Mitigation of Polarization Effects in Single-mode Fiber Spectrographs

The use of single-mode fibers (SMFs) to illuminate radial velocity (RV) spectrographs shows promise to achieve extremely precise Doppler measurements. Due to their small core diameter, SMFs only propagate a single spatial mode which allows for diffraction-limited optical performance while simultaneo...

Full description

Saved in:
Bibliographic Details
Published inPublications of the Astronomical Society of the Pacific Vol. 132; no. 1015; pp. 1 - 12
Main Authors Bechter, Andrew J., Bechter, Eric B., Crepp, Justin R., Ketterer, Ryan, Crass, Jonathan
Format Journal Article
LanguageEnglish
Published Philadelphia The Astronomical Society of the Pacific 01.09.2020
IOP Publishing Limited
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of single-mode fibers (SMFs) to illuminate radial velocity (RV) spectrographs shows promise to achieve extremely precise Doppler measurements. Due to their small core diameter, SMFs only propagate a single spatial mode which allows for diffraction-limited optical performance while simultaneously eliminating fiber modal noise. The single spatial mode however consists of two orthogonal polarization modes. In circular core fiber with a non-isotropic refractive index profile or asymmetries in the cross-sectional geometry, the two polarization modes propagate with different relative speeds inducing birefringence. Conditions at a telescope observatory will subject the fiber to mechanical (bending and twisting) and thermal stresses, inducing birefringence that varies in time. The interaction of variable birefringence combined with with polarization sensitive optics, such as diffraction gratings, results in an intensity modulation that causes unwanted Doppler shifts via "polarization noise." In this paper, we characterize variable fiber birefringence both in the laboratory and at the Large Binocular Telescope using a Stokes parameters. We then combine the measured Stokes vector through a numerical model of a SMF spectrograph to understand the impact of variable polarization on RV precision. We find that polarization noise is a tens of cm s−1 to several m s−1 effect, which is exacerbated by the degree of polarization of the light source and the polarization response of the spectrograph optics. Finally we show experimentally mitigating the RV offset using polarization averaging methods and in-line fiber depolarizers and can reduce a several m s−1 polarization noise to ≤10 cm s−1.
AbstractList The use of single-mode fibers (SMFs) to illuminate radial velocity (RV) spectrographs shows promise to achieve extremely precise Doppler measurements. Due to their small core diameter, SMFs only propagate a single spatial mode which allows for diffraction-limited optical performance while simultaneously eliminating fiber modal noise. The single spatial mode however consists of two orthogonal polarization modes. In circular core fiber with a non-isotropic refractive index profile or asymmetries in the cross-sectional geometry, the two polarization modes propagate with different relative speeds inducing birefringence. Conditions at a telescope observatory will subject the fiber to mechanical (bending and twisting) and thermal stresses, inducing birefringence that varies in time. The interaction of variable birefringence combined with with polarization sensitive optics, such as diffraction gratings, results in an intensity modulation that causes unwanted Doppler shifts via "polarization noise." In this paper, we characterize variable fiber birefringence both in the laboratory and at the Large Binocular Telescope using a Stokes parameters. We then combine the measured Stokes vector through a numerical model of a SMF spectrograph to understand the impact of variable polarization on RV precision. We find that polarization noise is a tens of cm s−1 to several m s−1 effect, which is exacerbated by the degree of polarization of the light source and the polarization response of the spectrograph optics. Finally we show experimentally mitigating the RV offset using polarization averaging methods and in-line fiber depolarizers and can reduce a several m s−1 polarization noise to ≤10 cm s−1.
The use of single-mode fibers (SMFs) to illuminate radial velocity (RV) spectrographs shows promise to achieve extremely precise Doppler measurements. Due to their small core diameter, SMFs only propagate a single spatial mode which allows for diffraction-limited optical performance while simultaneously eliminating fiber modal noise. The single spatial mode however consists of two orthogonal polarization modes. In circular core fiber with a non-isotropic refractive index profile or asymmetries in the cross-sectional geometry, the two polarization modes propagate with different relative speeds inducing birefringence. Conditions at a telescope observatory will subject the fiber to mechanical (bending and twisting) and thermal stresses, inducing birefringence that varies in time. The interaction of variable birefringence combined with with polarization sensitive optics, such as diffraction gratings, results in an intensity modulation that causes unwanted Doppler shifts via “polarization noise.” In this paper, we characterize variable fiber birefringence both in the laboratory and at the Large Binocular Telescope using a Stokes parameters. We then combine the measured Stokes vector through a numerical model of a SMF spectrograph to understand the impact of variable polarization on RV precision. We find that polarization noise is a tens of cm s−1 to several m s−1 effect, which is exacerbated by the degree of polarization of the light source and the polarization response of the spectrograph optics. Finally we show experimentally mitigating the RV offset using polarization averaging methods and in-line fiber depolarizers and can reduce a several m s−1 polarization noise to σ ⩽10 cm s−1.
The use of single-mode fibers (SMFs) to illuminate radial velocity (RV) spectrographs shows promise to achieve extremely precise Doppler measurements. Due to their small core diameter, SMFs only propagate a single spatial mode which allows for diffraction-limited optical performance while simultaneously eliminating fiber modal noise. The single spatial mode however consists of two orthogonal polarization modes. In circular core fiber with a non-isotropic refractive index profile or asymmetries in the cross-sectional geometry, the two polarization modes propagate with different relative speeds inducing birefringence. Conditions at a telescope observatory will subject the fiber to mechanical (bending and twisting) and thermal stresses, inducing birefringence that varies in time. The interaction of variable birefringence combined with with polarization sensitive optics, such as diffraction gratings, results in an intensity modulation that causes unwanted Doppler shifts via “polarization noise.” In this paper, we characterize variable fiber birefringence both in the laboratory and at the Large Binocular Telescope using a Stokes parameters. We then combine the measured Stokes vector through a numerical model of a SMF spectrograph to understand the impact of variable polarization on RV precision. We find that polarization noise is a tens of cm s−1 to several m s−1 effect, which is exacerbated by the degree of polarization of the light source and the polarization response of the spectrograph optics. Finally we show experimentally mitigating the RV offset using polarization averaging methods and in-line fiber depolarizers and can reduce a several m s−1 polarization noise to σ ≤10 cm s−1.
Author Crepp, Justin R.
Bechter, Eric B.
Ketterer, Ryan
Crass, Jonathan
Bechter, Andrew J.
Author_xml – sequence: 1
  givenname: Andrew J.
  orcidid: 0000-0002-3047-9599
  surname: Bechter
  fullname: Bechter, Andrew J.
  email: abechter@nd.edu
  organization: University of Notre Dame , Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
– sequence: 2
  givenname: Eric B.
  orcidid: 0000-0001-8725-8730
  surname: Bechter
  fullname: Bechter, Eric B.
  organization: University of Notre Dame , Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
– sequence: 3
  givenname: Justin R.
  surname: Crepp
  fullname: Crepp, Justin R.
  organization: University of Notre Dame , Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
– sequence: 4
  givenname: Ryan
  surname: Ketterer
  fullname: Ketterer, Ryan
  organization: University of Notre Dame , Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
– sequence: 5
  givenname: Jonathan
  surname: Crass
  fullname: Crass, Jonathan
  organization: University of Notre Dame , Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
BookMark eNp9kMFLwzAYxYNMcJvevQgFr9YlTZqkRxmbChOF6TkkbTIzuqYm2UH_elsrEwQ9hS_vve97_CZg1LhGA3CO4DWCnM9QjnmKOcMzqYqypEdgfPgagTGEkKQ04_AETELYQogQR3AMFg822o2M1jWJM8mTq6W3H8O8MEaXMSS2Sda22dQ63blKJ0urtE_Wbad5t_GyfQ2n4NjIOuiz73cKXpaL5_ldunq8vZ_frNISsyymhqgsR0hBmivKVMmppgpTyRgxnMGKylwhbYg0BFKumCGFqioiOxOGKC_wFFwOe1vv3vY6RLF1e990J0VGspziIqO9Cw6u0rsQvDai9XYn_btAUPSwRE9G9GTEAKuL0F-R0sYvCtFLW_8XvBiC2xCdPxzqarCuM-_0q0G3rv0p--e6Tz9XiBY
CitedBy_id crossref_primary_10_1093_mnras_stae2720
crossref_primary_10_1117_1_JATIS_9_3_038006
crossref_primary_10_3847_1538_3881_ad9b1d
crossref_primary_10_1117_1_JATIS_11_1_015001
Cites_doi 10.1088/1538-3873/aaf278
10.1002/j.1538-7305.1977.tb00534.x
10.1364/AO.24.000349
10.1017/S1743921313013264
2000SPIE.4004...36H
10.1364/AO.38.001686
10.1109/JQE.1981.1070626
10.1117/12.2057210
10.1364/AO.19.002606
10.1109/TMTT.1982.1131073
10.1002/asna.201512172
10.1088/1538-3873/ab42cb
10.1117/12.2233135
10.1088/2041-8205/814/2/L22
10.1364/AO.18.002241
10.1117/12.856388
10.1364/AO.37.000443
10.1086/681280
10.1364/OL.5.000273
10.1117/12.926287
10.1126/science.1262071
10.1088/1538-3873/128/964/066001
10.1049/el:19850783
ContentType Journal Article
Copyright 2020. The Astronomical Society of the Pacific. All rights reserved.
2020. The Astronomical Society of the Pacific
Copyright IOP Publishing Sep 2020
Copyright_xml – notice: 2020. The Astronomical Society of the Pacific. All rights reserved.
– notice: 2020. The Astronomical Society of the Pacific
– notice: Copyright IOP Publishing Sep 2020
DBID AAYXX
CITATION
7TG
KL.
DOI 10.1088/1538-3873/ab9cc6
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList

Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Mitigation of Polarization Effects in Single-mode Fiber Spectrographs
EISSN 1538-3873
EndPage 12
ExternalDocumentID 10_1088_1538_3873_ab9cc6
26973308
paspab9cc6
GroupedDBID -DZ
-~X
123
2AX
4.4
AAGCD
AAHTB
AAJIO
AATNI
ABBHK
ABHWH
ABJNI
ABPEJ
ABVAM
ABXSQ
ACBEA
ACDEK
ACGFO
ACGFS
ACHIP
ADAAO
ADACV
ADWVK
AEFHF
AENEX
AETEA
AFYNE
AHIZY
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
BIPZW
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
HF~
IJHAN
IOP
IPSME
IZVLO
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JST
KOT
L7B
LU7
N5L
NB9
OK1
P2P
PJBAE
RIN
RNP
ROL
RPA
SA0
SY9
VQA
WH7
YR2
ZCA
ZCG
AAVDF
ADEQX
AEINN
AEOZU
AEUPB
AAYXX
CITATION
7TG
KL.
ID FETCH-LOGICAL-c372t-f4b2511b065b67bc86e6b36a774f870d6a5b1ef4af4068b7f49bdd4a6b3301593
IEDL.DBID IOP
ISSN 0004-6280
1538-3873
IngestDate Wed Aug 13 05:55:01 EDT 2025
Tue Jul 01 02:35:53 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Thu Aug 21 12:40:43 EDT 2025
Wed Aug 21 03:34:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1015
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-f4b2511b065b67bc86e6b36a774f870d6a5b1ef4af4068b7f49bdd4a6b3301593
Notes PASP-100987.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3047-9599
0000-0001-8725-8730
OpenAccessLink https://iopscience.iop.org/article/10.1088/1538-3873/ab9cc6/pdf
PQID 2425639269
PQPubID 2047867
PageCount 12
ParticipantIDs iop_journals_10_1088_1538_3873_ab9cc6
proquest_journals_2425639269
crossref_primary_10_1088_1538_3873_ab9cc6
crossref_citationtrail_10_1088_1538_3873_ab9cc6
jstor_primary_26973308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Publications of the Astronomical Society of the Pacific
PublicationTitleAlternate Publ. Astron. Soc. Pac
PublicationYear 2020
Publisher The Astronomical Society of the Pacific
IOP Publishing Limited
IOP Publishing
Publisher_xml – name: The Astronomical Society of the Pacific
– name: IOP Publishing Limited
– name: IOP Publishing
References 22
23
24
Breckinridge J. B. (4) 2015; 127
26
Bechter A. J. (1) 2019; 132
27
28
Curto G. L. (8) 2015; 1
Snyder A. W. (25) 1983
Fischer D. A. (9) 2016; 128
11
13
Bechter E. B. (2) 2019; 131
14
15
16
17
18
19
Collett E. (5) 2003
Hillerich B. (12) 1983; 15
Bhatt H. C. (3) 2000; 362
6
7
Halverson S. (10) 2015; 814
20
21
References_xml – volume: 131
  start-page: 024504
  issn: 1538-3873
  year: 2019
  ident: 2
  publication-title: PASP
  doi: 10.1088/1538-3873/aaf278
– year: 2003
  ident: 5
  publication-title: Polarized Light in Fiber Optics
– ident: 18
  doi: 10.1002/j.1538-7305.1977.tb00534.x
– ident: 16
  doi: 10.1364/AO.24.000349
– ident: 21
  doi: 10.1017/S1743921313013264
– ident: 11
  doi: 2000SPIE.4004...36H
– ident: 22
  doi: 10.1364/AO.38.001686
– ident: 15
  doi: 10.1109/JQE.1981.1070626
– start-page: 734
  year: 1983
  ident: 25
  publication-title: Optical Waveguide Theory
– ident: 14
  doi: 10.1117/12.2057210
– volume: 15
  start-page: 281
  year: 1983
  ident: 12
  publication-title: OptQE
– ident: 24
  doi: 10.1364/AO.19.002606
– ident: 20
  doi: 10.1109/TMTT.1982.1131073
– ident: 26
  doi: 10.1002/asna.201512172
– volume: 132
  start-page: 015001
  year: 2019
  ident: 1
  publication-title: PASP
  doi: 10.1088/1538-3873/ab42cb
– ident: 7
  doi: 10.1117/12.2233135
– volume: 814
  start-page: L22
  issn: 0004-637X
  year: 2015
  ident: 10
  publication-title: ApJL
  doi: 10.1088/2041-8205/814/2/L22
– ident: 28
  doi: 10.1364/AO.18.002241
– volume: 1
  start-page: 9
  year: 2015
  ident: 8
  publication-title: Msngr
– volume: 362
  start-page: 978
  issn: 0004-6361
  year: 2000
  ident: 3
  publication-title: A&A
– ident: 17
  doi: 10.1117/12.856388
– ident: 23
  doi: 10.1364/AO.37.000443
– volume: 127
  start-page: 445
  issn: 1538-3873
  year: 2015
  ident: 4
  publication-title: PASP
  doi: 10.1086/681280
– ident: 27
  doi: 10.1364/OL.5.000273
– ident: 19
  doi: 10.1117/12.926287
– ident: 6
  doi: 10.1126/science.1262071
– volume: 128
  issn: 1538-3873
  year: 2016
  ident: 9
  publication-title: PASP
  doi: 10.1088/1538-3873/128/964/066001
– ident: 13
  doi: 10.1049/el:19850783
SSID ssj0011810
Score 2.3370616
Snippet The use of single-mode fibers (SMFs) to illuminate radial velocity (RV) spectrographs shows promise to achieve extremely precise Doppler measurements. Due to...
SourceID proquest
crossref
jstor
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Astronomical Instrumentation, Telescopes, Observatories, and Site Characterization
Diffraction
Doppler effect
Light sources
Mathematical models
Noise
Numerical models
Optics
Polarimetry
Polarization
Radial velocity
Refractive index
Spectroscopy
Title Mitigation of Polarization Effects in Single-mode Fiber Spectrographs
URI https://iopscience.iop.org/article/10.1088/1538-3873/ab9cc6
https://www.jstor.org/stable/26973308
https://www.proquest.com/docview/2425639269
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-4efHi99h0Sg4qeOg-mjRJ8SSyoYI60MEOQmnaFIbaiq0H_et9abqJHwzxlsPra_te3keSl98DOKBUe_0k9Byh0dyY8NAP-rFwBPcwW_CoslvZV9f8fMwuJ95kCU7md2Gy58r1d3BogYKtCKuCONktbZRKQbuh8qOI12CZSs5N-4KLm9H8CAFDl71_0mMOd2WvOqP8jcOXmFTD986KE3846DLqDNfgfva9ttjkofNaqE70_g3K8Z8_tA6rVTZKTi3pBizpdBOap7nZH8-e3sgRKcd2-yPfgsHV1GJyZCnJEjIy6-LqIiexOMg5mabkFuPho3ZMlx0yNCUpxLS5L14sPHa-DePh4O7s3KkaMTgRFW7hJEyZlYjCdEVxoSLJNVeUh5g6JmjvMQ891dcJCxNMD6QSCfNVHLMQidB_oNIbUE-zVDeBKBYLpVzNDKw-OloZx24v0qHWCfVlP2xBd6aKIKpQyk2zjMegPC2XMjDSCoy0AiutFhzPn3i2CB0LaA9RCUFlpvkCukap_zlDl_sC_0W2oD2bEJ9czKoNEz2k2fkj_11Ycc26vaxVa0O9eHnVe5jcFGq_nMQfFybwPw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VrVT1ApSCdmGhPgASh-wjdmzniIAVtAVWapG4pXFiSyuWZEXCAX4949i7CKhQpd58mEySsedlj78B2KVUR0OTRoHQqG5MRGgH41wEgkcYLURUua3s8wt-esW-X0fXvs9pcxemnHnT38OhAwp2IvQFcbLf6CiVgvZTFWcZ789yswQfI8qpBc8_uxwvjhHQfbk7KAMW8FAO_Dnl37i88EtL-O55geIbI914ntEK_Jl_sys4uend16qXPb6Cc_yPn1qFZR-VkkNH_gU-6GIN2oeV3Scvbx_IPmnGbhuk-gon5xOHzVEWpDRkbPNjf6GTODzkikwK8gv94lQHttsOGdnSFGLb3dd3Dia7Woer0cnvo9PAN2QIMirCOjBM2YxEYdiiuFCZ5JorylMMIQ3qfc7TSA21YanBMEEqYVis8pylSIR2BCd_A1pFWeg2EMVyoVSomYXXR4Mr8zwcZDrV2tBYDtMO9OfTkWQerdw2zZgmzam5lImVWGIlljiJdeBg8cTMIXW8Q7uHE5F4da3eodto1sCCYchjgf8iO9CdL4pnLjZ7w4APaTb_kf83-DQ-HiU_zy5-bMHn0KbyTflaF1r13b3exninVjvNmn4CVyj1ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigation+of+Polarization+Effects+in+Single-mode+Fiber+Spectrographs&rft.jtitle=Publications+of+the+Astronomical+Society+of+the+Pacific&rft.au=Bechter%2C+Andrew+J.&rft.au=Bechter%2C+Eric+B.&rft.au=Crepp%2C+Justin+R.&rft.au=Ketterer%2C+Ryan&rft.date=2020-09-01&rft.issn=1538-3873&rft.eissn=1538-3873&rft.volume=132&rft.issue=1015&rft.spage=95001&rft_id=info:doi/10.1088%2F1538-3873%2Fab9cc6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1538_3873_ab9cc6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6280&client=summon