Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy

•FeNiCrCo0.3Al0.7 high entropy alloy is prepared via MA and SPS.•Two BCC phases and one FCC phase were obtained after SPS.•The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure).•Bulk FeNiCrCo0.3Al0.7 HEA exhibits excellent mechanical properties. The present pap...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 51; pp. 854 - 860
Main Authors Chen, Weiping, Fu, Zhiqiang, Fang, Sicong, Xiao, Huaqiang, Zhu, Dezhi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •FeNiCrCo0.3Al0.7 high entropy alloy is prepared via MA and SPS.•Two BCC phases and one FCC phase were obtained after SPS.•The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure).•Bulk FeNiCrCo0.3Al0.7 HEA exhibits excellent mechanical properties. The present paper reports the synthesis of FeNiCrCo0.3Al0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01Å and one FCC phase with the lattice parameter of 3.72Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo0.3Al0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo0.3Al0.7 alloy are 2033±41MPa, 2635±55MPa, 8.12±0.51% and 624±26Hv, respectively. The fracture mechanism of bulk FeNiCrCo0.3Al0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture.
AbstractList •FeNiCrCo0.3Al0.7 high entropy alloy is prepared via MA and SPS.•Two BCC phases and one FCC phase were obtained after SPS.•The two BCC phases are enriched in Fe–Cr (A2 structure) and enriched in Ni–Al (B2 structure).•Bulk FeNiCrCo0.3Al0.7 HEA exhibits excellent mechanical properties. The present paper reports the synthesis of FeNiCrCo0.3Al0.7 high entropy alloy (HEA) by mechanical alloying (MA) and spark plasma sintering (SPS) process. Alloying behavior, microstructure, mechanical properties and detailed phases of the alloy were investigated systematically. During MA, the formation of a supersaturated solid solution with body-centered cubic (BCC) structure occurred. However, partial BCC structure phase transformed into a face-center cubic (FCC) structure phase during SPS. Two BCC phases with nearly the same lattice parameter of 3.01Å and one FCC phase with the lattice parameter of 3.72Å were characterized in the transmission electron microscope (TEM) images. The two BCC phases which are evidently deviated from the definition of high entropy alloys (HEAs) are enriched in Fe–Cr and enriched in Ni–Al, respectively. Moreover, the FCC phase agrees well with the definition of HEAs. Bulk FeNiCrCo0.3Al0.7 alloy with little porosity exhibits much better mechanical properties except compression ratio compared with other typical HEAs of FeNiCrCoAl HEA system. The yield strength, compressive strength, compression ratio and Vickers hardness of FeNiCrCo0.3Al0.7 alloy are 2033±41MPa, 2635±55MPa, 8.12±0.51% and 624±26Hv, respectively. The fracture mechanism of bulk FeNiCrCo0.3Al0.7 alloy is dominated by intercrystalline fracture and quasi-cleavage fracture.
Author Chen, Weiping
Fu, Zhiqiang
Zhu, Dezhi
Fang, Sicong
Xiao, Huaqiang
Author_xml – sequence: 1
  givenname: Weiping
  surname: Chen
  fullname: Chen, Weiping
– sequence: 2
  givenname: Zhiqiang
  surname: Fu
  fullname: Fu, Zhiqiang
  email: kopyhit@163.com, fu.zhiqiang@mail.scut.edu.cn
– sequence: 3
  givenname: Sicong
  surname: Fang
  fullname: Fang, Sicong
– sequence: 4
  givenname: Huaqiang
  surname: Xiao
  fullname: Xiao, Huaqiang
– sequence: 5
  givenname: Dezhi
  surname: Zhu
  fullname: Zhu, Dezhi
BookMark eNqFkMtOwzAQRb0oEm3hD1j4A0gYOw8nLJCqigJSBRtYW35MGld5VI5bqX9PorJiAavZzLm69yzIrOs7JOSOQcyA5Q_7uFXB4hBzYEkMaQw5m5E58JxFCeTlNVkMwx6ACcb4nNhV0_Rn1-2oxlqdXO_vaeuM74fgjyYcPVLVWdqiqVXnjGrowfcH9MHhQF1HFd3gu1v7dQ9xsmogFrR2u5piF8a_M1VT_A25qlQz4O3PXZKvzfPn-jXafry8rVfbyCSCh6jKilygYFqbCjQIrTXwEpPcWKPLpCx0JgTPS6N5WkDKFbc2s5nKC5ZlTOhkSdJL7tR_8FjJg3et8mfJQE525F5e7MjJjoRUjnZG7PEXZlxQwfXjBuWa_-CnC4zjsJNDLwfjsDNonUcTpO3d3wHfO3-H5g
CitedBy_id crossref_primary_10_1007_s11665_014_0871_5
crossref_primary_10_1016_j_vacuum_2020_109558
crossref_primary_10_1016_j_mtcomm_2025_112048
crossref_primary_10_3390_met13061025
crossref_primary_10_1007_s11665_016_2407_7
crossref_primary_10_1063_1_5051514
crossref_primary_10_1016_j_matdes_2017_01_036
crossref_primary_10_1007_s00170_019_04185_0
crossref_primary_10_1016_j_ijhydene_2019_08_113
crossref_primary_10_1007_s12540_018_0047_1
crossref_primary_10_1088_2053_1591_aaed63
crossref_primary_10_3389_fmats_2022_849051
crossref_primary_10_1515_ntrev_2021_0071
crossref_primary_10_1557_jmr_2019_5
crossref_primary_10_1007_s44210_024_00038_y
crossref_primary_10_1016_j_matdes_2022_110637
crossref_primary_10_2139_ssrn_3991777
crossref_primary_10_1016_j_intermet_2022_107589
crossref_primary_10_1002_eng2_12252
crossref_primary_10_1016_j_jallcom_2023_170469
crossref_primary_10_1016_j_jallcom_2021_158799
crossref_primary_10_1016_j_msea_2024_146920
crossref_primary_10_1002_maco_201709472
crossref_primary_10_1007_s11666_021_01317_5
crossref_primary_10_1016_j_matdes_2022_111167
crossref_primary_10_1016_j_mtcomm_2024_108187
crossref_primary_10_1016_j_net_2024_11_005
crossref_primary_10_1080_2374068X_2020_1829953
crossref_primary_10_1007_s12666_022_02777_1
crossref_primary_10_1002_pssb_202000591
crossref_primary_10_1088_1361_651X_ad084d
crossref_primary_10_1016_j_jmrt_2022_01_141
crossref_primary_10_1016_j_apt_2014_03_014
crossref_primary_10_1016_j_jallcom_2015_04_238
crossref_primary_10_1016_j_ijfatigue_2024_108387
crossref_primary_10_1016_j_msea_2024_147544
crossref_primary_10_1016_j_msea_2023_146055
crossref_primary_10_1016_j_mtcomm_2024_108992
crossref_primary_10_1007_s40962_020_00462_x
crossref_primary_10_1016_j_msea_2023_144776
crossref_primary_10_1007_s11666_015_0303_6
crossref_primary_10_1016_j_mtcomm_2024_111124
crossref_primary_10_1016_j_matdes_2016_07_066
crossref_primary_10_1016_j_msea_2015_07_052
crossref_primary_10_1016_j_intermet_2018_09_011
crossref_primary_10_1016_j_msea_2016_09_062
crossref_primary_10_1007_s12666_024_03274_3
crossref_primary_10_15407_ufm_21_01_026
crossref_primary_10_1007_s11666_016_0397_5
crossref_primary_10_4028_www_scientific_net_MSF_969_466
crossref_primary_10_2139_ssrn_4060457
crossref_primary_10_3390_met10111489
crossref_primary_10_1016_j_mtcomm_2025_111789
crossref_primary_10_1016_j_jallcom_2021_159985
crossref_primary_10_1016_j_matdes_2016_07_073
crossref_primary_10_1016_j_matdes_2015_08_127
crossref_primary_10_1016_j_matchar_2024_114330
crossref_primary_10_1016_j_rinp_2024_107566
crossref_primary_10_1016_j_jallcom_2022_164884
crossref_primary_10_1016_j_dib_2018_11_111
crossref_primary_10_1016_j_matdes_2015_07_099
crossref_primary_10_1515_mt_2021_2049
crossref_primary_10_1080_00325899_2016_1260903
crossref_primary_10_21122_1683_6065_2024_2_63_71
crossref_primary_10_1016_j_matchemphys_2017_11_037
crossref_primary_10_1016_j_jallcom_2021_162852
crossref_primary_10_1007_s11665_018_3409_4
crossref_primary_10_1016_j_rinp_2019_01_098
crossref_primary_10_1016_j_matlet_2016_03_077
crossref_primary_10_1016_j_actamat_2016_08_081
crossref_primary_10_3390_ma16041490
crossref_primary_10_1016_j_apt_2022_103520
crossref_primary_10_1016_j_matlet_2022_132728
crossref_primary_10_2139_ssrn_3975185
crossref_primary_10_1111_ffe_14317
crossref_primary_10_4028_p_Bo8Als
crossref_primary_10_1088_1757_899X_272_1_012028
crossref_primary_10_1016_j_intermet_2021_107444
crossref_primary_10_1016_j_matdes_2018_02_036
crossref_primary_10_1016_j_mtcomm_2020_101009
crossref_primary_10_1016_j_matdes_2015_06_072
crossref_primary_10_1016_j_cplett_2025_141935
crossref_primary_10_1016_j_jallcom_2014_06_090
crossref_primary_10_1016_j_surfcoat_2024_131162
crossref_primary_10_1016_j_jallcom_2018_11_318
crossref_primary_10_1016_j_apt_2016_03_023
crossref_primary_10_1016_j_materresbull_2025_113374
crossref_primary_10_1016_j_mtcomm_2023_107107
crossref_primary_10_1016_j_jallcom_2023_170359
crossref_primary_10_1016_j_matdes_2016_06_100
crossref_primary_10_1088_2051_672X_ab615b
crossref_primary_10_1016_j_jallcom_2020_157851
crossref_primary_10_1016_j_msea_2023_145680
crossref_primary_10_1016_j_jallcom_2015_11_205
crossref_primary_10_1016_j_jmrt_2020_05_090
crossref_primary_10_1016_j_matdes_2021_110313
crossref_primary_10_1007_s11837_019_03432_9
crossref_primary_10_1088_2053_1591_ab3753
crossref_primary_10_1016_j_matchar_2025_114761
crossref_primary_10_1007_s10854_024_12949_y
crossref_primary_10_1088_1757_899X_145_7_072007
crossref_primary_10_1016_j_jalmes_2025_100170
crossref_primary_10_2320_materia_57_333
crossref_primary_10_1016_j_jmmm_2013_11_049
crossref_primary_10_1038_s41598_017_02168_3
crossref_primary_10_3390_min10010016
crossref_primary_10_1016_j_matdes_2015_11_013
crossref_primary_10_1016_j_powtec_2022_117187
crossref_primary_10_1088_1757_899X_572_1_012073
crossref_primary_10_1134_S0031918X20080098
crossref_primary_10_1016_j_jallcom_2016_09_080
crossref_primary_10_3390_met12122138
crossref_primary_10_1002_adem_201500339
crossref_primary_10_1007_s11665_021_05552_3
crossref_primary_10_1016_j_matdes_2016_01_149
crossref_primary_10_1016_j_matdes_2013_08_099
crossref_primary_10_1016_j_mtcomm_2023_106310
crossref_primary_10_1016_j_jallcom_2023_170854
crossref_primary_10_1007_s10948_020_05579_y
crossref_primary_10_1007_s11661_018_4970_z
crossref_primary_10_1016_j_intermet_2024_108600
crossref_primary_10_1016_j_actamat_2016_06_025
crossref_primary_10_1016_j_jallcom_2020_158562
crossref_primary_10_1016_j_jmrt_2022_11_057
crossref_primary_10_1016_j_intermet_2019_106651
crossref_primary_10_1016_j_actamat_2024_120235
crossref_primary_10_1016_j_jallcom_2016_12_010
crossref_primary_10_1080_08927022_2019_1566606
crossref_primary_10_1016_j_jallcom_2018_05_057
crossref_primary_10_1007_s12540_025_01935_6
crossref_primary_10_1016_j_intermet_2014_08_008
crossref_primary_10_1515_mt_2023_0129
crossref_primary_10_1088_2053_1591_ab3d86
crossref_primary_10_1007_s42243_020_00466_1
crossref_primary_10_1016_j_jallcom_2018_05_180
crossref_primary_10_1016_j_jallcom_2019_01_213
crossref_primary_10_1016_j_jallcom_2019_06_157
crossref_primary_10_3390_ma14195796
crossref_primary_10_1007_s11837_024_06474_w
crossref_primary_10_1016_j_jmrt_2024_11_069
crossref_primary_10_1016_j_intermet_2017_11_019
crossref_primary_10_1007_s40430_024_05248_4
crossref_primary_10_1016_j_msea_2019_138881
crossref_primary_10_1007_s11837_024_06872_0
crossref_primary_10_1016_j_apt_2021_103410
crossref_primary_10_1021_acsaenm_3c00161
crossref_primary_10_1080_14786435_2022_2092228
crossref_primary_10_1016_j_jallcom_2021_159918
crossref_primary_10_1016_j_jallcom_2018_03_358
crossref_primary_10_1016_j_vacuum_2020_109173
crossref_primary_10_3390_ma14030621
crossref_primary_10_1177_09544062211008935
crossref_primary_10_1016_j_promfg_2019_06_043
crossref_primary_10_1016_j_msea_2018_04_080
crossref_primary_10_1016_j_intermet_2019_106672
crossref_primary_10_1088_2053_1591_ac69b3
crossref_primary_10_1080_14786435_2023_2265844
crossref_primary_10_1007_s40870_018_00178_4
crossref_primary_10_1016_j_intermet_2022_107523
crossref_primary_10_1016_j_matdes_2013_12_048
crossref_primary_10_1016_j_cap_2023_12_016
crossref_primary_10_1016_j_mtcomm_2024_109579
crossref_primary_10_1016_j_ijfatigue_2024_108412
crossref_primary_10_1016_j_jallcom_2021_162505
crossref_primary_10_1557_jmr_2018_499
crossref_primary_10_1016_j_msea_2017_02_068
crossref_primary_10_4028_www_scientific_net_MSF_816_324
crossref_primary_10_3103_S1061386222020078
crossref_primary_10_1016_j_mtcomm_2023_106759
crossref_primary_10_28948_ngumuh_517876
crossref_primary_10_1002_adem_202201770
crossref_primary_10_1063_5_0102785
crossref_primary_10_1007_s41230_022_2042_x
crossref_primary_10_1016_j_actamat_2020_03_039
crossref_primary_10_1142_S021798492450218X
crossref_primary_10_3390_e21020122
crossref_primary_10_1016_j_matdes_2018_07_023
crossref_primary_10_1088_1741_4326_aaf43f
crossref_primary_10_1016_j_jallcom_2021_163428
crossref_primary_10_1016_j_jallcom_2017_12_333
crossref_primary_10_1007_s12613_020_2221_y
crossref_primary_10_1007_s12613_016_1213_4
crossref_primary_10_1007_s10854_017_6741_9
crossref_primary_10_1016_j_jallcom_2013_11_146
crossref_primary_10_1016_j_jallcom_2017_09_053
crossref_primary_10_1016_j_intermet_2018_05_013
crossref_primary_10_3390_ma16114039
crossref_primary_10_1016_j_msea_2023_145606
crossref_primary_10_1007_s11665_019_04501_5
crossref_primary_10_1016_j_apt_2017_07_006
crossref_primary_10_1016_j_msea_2019_138116
crossref_primary_10_1016_j_mfglet_2020_03_003
crossref_primary_10_1016_j_intermet_2017_09_013
crossref_primary_10_1016_j_jallcom_2020_153766
crossref_primary_10_1007_s11661_021_06162_3
crossref_primary_10_1016_j_rsurfi_2025_100415
crossref_primary_10_1557_jmr_2018_477
crossref_primary_10_1007_s11665_019_04162_4
crossref_primary_10_1016_j_intermet_2021_107376
crossref_primary_10_1016_S1003_6326_18_64774_0
crossref_primary_10_1080_00325899_2019_1584454
crossref_primary_10_1016_j_jallcom_2024_175849
crossref_primary_10_1007_s00339_022_06190_9
crossref_primary_10_1007_s11666_019_00901_0
crossref_primary_10_1007_s13632_019_00551_2
crossref_primary_10_1007_s40195_021_01252_y
crossref_primary_10_2139_ssrn_3968968
crossref_primary_10_1016_j_rinp_2019_102465
crossref_primary_10_1002_adem_202201686
crossref_primary_10_1016_j_apmt_2019_04_014
crossref_primary_10_1080_00325899_2019_1576389
crossref_primary_10_1016_j_msea_2015_08_056
crossref_primary_10_3390_ma14113065
crossref_primary_10_1007_s11666_024_01809_0
crossref_primary_10_1016_j_jmrt_2016_03_004
crossref_primary_10_1016_j_intermet_2015_11_005
crossref_primary_10_1016_j_matchemphys_2024_130091
crossref_primary_10_1088_1757_899X_538_1_012009
crossref_primary_10_1016_j_mtla_2024_102162
crossref_primary_10_1007_s00339_020_03566_7
crossref_primary_10_1088_1757_899X_179_1_012027
Cites_doi 10.1016/j.matdes.2012.03.059
10.1016/j.jallcom.2009.08.090
10.1016/j.actamat.2010.09.023
10.1016/j.msea.2012.02.009
10.1016/j.jallcom.2008.12.088
10.1016/0921-5093(95)09825-9
10.1016/j.jallcom.2007.05.104
10.1016/j.jallcom.2009.05.144
10.1016/j.matdes.2012.08.048
10.1002/adem.200900057
10.1016/j.msea.2008.12.053
10.1002/adem.200300507
10.1016/j.jallcom.2008.10.106
10.1002/adem.200300567
10.1007/s10853-006-6555-2
10.1063/1.3538936
10.1016/j.msea.2011.11.044
10.1016/j.matdes.2011.07.005
10.1063/1.2734517
10.1016/j.intermet.2012.09.015
10.1016/j.jallcom.2009.12.010
10.1103/PhysRevLett.68.2235
10.1007/s10853-010-4344-4
10.1016/j.corsci.2009.11.028
10.2320/matertrans.46.2817
10.1016/j.corsci.2010.06.025
10.1016/j.intermet.2010.10.008
10.1016/j.matchemphys.2011.11.021
10.1016/j.jallcom.2009.03.087
10.1016/j.intermet.2012.03.005
10.1016/j.wear.2005.12.008
10.1016/j.msea.2008.01.064
10.1016/j.jallcom.2010.10.210
10.1016/j.msea.2009.09.019
10.1007/s10853-010-4246-5
10.1016/j.intermet.2012.06.012
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.matdes.2013.04.061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 860
ExternalDocumentID 10_1016_j_matdes_2013_04_061
S0261306913003841
GroupedDBID -~X
4G.
5VS
7-5
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACNNM
ACRLP
ADMUD
ADTZH
AEBSH
AECPX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BKOJK
BLXMC
EFJIC
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FYGXN
G-2
IHE
J1W
M24
M41
OAUVE
Q38
R2-
ROL
SDF
SMS
SPC
SSM
SST
SSZ
T5K
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
ID FETCH-LOGICAL-c372t-f5867e71bbcf0b07bbb029e36cdcb9398b577269cb248042a2dd5d5a6815517b3
IEDL.DBID AIKHN
ISSN 0261-3069
IngestDate Tue Jul 01 04:23:09 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Fri Feb 23 02:21:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High entropy alloys
Mechanical properties
Spark plasma sintering
Microstructure
Mechanical alloying
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-f5867e71bbcf0b07bbb029e36cdcb9398b577269cb248042a2dd5d5a6815517b3
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_matdes_2013_04_061
crossref_citationtrail_10_1016_j_matdes_2013_04_061
elsevier_sciencedirect_doi_10_1016_j_matdes_2013_04_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Materials in engineering
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Varalakshmi, Appa Rao, Kamaraj, Murty (b0100) 2010; 45
Shun, Du (b0110) 2009; 479
Chen, Shu, Hu, Zhao, Yuan (b0010) 2012; 541
Fu, Chen, Xiao, Zhou, Zhu, Yang (b0140) 2013; 44
Yeh, Chen, Lin, Gan, Chin, Shun (b0035) 2004; 6
Chen, Shu, Zhao, Zhao, Wang, Yuan (b0005) 2012; 40
Chen, Hu, Hsieh, Yeh, Chen (b0155) 2009; 481
Varalakshmi, Kamaraj, Murty (b0050) 2010; 527
Wu, Lin, Yeh, Chen (b0070) 2006; 261
Zhou, Zhang, Wang, Chen (b0060) 2007; 90
Z.Q. Fu. Research on microstructure and properties of AlCrFeNi-M high entropy alloys and its composites, Thesis for Master Degree, Harbin Institute of Technology; 2011. p. 23–9.
Wang, Li, Fu (b0180) 2009; 11
Kao, Lee, Chen, Chang (b0120) 2010; 52
Singh, Wanderka, Murty, Glatzel, Banhart (b0175) 2011; 59
Varalakshmi, Kamaraj, Murty (b0080) 2008; 460
Wanderka, Glatzel (b0185) 1995; 203
Hung, Yeh, Shun (b0065) 2004; 6
Zhang, Fu, Zhang, Wang, Wang, Wang (b0190) 2009; 508
Takeuchi, Yubuta, Ogata, Inoue (b0025) 2010; 45
Praveen, Murty, Kottada Ravi (b0085) 2012; 534
Takeuchi, Inoue (b0170) 2005; 46
Wei, Zhang, Lu, Xu (b0030) 2012; 31
Ren, Liu, Cai, Wang, Shi (b0055) 2012; 33
Xu, Xue, Zhang (b0020) 2013; 32
Lucas, Mauger, Muñoz, Xiao, Sheets, Semiatin (b0075) 2011; 109
Yavari, Desre, Benameur (b0160) 1992; 68
Lin, Tsai (b0130) 2011; 19
Kao, Chen, Chen, Yeh (b0115) 2009; 488
Zhang, Fu, Zhang, Shi, Wang, Wang (b0090) 2009; 485
Yang, Zhang (b0165) 2012; 132
Chen, Luo, Zhao (b0015) 2009; 477
Munir, Anselmi-Tamburini, Ohyanagi (b0135) 2006; 41
Kao, Chen, Chen, Chu, Yeh, Lin (b0125) 2011; 509
Wang, Wang, Wang, Tsai, Lai, Yeh (b0045) 2012; 26
Zhang, Fu, Zhang, Wang, Lee, Niihara (b0095) 2010; 495
Wang, Li, Ren, Yang, Fu (b0105) 2008; 491
GB/T 7314. Metallic materials – compression testing at ambient temperature, National Standard of the People’s Republic of China; 2005.
Chou, Wang, Yeh, Shih (b0040) 2010; 52
Takeuchi (10.1016/j.matdes.2013.04.061_b0170) 2005; 46
Wu (10.1016/j.matdes.2013.04.061_b0070) 2006; 261
Kao (10.1016/j.matdes.2013.04.061_b0115) 2009; 488
Chen (10.1016/j.matdes.2013.04.061_b0010) 2012; 541
Varalakshmi (10.1016/j.matdes.2013.04.061_b0050) 2010; 527
Ren (10.1016/j.matdes.2013.04.061_b0055) 2012; 33
Shun (10.1016/j.matdes.2013.04.061_b0110) 2009; 479
Wei (10.1016/j.matdes.2013.04.061_b0030) 2012; 31
Zhang (10.1016/j.matdes.2013.04.061_b0190) 2009; 508
Lin (10.1016/j.matdes.2013.04.061_b0130) 2011; 19
Chou (10.1016/j.matdes.2013.04.061_b0040) 2010; 52
Zhou (10.1016/j.matdes.2013.04.061_b0060) 2007; 90
Zhang (10.1016/j.matdes.2013.04.061_b0090) 2009; 485
Singh (10.1016/j.matdes.2013.04.061_b0175) 2011; 59
Kao (10.1016/j.matdes.2013.04.061_b0120) 2010; 52
10.1016/j.matdes.2013.04.061_b0150
Xu (10.1016/j.matdes.2013.04.061_b0020) 2013; 32
Munir (10.1016/j.matdes.2013.04.061_b0135) 2006; 41
Yang (10.1016/j.matdes.2013.04.061_b0165) 2012; 132
Chen (10.1016/j.matdes.2013.04.061_b0005) 2012; 40
Wang (10.1016/j.matdes.2013.04.061_b0180) 2009; 11
Yavari (10.1016/j.matdes.2013.04.061_b0160) 1992; 68
Wang (10.1016/j.matdes.2013.04.061_b0045) 2012; 26
Lucas (10.1016/j.matdes.2013.04.061_b0075) 2011; 109
Chen (10.1016/j.matdes.2013.04.061_b0155) 2009; 481
Takeuchi (10.1016/j.matdes.2013.04.061_b0025) 2010; 45
Praveen (10.1016/j.matdes.2013.04.061_b0085) 2012; 534
Wanderka (10.1016/j.matdes.2013.04.061_b0185) 1995; 203
Zhang (10.1016/j.matdes.2013.04.061_b0095) 2010; 495
Chen (10.1016/j.matdes.2013.04.061_b0015) 2009; 477
Varalakshmi (10.1016/j.matdes.2013.04.061_b0080) 2008; 460
Varalakshmi (10.1016/j.matdes.2013.04.061_b0100) 2010; 45
Yeh (10.1016/j.matdes.2013.04.061_b0035) 2004; 6
Fu (10.1016/j.matdes.2013.04.061_b0140) 2013; 44
10.1016/j.matdes.2013.04.061_b0145
Kao (10.1016/j.matdes.2013.04.061_b0125) 2011; 509
Hung (10.1016/j.matdes.2013.04.061_b0065) 2004; 6
Wang (10.1016/j.matdes.2013.04.061_b0105) 2008; 491
References_xml – reference: GB/T 7314. Metallic materials – compression testing at ambient temperature, National Standard of the People’s Republic of China; 2005.
– volume: 59
  start-page: 182
  year: 2011
  end-page: 190
  ident: b0175
  article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: Acta Mater
– volume: 90
  start-page: 181904
  year: 2007
  ident: b0060
  article-title: Solid solution alloys of AlCoCrFeNiTi
  publication-title: Appl Phys Lett
– volume: 479
  start-page: 157
  year: 2009
  end-page: 160
  ident: b0110
  article-title: Microstructure and tensile behaviors of FCC Al
  publication-title: J Alloys Compd
– volume: 261
  start-page: 513
  year: 2006
  end-page: 519
  ident: b0070
  article-title: Adhesive wear behavior of Al
  publication-title: Wear
– volume: 45
  start-page: 5158
  year: 2010
  end-page: 5163
  ident: b0100
  article-title: Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying
  publication-title: J Mater Sci
– volume: 460
  start-page: 253
  year: 2008
  end-page: 257
  ident: b0080
  article-title: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying
  publication-title: J Alloys Compd
– volume: 41
  start-page: 763
  year: 2006
  end-page: 777
  ident: b0135
  article-title: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method
  publication-title: J Mater Sci
– volume: 44
  start-page: 535
  year: 2013
  end-page: 539
  ident: b0140
  article-title: Fabrication and properties of nanocrystalline Co
  publication-title: Mater Des
– volume: 491
  start-page: 154
  year: 2008
  end-page: 158
  ident: b0105
  article-title: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy
  publication-title: Mater Sci Eng A
– volume: 541
  start-page: 98
  year: 2012
  end-page: 104
  ident: b0010
  article-title: Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure
  publication-title: Mater Sci Eng A
– volume: 527
  start-page: 1027
  year: 2010
  end-page: 1030
  ident: b0050
  article-title: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying
  publication-title: Mater Sci Eng A
– volume: 203
  start-page: 69
  year: 1995
  end-page: 74
  ident: b0185
  article-title: Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy
  publication-title: Mater Sci Eng A
– volume: 32
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0020
  article-title: Superior glass-forming ability and its correlation with density in Ce–Ga–Cu ternary bulk metallic glasses
  publication-title: Intermetallics
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: b0035
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
– volume: 11
  start-page: 641
  year: 2009
  end-page: 644
  ident: b0180
  article-title: Solid solution or intermetallics in a high-entropy alloy
  publication-title: Adv Eng Mater
– volume: 508
  start-page: 214
  year: 2009
  end-page: 219
  ident: b0190
  article-title: Microstructure and mechanical properties of CoCrFeNiTiAl
  publication-title: Mater Sci Eng A
– volume: 52
  start-page: 3481
  year: 2010
  end-page: 3491
  ident: b0040
  article-title: The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co
  publication-title: Corros Sci
– volume: 52
  start-page: 1026
  year: 2010
  end-page: 1034
  ident: b0120
  article-title: Electrochemical passive properties of Al
  publication-title: Corros Sci
– volume: 33
  start-page: 121
  year: 2012
  end-page: 126
  ident: b0055
  article-title: Aging behavior of a CuCr
  publication-title: Mater Des
– volume: 26
  start-page: 44
  year: 2012
  end-page: 51
  ident: b0045
  article-title: Effects of Al addition on the microstructure and mechanical property of Al
  publication-title: Intermetallics
– volume: 485
  start-page: L31
  year: 2009
  end-page: L34
  ident: b0090
  article-title: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying
  publication-title: J Alloys Compd
– volume: 46
  start-page: 2817
  year: 2005
  end-page: 2829
  ident: b0170
  article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element
  publication-title: Mater Trans
– volume: 534
  start-page: 83
  year: 2012
  end-page: 89
  ident: b0085
  article-title: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys
  publication-title: Mater Sci Eng A
– volume: 488
  start-page: 57
  year: 2009
  end-page: 64
  ident: b0115
  article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al
  publication-title: J Alloys Compd
– volume: 31
  start-page: 105
  year: 2012
  end-page: 113
  ident: b0030
  article-title: Effects of transition metals in a binary-phase TiAl–Ti
  publication-title: Intermetallics
– volume: 19
  start-page: 288
  year: 2011
  end-page: 294
  ident: b0130
  article-title: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al
  publication-title: Intermetallics
– volume: 45
  start-page: 4898
  year: 2010
  end-page: 4905
  ident: b0025
  article-title: Molecular dynamics simulations of critically percolated, cluster-packed structure in Zr–Al–Ni bulk metallic glass
  publication-title: J Mater Sci
– volume: 6
  start-page: 74
  year: 2004
  end-page: 78
  ident: b0065
  article-title: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating
  publication-title: Adv Eng Mater
– volume: 481
  start-page: 769
  year: 2009
  end-page: 775
  ident: b0155
  article-title: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system
  publication-title: J Alloys Compd
– volume: 68
  start-page: 2235
  year: 1992
  end-page: 2238
  ident: b0160
  article-title: Mechanically driven alloying of immiscible elements
  publication-title: Phys Rev Lett
– volume: 109
  start-page: 07E307
  year: 2011
  ident: b0075
  article-title: Magnetic and vibrational properties of high-entropy alloys
  publication-title: J Appl Phys
– volume: 477
  start-page: 726
  year: 2009
  end-page: 731
  ident: b0015
  article-title: Microstructural evolution of previously deformed AZ91D magnesium alloy during partial remelting
  publication-title: J Alloys Compd
– volume: 40
  start-page: 488
  year: 2012
  end-page: 496
  ident: b0005
  article-title: Microstructure development and tensile mechanical properties of Mg–Zn–RE–Zr magnesium alloy
  publication-title: Mater Des
– volume: 509
  start-page: 1607
  year: 2011
  end-page: 1614
  ident: b0125
  article-title: Electrical, magnetic, and Hall properties of Al
  publication-title: J Alloys Compd
– volume: 132
  start-page: 233
  year: 2012
  end-page: 238
  ident: b0165
  article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys
  publication-title: Mater Chem Phys
– volume: 495
  start-page: 33
  year: 2010
  end-page: 38
  ident: b0095
  article-title: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying
  publication-title: J Alloys Compd
– reference: Z.Q. Fu. Research on microstructure and properties of AlCrFeNi-M high entropy alloys and its composites, Thesis for Master Degree, Harbin Institute of Technology; 2011. p. 23–9.
– volume: 40
  start-page: 488
  year: 2012
  ident: 10.1016/j.matdes.2013.04.061_b0005
  article-title: Microstructure development and tensile mechanical properties of Mg–Zn–RE–Zr magnesium alloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2012.03.059
– volume: 488
  start-page: 57
  year: 2009
  ident: 10.1016/j.matdes.2013.04.061_b0115
  article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0⩽x⩽2) high-entropy alloys
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2009.08.090
– volume: 59
  start-page: 182
  year: 2011
  ident: 10.1016/j.matdes.2013.04.061_b0175
  article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.09.023
– volume: 541
  start-page: 98
  year: 2012
  ident: 10.1016/j.matdes.2013.04.061_b0010
  article-title: Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2012.02.009
– volume: 479
  start-page: 157
  year: 2009
  ident: 10.1016/j.matdes.2013.04.061_b0110
  article-title: Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2008.12.088
– volume: 203
  start-page: 69
  year: 1995
  ident: 10.1016/j.matdes.2013.04.061_b0185
  article-title: Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy
  publication-title: Mater Sci Eng A
  doi: 10.1016/0921-5093(95)09825-9
– volume: 460
  start-page: 253
  year: 2008
  ident: 10.1016/j.matdes.2013.04.061_b0080
  article-title: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2007.05.104
– volume: 485
  start-page: L31
  year: 2009
  ident: 10.1016/j.matdes.2013.04.061_b0090
  article-title: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2009.05.144
– volume: 44
  start-page: 535
  year: 2013
  ident: 10.1016/j.matdes.2013.04.061_b0140
  article-title: Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2012.08.048
– volume: 11
  start-page: 641
  issue: 8
  year: 2009
  ident: 10.1016/j.matdes.2013.04.061_b0180
  article-title: Solid solution or intermetallics in a high-entropy alloy
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200900057
– volume: 508
  start-page: 214
  year: 2009
  ident: 10.1016/j.matdes.2013.04.061_b0190
  article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.12.053
– volume: 6
  start-page: 74
  year: 2004
  ident: 10.1016/j.matdes.2013.04.061_b0065
  article-title: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200300507
– volume: 477
  start-page: 726
  year: 2009
  ident: 10.1016/j.matdes.2013.04.061_b0015
  article-title: Microstructural evolution of previously deformed AZ91D magnesium alloy during partial remelting
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2008.10.106
– volume: 6
  start-page: 299
  issue: 5
  year: 2004
  ident: 10.1016/j.matdes.2013.04.061_b0035
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200300567
– volume: 41
  start-page: 763
  year: 2006
  ident: 10.1016/j.matdes.2013.04.061_b0135
  article-title: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method
  publication-title: J Mater Sci
  doi: 10.1007/s10853-006-6555-2
– volume: 109
  start-page: 07E307
  year: 2011
  ident: 10.1016/j.matdes.2013.04.061_b0075
  article-title: Magnetic and vibrational properties of high-entropy alloys
  publication-title: J Appl Phys
  doi: 10.1063/1.3538936
– ident: 10.1016/j.matdes.2013.04.061_b0150
– volume: 534
  start-page: 83
  year: 2012
  ident: 10.1016/j.matdes.2013.04.061_b0085
  article-title: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2011.11.044
– volume: 33
  start-page: 121
  year: 2012
  ident: 10.1016/j.matdes.2013.04.061_b0055
  article-title: Aging behavior of a CuCr2Fe2NiMn high-entropy alloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.07.005
– volume: 90
  start-page: 181904
  year: 2007
  ident: 10.1016/j.matdes.2013.04.061_b0060
  article-title: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties
  publication-title: Appl Phys Lett
  doi: 10.1063/1.2734517
– volume: 32
  start-page: 1
  year: 2013
  ident: 10.1016/j.matdes.2013.04.061_b0020
  article-title: Superior glass-forming ability and its correlation with density in Ce–Ga–Cu ternary bulk metallic glasses
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.09.015
– volume: 495
  start-page: 33
  year: 2010
  ident: 10.1016/j.matdes.2013.04.061_b0095
  article-title: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2009.12.010
– volume: 68
  start-page: 2235
  year: 1992
  ident: 10.1016/j.matdes.2013.04.061_b0160
  article-title: Mechanically driven alloying of immiscible elements
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.68.2235
– volume: 45
  start-page: 4898
  year: 2010
  ident: 10.1016/j.matdes.2013.04.061_b0025
  article-title: Molecular dynamics simulations of critically percolated, cluster-packed structure in Zr–Al–Ni bulk metallic glass
  publication-title: J Mater Sci
  doi: 10.1007/s10853-010-4344-4
– volume: 52
  start-page: 1026
  year: 2010
  ident: 10.1016/j.matdes.2013.04.061_b0120
  article-title: Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2009.11.028
– volume: 46
  start-page: 2817
  year: 2005
  ident: 10.1016/j.matdes.2013.04.061_b0170
  article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element
  publication-title: Mater Trans
  doi: 10.2320/matertrans.46.2817
– volume: 52
  start-page: 3481
  year: 2010
  ident: 10.1016/j.matdes.2013.04.061_b0040
  article-title: The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2010.06.025
– volume: 19
  start-page: 288
  year: 2011
  ident: 10.1016/j.matdes.2013.04.061_b0130
  article-title: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.10.008
– volume: 132
  start-page: 233
  year: 2012
  ident: 10.1016/j.matdes.2013.04.061_b0165
  article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2011.11.021
– volume: 481
  start-page: 769
  year: 2009
  ident: 10.1016/j.matdes.2013.04.061_b0155
  article-title: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2009.03.087
– ident: 10.1016/j.matdes.2013.04.061_b0145
– volume: 26
  start-page: 44
  year: 2012
  ident: 10.1016/j.matdes.2013.04.061_b0045
  article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.03.005
– volume: 261
  start-page: 513
  year: 2006
  ident: 10.1016/j.matdes.2013.04.061_b0070
  article-title: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content
  publication-title: Wear
  doi: 10.1016/j.wear.2005.12.008
– volume: 491
  start-page: 154
  year: 2008
  ident: 10.1016/j.matdes.2013.04.061_b0105
  article-title: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.01.064
– volume: 509
  start-page: 1607
  year: 2011
  ident: 10.1016/j.matdes.2013.04.061_b0125
  article-title: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2010.10.210
– volume: 527
  start-page: 1027
  year: 2010
  ident: 10.1016/j.matdes.2013.04.061_b0050
  article-title: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2009.09.019
– volume: 45
  start-page: 5158
  year: 2010
  ident: 10.1016/j.matdes.2013.04.061_b0100
  article-title: Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying
  publication-title: J Mater Sci
  doi: 10.1007/s10853-010-4246-5
– volume: 31
  start-page: 105
  year: 2012
  ident: 10.1016/j.matdes.2013.04.061_b0030
  article-title: Effects of transition metals in a binary-phase TiAl–Ti3Al alloy: from site occupancy, interfacial energetics to mechanical properties
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.06.012
SSID ssj0017112
Score 2.5009356
Snippet •FeNiCrCo0.3Al0.7 high entropy alloy is prepared via MA and SPS.•Two BCC phases and one FCC phase were obtained after SPS.•The two BCC phases are enriched in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 854
SubjectTerms High entropy alloys
Mechanical alloying
Mechanical properties
Microstructure
Spark plasma sintering
Title Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy
URI https://dx.doi.org/10.1016/j.matdes.2013.04.061
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke9GD-MQ3e_BobJJN9nEswVIVe9FCbyGzmUKkTUuph_57d5qkVBAFjwlZCDO7M9_uzPctY3fKxCicYz10mMiLMAZPYxZ60gJKFDbQmtjIr0M5GEXP43jcYknDhaG2yjr2VzF9E63rN93amt1FUXTfaPfgAK-hgozQRF7vhC67-m3W6T29DIbbYoIKNkXP-qhFmoZBt2nzcrgwR9LtDsRG81QGP2eonazTP2QHNVzkveqPjlgLy2O2vyMieMLy3nQ6J7ISbyj393xGbXaVNOznEnlW5nyGxPEll_AFHcAvSUmVFyXPeB-HRbJM5m5r3Zv6D4qThjGnY9_5Ys2pMr8-ZaP-43sy8Oq7EzwrVLjyJrGWClUAYCc--AoA_NCgkDa3YITREDtcLY2FMNJu4WZhnsd5nElNGEqBOGPtcl7iOePW-NYKbaWK8sgoBEDfKm0BlJ647dIFE429UlsLi9P9FtO06SD7SCsrp2Tl1I9SZ-UL5m1HLSphjT--V40r0m8TJHWx_9eRl_8eecX26Knq3btmbec2vHEYZAW39Rz7Aqmu2zQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9gAcKj5F-dwD3DCxvfZ-HDhEaaOEtLnQSr0tnvVESpU6UShC-V38we7E66pICCSkXm2vD2_Gu2923zwDvNe2JBkCm1DgRElBJSaGqjxRHkmR9Jkx3I18MlWjs-LLeXm-A7-6XhiWVca5v53Tt7N1vNKLaPZW83nvK1cPgfBaPpCRpsiisnJCm5-hbvv-eXwYgvwhz4dHp4NREn8tkHip86tkVhqlSWeIfpZiqhExzS1J5WuPVlqDZaCdynrMCxPyusrruqzLShmmGBpleO892GM3rPBZ7fXHk9H05vBCZ9tD1ri1o2zXsbeVlQUeWhP7hGdy67Gqsj-viLdWueEj2I_0VPRbBB7DDjVP4OEt08KnUPcXiyU3R4muxf-juGRZX2tF-2NNompqcUncU8wpIFa84b9m51Yxb0QlhjSdD9aDZSjl-4v0kxbsmSx4m3m52ghWAmyewdmdAPocdptlQy9AeJt6L41XuqgLqwmRUq-NR9RmFsqzA5AdXs5HI3P-n8bCdYq1C9ei7BhllxYuoHwAyc2oVWvk8Y_ndRcK91tCurDW_HXky_8e-Q7uj05Pjt3xeDp5BQ_4TqsbfA27IYT0JvCfK3wb803At7tO8WvCjxgO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alloying+behavior%2C+microstructure+and+mechanical+properties+in+a+FeNiCrCo0.3Al0.7+high+entropy+alloy&rft.jtitle=Materials+in+engineering&rft.au=Chen%2C+Weiping&rft.au=Fu%2C+Zhiqiang&rft.au=Fang%2C+Sicong&rft.au=Xiao%2C+Huaqiang&rft.date=2013-10-01&rft.issn=0261-3069&rft.volume=51&rft.spage=854&rft.epage=860&rft_id=info:doi/10.1016%2Fj.matdes.2013.04.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2013_04_061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon