International Conference on Machine Learning (ICML), 2013.
– reference: F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, Y. Bengio, Theano: new features and speed improvements, in: NIPS Deep Learning Workshop, 2012.
– reference: B. Graham, Spatially-sparse convolutional neural networks, 2014,
– reference: C.-L. Liu, H. Sako, H. Fujisawa, Handwritten Chinese character recognition: alternatives to nonlinear normalization, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2003, pp. 524–528.
– volume: 35
  start-page: 2484
  year: 2013
  end-page: 2497
  ident: bib5
  article-title: Handwritten Chinese/Japanese text recognition using semi-Markov conditional random fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 41
  start-page: 2435
  year: 2008
  end-page: 2446
  ident: bib33
  article-title: Forty years of research in character and document recognition
  publication-title: Pattern Recognit.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib68
  article-title: Dropout
  publication-title: J. Mach. Learn. Res.
– reference: Z. Bai, Q. Huo, A study on the use of 8-directional features for online handwritten Chinese character recognition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 262–266.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, 2015,
– reference: C.-L. Liu, X.-D. Zhou, Online Japanese character recognition using trajectory-based normalization and direction feature extraction, in: Proceedings of International Workshop on Frontiers in Handwriting Recognition (IWFHR), 2006, pp. 217–222.
– reference: A. Graves, J. Schmidhuber, Offline handwriting recognition with multidimensional recurrent neural networks, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2008, pp. 545–552.
– volume: 35
  start-page: 1773
  year: 2013
  end-page: 1787
  ident: bib28
  article-title: Writer adaptation with style transfer mapping
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: D. Ciresan, J. Schmidhuber, Multi-column deep neural networks for offline handwritten Chinese character classification, 2013,
– volume: 7
  start-page: 1289
  year: 1995
  end-page: 1303
  ident: bib49
  article-title: LeRec
  publication-title: Neural Comput.
– reference: C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, CASIA online and offline Chinese handwriting databases, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2011, pp. 37–41.
– reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of Computer Vision and Pattern Recognition (CVPR), 2015.
– volume: 30
  start-page: 273
  year: 1997
  end-page: 279
  ident: bib63
  article-title: The box-cox metric for nearest neighbor classification improvement
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 126
  year: 2007
  end-page: 136
  ident: bib2
  article-title: Chinese character recognition
  publication-title: Front. Comput. Sci. China
– volume: 24
  start-page: 1425
  year: 2002
  end-page: 1437
  ident: bib4
  article-title: Lexicon-driven segmentation and recognition of handwritten character strings for Japanese address reading
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: X.-Y. Zhang, C.-L. Liu, Locally smoothed modified quadratic discriminant function, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 8–12.
– volume: 35
  start-page: 1773
  issue: 7
  year: 2013
  ident: 10.1016/j.patcog.2016.08.005_bib28
  article-title: Writer adaptation with style transfer mapping
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.239
– ident: 10.1016/j.patcog.2016.08.005_bib37
  doi: 10.1109/CVPR.2012.6248110
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.patcog.2016.08.005_bib68
  article-title: Dropout
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 2271
  issue: 10
  year: 2003
  ident: 10.1016/j.patcog.2016.08.005_bib60
  article-title: Handwritten digit recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(03)00085-2
– ident: 10.1016/j.patcog.2016.08.005_bib78
– ident: 10.1016/j.patcog.2016.08.005_bib59
– ident: 10.1016/j.patcog.2016.08.005_bib61
– ident: 10.1016/j.patcog.2016.08.005_bib36
  doi: 10.1109/5.726791
– ident: 10.1016/j.patcog.2016.08.005_bib48
  doi: 10.1007/978-3-319-10593-2_34
– ident: 10.1016/j.patcog.2016.08.005_bib41
  doi: 10.1109/ACPR.2015.7486592
– ident: 10.1016/j.patcog.2016.08.005_bib40
  doi: 10.1109/ICFHR.2014.56
– ident: 10.1016/j.patcog.2016.08.005_bib56
  doi: 10.1117/12.2076119
– ident: 10.1016/j.patcog.2016.08.005_bib69
– ident: 10.1016/j.patcog.2016.08.005_bib23
– ident: 10.1016/j.patcog.2016.08.005_bib17
– volume: 27
  start-page: 88
  issue: 1
  year: 2005
  ident: 10.1016/j.patcog.2016.08.005_bib26
  article-title: Style consistent classification of isogenous patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.18
– ident: 10.1016/j.patcog.2016.08.005_bib51
  doi: 10.1109/ICDAR.2015.7333746
– volume: 1
  start-page: 126
  issue: 2
  year: 2007
  ident: 10.1016/j.patcog.2016.08.005_bib2
  article-title: Chinese character recognition
  publication-title: Front. Comput. Sci. China
  doi: 10.1007/s11704-007-0012-5
– ident: 10.1016/j.patcog.2016.08.005_bib43
  doi: 10.1016/j.patcog.2016.04.007
– volume: 46
  start-page: 155
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2016.08.005_bib19
  article-title: Online and offline handwritten Chinese character recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.06.021
– volume: 29
  start-page: 1465
  issue: 8
  year: 2007
  ident: 10.1016/j.patcog.2016.08.005_bib22
  article-title: Normalization-cooperated gradient feature extraction for handwritten character recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1090
– ident: 10.1016/j.patcog.2016.08.005_bib10
  doi: 10.1109/ICDAR.2013.218
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.patcog.2016.08.005_bib13
  article-title: Representation learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– ident: 10.1016/j.patcog.2016.08.005_bib76
  doi: 10.1109/ICDAR.2011.17
– ident: 10.1016/j.patcog.2016.08.005_bib8
  doi: 10.1109/CCPR.2010.5659229
– volume: 15
  start-page: 430
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2016.08.005_bib66
  article-title: Discriminative learning quadratic discriminant function for handwriting recognition
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.824263
– ident: 10.1016/j.patcog.2016.08.005_bib77
– ident: 10.1016/j.patcog.2016.08.005_bib25
– ident: 10.1016/j.patcog.2016.08.005_bib52
  doi: 10.1609/aaai.v30i1.10465
– ident: 10.1016/j.patcog.2016.08.005_bib9
  doi: 10.1109/ICDAR.2011.291
– ident: 10.1016/j.patcog.2016.08.005_bib65
  doi: 10.1109/ICPR.2006.624
– volume: 26
  start-page: 1395
  issue: 11
  year: 2004
  ident: 10.1016/j.patcog.2016.08.005_bib7
  article-title: Effects of classifier structures and training regimes on integrated segmentation and recognition of handwritten numeral strings
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.104
– volume: 12
  start-page: 787
  issue: 8
  year: 1990
  ident: 10.1016/j.patcog.2016.08.005_bib30
  article-title: The state of the art in online handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.57669
– volume: 34
  start-page: 1469
  issue: 8
  year: 2012
  ident: 10.1016/j.patcog.2016.08.005_bib6
  article-title: Handwritten Chinese text recognition by integrating multiple contexts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.264
– volume: 35
  start-page: 2484
  issue: 10
  year: 2013
  ident: 10.1016/j.patcog.2016.08.005_bib5
  article-title: Handwritten Chinese/Japanese text recognition using semi-Markov conditional random fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  start-page: 1289
  issue: 6
  year: 1995
  ident: 10.1016/j.patcog.2016.08.005_bib49
  article-title: LeRec
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1289
– volume: 26
  start-page: 205
  issue: 2
  year: 1993
  ident: 10.1016/j.patcog.2016.08.005_bib31
  article-title: Optical recognition of handwritten Chinese characters
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(93)90030-Z
– ident: 10.1016/j.patcog.2016.08.005_bib14
  doi: 10.1109/ICDAR.2015.7333822
– ident: 10.1016/j.patcog.2016.08.005_bib20
  doi: 10.1109/ICDAR.1997.620646
– ident: 10.1016/j.patcog.2016.08.005_bib44
  doi: 10.1109/ICDAR.2015.7333821
– ident: 10.1016/j.patcog.2016.08.005_bib73
– ident: 10.1016/j.patcog.2016.08.005_bib83
  doi: 10.1109/CVPR.2016.90
– volume: 46
  start-page: 2599
  issue: 9
  year: 2013
  ident: 10.1016/j.patcog.2016.08.005_bib64
  article-title: Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.01.036
– ident: 10.1016/j.patcog.2016.08.005_bib80
  doi: 10.25080/Majora-92bf1922-003
– volume: 22
  start-page: 63
  issue: 1
  year: 2000
  ident: 10.1016/j.patcog.2016.08.005_bib32
  article-title: Online and offline handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.824821
– ident: 10.1016/j.patcog.2016.08.005_bib53
– volume: 1
  start-page: 149
  year: 1987
  ident: 10.1016/j.patcog.2016.08.005_bib1
  article-title: Modified quadratic discriminant functions and the application to Chinese character recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1987.4767881
– ident: 10.1016/j.patcog.2016.08.005_bib16
  doi: 10.1109/ICPR.1988.28197
– volume: 18
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.patcog.2016.08.005_bib42
  article-title: Handwritten Hangul recognition using deep convolutional neural networks
  publication-title: Int. J. Doc. Anal. Recognit.
  doi: 10.1007/s10032-014-0229-4
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.patcog.2016.08.005_bib35
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.patcog.2016.08.005_bib55
  doi: 10.1109/DAS.2014.33
– ident: 10.1016/j.patcog.2016.08.005_bib29
  doi: 10.1109/PROC.1980.11675
– ident: 10.1016/j.patcog.2016.08.005_bib82
  doi: 10.1007/978-3-642-24797-2
– volume: 38
  start-page: 2242
  issue: 12
  year: 2005
  ident: 10.1016/j.patcog.2016.08.005_bib18
  article-title: Pseudo two-dimensional shape normalization methods for handwritten Chinese character recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.04.019
– volume: 41
  start-page: 2435
  issue: 8
  year: 2008
  ident: 10.1016/j.patcog.2016.08.005_bib33
  article-title: Forty years of research in character and document recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.03.015
– ident: 10.1016/j.patcog.2016.08.005_bib72
– volume: 30
  start-page: 273
  issue: 2
  year: 1997
  ident: 10.1016/j.patcog.2016.08.005_bib63
  article-title: The box-cox metric for nearest neighbor classification improvement
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00077-5
– ident: 10.1016/j.patcog.2016.08.005_bib11
– ident: 10.1016/j.patcog.2016.08.005_bib62
  doi: 10.1109/ICDAR.2009.29
– volume: 24
  start-page: 329
  issue: 3
  year: 2002
  ident: 10.1016/j.patcog.2016.08.005_bib27
  article-title: Writer adaptation for online handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990135
– ident: 10.1016/j.patcog.2016.08.005_bib21
  doi: 10.1109/ICDAR.2005.34
– volume: 34
  start-page: 601
  issue: 3
  year: 2001
  ident: 10.1016/j.patcog.2016.08.005_bib57
  article-title: Evaluation of prototype learning algorithms for nearest neighbor classifier in application to handwritten character recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(00)00018-2
– ident: 10.1016/j.patcog.2016.08.005_bib70
  doi: 10.1109/ICCV.2015.123
– volume: 26
  start-page: 198
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2016.08.005_bib3
  article-title: Online recognition of Chinese characters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1262182
– ident: 10.1016/j.patcog.2016.08.005_bib38
  doi: 10.1109/CVPR.2012.6248110
– ident: 10.1016/j.patcog.2016.08.005_bib79
– ident: 10.1016/j.patcog.2016.08.005_bib58
– ident: 10.1016/j.patcog.2016.08.005_bib15
  doi: 10.1109/ICDAR.2015.7333881
– ident: 10.1016/j.patcog.2016.08.005_bib81
– ident: 10.1016/j.patcog.2016.08.005_bib75
– ident: 10.1016/j.patcog.2016.08.005_bib24
  doi: 10.1109/CVPR.2015.7298594
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.patcog.2016.08.005_bib34
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 10.1016/j.patcog.2016.08.005_bib46
  doi: 10.1109/ICDAR.2015.7333726
– ident: 10.1016/j.patcog.2016.08.005_bib67
  doi: 10.1109/ICDAR.2013.11
– volume: 323
  start-page: 533
  issue: 9
  year: 1986
  ident: 10.1016/j.patcog.2016.08.005_bib74
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 10.1016/j.patcog.2016.08.005_bib39
  doi: 10.5244/C.29.150
– ident: 10.1016/j.patcog.2016.08.005_bib45
  doi: 10.1109/ICFHR.2014.49
– volume: 46
  start-page: 2313
  issue: 8
  year: 2013
  ident: 10.1016/j.patcog.2016.08.005_bib54
  article-title: A discriminative linear regression approach to adaptation of multi-prototype based classifiers and its applications for Chinese OCR
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.01.021
– volume: 24
  start-page: 1425
  issue: 11
  year: 2002
  ident: 10.1016/j.patcog.2016.08.005_bib4
  article-title: Lexicon-driven segmentation and recognition of handwritten character strings for Japanese address reading
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1046151
– ident: 10.1016/j.patcog.2016.08.005_bib47
  doi: 10.1109/ICPR.2014.518
– ident: 10.1016/j.patcog.2016.08.005_bib71
– ident: 10.1016/j.patcog.2016.08.005_bib50
– ident: 10.1016/j.patcog.2016.08.005_bib12
SSID ssj0017142
Score 2.6081154
Snippet Recent deep learning based methods have achieved the state-of-the-art performance for handwritten Chinese character recognition (HCCR) by learning...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 348
SubjectTerms Adaptation
Chinese characters
Convolutional neural network
Directional feature map
Handwriting recognition
Offline
Online
Title Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark
URI https://dx.doi.org/10.1016/j.patcog.2016.08.005
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QNX0yyOY3OrKqoCoicq9RbF9oSWJalKETe-HU-WCiQEEpcoijxJNHFmxtab9wg5B4GFAmiWxQIYj7liGsAwrRV4ESYlH7uR78ZiNOE302jaIoOmFwZhlXXsr2J6Ga3rK73am73FfI49vkg76A4ixESFHeWcxzjLLz7WMA_U964Yw0Of4eimfa7EeC1cuCseEOAlSiJPFLH7KT19STnDHbJV14q0X73OLmlBvke2Gx0GWv-W-wQqvlCa5pYWWVae44b4u1v4u5KYokY2vAI1DTkzXcOGivyS9iniypcwq7DstGScLW_mSm6q3TNmL-ny6YBMhlf3gxGr5ROYCeNgxTKZpVbpINapCq3kGbbreKC1jFJplBQ20NIT4BvfZkrHqVTcIlm3sMbVXTo8JO28yOGIUFA-pJ7xhUtmPMysSqNAI7lbzA0XUnZI2HgtMTW3OEpcPCcNiOwxqXydoK8TVL70og5ha6tFxa3xx_i4-SDJtzmSuPD_q-Xxvy1PyGaAibzcdDkl7dXyDc5cGbLS3XKedclG__p2NP4EQp3e3w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOcCFHVFWH7iaZnEcm1tVURVoe2ql3qLYmdCypFUp4sa348lSgYRA4hJFkSeJJvbMxHrzHiGXILBQAM3SUADjIVdMAximtQInwKTkYjdyfyC6I343DsY10q56YRBWWcb-Iqbn0bq80iy92ZxPp9jji7SD9iB8TFThGlnndvmijMHVxwrngQLfBWW47zIcXvXP5SCvuY13swdEeImcyRNV7H7KT19yTmeHbJXFIm0V77NLapDtke1KiIGW63KfQEEYSuMsobM0zc9xR_zd_vnbmpiiSDa8AjUVOzNd4YZm2TVtUQSWL2BSgNlpTjmb38zW3FTbZ0xe4sXTARl1bobtLiv1E5jxQ2_JUpnGidJeqGPlJ5Kn2K_jgNYyiKVRUiSelo4A17hJqnQYS8UTZOsWibGFl_YPST2bZXBEKCgXYse4wmYz7qeJigNPI7tbyA0XUjaIX3ktMiW5OGpcPEcViuwxKnwdoa8jlL50ggZhK6t5Qa7xx_iw-iDRt0kS2fj_q-Xxvy0vyEZ32O9FvdvB_QnZ9DCr5zswp6S-XLzBma1Jlvo8n3OfdAXgbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+and+offline+handwritten+Chinese+character+recognition%3A+A+comprehensive+study+and+new+benchmark&rft.jtitle=Pattern+recognition&rft.au=Zhang%2C+Xu-Yao&rft.au=Bengio%2C+Yoshua&rft.au=Liu%2C+Cheng-Lin&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=61&rft.spage=348&rft.epage=360&rft_id=info:doi/10.1016%2Fj.patcog.2016.08.005&rft.externalDocID=S0031320316302187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon