Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy
•FeNiCrCo0.3Al0.7 high entropy alloy is prepared via MA and SPS.•Two BCC phases and one FCC phase were obtained after SPS.•The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure).•Bulk FeNiCrCo0.3Al0.7 HEA exhibits excellent mechanical properties. The present pap...
Saved in:
Published in | Materials in engineering Vol. 51; pp. 854 - 860 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •FeNiCrCo0.3Al0.7 high entropy alloy is prepared via MA and SPS.•Two BCC phases and one FCC phase were obtained after SPS.•The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure).•Bulk FeNiCrCo0.3Al0.7 HEA exhibits excellent mechanical properties.
The present paper reports the synthesis of FeNiCrCo0.3Al0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01Å and one FCC phase with the lattice parameter of 3.72Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo0.3Al0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo0.3Al0.7 alloy are 2033±41MPa, 2635±55MPa, 8.12±0.51% and 624±26Hv, respectively. The fracture mechanism of bulk FeNiCrCo0.3Al0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture. |
---|---|
AbstractList | •FeNiCrCo0.3Al0.7 high entropy alloy is prepared via MA and SPS.•Two BCC phases and one FCC phase were obtained after SPS.•The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure).•Bulk FeNiCrCo0.3Al0.7 HEA exhibits excellent mechanical properties.
The present paper reports the synthesis of FeNiCrCo0.3Al0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01Å and one FCC phase with the lattice parameter of 3.72Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo0.3Al0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo0.3Al0.7 alloy are 2033±41MPa, 2635±55MPa, 8.12±0.51% and 624±26Hv, respectively. The fracture mechanism of bulk FeNiCrCo0.3Al0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture. |
Author | Chen, Weiping Fu, Zhiqiang Zhu, Dezhi Fang, Sicong Xiao, Huaqiang |
Author_xml | – sequence: 1 givenname: Weiping surname: Chen fullname: Chen, Weiping – sequence: 2 givenname: Zhiqiang surname: Fu fullname: Fu, Zhiqiang email: kopyhit@163.com, fu.zhiqiang@mail.scut.edu.cn – sequence: 3 givenname: Sicong surname: Fang fullname: Fang, Sicong – sequence: 4 givenname: Huaqiang surname: Xiao fullname: Xiao, Huaqiang – sequence: 5 givenname: Dezhi surname: Zhu fullname: Zhu, Dezhi |
BookMark | eNqFkMtOwzAQRb0oEm3hD1j4A0gYOw8nLJCqigJSBRtYW35MGld5VI5bqX9PorJiAavZzLm69yzIrOs7JOSOQcyA5Q_7uFXB4hBzYEkMaQw5m5E58JxFCeTlNVkMwx6ACcb4nNhV0_Rn1-2oxlqdXO_vaeuM74fgjyYcPVLVWdqiqVXnjGrowfcH9MHhQF1HFd3gu1v7dQ9xsmogFrR2u5piF8a_M1VT_A25qlQz4O3PXZKvzfPn-jXafry8rVfbyCSCh6jKilygYFqbCjQIrTXwEpPcWKPLpCx0JgTPS6N5WkDKFbc2s5nKC5ZlTOhkSdJL7tR_8FjJg3et8mfJQE525F5e7MjJjoRUjnZG7PEXZlxQwfXjBuWa_-CnC4zjsJNDLwfjsDNonUcTpO3d3wHfO3-H5g |
CitedBy_id | crossref_primary_10_1007_s11665_014_0871_5 crossref_primary_10_1016_j_vacuum_2020_109558 crossref_primary_10_1016_j_mtcomm_2025_112048 crossref_primary_10_3390_met13061025 crossref_primary_10_1007_s11665_016_2407_7 crossref_primary_10_1063_1_5051514 crossref_primary_10_1016_j_matdes_2017_01_036 crossref_primary_10_1007_s00170_019_04185_0 crossref_primary_10_1016_j_ijhydene_2019_08_113 crossref_primary_10_1007_s12540_018_0047_1 crossref_primary_10_1088_2053_1591_aaed63 crossref_primary_10_3389_fmats_2022_849051 crossref_primary_10_1515_ntrev_2021_0071 crossref_primary_10_1557_jmr_2019_5 crossref_primary_10_1007_s44210_024_00038_y crossref_primary_10_1016_j_matdes_2022_110637 crossref_primary_10_2139_ssrn_3991777 crossref_primary_10_1016_j_intermet_2022_107589 crossref_primary_10_1002_eng2_12252 crossref_primary_10_1016_j_jallcom_2023_170469 crossref_primary_10_1016_j_jallcom_2021_158799 crossref_primary_10_1016_j_msea_2024_146920 crossref_primary_10_1002_maco_201709472 crossref_primary_10_1007_s11666_021_01317_5 crossref_primary_10_1016_j_matdes_2022_111167 crossref_primary_10_1016_j_mtcomm_2024_108187 crossref_primary_10_1016_j_net_2024_11_005 crossref_primary_10_1080_2374068X_2020_1829953 crossref_primary_10_1007_s12666_022_02777_1 crossref_primary_10_1002_pssb_202000591 crossref_primary_10_1088_1361_651X_ad084d crossref_primary_10_1016_j_jmrt_2022_01_141 crossref_primary_10_1016_j_apt_2014_03_014 crossref_primary_10_1016_j_jallcom_2015_04_238 crossref_primary_10_1016_j_ijfatigue_2024_108387 crossref_primary_10_1016_j_msea_2024_147544 crossref_primary_10_1016_j_msea_2023_146055 crossref_primary_10_1016_j_mtcomm_2024_108992 crossref_primary_10_1007_s40962_020_00462_x crossref_primary_10_1016_j_msea_2023_144776 crossref_primary_10_1007_s11666_015_0303_6 crossref_primary_10_1016_j_mtcomm_2024_111124 crossref_primary_10_1016_j_matdes_2016_07_066 crossref_primary_10_1016_j_msea_2015_07_052 crossref_primary_10_1016_j_intermet_2018_09_011 crossref_primary_10_1016_j_msea_2016_09_062 crossref_primary_10_1007_s12666_024_03274_3 crossref_primary_10_15407_ufm_21_01_026 crossref_primary_10_1007_s11666_016_0397_5 crossref_primary_10_4028_www_scientific_net_MSF_969_466 crossref_primary_10_2139_ssrn_4060457 crossref_primary_10_3390_met10111489 crossref_primary_10_1016_j_mtcomm_2025_111789 crossref_primary_10_1016_j_jallcom_2021_159985 crossref_primary_10_1016_j_matdes_2016_07_073 crossref_primary_10_1016_j_matdes_2015_08_127 crossref_primary_10_1016_j_matchar_2024_114330 crossref_primary_10_1016_j_rinp_2024_107566 crossref_primary_10_1016_j_jallcom_2022_164884 crossref_primary_10_1016_j_dib_2018_11_111 crossref_primary_10_1016_j_matdes_2015_07_099 crossref_primary_10_1515_mt_2021_2049 crossref_primary_10_1080_00325899_2016_1260903 crossref_primary_10_21122_1683_6065_2024_2_63_71 crossref_primary_10_1016_j_matchemphys_2017_11_037 crossref_primary_10_1016_j_jallcom_2021_162852 crossref_primary_10_1007_s11665_018_3409_4 crossref_primary_10_1016_j_rinp_2019_01_098 crossref_primary_10_1016_j_matlet_2016_03_077 crossref_primary_10_1016_j_actamat_2016_08_081 crossref_primary_10_3390_ma16041490 crossref_primary_10_1016_j_apt_2022_103520 crossref_primary_10_1016_j_matlet_2022_132728 crossref_primary_10_2139_ssrn_3975185 crossref_primary_10_1111_ffe_14317 crossref_primary_10_4028_p_Bo8Als crossref_primary_10_1088_1757_899X_272_1_012028 crossref_primary_10_1016_j_intermet_2021_107444 crossref_primary_10_1016_j_matdes_2018_02_036 crossref_primary_10_1016_j_mtcomm_2020_101009 crossref_primary_10_1016_j_matdes_2015_06_072 crossref_primary_10_1016_j_cplett_2025_141935 crossref_primary_10_1016_j_jallcom_2014_06_090 crossref_primary_10_1016_j_surfcoat_2024_131162 crossref_primary_10_1016_j_jallcom_2018_11_318 crossref_primary_10_1016_j_apt_2016_03_023 crossref_primary_10_1016_j_materresbull_2025_113374 crossref_primary_10_1016_j_mtcomm_2023_107107 crossref_primary_10_1016_j_jallcom_2023_170359 crossref_primary_10_1016_j_matdes_2016_06_100 crossref_primary_10_1088_2051_672X_ab615b crossref_primary_10_1016_j_jallcom_2020_157851 crossref_primary_10_1016_j_msea_2023_145680 crossref_primary_10_1016_j_jallcom_2015_11_205 crossref_primary_10_1016_j_jmrt_2020_05_090 crossref_primary_10_1016_j_matdes_2021_110313 crossref_primary_10_1007_s11837_019_03432_9 crossref_primary_10_1088_2053_1591_ab3753 crossref_primary_10_1016_j_matchar_2025_114761 crossref_primary_10_1007_s10854_024_12949_y crossref_primary_10_1088_1757_899X_145_7_072007 crossref_primary_10_1016_j_jalmes_2025_100170 crossref_primary_10_2320_materia_57_333 crossref_primary_10_1016_j_jmmm_2013_11_049 crossref_primary_10_1038_s41598_017_02168_3 crossref_primary_10_3390_min10010016 crossref_primary_10_1016_j_matdes_2015_11_013 crossref_primary_10_1016_j_powtec_2022_117187 crossref_primary_10_1088_1757_899X_572_1_012073 crossref_primary_10_1134_S0031918X20080098 crossref_primary_10_1016_j_jallcom_2016_09_080 crossref_primary_10_3390_met12122138 crossref_primary_10_1002_adem_201500339 crossref_primary_10_1007_s11665_021_05552_3 crossref_primary_10_1016_j_matdes_2016_01_149 crossref_primary_10_1016_j_matdes_2013_08_099 crossref_primary_10_1016_j_mtcomm_2023_106310 crossref_primary_10_1016_j_jallcom_2023_170854 crossref_primary_10_1007_s10948_020_05579_y crossref_primary_10_1007_s11661_018_4970_z crossref_primary_10_1016_j_intermet_2024_108600 crossref_primary_10_1016_j_actamat_2016_06_025 crossref_primary_10_1016_j_jallcom_2020_158562 crossref_primary_10_1016_j_jmrt_2022_11_057 crossref_primary_10_1016_j_intermet_2019_106651 crossref_primary_10_1016_j_actamat_2024_120235 crossref_primary_10_1016_j_jallcom_2016_12_010 crossref_primary_10_1080_08927022_2019_1566606 crossref_primary_10_1016_j_jallcom_2018_05_057 crossref_primary_10_1007_s12540_025_01935_6 crossref_primary_10_1016_j_intermet_2014_08_008 crossref_primary_10_1515_mt_2023_0129 crossref_primary_10_1088_2053_1591_ab3d86 crossref_primary_10_1007_s42243_020_00466_1 crossref_primary_10_1016_j_jallcom_2018_05_180 crossref_primary_10_1016_j_jallcom_2019_01_213 crossref_primary_10_1016_j_jallcom_2019_06_157 crossref_primary_10_3390_ma14195796 crossref_primary_10_1007_s11837_024_06474_w crossref_primary_10_1016_j_jmrt_2024_11_069 crossref_primary_10_1016_j_intermet_2017_11_019 crossref_primary_10_1007_s40430_024_05248_4 crossref_primary_10_1016_j_msea_2019_138881 crossref_primary_10_1007_s11837_024_06872_0 crossref_primary_10_1016_j_apt_2021_103410 crossref_primary_10_1021_acsaenm_3c00161 crossref_primary_10_1080_14786435_2022_2092228 crossref_primary_10_1016_j_jallcom_2021_159918 crossref_primary_10_1016_j_jallcom_2018_03_358 crossref_primary_10_1016_j_vacuum_2020_109173 crossref_primary_10_3390_ma14030621 crossref_primary_10_1177_09544062211008935 crossref_primary_10_1016_j_promfg_2019_06_043 crossref_primary_10_1016_j_msea_2018_04_080 crossref_primary_10_1016_j_intermet_2019_106672 crossref_primary_10_1088_2053_1591_ac69b3 crossref_primary_10_1080_14786435_2023_2265844 crossref_primary_10_1007_s40870_018_00178_4 crossref_primary_10_1016_j_intermet_2022_107523 crossref_primary_10_1016_j_matdes_2013_12_048 crossref_primary_10_1016_j_cap_2023_12_016 crossref_primary_10_1016_j_mtcomm_2024_109579 crossref_primary_10_1016_j_ijfatigue_2024_108412 crossref_primary_10_1016_j_jallcom_2021_162505 crossref_primary_10_1557_jmr_2018_499 crossref_primary_10_1016_j_msea_2017_02_068 crossref_primary_10_4028_www_scientific_net_MSF_816_324 crossref_primary_10_3103_S1061386222020078 crossref_primary_10_1016_j_mtcomm_2023_106759 crossref_primary_10_28948_ngumuh_517876 crossref_primary_10_1002_adem_202201770 crossref_primary_10_1063_5_0102785 crossref_primary_10_1007_s41230_022_2042_x crossref_primary_10_1016_j_actamat_2020_03_039 crossref_primary_10_1142_S021798492450218X crossref_primary_10_3390_e21020122 crossref_primary_10_1016_j_matdes_2018_07_023 crossref_primary_10_1088_1741_4326_aaf43f crossref_primary_10_1016_j_jallcom_2021_163428 crossref_primary_10_1016_j_jallcom_2017_12_333 crossref_primary_10_1007_s12613_020_2221_y crossref_primary_10_1007_s12613_016_1213_4 crossref_primary_10_1007_s10854_017_6741_9 crossref_primary_10_1016_j_jallcom_2013_11_146 crossref_primary_10_1016_j_jallcom_2017_09_053 crossref_primary_10_1016_j_intermet_2018_05_013 crossref_primary_10_3390_ma16114039 crossref_primary_10_1016_j_msea_2023_145606 crossref_primary_10_1007_s11665_019_04501_5 crossref_primary_10_1016_j_apt_2017_07_006 crossref_primary_10_1016_j_msea_2019_138116 crossref_primary_10_1016_j_mfglet_2020_03_003 crossref_primary_10_1016_j_intermet_2017_09_013 crossref_primary_10_1016_j_jallcom_2020_153766 crossref_primary_10_1007_s11661_021_06162_3 crossref_primary_10_1016_j_rsurfi_2025_100415 crossref_primary_10_1557_jmr_2018_477 crossref_primary_10_1007_s11665_019_04162_4 crossref_primary_10_1016_j_intermet_2021_107376 crossref_primary_10_1016_S1003_6326_18_64774_0 crossref_primary_10_1080_00325899_2019_1584454 crossref_primary_10_1016_j_jallcom_2024_175849 crossref_primary_10_1007_s00339_022_06190_9 crossref_primary_10_1007_s11666_019_00901_0 crossref_primary_10_1007_s13632_019_00551_2 crossref_primary_10_1007_s40195_021_01252_y crossref_primary_10_2139_ssrn_3968968 crossref_primary_10_1016_j_rinp_2019_102465 crossref_primary_10_1002_adem_202201686 crossref_primary_10_1016_j_apmt_2019_04_014 crossref_primary_10_1080_00325899_2019_1576389 crossref_primary_10_1016_j_msea_2015_08_056 crossref_primary_10_3390_ma14113065 crossref_primary_10_1007_s11666_024_01809_0 crossref_primary_10_1016_j_jmrt_2016_03_004 crossref_primary_10_1016_j_intermet_2015_11_005 crossref_primary_10_1016_j_matchemphys_2024_130091 crossref_primary_10_1088_1757_899X_538_1_012009 crossref_primary_10_1016_j_mtla_2024_102162 crossref_primary_10_1007_s00339_020_03566_7 crossref_primary_10_1088_1757_899X_179_1_012027 |
Cites_doi | 10.1016/j.matdes.2012.03.059 10.1016/j.jallcom.2009.08.090 10.1016/j.actamat.2010.09.023 10.1016/j.msea.2012.02.009 10.1016/j.jallcom.2008.12.088 10.1016/0921-5093(95)09825-9 10.1016/j.jallcom.2007.05.104 10.1016/j.jallcom.2009.05.144 10.1016/j.matdes.2012.08.048 10.1002/adem.200900057 10.1016/j.msea.2008.12.053 10.1002/adem.200300507 10.1016/j.jallcom.2008.10.106 10.1002/adem.200300567 10.1007/s10853-006-6555-2 10.1063/1.3538936 10.1016/j.msea.2011.11.044 10.1016/j.matdes.2011.07.005 10.1063/1.2734517 10.1016/j.intermet.2012.09.015 10.1016/j.jallcom.2009.12.010 10.1103/PhysRevLett.68.2235 10.1007/s10853-010-4344-4 10.1016/j.corsci.2009.11.028 10.2320/matertrans.46.2817 10.1016/j.corsci.2010.06.025 10.1016/j.intermet.2010.10.008 10.1016/j.matchemphys.2011.11.021 10.1016/j.jallcom.2009.03.087 10.1016/j.intermet.2012.03.005 10.1016/j.wear.2005.12.008 10.1016/j.msea.2008.01.064 10.1016/j.jallcom.2010.10.210 10.1016/j.msea.2009.09.019 10.1007/s10853-010-4246-5 10.1016/j.intermet.2012.06.012 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matdes.2013.04.061 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 860 |
ExternalDocumentID | 10_1016_j_matdes_2013_04_061 S0261306913003841 |
GroupedDBID | -~X 4G. 5VS 7-5 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAQXK AAXUO ABEFU ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACNNM ACRLP ADMUD ADTZH AEBSH AECPX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BKOJK BLXMC EFJIC EO8 EO9 EP2 EP3 FDB FGOYB FIRID FYGXN G-2 IHE J1W M24 M41 OAUVE Q38 R2- ROL SDF SMS SPC SSM SST SSZ T5K AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH |
ID | FETCH-LOGICAL-c372t-f5867e71bbcf0b07bbb029e36cdcb9398b577269cb248042a2dd5d5a6815517b3 |
IEDL.DBID | AIKHN |
ISSN | 0261-3069 |
IngestDate | Tue Jul 01 04:23:09 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Fri Feb 23 02:21:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High entropy alloys Mechanical properties Spark plasma sintering Microstructure Mechanical alloying |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-f5867e71bbcf0b07bbb029e36cdcb9398b577269cb248042a2dd5d5a6815517b3 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_matdes_2013_04_061 crossref_citationtrail_10_1016_j_matdes_2013_04_061 elsevier_sciencedirect_doi_10_1016_j_matdes_2013_04_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Materials in engineering |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Varalakshmi, Appa Rao, Kamaraj, Murty (b0100) 2010; 45 Shun, Du (b0110) 2009; 479 Chen, Shu, Hu, Zhao, Yuan (b0010) 2012; 541 Fu, Chen, Xiao, Zhou, Zhu, Yang (b0140) 2013; 44 Yeh, Chen, Lin, Gan, Chin, Shun (b0035) 2004; 6 Chen, Shu, Zhao, Zhao, Wang, Yuan (b0005) 2012; 40 Chen, Hu, Hsieh, Yeh, Chen (b0155) 2009; 481 Varalakshmi, Kamaraj, Murty (b0050) 2010; 527 Wu, Lin, Yeh, Chen (b0070) 2006; 261 Zhou, Zhang, Wang, Chen (b0060) 2007; 90 Z.Q. Fu. Research on microstructure and properties of AlCrFeNi-M high entropy alloys and its composites, Thesis for Master Degree, Harbin Institute of Technology; 2011. p. 23–9. Wang, Li, Fu (b0180) 2009; 11 Kao, Lee, Chen, Chang (b0120) 2010; 52 Singh, Wanderka, Murty, Glatzel, Banhart (b0175) 2011; 59 Varalakshmi, Kamaraj, Murty (b0080) 2008; 460 Wanderka, Glatzel (b0185) 1995; 203 Hung, Yeh, Shun (b0065) 2004; 6 Zhang, Fu, Zhang, Wang, Wang, Wang (b0190) 2009; 508 Takeuchi, Yubuta, Ogata, Inoue (b0025) 2010; 45 Praveen, Murty, Kottada Ravi (b0085) 2012; 534 Takeuchi, Inoue (b0170) 2005; 46 Wei, Zhang, Lu, Xu (b0030) 2012; 31 Ren, Liu, Cai, Wang, Shi (b0055) 2012; 33 Xu, Xue, Zhang (b0020) 2013; 32 Lucas, Mauger, Muñoz, Xiao, Sheets, Semiatin (b0075) 2011; 109 Yavari, Desre, Benameur (b0160) 1992; 68 Lin, Tsai (b0130) 2011; 19 Kao, Chen, Chen, Yeh (b0115) 2009; 488 Zhang, Fu, Zhang, Shi, Wang, Wang (b0090) 2009; 485 Yang, Zhang (b0165) 2012; 132 Chen, Luo, Zhao (b0015) 2009; 477 Munir, Anselmi-Tamburini, Ohyanagi (b0135) 2006; 41 Kao, Chen, Chen, Chu, Yeh, Lin (b0125) 2011; 509 Wang, Wang, Wang, Tsai, Lai, Yeh (b0045) 2012; 26 Zhang, Fu, Zhang, Wang, Lee, Niihara (b0095) 2010; 495 Wang, Li, Ren, Yang, Fu (b0105) 2008; 491 GB/T 7314. Metallic materials – compression testing at ambient temperature, National Standard of the People’s Republic of China; 2005. Chou, Wang, Yeh, Shih (b0040) 2010; 52 Takeuchi (10.1016/j.matdes.2013.04.061_b0170) 2005; 46 Wu (10.1016/j.matdes.2013.04.061_b0070) 2006; 261 Kao (10.1016/j.matdes.2013.04.061_b0115) 2009; 488 Chen (10.1016/j.matdes.2013.04.061_b0010) 2012; 541 Varalakshmi (10.1016/j.matdes.2013.04.061_b0050) 2010; 527 Ren (10.1016/j.matdes.2013.04.061_b0055) 2012; 33 Shun (10.1016/j.matdes.2013.04.061_b0110) 2009; 479 Wei (10.1016/j.matdes.2013.04.061_b0030) 2012; 31 Zhang (10.1016/j.matdes.2013.04.061_b0190) 2009; 508 Lin (10.1016/j.matdes.2013.04.061_b0130) 2011; 19 Chou (10.1016/j.matdes.2013.04.061_b0040) 2010; 52 Zhou (10.1016/j.matdes.2013.04.061_b0060) 2007; 90 Zhang (10.1016/j.matdes.2013.04.061_b0090) 2009; 485 Singh (10.1016/j.matdes.2013.04.061_b0175) 2011; 59 Kao (10.1016/j.matdes.2013.04.061_b0120) 2010; 52 10.1016/j.matdes.2013.04.061_b0150 Xu (10.1016/j.matdes.2013.04.061_b0020) 2013; 32 Munir (10.1016/j.matdes.2013.04.061_b0135) 2006; 41 Yang (10.1016/j.matdes.2013.04.061_b0165) 2012; 132 Chen (10.1016/j.matdes.2013.04.061_b0005) 2012; 40 Wang (10.1016/j.matdes.2013.04.061_b0180) 2009; 11 Yavari (10.1016/j.matdes.2013.04.061_b0160) 1992; 68 Wang (10.1016/j.matdes.2013.04.061_b0045) 2012; 26 Lucas (10.1016/j.matdes.2013.04.061_b0075) 2011; 109 Chen (10.1016/j.matdes.2013.04.061_b0155) 2009; 481 Takeuchi (10.1016/j.matdes.2013.04.061_b0025) 2010; 45 Praveen (10.1016/j.matdes.2013.04.061_b0085) 2012; 534 Wanderka (10.1016/j.matdes.2013.04.061_b0185) 1995; 203 Zhang (10.1016/j.matdes.2013.04.061_b0095) 2010; 495 Chen (10.1016/j.matdes.2013.04.061_b0015) 2009; 477 Varalakshmi (10.1016/j.matdes.2013.04.061_b0080) 2008; 460 Varalakshmi (10.1016/j.matdes.2013.04.061_b0100) 2010; 45 Yeh (10.1016/j.matdes.2013.04.061_b0035) 2004; 6 Fu (10.1016/j.matdes.2013.04.061_b0140) 2013; 44 10.1016/j.matdes.2013.04.061_b0145 Kao (10.1016/j.matdes.2013.04.061_b0125) 2011; 509 Hung (10.1016/j.matdes.2013.04.061_b0065) 2004; 6 Wang (10.1016/j.matdes.2013.04.061_b0105) 2008; 491 |
References_xml | – reference: GB/T 7314. Metallic materials – compression testing at ambient temperature, National Standard of the People’s Republic of China; 2005. – volume: 59 start-page: 182 year: 2011 end-page: 190 ident: b0175 article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy publication-title: Acta Mater – volume: 90 start-page: 181904 year: 2007 ident: b0060 article-title: Solid solution alloys of AlCoCrFeNiTi publication-title: Appl Phys Lett – volume: 479 start-page: 157 year: 2009 end-page: 160 ident: b0110 article-title: Microstructure and tensile behaviors of FCC Al publication-title: J Alloys Compd – volume: 261 start-page: 513 year: 2006 end-page: 519 ident: b0070 article-title: Adhesive wear behavior of Al publication-title: Wear – volume: 45 start-page: 5158 year: 2010 end-page: 5163 ident: b0100 article-title: Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying publication-title: J Mater Sci – volume: 460 start-page: 253 year: 2008 end-page: 257 ident: b0080 article-title: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying publication-title: J Alloys Compd – volume: 41 start-page: 763 year: 2006 end-page: 777 ident: b0135 article-title: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method publication-title: J Mater Sci – volume: 44 start-page: 535 year: 2013 end-page: 539 ident: b0140 article-title: Fabrication and properties of nanocrystalline Co publication-title: Mater Des – volume: 491 start-page: 154 year: 2008 end-page: 158 ident: b0105 article-title: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy publication-title: Mater Sci Eng A – volume: 541 start-page: 98 year: 2012 end-page: 104 ident: b0010 article-title: Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure publication-title: Mater Sci Eng A – volume: 527 start-page: 1027 year: 2010 end-page: 1030 ident: b0050 article-title: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying publication-title: Mater Sci Eng A – volume: 203 start-page: 69 year: 1995 end-page: 74 ident: b0185 article-title: Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy publication-title: Mater Sci Eng A – volume: 32 start-page: 1 year: 2013 end-page: 5 ident: b0020 article-title: Superior glass-forming ability and its correlation with density in Ce–Ga–Cu ternary bulk metallic glasses publication-title: Intermetallics – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: b0035 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv Eng Mater – volume: 11 start-page: 641 year: 2009 end-page: 644 ident: b0180 article-title: Solid solution or intermetallics in a high-entropy alloy publication-title: Adv Eng Mater – volume: 508 start-page: 214 year: 2009 end-page: 219 ident: b0190 article-title: Microstructure and mechanical properties of CoCrFeNiTiAl publication-title: Mater Sci Eng A – volume: 52 start-page: 3481 year: 2010 end-page: 3491 ident: b0040 article-title: The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co publication-title: Corros Sci – volume: 52 start-page: 1026 year: 2010 end-page: 1034 ident: b0120 article-title: Electrochemical passive properties of Al publication-title: Corros Sci – volume: 33 start-page: 121 year: 2012 end-page: 126 ident: b0055 article-title: Aging behavior of a CuCr publication-title: Mater Des – volume: 26 start-page: 44 year: 2012 end-page: 51 ident: b0045 article-title: Effects of Al addition on the microstructure and mechanical property of Al publication-title: Intermetallics – volume: 485 start-page: L31 year: 2009 end-page: L34 ident: b0090 article-title: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying publication-title: J Alloys Compd – volume: 46 start-page: 2817 year: 2005 end-page: 2829 ident: b0170 article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element publication-title: Mater Trans – volume: 534 start-page: 83 year: 2012 end-page: 89 ident: b0085 article-title: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys publication-title: Mater Sci Eng A – volume: 488 start-page: 57 year: 2009 end-page: 64 ident: b0115 article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al publication-title: J Alloys Compd – volume: 31 start-page: 105 year: 2012 end-page: 113 ident: b0030 article-title: Effects of transition metals in a binary-phase TiAl–Ti publication-title: Intermetallics – volume: 19 start-page: 288 year: 2011 end-page: 294 ident: b0130 article-title: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al publication-title: Intermetallics – volume: 45 start-page: 4898 year: 2010 end-page: 4905 ident: b0025 article-title: Molecular dynamics simulations of critically percolated, cluster-packed structure in Zr–Al–Ni bulk metallic glass publication-title: J Mater Sci – volume: 6 start-page: 74 year: 2004 end-page: 78 ident: b0065 article-title: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating publication-title: Adv Eng Mater – volume: 481 start-page: 769 year: 2009 end-page: 775 ident: b0155 article-title: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system publication-title: J Alloys Compd – volume: 68 start-page: 2235 year: 1992 end-page: 2238 ident: b0160 article-title: Mechanically driven alloying of immiscible elements publication-title: Phys Rev Lett – volume: 109 start-page: 07E307 year: 2011 ident: b0075 article-title: Magnetic and vibrational properties of high-entropy alloys publication-title: J Appl Phys – volume: 477 start-page: 726 year: 2009 end-page: 731 ident: b0015 article-title: Microstructural evolution of previously deformed AZ91D magnesium alloy during partial remelting publication-title: J Alloys Compd – volume: 40 start-page: 488 year: 2012 end-page: 496 ident: b0005 article-title: Microstructure development and tensile mechanical properties of Mg–Zn–RE–Zr magnesium alloy publication-title: Mater Des – volume: 509 start-page: 1607 year: 2011 end-page: 1614 ident: b0125 article-title: Electrical, magnetic, and Hall properties of Al publication-title: J Alloys Compd – volume: 132 start-page: 233 year: 2012 end-page: 238 ident: b0165 article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys publication-title: Mater Chem Phys – volume: 495 start-page: 33 year: 2010 end-page: 38 ident: b0095 article-title: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying publication-title: J Alloys Compd – reference: Z.Q. Fu. Research on microstructure and properties of AlCrFeNi-M high entropy alloys and its composites, Thesis for Master Degree, Harbin Institute of Technology; 2011. p. 23–9. – volume: 40 start-page: 488 year: 2012 ident: 10.1016/j.matdes.2013.04.061_b0005 article-title: Microstructure development and tensile mechanical properties of Mg–Zn–RE–Zr magnesium alloy publication-title: Mater Des doi: 10.1016/j.matdes.2012.03.059 – volume: 488 start-page: 57 year: 2009 ident: 10.1016/j.matdes.2013.04.061_b0115 article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0⩽x⩽2) high-entropy alloys publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2009.08.090 – volume: 59 start-page: 182 year: 2011 ident: 10.1016/j.matdes.2013.04.061_b0175 article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy publication-title: Acta Mater doi: 10.1016/j.actamat.2010.09.023 – volume: 541 start-page: 98 year: 2012 ident: 10.1016/j.matdes.2013.04.061_b0010 article-title: Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.02.009 – volume: 479 start-page: 157 year: 2009 ident: 10.1016/j.matdes.2013.04.061_b0110 article-title: Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2008.12.088 – volume: 203 start-page: 69 year: 1995 ident: 10.1016/j.matdes.2013.04.061_b0185 article-title: Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy publication-title: Mater Sci Eng A doi: 10.1016/0921-5093(95)09825-9 – volume: 460 start-page: 253 year: 2008 ident: 10.1016/j.matdes.2013.04.061_b0080 article-title: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2007.05.104 – volume: 485 start-page: L31 year: 2009 ident: 10.1016/j.matdes.2013.04.061_b0090 article-title: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2009.05.144 – volume: 44 start-page: 535 year: 2013 ident: 10.1016/j.matdes.2013.04.061_b0140 article-title: Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique publication-title: Mater Des doi: 10.1016/j.matdes.2012.08.048 – volume: 11 start-page: 641 issue: 8 year: 2009 ident: 10.1016/j.matdes.2013.04.061_b0180 article-title: Solid solution or intermetallics in a high-entropy alloy publication-title: Adv Eng Mater doi: 10.1002/adem.200900057 – volume: 508 start-page: 214 year: 2009 ident: 10.1016/j.matdes.2013.04.061_b0190 article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2008.12.053 – volume: 6 start-page: 74 year: 2004 ident: 10.1016/j.matdes.2013.04.061_b0065 article-title: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating publication-title: Adv Eng Mater doi: 10.1002/adem.200300507 – volume: 477 start-page: 726 year: 2009 ident: 10.1016/j.matdes.2013.04.061_b0015 article-title: Microstructural evolution of previously deformed AZ91D magnesium alloy during partial remelting publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2008.10.106 – volume: 6 start-page: 299 issue: 5 year: 2004 ident: 10.1016/j.matdes.2013.04.061_b0035 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv Eng Mater doi: 10.1002/adem.200300567 – volume: 41 start-page: 763 year: 2006 ident: 10.1016/j.matdes.2013.04.061_b0135 article-title: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method publication-title: J Mater Sci doi: 10.1007/s10853-006-6555-2 – volume: 109 start-page: 07E307 year: 2011 ident: 10.1016/j.matdes.2013.04.061_b0075 article-title: Magnetic and vibrational properties of high-entropy alloys publication-title: J Appl Phys doi: 10.1063/1.3538936 – ident: 10.1016/j.matdes.2013.04.061_b0150 – volume: 534 start-page: 83 year: 2012 ident: 10.1016/j.matdes.2013.04.061_b0085 article-title: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.11.044 – volume: 33 start-page: 121 year: 2012 ident: 10.1016/j.matdes.2013.04.061_b0055 article-title: Aging behavior of a CuCr2Fe2NiMn high-entropy alloy publication-title: Mater Des doi: 10.1016/j.matdes.2011.07.005 – volume: 90 start-page: 181904 year: 2007 ident: 10.1016/j.matdes.2013.04.061_b0060 article-title: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties publication-title: Appl Phys Lett doi: 10.1063/1.2734517 – volume: 32 start-page: 1 year: 2013 ident: 10.1016/j.matdes.2013.04.061_b0020 article-title: Superior glass-forming ability and its correlation with density in Ce–Ga–Cu ternary bulk metallic glasses publication-title: Intermetallics doi: 10.1016/j.intermet.2012.09.015 – volume: 495 start-page: 33 year: 2010 ident: 10.1016/j.matdes.2013.04.061_b0095 article-title: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2009.12.010 – volume: 68 start-page: 2235 year: 1992 ident: 10.1016/j.matdes.2013.04.061_b0160 article-title: Mechanically driven alloying of immiscible elements publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.68.2235 – volume: 45 start-page: 4898 year: 2010 ident: 10.1016/j.matdes.2013.04.061_b0025 article-title: Molecular dynamics simulations of critically percolated, cluster-packed structure in Zr–Al–Ni bulk metallic glass publication-title: J Mater Sci doi: 10.1007/s10853-010-4344-4 – volume: 52 start-page: 1026 year: 2010 ident: 10.1016/j.matdes.2013.04.061_b0120 article-title: Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids publication-title: Corros Sci doi: 10.1016/j.corsci.2009.11.028 – volume: 46 start-page: 2817 year: 2005 ident: 10.1016/j.matdes.2013.04.061_b0170 article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element publication-title: Mater Trans doi: 10.2320/matertrans.46.2817 – volume: 52 start-page: 3481 year: 2010 ident: 10.1016/j.matdes.2013.04.061_b0040 article-title: The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments publication-title: Corros Sci doi: 10.1016/j.corsci.2010.06.025 – volume: 19 start-page: 288 year: 2011 ident: 10.1016/j.matdes.2013.04.061_b0130 article-title: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2010.10.008 – volume: 132 start-page: 233 year: 2012 ident: 10.1016/j.matdes.2013.04.061_b0165 article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2011.11.021 – volume: 481 start-page: 769 year: 2009 ident: 10.1016/j.matdes.2013.04.061_b0155 article-title: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2009.03.087 – ident: 10.1016/j.matdes.2013.04.061_b0145 – volume: 26 start-page: 44 year: 2012 ident: 10.1016/j.matdes.2013.04.061_b0045 article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2012.03.005 – volume: 261 start-page: 513 year: 2006 ident: 10.1016/j.matdes.2013.04.061_b0070 article-title: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content publication-title: Wear doi: 10.1016/j.wear.2005.12.008 – volume: 491 start-page: 154 year: 2008 ident: 10.1016/j.matdes.2013.04.061_b0105 article-title: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2008.01.064 – volume: 509 start-page: 1607 year: 2011 ident: 10.1016/j.matdes.2013.04.061_b0125 article-title: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2010.10.210 – volume: 527 start-page: 1027 year: 2010 ident: 10.1016/j.matdes.2013.04.061_b0050 article-title: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2009.09.019 – volume: 45 start-page: 5158 year: 2010 ident: 10.1016/j.matdes.2013.04.061_b0100 article-title: Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying publication-title: J Mater Sci doi: 10.1007/s10853-010-4246-5 – volume: 31 start-page: 105 year: 2012 ident: 10.1016/j.matdes.2013.04.061_b0030 article-title: Effects of transition metals in a binary-phase TiAl–Ti3Al alloy: from site occupancy, interfacial energetics to mechanical properties publication-title: Intermetallics doi: 10.1016/j.intermet.2012.06.012 |
SSID | ssj0017112 |
Score | 2.5009356 |
Snippet | •FeNiCrCo0.3Al0.7 high entropy alloy is prepared via MA and SPS.•Two BCC phases and one FCC phase were obtained after SPS.•The two BCC phases are enriched in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 854 |
SubjectTerms | High entropy alloys Mechanical alloying Mechanical properties Microstructure Spark plasma sintering |
Title | Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy |
URI | https://dx.doi.org/10.1016/j.matdes.2013.04.061 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke9GD-MQ3e_BobJJN9nEswVIVe9FCbyGzmUKkTUuph_57d5qkVBAFjwlZCDO7M9_uzPctY3fKxCicYz10mMiLMAZPYxZ60gJKFDbQmtjIr0M5GEXP43jcYknDhaG2yjr2VzF9E63rN93amt1FUXTfaPfgAK-hgozQRF7vhC67-m3W6T29DIbbYoIKNkXP-qhFmoZBt2nzcrgwR9LtDsRG81QGP2eonazTP2QHNVzkveqPjlgLy2O2vyMieMLy3nQ6J7ISbyj393xGbXaVNOznEnlW5nyGxPEll_AFHcAvSUmVFyXPeB-HRbJM5m5r3Zv6D4qThjGnY9_5Ys2pMr8-ZaP-43sy8Oq7EzwrVLjyJrGWClUAYCc--AoA_NCgkDa3YITREDtcLY2FMNJu4WZhnsd5nElNGEqBOGPtcl7iOePW-NYKbaWK8sgoBEDfKm0BlJ647dIFE429UlsLi9P9FtO06SD7SCsrp2Tl1I9SZ-UL5m1HLSphjT--V40r0m8TJHWx_9eRl_8eecX26Knq3btmbec2vHEYZAW39Rz7Aqmu2zQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9gAcKj5F-dwD3DCxvfZ-HDhEaaOEtLnQSr0tnvVESpU6UShC-V38we7E66pICCSkXm2vD2_Gu2923zwDvNe2JBkCm1DgRElBJSaGqjxRHkmR9Jkx3I18MlWjs-LLeXm-A7-6XhiWVca5v53Tt7N1vNKLaPZW83nvK1cPgfBaPpCRpsiisnJCm5-hbvv-eXwYgvwhz4dHp4NREn8tkHip86tkVhqlSWeIfpZiqhExzS1J5WuPVlqDZaCdynrMCxPyusrruqzLShmmGBpleO892GM3rPBZ7fXHk9H05vBCZ9tD1ri1o2zXsbeVlQUeWhP7hGdy67Gqsj-viLdWueEj2I_0VPRbBB7DDjVP4OEt08KnUPcXiyU3R4muxf-juGRZX2tF-2NNompqcUncU8wpIFa84b9m51Yxb0QlhjSdD9aDZSjl-4v0kxbsmSx4m3m52ghWAmyewdmdAPocdptlQy9AeJt6L41XuqgLqwmRUq-NR9RmFsqzA5AdXs5HI3P-n8bCdYq1C9ei7BhllxYuoHwAyc2oVWvk8Y_ndRcK91tCurDW_HXky_8e-Q7uj05Pjt3xeDp5BQ_4TqsbfA27IYT0JvCfK3wb803At7tO8WvCjxgO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alloying+behavior%2C+microstructure+and+mechanical+properties+in+a+FeNiCrCo0.3Al0.7+high+entropy+alloy&rft.jtitle=Materials+in+engineering&rft.au=Chen%2C+Weiping&rft.au=Fu%2C+Zhiqiang&rft.au=Fang%2C+Sicong&rft.au=Xiao%2C+Huaqiang&rft.date=2013-10-01&rft.issn=0261-3069&rft.volume=51&rft.spage=854&rft.epage=860&rft_id=info:doi/10.1016%2Fj.matdes.2013.04.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2013_04_061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |