Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark
Recent deep learning based methods have achieved the state-of-the-art performance for handwritten Chinese character recognition (HCCR) by learning discriminative representations directly from raw data. Nevertheless, we believe that the long-and-well investigated domain-specific knowledge should stil...
Saved in:
Published in | Pattern recognition Vol. 61; pp. 348 - 360 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent deep learning based methods have achieved the state-of-the-art performance for handwritten Chinese character recognition (HCCR) by learning discriminative representations directly from raw data. Nevertheless, we believe that the long-and-well investigated domain-specific knowledge should still help to boost the performance of HCCR. By integrating the traditional normalization-cooperated direction-decomposed feature map (directMap) with the deep convolutional neural network (convNet), we are able to obtain new highest accuracies for both online and offline HCCR on the ICDAR-2013 competition database. With this new framework, we can eliminate the needs for data augmentation and model ensemble, which are widely used in other systems to achieve their best results. This makes our framework to be efficient and effective for both training and testing. Furthermore, although directMap+convNet can achieve the best results and surpass human-level performance, we show that writer adaptation in this case is still effective. A new adaptation layer is proposed to reduce the mismatch between training and test data on a particular source layer. The adaptation process can be efficiently and effectively implemented in an unsupervised manner. By adding the adaptation layer into the pre-trained convNet, it can adapt to the new handwriting styles of particular writers, and the recognition accuracy can be further improved consistently and significantly. This paper gives an overview and comparison of recent deep learning based approaches for HCCR, and also sets new benchmarks for both online and offline HCCR.
•Comprehensive study of handwritten Chinese character recognition (HCCR).•New benchmarks for both online and offline HCCR under a general framework.•Combination of convNet and domain-specific knowledge of directMap.•Writer adaptation of deep convolutional neural networks.•State-of-the-art performance on the ICDAR-2013 competition database. |
---|---|
AbstractList | Recent deep learning based methods have achieved the state-of-the-art performance for handwritten Chinese character recognition (HCCR) by learning discriminative representations directly from raw data. Nevertheless, we believe that the long-and-well investigated domain-specific knowledge should still help to boost the performance of HCCR. By integrating the traditional normalization-cooperated direction-decomposed feature map (directMap) with the deep convolutional neural network (convNet), we are able to obtain new highest accuracies for both online and offline HCCR on the ICDAR-2013 competition database. With this new framework, we can eliminate the needs for data augmentation and model ensemble, which are widely used in other systems to achieve their best results. This makes our framework to be efficient and effective for both training and testing. Furthermore, although directMap+convNet can achieve the best results and surpass human-level performance, we show that writer adaptation in this case is still effective. A new adaptation layer is proposed to reduce the mismatch between training and test data on a particular source layer. The adaptation process can be efficiently and effectively implemented in an unsupervised manner. By adding the adaptation layer into the pre-trained convNet, it can adapt to the new handwriting styles of particular writers, and the recognition accuracy can be further improved consistently and significantly. This paper gives an overview and comparison of recent deep learning based approaches for HCCR, and also sets new benchmarks for both online and offline HCCR.
•Comprehensive study of handwritten Chinese character recognition (HCCR).•New benchmarks for both online and offline HCCR under a general framework.•Combination of convNet and domain-specific knowledge of directMap.•Writer adaptation of deep convolutional neural networks.•State-of-the-art performance on the ICDAR-2013 competition database. |
Author | Liu, Cheng-Lin Zhang, Xu-Yao Bengio, Yoshua |
Author_xml | – sequence: 1 givenname: Xu-Yao surname: Zhang fullname: Zhang, Xu-Yao email: xyz@nlpr.ia.ac.cn organization: NLPR, Institute of Automation, Chinese Academy of Sciences, China – sequence: 2 givenname: Yoshua surname: Bengio fullname: Bengio, Yoshua email: yoshua.bengio@umontreal.ca organization: MILA, University of Montreal, Canada – sequence: 3 givenname: Cheng-Lin surname: Liu fullname: Liu, Cheng-Lin email: liucl@nlpr.ia.ac.cn organization: NLPR, Institute of Automation, Chinese Academy of Sciences, China |
BookMark | eNqFkEtPAjEUhRuDiYD-Axf9AzO203l0WJgQ4ishYaPrpo87ThE6pK0S_r0FXLnQVXvanHPv-SZo5AYHCN1SklNC67t1vpNRD-95kVROeE5IdYHGlDcsq2hZjNCYEEYzVhB2hSYhrAmhTfoYI1i5jXWApTN46LrTvU9i722M4PCiTy8BsO6llzqCxx7SJGejHdwMz7EetjsPPbhgvwCH-GkOpzAHe6zA6X4r_cc1uuzkJsDNzzlFb48Pr4vnbLl6elnMl5lmTRGzjnfStKpolGyZ4WXHCkoIKMUryXXLa1MoTmqgmpquVY3kbWlkK6E2uq2oYlNUnnO1H0Lw0Imdt2mBg6BEHFGJtTijEkdUgnCRUCXb7JdN2yiPDaOXdvOf-f5shlTsy4IXQdtUHIxNqKIwg_074BuOzYx3 |
CitedBy_id | crossref_primary_10_3390_brainsci14050444 crossref_primary_10_1007_s10032_025_00512_2 crossref_primary_10_1109_ACCESS_2019_2930799 crossref_primary_10_1109_JPROC_2020_2989782 crossref_primary_10_37394_23201_2022_21_11 crossref_primary_10_31466_kfbd_1621840 crossref_primary_10_1016_j_compeleceng_2022_107857 crossref_primary_10_1016_j_patcog_2022_108859 crossref_primary_10_1016_j_patrec_2020_01_019 crossref_primary_10_1007_s42979_019_0001_4 crossref_primary_10_1002_widm_1255 crossref_primary_10_1007_s10796_021_10159_z crossref_primary_10_1016_j_patcog_2020_107488 crossref_primary_10_3390_electronics12071693 crossref_primary_10_1109_JIOT_2019_2947448 crossref_primary_10_1088_1757_899X_530_1_012058 crossref_primary_10_1109_TNNLS_2019_2956965 crossref_primary_10_33889_IJMEMS_2022_7_5_042 crossref_primary_10_3390_app12146862 crossref_primary_10_20965_jaciii_2023_p0165 crossref_primary_10_1007_s11831_018_9278_z crossref_primary_10_1016_j_patrec_2019_08_005 crossref_primary_10_3390_app14010225 crossref_primary_10_3390_app13031750 crossref_primary_10_1109_ACCESS_2020_2992614 crossref_primary_10_1016_j_patcog_2023_109534 crossref_primary_10_1016_j_patrec_2021_01_012 crossref_primary_10_1109_JBHI_2023_3238421 crossref_primary_10_1016_j_engappai_2020_103489 crossref_primary_10_20965_jaciii_2023_p0567 crossref_primary_10_1007_s40031_023_00917_9 crossref_primary_10_1109_TMM_2022_3143324 crossref_primary_10_1155_2022_5066994 crossref_primary_10_3390_app14198716 crossref_primary_10_11834_jig_220906 crossref_primary_10_4018_IJTHI_2019100106 crossref_primary_10_7717_peerj_cs_1093 crossref_primary_10_1007_s10032_018_0308_z crossref_primary_10_1142_S0218001423500192 crossref_primary_10_1016_j_patcog_2024_111286 crossref_primary_10_1088_1742_6596_1684_1_012101 crossref_primary_10_1016_j_eij_2022_02_007 crossref_primary_10_1007_s11042_023_17987_y crossref_primary_10_1049_iet_ipr_2019_0208 crossref_primary_10_1007_s11042_022_13228_w crossref_primary_10_1049_joe_2019_0895 crossref_primary_10_1016_j_patcog_2019_07_002 crossref_primary_10_3390_info15090531 crossref_primary_10_1016_j_patcog_2018_01_013 crossref_primary_10_1016_j_patcog_2021_108513 crossref_primary_10_1007_s00500_019_04083_3 crossref_primary_10_1007_s10032_022_00419_2 crossref_primary_10_1016_j_gep_2022_119278 crossref_primary_10_3390_app13063500 crossref_primary_10_1007_s10462_020_09886_7 crossref_primary_10_1016_j_patcog_2023_109598 crossref_primary_10_1016_j_patrec_2019_11_028 crossref_primary_10_32604_cmc_2022_026531 crossref_primary_10_1016_j_patrec_2020_01_013 crossref_primary_10_1007_s00371_021_02230_2 crossref_primary_10_1155_2022_9297548 crossref_primary_10_1016_j_patcog_2020_107471 crossref_primary_10_1109_ACCESS_2019_2954475 crossref_primary_10_1007_s10032_020_00358_w crossref_primary_10_1016_j_patcog_2018_10_029 crossref_primary_10_3233_JCM_226167 crossref_primary_10_1007_s10994_023_06450_6 crossref_primary_10_1109_ACCESS_2024_3455753 crossref_primary_10_1016_j_envpol_2020_115574 crossref_primary_10_1016_j_patcog_2018_07_029 crossref_primary_10_1016_j_chemolab_2017_12_010 crossref_primary_10_29109_gujsc_1141508 crossref_primary_10_1016_j_patcog_2018_11_003 crossref_primary_10_1016_j_patcog_2019_107025 crossref_primary_10_1186_s13677_020_0156_5 crossref_primary_10_1109_TPAMI_2017_2695539 crossref_primary_10_1016_j_patcog_2020_107722 crossref_primary_10_1080_21681163_2021_2018046 crossref_primary_10_1016_j_patcog_2021_108416 crossref_primary_10_1016_j_patrec_2017_02_011 crossref_primary_10_1016_j_patcog_2020_107566 crossref_primary_10_1109_ACCESS_2022_3206832 crossref_primary_10_1016_j_jksuci_2019_08_001 crossref_primary_10_1088_1742_6596_1651_1_012050 crossref_primary_10_1016_j_patcog_2022_108818 crossref_primary_10_1109_TMM_2022_3163517 crossref_primary_10_3390_app10113716 crossref_primary_10_1016_j_patcog_2017_09_044 crossref_primary_10_1007_s00371_023_02776_3 crossref_primary_10_1016_j_jksuci_2019_06_004 crossref_primary_10_1088_1742_6596_1820_1_012162 crossref_primary_10_20965_jaciii_2024_p0231 crossref_primary_10_1016_j_ins_2018_11_035 crossref_primary_10_1007_s10032_018_0311_4 crossref_primary_10_1051_e3sconf_202342601030 crossref_primary_10_1007_s00521_020_05261_3 crossref_primary_10_1016_j_patrec_2018_02_006 crossref_primary_10_1007_s11042_022_13114_5 crossref_primary_10_1016_j_patcog_2020_107697 crossref_primary_10_32604_cmc_2023_045741 crossref_primary_10_1007_s10032_022_00405_8 crossref_primary_10_1109_ACCESS_2024_3514319 crossref_primary_10_1016_j_patcog_2025_111373 crossref_primary_10_1016_j_eswa_2023_121881 crossref_primary_10_1007_s10032_021_00376_2 crossref_primary_10_1145_3364533 crossref_primary_10_1142_S0218001419530033 crossref_primary_10_1016_j_knosys_2023_110314 crossref_primary_10_1016_j_patcog_2021_107980 crossref_primary_10_1186_s13634_019_0636_2 crossref_primary_10_1145_3506700 crossref_primary_10_1016_j_patcog_2016_12_026 crossref_primary_10_1007_s00371_020_02032_y crossref_primary_10_1111_cgf_142621 crossref_primary_10_1016_j_engappai_2024_109225 crossref_primary_10_1007_s00500_023_07883_w crossref_primary_10_1016_j_patcog_2017_06_032 crossref_primary_10_1007_s00521_018_3854_x crossref_primary_10_1021_acs_iecr_3c01212 crossref_primary_10_1088_1742_6596_1848_1_012015 crossref_primary_10_1049_iet_ipr_2017_0184 crossref_primary_10_1080_15481603_2018_1457201 crossref_primary_10_1109_TMM_2020_3025696 crossref_primary_10_1016_j_rser_2020_110223 crossref_primary_10_1007_s42979_022_01461_x crossref_primary_10_1109_TMM_2023_3339589 crossref_primary_10_1145_3676883 crossref_primary_10_1007_s11042_019_7196_1 crossref_primary_10_14201_adcaij_31218 crossref_primary_10_1016_j_patcog_2023_109317 |
Cites_doi | 10.1109/TPAMI.2012.239 10.1109/CVPR.2012.6248110 10.1016/S0031-3203(03)00085-2 10.1109/5.726791 10.1007/978-3-319-10593-2_34 10.1109/ACPR.2015.7486592 10.1109/ICFHR.2014.56 10.1117/12.2076119 10.1109/TPAMI.2005.18 10.1109/ICDAR.2015.7333746 10.1007/s11704-007-0012-5 10.1016/j.patcog.2016.04.007 10.1016/j.patcog.2012.06.021 10.1109/TPAMI.2007.1090 10.1109/ICDAR.2013.218 10.1109/TPAMI.2013.50 10.1109/ICDAR.2011.17 10.1109/CCPR.2010.5659229 10.1109/TNN.2004.824263 10.1609/aaai.v30i1.10465 10.1109/ICDAR.2011.291 10.1109/ICPR.2006.624 10.1109/TPAMI.2004.104 10.1109/34.57669 10.1109/TPAMI.2011.264 10.1162/neco.1995.7.6.1289 10.1016/0031-3203(93)90030-Z 10.1109/ICDAR.2015.7333822 10.1109/ICDAR.1997.620646 10.1109/ICDAR.2015.7333821 10.1109/CVPR.2016.90 10.1016/j.patcog.2013.01.036 10.25080/Majora-92bf1922-003 10.1109/34.824821 10.1109/TPAMI.1987.4767881 10.1109/ICPR.1988.28197 10.1007/s10032-014-0229-4 10.1038/nature14539 10.1109/DAS.2014.33 10.1109/PROC.1980.11675 10.1007/978-3-642-24797-2 10.1016/j.patcog.2005.04.019 10.1016/j.patcog.2008.03.015 10.1016/S0031-3203(96)00077-5 10.1109/ICDAR.2009.29 10.1109/34.990135 10.1109/ICDAR.2005.34 10.1016/S0031-3203(00)00018-2 10.1109/ICCV.2015.123 10.1109/TPAMI.2004.1262182 10.1109/ICDAR.2015.7333881 10.1109/CVPR.2015.7298594 10.1126/science.1127647 10.1109/ICDAR.2015.7333726 10.1109/ICDAR.2013.11 10.1038/323533a0 10.5244/C.29.150 10.1109/ICFHR.2014.49 10.1016/j.patcog.2013.01.021 10.1109/TPAMI.2002.1046151 10.1109/ICPR.2014.518 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2016.08.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
EndPage | 360 |
ExternalDocumentID | 10_1016_j_patcog_2016_08_005 S0031320316302187 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-f8fad9b27ba93d84f32100ebb85a8c986d2b806e1c1df9b7a894da9ae6dc951b3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 23:07:47 EDT 2025 Thu Jul 03 08:46:12 EDT 2025 Fri Feb 23 02:25:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Handwriting recognition Convolutional neural network Offline Online Chinese characters Directional feature map Adaptation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-f8fad9b27ba93d84f32100ebb85a8c986d2b806e1c1df9b7a894da9ae6dc951b3 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2016_08_005 crossref_citationtrail_10_1016_j_patcog_2016_08_005 elsevier_sciencedirect_doi_10_1016_j_patcog_2016_08_005 |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | X.-Y. Zhang, C.-L. Liu, Locally smoothed modified quadratic discriminant function, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 8–12. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, in: Proceedings of IEEE, vol. 86, no. 11, 1998, pp. 2278–2324. A. Graves, Supervised sequence labeling with recurrent neural networks, in: Studies in Computational Intelligence, Springer, 2012. Bengio, Courville, Vincent (bib13) 2013; 35 J. Tsukumo and H. Tanaka, Classification of handprinted Chinese characters using non-linear normalization and correlation methods, in: Proceedings of International Conference on Pattern Recognition (ICPR), 1988, pp. 168–171. Liu, Koga, Fujisawa (bib4) 2002; 24 Zhou, Wang, Tian, Liu, Nakagawa (bib5) 2013; 35 C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, Chinese handwriting recognition contest 2010, in: Proceedings of Chinese Conference on Pattern Recognition (CCPR), 2010. W. Yang, L. Jin, M. Liu, Character-level Chinese writer identification using path signature feature, dropstroke and deep CNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015 Liu, Nakagawa (bib57) 2001; 34 J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, DeCAF: a deep convolutional activation feature for generic visual recognition, in: Proceedings of International Conference on Machine Learning (ICML), 2014. Zhang, Liu (bib64) 2013; 46 W. Yang, L. Jin, Z. Xie, Z. Feng, Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, 2015 J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, T. Darrell, One-shot adaptation of supervised deep convolutional models, 2013 J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of Python for Scientific Computing Conference (SciPy), 2010. Liu, Yin, Wang, Wang (bib19) 2013; 46 Kim, Xie (bib42) 2015; 18 Hinton, Salakhutdinov (bib34) 2006; 313 B. Graham, Spatially-sparse convolutional neural networks, 2014 Fujisawa (bib33) 2008; 41 Wang, Yin, Liu (bib6) 2012; 34 Zhang, Liu (bib28) 2013; 35 B. Shi, X. Bai, C. Yao, An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition, 2015 Tappert, Suen, Wakahara (bib30) 1990; 12 Bengio, LeCun, Nohl, Burges (bib49) 1995; 7 Du, Huo (bib54) 2013; 46 Connell, Jain (bib27) 2002; 24 A. Maas, A. Hannun, A. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of International Conference on Machine Learning (ICML), 2013. LeCun, Bengio, Hinton (bib35) 2015; 521 C.-L. Liu, High accuracy handwritten Chinese character recognition using quadratic classifiers with discriminative feature extraction, in: Proceedings of International Conference on Pattern Recognition (ICPR), 2006, pp. 942–945. Liu, Sako, Fujisawa (bib66) 2004; 15 M. Okamoto, A. Nakamura, K. Yamamoto, On-line handwriting character recognition method with directional features and directional change features, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 1997, pp. 926–930. K. Ding, G. Deng, L. Jin, An investigation of imaginary stroke technique for cursive online handwriting Chinese character recognition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2009, pp. 531–535. Liu, Sako, Fujisawa (bib7) 2004; 26 M. Wang, Y. Chen, X. Wang, Recognition of handwritten characters in Chinese legal amounts by stacked autoencoders, in: Proceedings of International Conference on Pattern Recognition (ICPR), 2014. C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, CASIA online and offline Chinese handwriting databases, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2011, pp. 37–41. Liu, Marukawa (bib18) 2005; 38 Z. Zhong, L. Jin, Z. Xie, High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015. P. He, W. Huang, Y. Qiao, C. Loy, X. Tang, Reading scene text in deep convolutional sequences, 2015 Heiden, Gren (bib63) 1997; 30 Rumelhart, Hinton, Williams (bib74) 1986; 323 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib68) 2014; 15 D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proceedings of Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3642–3649. C.-L. Liu, F. Yin, Q.-F. Wang, D.-H. Wang, ICDAR 2011 Chinese handwriting recognition competition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2011, pp. 1464–1469. B. Li, L. Peng, J. Ji, Historical Chinese character recognition method based on style transfer mapping, in: International Workshop on Document Analysis Systems (DAS), 2014, pp. 96–100. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 2015 Dai, Liu, Xiao (bib2) 2007; 1 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of Computer Vision and Pattern Recognition (CVPR), 2015. C. Wu, W. Fan, Y. He, J. Sun, S. Naoi, Handwritten character recognition by alternately trained relaxation convolutional neural network, in: Proceedings of International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 291–296. B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified activations in convolution network, 2015 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Proceedings of International Conference on Learning Representations (ICLR), 2015. Liu, Nakashima, Sako, Fujisawa (bib60) 2003; 36 D. Ciresan, U. Meier, J. Masci, L. Gambardella, J. Schmidhuber, Flexible, high performance convolutional neural networks for image classification, in: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2011, pp. 1237–1242. C.-L. Liu, H. Sako, H. Fujisawa, Handwritten Chinese character recognition: alternatives to nonlinear normalization, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2003, pp. 524–528. Y. Wang, X. Li, C. Liu, X. Ding, Y. Chen, An MQDF-CNN hybrid model for offline handwritten Chinese character recognition, in: Proceedings of International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014. Kimura, Takashina, Tsuruoka, Miyake (bib1) 1987; 1 Sarkar, Nagy (bib26) 2005; 27 W. Yang, L. Jin, D. Tao, Z. Xie, Z. Feng, DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition, 2015 X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), 2010, pp. 249–256. C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. Tu, Deeply-supervised nets, in: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), 2015, pp. 562–570. J. Feng, L. Peng, F. Lebourgeois, Gaussian process style transfer mapping for historical Chinese character recognition, in: Proceedings of SPIE, Document Recognition and Retrieval, 2015. R. Messina, J. Louradour, Segmentation-free handwritten Chinese text recognition with LSTM-RNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015. C. Suen, M. Berthod, S. Mori, Automatic recognition of handprinted characters: the state of the art, in: Proceedings of IEEE, vol. 68, no. 4, 1980, pp. 469–487. A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep convolutional neural networks, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105. L. Chen, S. Wang, W. Fan, J. Sun, S. Naoi, Beyond human recognition: A CNN-based framework for handwritten character recognition, in: Proceedings of Asian Conference on Pattern Recognition (ACPR), 2015. B. Graham, Sparse arrays of signatures for online character recognition, 2013 Z. Bai, Q. Huo, A study on the use of 8-directional features for online handwritten Chinese character recognition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 262–266. A. Graves, J. Schmidhuber, Offline handwriting recognition with multidimensional recurrent neural networks, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2008, pp. 545–552. D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Proceedings of International Conference on Learning Representations (ICLR), 2015. D. Ciresan, J. Schmidhuber, Multi-column deep neural networks for offline handwritten Chinese character classification, 2013 Plamondon, Srihari (bib32) 2000; 22 F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, Y. Bengio, Theano: new features and speed improvements, in: NIPS Deep Learning Workshop, 2012. Liu, Jaeger, Nakagawa (bib3) 2004; 26 F. Yin, Q.-F. Wang, X.-Y. Zhang, C.-L. Liu, ICDAR 2013 Chinese handwriting recognition competition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 1095–1101. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, 2015 C.-L. Liu, X.-D. Zhou, Online Japanese character recognition using trajectory-based normalization and direction feature 10.1016/j.patcog.2016.08.005_bib38 Hinton (10.1016/j.patcog.2016.08.005_bib34) 2006; 313 10.1016/j.patcog.2016.08.005_bib37 Heiden (10.1016/j.patcog.2016.08.005_bib63) 1997; 30 Kimura (10.1016/j.patcog.2016.08.005_bib1) 1987; 1 Connell (10.1016/j.patcog.2016.08.005_bib27) 2002; 24 10.1016/j.patcog.2016.08.005_bib39 Du (10.1016/j.patcog.2016.08.005_bib54) 2013; 46 10.1016/j.patcog.2016.08.005_bib78 10.1016/j.patcog.2016.08.005_bib77 10.1016/j.patcog.2016.08.005_bib36 Liu (10.1016/j.patcog.2016.08.005_bib18) 2005; 38 10.1016/j.patcog.2016.08.005_bib79 Liu (10.1016/j.patcog.2016.08.005_bib3) 2004; 26 Liu (10.1016/j.patcog.2016.08.005_bib57) 2001; 34 Liu (10.1016/j.patcog.2016.08.005_bib19) 2013; 46 Liu (10.1016/j.patcog.2016.08.005_bib66) 2004; 15 10.1016/j.patcog.2016.08.005_bib41 Liu (10.1016/j.patcog.2016.08.005_bib60) 2003; 36 Bengio (10.1016/j.patcog.2016.08.005_bib13) 2013; 35 10.1016/j.patcog.2016.08.005_bib40 Bengio (10.1016/j.patcog.2016.08.005_bib49) 1995; 7 10.1016/j.patcog.2016.08.005_bib43 10.1016/j.patcog.2016.08.005_bib81 10.1016/j.patcog.2016.08.005_bib80 10.1016/j.patcog.2016.08.005_bib83 Zhang (10.1016/j.patcog.2016.08.005_bib64) 2013; 46 10.1016/j.patcog.2016.08.005_bib82 10.1016/j.patcog.2016.08.005_bib48 Zhou (10.1016/j.patcog.2016.08.005_bib5) 2013; 35 10.1016/j.patcog.2016.08.005_bib45 10.1016/j.patcog.2016.08.005_bib44 Wang (10.1016/j.patcog.2016.08.005_bib6) 2012; 34 10.1016/j.patcog.2016.08.005_bib47 Hildebrandt (10.1016/j.patcog.2016.08.005_bib31) 1993; 26 10.1016/j.patcog.2016.08.005_bib46 Liu (10.1016/j.patcog.2016.08.005_bib22) 2007; 29 10.1016/j.patcog.2016.08.005_bib52 10.1016/j.patcog.2016.08.005_bib51 10.1016/j.patcog.2016.08.005_bib10 10.1016/j.patcog.2016.08.005_bib53 10.1016/j.patcog.2016.08.005_bib50 Sarkar (10.1016/j.patcog.2016.08.005_bib26) 2005; 27 10.1016/j.patcog.2016.08.005_bib16 10.1016/j.patcog.2016.08.005_bib15 10.1016/j.patcog.2016.08.005_bib59 10.1016/j.patcog.2016.08.005_bib17 10.1016/j.patcog.2016.08.005_bib12 10.1016/j.patcog.2016.08.005_bib56 10.1016/j.patcog.2016.08.005_bib11 10.1016/j.patcog.2016.08.005_bib55 Rumelhart (10.1016/j.patcog.2016.08.005_bib74) 1986; 323 10.1016/j.patcog.2016.08.005_bib14 10.1016/j.patcog.2016.08.005_bib58 LeCun (10.1016/j.patcog.2016.08.005_bib35) 2015; 521 10.1016/j.patcog.2016.08.005_bib62 10.1016/j.patcog.2016.08.005_bib21 10.1016/j.patcog.2016.08.005_bib65 10.1016/j.patcog.2016.08.005_bib20 10.1016/j.patcog.2016.08.005_bib61 10.1016/j.patcog.2016.08.005_bib29 Zhang (10.1016/j.patcog.2016.08.005_bib28) 2013; 35 Plamondon (10.1016/j.patcog.2016.08.005_bib32) 2000; 22 10.1016/j.patcog.2016.08.005_bib23 10.1016/j.patcog.2016.08.005_bib67 Kim (10.1016/j.patcog.2016.08.005_bib42) 2015; 18 Srivastava (10.1016/j.patcog.2016.08.005_bib68) 2014; 15 10.1016/j.patcog.2016.08.005_bib25 10.1016/j.patcog.2016.08.005_bib69 10.1016/j.patcog.2016.08.005_bib24 Liu (10.1016/j.patcog.2016.08.005_bib7) 2004; 26 Tappert (10.1016/j.patcog.2016.08.005_bib30) 1990; 12 10.1016/j.patcog.2016.08.005_bib9 10.1016/j.patcog.2016.08.005_bib8 Fujisawa (10.1016/j.patcog.2016.08.005_bib33) 2008; 41 Liu (10.1016/j.patcog.2016.08.005_bib4) 2002; 24 Dai (10.1016/j.patcog.2016.08.005_bib2) 2007; 1 10.1016/j.patcog.2016.08.005_bib73 10.1016/j.patcog.2016.08.005_bib76 10.1016/j.patcog.2016.08.005_bib75 10.1016/j.patcog.2016.08.005_bib70 10.1016/j.patcog.2016.08.005_bib72 10.1016/j.patcog.2016.08.005_bib71 |
References_xml | – volume: 26 start-page: 205 year: 1993 end-page: 225 ident: bib31 article-title: Optical recognition of handwritten Chinese characters publication-title: Pattern Recognit. – reference: A. Graves, Supervised sequence labeling with recurrent neural networks, in: Studies in Computational Intelligence, Springer, 2012. – reference: C. Suen, M. Berthod, S. Mori, Automatic recognition of handprinted characters: the state of the art, in: Proceedings of IEEE, vol. 68, no. 4, 1980, pp. 469–487. – reference: C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. Tu, Deeply-supervised nets, in: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), 2015, pp. 562–570. – volume: 1 start-page: 149 year: 1987 end-page: 153 ident: bib1 article-title: Modified quadratic discriminant functions and the application to Chinese character recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 start-page: 329 year: 2002 end-page: 346 ident: bib27 article-title: Writer adaptation for online handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: M. Jaderberg, A. Vedaldi, A. Zisserman, Deep features for text spotting, in: Proceedings of European Conference on Computer Vision (ECCV), 2014. – reference: M. Okamoto, A. Nakamura, K. Yamamoto, On-line handwriting character recognition method with directional features and directional change features, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 1997, pp. 926–930. – reference: M. He, S. Zhang, H. Mao, L. Jin, Recognition confidence analysis of handwritten Chinese character with CNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015. – reference: B. Graham, Sparse arrays of signatures for online character recognition, 2013, – reference: J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, DeCAF: a deep convolutional activation feature for generic visual recognition, in: Proceedings of International Conference on Machine Learning (ICML), 2014. – reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), 2010, pp. 249–256. – reference: S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, 2015, – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Proceedings of International Conference on Learning Representations (ICLR), 2015. – reference: J. Feng, L. Peng, F. Lebourgeois, Gaussian process style transfer mapping for historical Chinese character recognition, in: Proceedings of SPIE, Document Recognition and Retrieval, 2015. – reference: D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Proceedings of International Conference on Learning Representations (ICLR), 2015. – volume: 22 start-page: 63 year: 2000 end-page: 84 ident: bib32 article-title: Online and offline handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, T. Darrell, One-shot adaptation of supervised deep convolutional models, 2013, – reference: D. Ciresan, U. Meier, J. Masci, L. Gambardella, J. Schmidhuber, Flexible, high performance convolutional neural networks for image classification, in: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2011, pp. 1237–1242. – reference: Z. Zhong, L. Jin, Z. Xie, High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib35 article-title: Deep learning publication-title: Nature – reference: M. Wang, Y. Chen, X. Wang, Recognition of handwritten characters in Chinese legal amounts by stacked autoencoders, in: Proceedings of International Conference on Pattern Recognition (ICPR), 2014. – reference: R. Messina, J. Louradour, Segmentation-free handwritten Chinese text recognition with LSTM-RNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015. – volume: 34 start-page: 601 year: 2001 end-page: 615 ident: bib57 article-title: Evaluation of prototype learning algorithms for nearest neighbor classifier in application to handwritten character recognition publication-title: Pattern Recognit. – reference: M. Long, Y. Cao, J. Wang, M. Jordan, Learning transferable features with deep adaptation networks, in: Proceedings of International Conference on Machine Learning (ICML), 2015. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib34 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 36 start-page: 2271 year: 2003 end-page: 2285 ident: bib60 article-title: Handwritten digit recognition publication-title: Pattern Recognit. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 2015, – volume: 34 start-page: 1469 year: 2012 end-page: 1481 ident: bib6 article-title: Handwritten Chinese text recognition by integrating multiple contexts publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: D. Ciresan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in: Proceedings of Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3642–3649. – reference: L. Chen, S. Wang, W. Fan, J. Sun, S. Naoi, Beyond human recognition: A CNN-based framework for handwritten character recognition, in: Proceedings of Asian Conference on Pattern Recognition (ACPR), 2015. – reference: J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU math expression compiler, in: Proceedings of Python for Scientific Computing Conference (SciPy), 2010. – reference: M. Zeiler, AdaDelta: an adaptive learning rate method, 2012, – reference: W. Yang, L. Jin, Z. Xie, Z. Feng, Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015. – reference: Y. Wang, X. Li, C. Liu, X. Ding, Y. Chen, An MQDF-CNN hybrid model for offline handwritten Chinese character recognition, in: Proceedings of International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014. – volume: 46 start-page: 2313 year: 2013 end-page: 2322 ident: bib54 article-title: A discriminative linear regression approach to adaptation of multi-prototype based classifiers and its applications for Chinese OCR publication-title: Pattern Recognit. – volume: 46 start-page: 2599 year: 2013 end-page: 2611 ident: bib64 article-title: Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition publication-title: Pattern Recognit. – volume: 38 start-page: 2242 year: 2005 end-page: 2255 ident: bib18 article-title: Pseudo two-dimensional shape normalization methods for handwritten Chinese character recognition publication-title: Pattern Recognit. – volume: 18 start-page: 1 year: 2015 end-page: 13 ident: bib42 article-title: Handwritten Hangul recognition using deep convolutional neural networks publication-title: Int. J. Doc. Anal. Recognit. – reference: W. Yang, L. Jin, M. Liu, Character-level Chinese writer identification using path signature feature, dropstroke and deep CNN, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2015 – reference: C. Wu, W. Fan, Y. He, J. Sun, S. Naoi, Handwritten character recognition by alternately trained relaxation convolutional neural network, in: Proceedings of International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 291–296. – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: bib13 article-title: Representation learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: F. Yin, Q.-F. Wang, X.-Y. Zhang, C.-L. Liu, ICDAR 2013 Chinese handwriting recognition competition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 1095–1101. – volume: 15 start-page: 430 year: 2004 end-page: 444 ident: bib66 article-title: Discriminative learning quadratic discriminant function for handwriting recognition publication-title: IEEE Trans. Neural Netw. – volume: 26 start-page: 198 year: 2004 end-page: 213 ident: bib3 article-title: Online recognition of Chinese characters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: C.-L. Liu, F. Yin, Q.-F. Wang, D.-H. Wang, ICDAR 2011 Chinese handwriting recognition competition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2011, pp. 1464–1469. – volume: 29 start-page: 1465 year: 2007 end-page: 1469 ident: bib22 article-title: Normalization-cooperated gradient feature extraction for handwritten character recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 12 start-page: 787 year: 1990 end-page: 808 ident: bib30 article-title: The state of the art in online handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: B. Li, L. Peng, J. Ji, Historical Chinese character recognition method based on style transfer mapping, in: International Workshop on Document Analysis Systems (DAS), 2014, pp. 96–100. – reference: Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, in: Proceedings of IEEE, vol. 86, no. 11, 1998, pp. 2278–2324. – reference: A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep convolutional neural networks, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105. – reference: W. Yang, L. Jin, D. Tao, Z. Xie, Z. Feng, DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition, 2015, – reference: K. Ding, G. Deng, L. Jin, An investigation of imaginary stroke technique for cursive online handwriting Chinese character recognition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2009, pp. 531–535. – reference: C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, Chinese handwriting recognition contest 2010, in: Proceedings of Chinese Conference on Pattern Recognition (CCPR), 2010. – volume: 26 start-page: 1395 year: 2004 end-page: 1407 ident: bib7 article-title: Effects of classifier structures and training regimes on integrated segmentation and recognition of handwritten numeral strings publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 46 start-page: 155 year: 2013 end-page: 162 ident: bib19 article-title: Online and offline handwritten Chinese character recognition publication-title: Pattern Recognit. – reference: B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified activations in convolution network, 2015, – volume: 27 start-page: 88 year: 2005 end-page: 98 ident: bib26 article-title: Style consistent classification of isogenous patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: P. He, W. Huang, Y. Qiao, C. Loy, X. Tang, Reading scene text in deep convolutional sequences, 2015, – reference: C.-L. Liu, High accuracy handwritten Chinese character recognition using quadratic classifiers with discriminative feature extraction, in: Proceedings of International Conference on Pattern Recognition (ICPR), 2006, pp. 942–945. – reference: J. Tsukumo and H. Tanaka, Classification of handprinted Chinese characters using non-linear normalization and correlation methods, in: Proceedings of International Conference on Pattern Recognition (ICPR), 1988, pp. 168–171. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib74 article-title: Learning representations by back-propagating errors publication-title: Nature – reference: B. Shi, X. Bai, C. Yao, An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition, 2015, – reference: A. Maas, A. Hannun, A. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of International Conference on Machine Learning (ICML), 2013. – reference: F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, Y. Bengio, Theano: new features and speed improvements, in: NIPS Deep Learning Workshop, 2012. – reference: B. Graham, Spatially-sparse convolutional neural networks, 2014, – reference: C.-L. Liu, H. Sako, H. Fujisawa, Handwritten Chinese character recognition: alternatives to nonlinear normalization, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2003, pp. 524–528. – volume: 35 start-page: 2484 year: 2013 end-page: 2497 ident: bib5 article-title: Handwritten Chinese/Japanese text recognition using semi-Markov conditional random fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 41 start-page: 2435 year: 2008 end-page: 2446 ident: bib33 article-title: Forty years of research in character and document recognition publication-title: Pattern Recognit. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib68 article-title: Dropout publication-title: J. Mach. Learn. Res. – reference: Z. Bai, Q. Huo, A study on the use of 8-directional features for online handwritten Chinese character recognition, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 262–266. – reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, 2015, – reference: C.-L. Liu, X.-D. Zhou, Online Japanese character recognition using trajectory-based normalization and direction feature extraction, in: Proceedings of International Workshop on Frontiers in Handwriting Recognition (IWFHR), 2006, pp. 217–222. – reference: A. Graves, J. Schmidhuber, Offline handwriting recognition with multidimensional recurrent neural networks, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2008, pp. 545–552. – volume: 35 start-page: 1773 year: 2013 end-page: 1787 ident: bib28 article-title: Writer adaptation with style transfer mapping publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: D. Ciresan, J. Schmidhuber, Multi-column deep neural networks for offline handwritten Chinese character classification, 2013, – volume: 7 start-page: 1289 year: 1995 end-page: 1303 ident: bib49 article-title: LeRec publication-title: Neural Comput. – reference: C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang, CASIA online and offline Chinese handwriting databases, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2011, pp. 37–41. – reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of Computer Vision and Pattern Recognition (CVPR), 2015. – volume: 30 start-page: 273 year: 1997 end-page: 279 ident: bib63 article-title: The box-cox metric for nearest neighbor classification improvement publication-title: Pattern Recognit. – volume: 1 start-page: 126 year: 2007 end-page: 136 ident: bib2 article-title: Chinese character recognition publication-title: Front. Comput. Sci. China – volume: 24 start-page: 1425 year: 2002 end-page: 1437 ident: bib4 article-title: Lexicon-driven segmentation and recognition of handwritten character strings for Japanese address reading publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: X.-Y. Zhang, C.-L. Liu, Locally smoothed modified quadratic discriminant function, in: Proceedings of International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 8–12. – volume: 35 start-page: 1773 issue: 7 year: 2013 ident: 10.1016/j.patcog.2016.08.005_bib28 article-title: Writer adaptation with style transfer mapping publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.239 – ident: 10.1016/j.patcog.2016.08.005_bib37 doi: 10.1109/CVPR.2012.6248110 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.patcog.2016.08.005_bib68 article-title: Dropout publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 2271 issue: 10 year: 2003 ident: 10.1016/j.patcog.2016.08.005_bib60 article-title: Handwritten digit recognition publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(03)00085-2 – ident: 10.1016/j.patcog.2016.08.005_bib78 – ident: 10.1016/j.patcog.2016.08.005_bib59 – ident: 10.1016/j.patcog.2016.08.005_bib61 – ident: 10.1016/j.patcog.2016.08.005_bib36 doi: 10.1109/5.726791 – ident: 10.1016/j.patcog.2016.08.005_bib48 doi: 10.1007/978-3-319-10593-2_34 – ident: 10.1016/j.patcog.2016.08.005_bib41 doi: 10.1109/ACPR.2015.7486592 – ident: 10.1016/j.patcog.2016.08.005_bib40 doi: 10.1109/ICFHR.2014.56 – ident: 10.1016/j.patcog.2016.08.005_bib56 doi: 10.1117/12.2076119 – ident: 10.1016/j.patcog.2016.08.005_bib69 – ident: 10.1016/j.patcog.2016.08.005_bib23 – ident: 10.1016/j.patcog.2016.08.005_bib17 – volume: 27 start-page: 88 issue: 1 year: 2005 ident: 10.1016/j.patcog.2016.08.005_bib26 article-title: Style consistent classification of isogenous patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.18 – ident: 10.1016/j.patcog.2016.08.005_bib51 doi: 10.1109/ICDAR.2015.7333746 – volume: 1 start-page: 126 issue: 2 year: 2007 ident: 10.1016/j.patcog.2016.08.005_bib2 article-title: Chinese character recognition publication-title: Front. Comput. Sci. China doi: 10.1007/s11704-007-0012-5 – ident: 10.1016/j.patcog.2016.08.005_bib43 doi: 10.1016/j.patcog.2016.04.007 – volume: 46 start-page: 155 issue: 1 year: 2013 ident: 10.1016/j.patcog.2016.08.005_bib19 article-title: Online and offline handwritten Chinese character recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.06.021 – volume: 29 start-page: 1465 issue: 8 year: 2007 ident: 10.1016/j.patcog.2016.08.005_bib22 article-title: Normalization-cooperated gradient feature extraction for handwritten character recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1090 – ident: 10.1016/j.patcog.2016.08.005_bib10 doi: 10.1109/ICDAR.2013.218 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.patcog.2016.08.005_bib13 article-title: Representation learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – ident: 10.1016/j.patcog.2016.08.005_bib76 doi: 10.1109/ICDAR.2011.17 – ident: 10.1016/j.patcog.2016.08.005_bib8 doi: 10.1109/CCPR.2010.5659229 – volume: 15 start-page: 430 issue: 2 year: 2004 ident: 10.1016/j.patcog.2016.08.005_bib66 article-title: Discriminative learning quadratic discriminant function for handwriting recognition publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2004.824263 – ident: 10.1016/j.patcog.2016.08.005_bib77 – ident: 10.1016/j.patcog.2016.08.005_bib25 – ident: 10.1016/j.patcog.2016.08.005_bib52 doi: 10.1609/aaai.v30i1.10465 – ident: 10.1016/j.patcog.2016.08.005_bib9 doi: 10.1109/ICDAR.2011.291 – ident: 10.1016/j.patcog.2016.08.005_bib65 doi: 10.1109/ICPR.2006.624 – volume: 26 start-page: 1395 issue: 11 year: 2004 ident: 10.1016/j.patcog.2016.08.005_bib7 article-title: Effects of classifier structures and training regimes on integrated segmentation and recognition of handwritten numeral strings publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.104 – volume: 12 start-page: 787 issue: 8 year: 1990 ident: 10.1016/j.patcog.2016.08.005_bib30 article-title: The state of the art in online handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.57669 – volume: 34 start-page: 1469 issue: 8 year: 2012 ident: 10.1016/j.patcog.2016.08.005_bib6 article-title: Handwritten Chinese text recognition by integrating multiple contexts publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.264 – volume: 35 start-page: 2484 issue: 10 year: 2013 ident: 10.1016/j.patcog.2016.08.005_bib5 article-title: Handwritten Chinese/Japanese text recognition using semi-Markov conditional random fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 7 start-page: 1289 issue: 6 year: 1995 ident: 10.1016/j.patcog.2016.08.005_bib49 article-title: LeRec publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1289 – volume: 26 start-page: 205 issue: 2 year: 1993 ident: 10.1016/j.patcog.2016.08.005_bib31 article-title: Optical recognition of handwritten Chinese characters publication-title: Pattern Recognit. doi: 10.1016/0031-3203(93)90030-Z – ident: 10.1016/j.patcog.2016.08.005_bib14 doi: 10.1109/ICDAR.2015.7333822 – ident: 10.1016/j.patcog.2016.08.005_bib20 doi: 10.1109/ICDAR.1997.620646 – ident: 10.1016/j.patcog.2016.08.005_bib44 doi: 10.1109/ICDAR.2015.7333821 – ident: 10.1016/j.patcog.2016.08.005_bib73 – ident: 10.1016/j.patcog.2016.08.005_bib83 doi: 10.1109/CVPR.2016.90 – volume: 46 start-page: 2599 issue: 9 year: 2013 ident: 10.1016/j.patcog.2016.08.005_bib64 article-title: Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.01.036 – ident: 10.1016/j.patcog.2016.08.005_bib80 doi: 10.25080/Majora-92bf1922-003 – volume: 22 start-page: 63 issue: 1 year: 2000 ident: 10.1016/j.patcog.2016.08.005_bib32 article-title: Online and offline handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.824821 – ident: 10.1016/j.patcog.2016.08.005_bib53 – volume: 1 start-page: 149 year: 1987 ident: 10.1016/j.patcog.2016.08.005_bib1 article-title: Modified quadratic discriminant functions and the application to Chinese character recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1987.4767881 – ident: 10.1016/j.patcog.2016.08.005_bib16 doi: 10.1109/ICPR.1988.28197 – volume: 18 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.patcog.2016.08.005_bib42 article-title: Handwritten Hangul recognition using deep convolutional neural networks publication-title: Int. J. Doc. Anal. Recognit. doi: 10.1007/s10032-014-0229-4 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.patcog.2016.08.005_bib35 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.patcog.2016.08.005_bib55 doi: 10.1109/DAS.2014.33 – ident: 10.1016/j.patcog.2016.08.005_bib29 doi: 10.1109/PROC.1980.11675 – ident: 10.1016/j.patcog.2016.08.005_bib82 doi: 10.1007/978-3-642-24797-2 – volume: 38 start-page: 2242 issue: 12 year: 2005 ident: 10.1016/j.patcog.2016.08.005_bib18 article-title: Pseudo two-dimensional shape normalization methods for handwritten Chinese character recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.04.019 – volume: 41 start-page: 2435 issue: 8 year: 2008 ident: 10.1016/j.patcog.2016.08.005_bib33 article-title: Forty years of research in character and document recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.03.015 – ident: 10.1016/j.patcog.2016.08.005_bib72 – volume: 30 start-page: 273 issue: 2 year: 1997 ident: 10.1016/j.patcog.2016.08.005_bib63 article-title: The box-cox metric for nearest neighbor classification improvement publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00077-5 – ident: 10.1016/j.patcog.2016.08.005_bib11 – ident: 10.1016/j.patcog.2016.08.005_bib62 doi: 10.1109/ICDAR.2009.29 – volume: 24 start-page: 329 issue: 3 year: 2002 ident: 10.1016/j.patcog.2016.08.005_bib27 article-title: Writer adaptation for online handwriting recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.990135 – ident: 10.1016/j.patcog.2016.08.005_bib21 doi: 10.1109/ICDAR.2005.34 – volume: 34 start-page: 601 issue: 3 year: 2001 ident: 10.1016/j.patcog.2016.08.005_bib57 article-title: Evaluation of prototype learning algorithms for nearest neighbor classifier in application to handwritten character recognition publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(00)00018-2 – ident: 10.1016/j.patcog.2016.08.005_bib70 doi: 10.1109/ICCV.2015.123 – volume: 26 start-page: 198 issue: 2 year: 2004 ident: 10.1016/j.patcog.2016.08.005_bib3 article-title: Online recognition of Chinese characters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1262182 – ident: 10.1016/j.patcog.2016.08.005_bib38 doi: 10.1109/CVPR.2012.6248110 – ident: 10.1016/j.patcog.2016.08.005_bib79 – ident: 10.1016/j.patcog.2016.08.005_bib58 – ident: 10.1016/j.patcog.2016.08.005_bib15 doi: 10.1109/ICDAR.2015.7333881 – ident: 10.1016/j.patcog.2016.08.005_bib81 – ident: 10.1016/j.patcog.2016.08.005_bib75 – ident: 10.1016/j.patcog.2016.08.005_bib24 doi: 10.1109/CVPR.2015.7298594 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.patcog.2016.08.005_bib34 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: 10.1016/j.patcog.2016.08.005_bib46 doi: 10.1109/ICDAR.2015.7333726 – ident: 10.1016/j.patcog.2016.08.005_bib67 doi: 10.1109/ICDAR.2013.11 – volume: 323 start-page: 533 issue: 9 year: 1986 ident: 10.1016/j.patcog.2016.08.005_bib74 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: 10.1016/j.patcog.2016.08.005_bib39 doi: 10.5244/C.29.150 – ident: 10.1016/j.patcog.2016.08.005_bib45 doi: 10.1109/ICFHR.2014.49 – volume: 46 start-page: 2313 issue: 8 year: 2013 ident: 10.1016/j.patcog.2016.08.005_bib54 article-title: A discriminative linear regression approach to adaptation of multi-prototype based classifiers and its applications for Chinese OCR publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.01.021 – volume: 24 start-page: 1425 issue: 11 year: 2002 ident: 10.1016/j.patcog.2016.08.005_bib4 article-title: Lexicon-driven segmentation and recognition of handwritten character strings for Japanese address reading publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1046151 – ident: 10.1016/j.patcog.2016.08.005_bib47 doi: 10.1109/ICPR.2014.518 – ident: 10.1016/j.patcog.2016.08.005_bib71 – ident: 10.1016/j.patcog.2016.08.005_bib50 – ident: 10.1016/j.patcog.2016.08.005_bib12 |
SSID | ssj0017142 |
Score | 2.6081154 |
Snippet | Recent deep learning based methods have achieved the state-of-the-art performance for handwritten Chinese character recognition (HCCR) by learning... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 348 |
SubjectTerms | Adaptation Chinese characters Convolutional neural network Directional feature map Handwriting recognition Offline Online |
Title | Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark |
URI | https://dx.doi.org/10.1016/j.patcog.2016.08.005 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QNX0yyOY3OrKqoCoicq9RbF9oSWJalKETe-HU-WCiQEEpcoijxJNHFmxtab9wg5B4GFAmiWxQIYj7liGsAwrRV4ESYlH7uR78ZiNOE302jaIoOmFwZhlXXsr2J6Ga3rK73am73FfI49vkg76A4ixESFHeWcxzjLLz7WMA_U964Yw0Of4eimfa7EeC1cuCseEOAlSiJPFLH7KT19STnDHbJV14q0X73OLmlBvke2Gx0GWv-W-wQqvlCa5pYWWVae44b4u1v4u5KYokY2vAI1DTkzXcOGivyS9iniypcwq7DstGScLW_mSm6q3TNmL-ny6YBMhlf3gxGr5ROYCeNgxTKZpVbpINapCq3kGbbreKC1jFJplBQ20NIT4BvfZkrHqVTcIlm3sMbVXTo8JO28yOGIUFA-pJ7xhUtmPMysSqNAI7lbzA0XUnZI2HgtMTW3OEpcPCcNiOwxqXydoK8TVL70og5ha6tFxa3xx_i4-SDJtzmSuPD_q-Xxvy1PyGaAibzcdDkl7dXyDc5cGbLS3XKedclG__p2NP4EQp3e3w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOcCFHVFWH7iaZnEcm1tVURVoe2ql3qLYmdCypFUp4sa348lSgYRA4hJFkSeJJvbMxHrzHiGXILBQAM3SUADjIVdMAximtQInwKTkYjdyfyC6I343DsY10q56YRBWWcb-Iqbn0bq80iy92ZxPp9jji7SD9iB8TFThGlnndvmijMHVxwrngQLfBWW47zIcXvXP5SCvuY13swdEeImcyRNV7H7KT19yTmeHbJXFIm0V77NLapDtke1KiIGW63KfQEEYSuMsobM0zc9xR_zd_vnbmpiiSDa8AjUVOzNd4YZm2TVtUQSWL2BSgNlpTjmb38zW3FTbZ0xe4sXTARl1bobtLiv1E5jxQ2_JUpnGidJeqGPlJ5Kn2K_jgNYyiKVRUiSelo4A17hJqnQYS8UTZOsWibGFl_YPST2bZXBEKCgXYse4wmYz7qeJigNPI7tbyA0XUjaIX3ktMiW5OGpcPEcViuwxKnwdoa8jlL50ggZhK6t5Qa7xx_iw-iDRt0kS2fj_q-Xxvy0vyEZ32O9FvdvB_QnZ9DCr5zswp6S-XLzBma1Jlvo8n3OfdAXgbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+and+offline+handwritten+Chinese+character+recognition%3A+A+comprehensive+study+and+new+benchmark&rft.jtitle=Pattern+recognition&rft.au=Zhang%2C+Xu-Yao&rft.au=Bengio%2C+Yoshua&rft.au=Liu%2C+Cheng-Lin&rft.date=2017-01-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=61&rft.spage=348&rft.epage=360&rft_id=info:doi/10.1016%2Fj.patcog.2016.08.005&rft.externalDocID=S0031320316302187 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |