Task migration for mobile edge computing using deep reinforcement learning
Mobile edge computing (MEC) is a new network architecture that puts computing capabilities and storage resource at the edges of the network in a distributed manner, instead of a kind of centralized cloud computing architecture. The computation tasks of the users can be offloaded to the nearby MEC se...
Saved in:
Published in | Future generation computer systems Vol. 96; pp. 111 - 118 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-739X 1872-7115 |
DOI | 10.1016/j.future.2019.01.059 |
Cover
Loading…
Abstract | Mobile edge computing (MEC) is a new network architecture that puts computing capabilities and storage resource at the edges of the network in a distributed manner, instead of a kind of centralized cloud computing architecture. The computation tasks of the users can be offloaded to the nearby MEC servers to achieve high quality of computation experience. As many applications’ users have high mobility, such as applications of autonomous driving, the original MEC server with the offloaded tasks may become far from the users. Therefore, the key challenge of the MEC is to make decisions on where and when the tasks had better be migrated according to users’ mobility. Existing works formulated this problem as a sequential decision making model and using Markov decision process (MDP) to solve, with assumption that mobility pattern of the users is known ahead. However, it is difficult to get users’ mobility pattern in advance. In this paper, we propose a deep Q-network (DQN) based technique for task migration in MEC system. It can learn the optimal task migration policy from previous experiences without necessarily acquiring the information about users’ mobility pattern in advance. Our proposed task migration algorithm is validated by conducting extensive simulations in the MEC system.
•Mobile edging computing (MEC) is an effective way to reduce the computation time for users.•Task migration is necessary for high mobility users.•Deep reinforcement learning is effective for task migration in MEC. |
---|---|
AbstractList | Mobile edge computing (MEC) is a new network architecture that puts computing capabilities and storage resource at the edges of the network in a distributed manner, instead of a kind of centralized cloud computing architecture. The computation tasks of the users can be offloaded to the nearby MEC servers to achieve high quality of computation experience. As many applications’ users have high mobility, such as applications of autonomous driving, the original MEC server with the offloaded tasks may become far from the users. Therefore, the key challenge of the MEC is to make decisions on where and when the tasks had better be migrated according to users’ mobility. Existing works formulated this problem as a sequential decision making model and using Markov decision process (MDP) to solve, with assumption that mobility pattern of the users is known ahead. However, it is difficult to get users’ mobility pattern in advance. In this paper, we propose a deep Q-network (DQN) based technique for task migration in MEC system. It can learn the optimal task migration policy from previous experiences without necessarily acquiring the information about users’ mobility pattern in advance. Our proposed task migration algorithm is validated by conducting extensive simulations in the MEC system.
•Mobile edging computing (MEC) is an effective way to reduce the computation time for users.•Task migration is necessary for high mobility users.•Deep reinforcement learning is effective for task migration in MEC. |
Author | Zheng, Zixuan Zhang, Cheng |
Author_xml | – sequence: 1 givenname: Cheng surname: Zhang fullname: Zhang, Cheng email: cheng.zhang@akane.waseda.jp – sequence: 2 givenname: Zixuan surname: Zheng fullname: Zheng, Zixuan |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DwDyTYcRonLJBQxVOV2BSJneXYk8olsSvbQeLvcSgrFrCZWcw9I92zQDPrLCB0SUlOCa2u9nk3xtFDXhDa5ITmZNWcoDmteZFxSlczNE8xnnHWvJ2hRQh7QgjljM7R81aGdzyYnZfROIs75_HgWtMDBr0DrNxwGKOxOzyGaWqAA_ZgbAoqGMBG3IP0Nt3O0Wkn-wAXP3uJXu_vtuvHbPPy8LS-3WSK8SJm0JVUMag51NAAVE0tK8YKkA0r2xoq3WnSaiilVqxlpaplqWVFUw0mO8U5W6Ly-Fd5F4KHThy8GaT_FJSIyYfYi6MPMfkQhIrkI2HXvzBl4nfp6KXp_4NvjjCkYh8GvAjKgFWgjQcVhXbm7wdfKGiDcQ |
CitedBy_id | crossref_primary_10_1109_JIOT_2022_3164441 crossref_primary_10_1109_TWC_2023_3305321 crossref_primary_10_1109_TPDS_2020_3046737 crossref_primary_10_3390_fi16010016 crossref_primary_10_1109_JIOT_2020_3014970 crossref_primary_10_1016_j_phycom_2021_101397 crossref_primary_10_1016_j_procs_2021_07_012 crossref_primary_10_1145_3544836 crossref_primary_10_1007_s10586_023_04100_z crossref_primary_10_1109_TNSM_2021_3086146 crossref_primary_10_1016_j_ins_2019_12_028 crossref_primary_10_1109_JIOT_2020_3024694 crossref_primary_10_1007_s11265_019_01473_6 crossref_primary_10_1007_s10586_022_03817_7 crossref_primary_10_1016_j_jpdc_2020_08_008 crossref_primary_10_1109_ACCESS_2020_3024683 crossref_primary_10_1016_j_asoc_2019_105759 crossref_primary_10_1016_j_asoc_2020_106582 crossref_primary_10_1016_j_pmcj_2024_101996 crossref_primary_10_3390_drones5040148 crossref_primary_10_1016_j_tcs_2024_114462 crossref_primary_10_1109_JIOT_2021_3051427 crossref_primary_10_1016_j_comnet_2024_110249 crossref_primary_10_1109_JAS_2023_123993 crossref_primary_10_1109_TSC_2022_3208783 crossref_primary_10_1142_S0219467823500559 crossref_primary_10_1587_transcom_2021TMP0014 crossref_primary_10_21015_vtse_v12i2_1768 crossref_primary_10_1016_j_jpdc_2023_104745 crossref_primary_10_1109_TSMC_2023_3327959 crossref_primary_10_1155_2021_5587656 crossref_primary_10_1109_MCOM_001_1900143 crossref_primary_10_1145_3589639 crossref_primary_10_1109_TBC_2020_2977577 crossref_primary_10_1109_TETC_2020_2971831 crossref_primary_10_1109_TNSE_2022_3213651 crossref_primary_10_1007_s11277_024_10883_0 crossref_primary_10_1109_JIOT_2020_3043749 crossref_primary_10_1016_j_future_2019_09_060 crossref_primary_10_1109_TMC_2021_3085527 crossref_primary_10_1109_TSC_2023_3332308 crossref_primary_10_1016_j_adhoc_2024_103411 crossref_primary_10_1016_j_comnet_2024_110791 crossref_primary_10_1364_JOCN_495765 crossref_primary_10_1186_s13638_023_02331_7 crossref_primary_10_1109_ACCESS_2020_2974484 crossref_primary_10_1186_s13677_022_00377_4 crossref_primary_10_1109_JIOT_2021_3107431 crossref_primary_10_1016_j_future_2019_08_030 crossref_primary_10_1002_spe_3014 crossref_primary_10_1002_spe_3179 crossref_primary_10_1007_s11235_023_01094_2 crossref_primary_10_1016_j_ins_2023_119306 crossref_primary_10_1109_TMC_2019_2957804 crossref_primary_10_1007_s11042_023_17775_8 crossref_primary_10_1016_j_future_2019_05_067 crossref_primary_10_1016_j_jnca_2021_102974 crossref_primary_10_1109_TNSM_2023_3344192 crossref_primary_10_1007_s11277_024_11258_1 crossref_primary_10_1109_JIOT_2019_2953988 crossref_primary_10_1109_TITS_2020_3003211 crossref_primary_10_1145_3485129 crossref_primary_10_1016_j_dcan_2022_03_003 crossref_primary_10_1109_OJCS_2020_2996184 crossref_primary_10_1007_s10515_021_00318_6 crossref_primary_10_1007_s10723_020_09530_2 crossref_primary_10_1109_COMST_2023_3330953 crossref_primary_10_1155_2020_6684293 crossref_primary_10_1109_JPROC_2021_3119950 crossref_primary_10_1016_j_measen_2023_100939 crossref_primary_10_1007_s00354_022_00199_7 crossref_primary_10_1109_ACCESS_2019_2915290 crossref_primary_10_1109_MNET_012_1900434 crossref_primary_10_1109_TITS_2024_3378920 crossref_primary_10_1007_s13198_024_02616_0 crossref_primary_10_1016_j_comnet_2020_107496 crossref_primary_10_1109_ACCESS_2020_3045632 crossref_primary_10_1177_1550147721993403 crossref_primary_10_1007_s10723_025_09794_6 crossref_primary_10_1016_j_adhoc_2022_103044 crossref_primary_10_1016_j_ins_2022_07_115 crossref_primary_10_1109_JIOT_2020_2981338 crossref_primary_10_1109_ACCESS_2020_2974227 crossref_primary_10_1109_ACCESS_2020_3028553 crossref_primary_10_1109_COMST_2023_3273121 crossref_primary_10_1007_s10489_021_02786_5 crossref_primary_10_3390_app11030944 crossref_primary_10_1007_s11704_023_1346_3 crossref_primary_10_3390_electronics11030341 crossref_primary_10_32604_csse_2023_031841 crossref_primary_10_1109_TIA_2019_2959550 |
Cites_doi | 10.1038/nature14236 10.1109/TPDS.2016.2604814 10.1016/j.peva.2015.06.013 10.1109/TC.2011.68 10.1109/JIOT.2017.2750180 10.1007/s13174-010-0007-6 10.1109/TC.2015.2409857 10.1109/TII.2017.2780885 10.1109/JSYST.2015.2460747 10.1109/TNSM.2016.2592241 10.17487/rfc6830 10.1109/COMST.2017.2682318 10.1587/transcom.2017NRP0014 10.1038/nature14539 10.1002/wcm.1203 10.1145/1497561.1497568 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.future.2019.01.059 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7115 |
EndPage | 118 |
ExternalDocumentID | 10_1016_j_future_2019_01_059 S0167739X18329674 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-ef41c3e87e8e9ee698a6332ea934b8e6dfd0bde4adc3b34c8a4da611153afc773 |
IEDL.DBID | .~1 |
ISSN | 0167-739X |
IngestDate | Tue Jul 01 01:42:39 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Fri Feb 23 02:49:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 99-00 Deep reinforcement learning 00-01 Service migration Mobile edge computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-ef41c3e87e8e9ee698a6332ea934b8e6dfd0bde4adc3b34c8a4da611153afc773 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_future_2019_01_059 crossref_citationtrail_10_1016_j_future_2019_01_059 elsevier_sciencedirect_doi_10_1016_j_future_2019_01_059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationTitle | Future generation computer systems |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Taleb, Ksentini (b12) 2013 Taleb, Ksentini, Frangoudis (b13) 2018 Zhang, Gu, Liu, Yamori, Tanaka (b26) 2016 URL Qiu, Ming, Li, Gai, Zong (b20) 2015; 64 D. Farinacci, V. Fuller, D. Meyer, D. Lewis, The Locator/ID Separation Protocol (LISP), RFC 6830 (Jan. 2013). Gai, Qiu (b27) 2018; 14 Wang, Urgaonkar, He, Zafer, Chan, Leung (b7) 2014 Wang, Urgaonkar, Chan, He, Zafer, Leung (b9) 2015 LeCun, Bengio, Hinton (b23) 2015; 521 Zhu, Qin, Qiu (b19) 2011; 60 Dinh, Lee, Niyato, Wang (b4) 2011; 13 Sun, Ansari (b14) 2016 Nadembega, Hafid, Brisebois (b8) 2016 Qiu, Sha (b18) 2009; 14 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, Hassabis (b21) 2015; 518 Wang, Urgaonkar, He, Chan, Zafer, Leung (b15) 2017; 28 Ha, Abe, Chen, Hu, Amos, Pillai, Satyanarayanan (b16) 2015 Sutton, Barto (b22) 1998 . Bellman (b24) 1957 Zhang, Cheng, Boutaba (b1) 2010; 1 Ksentini, Taleb, Chen (b6) 2014 Zhang, Gu, Liu, Yamori, Tanaka (b25) 2018; E101-B Abbas, Zhang, Taherkordi, Skeie (b3) 2018; 5 Secci, Raad, Gallard (b11) 2016; 13 Mach, Becvar (b5) 2017; 19 Urgaonkar, Wang, He, Zafer, Chan, Leung (b10) 2015; 91 Zhang, Qiu, Tsai, Hassan, Alamri (b2) 2017; 11 10.1016/j.future.2019.01.059_b17 Taleb (10.1016/j.future.2019.01.059_b12) 2013 Zhang (10.1016/j.future.2019.01.059_b26) 2016 Qiu (10.1016/j.future.2019.01.059_b18) 2009; 14 Bellman (10.1016/j.future.2019.01.059_b24) 1957 Wang (10.1016/j.future.2019.01.059_b7) 2014 Zhang (10.1016/j.future.2019.01.059_b25) 2018; E101-B Mnih (10.1016/j.future.2019.01.059_b21) 2015; 518 Zhang (10.1016/j.future.2019.01.059_b2) 2017; 11 Dinh (10.1016/j.future.2019.01.059_b4) 2011; 13 Ha (10.1016/j.future.2019.01.059_b16) 2015 Ksentini (10.1016/j.future.2019.01.059_b6) 2014 Abbas (10.1016/j.future.2019.01.059_b3) 2018; 5 Zhu (10.1016/j.future.2019.01.059_b19) 2011; 60 Taleb (10.1016/j.future.2019.01.059_b13) 2018 Mach (10.1016/j.future.2019.01.059_b5) 2017; 19 Sun (10.1016/j.future.2019.01.059_b14) 2016 Urgaonkar (10.1016/j.future.2019.01.059_b10) 2015; 91 Secci (10.1016/j.future.2019.01.059_b11) 2016; 13 LeCun (10.1016/j.future.2019.01.059_b23) 2015; 521 Nadembega (10.1016/j.future.2019.01.059_b8) 2016 Zhang (10.1016/j.future.2019.01.059_b1) 2010; 1 Wang (10.1016/j.future.2019.01.059_b15) 2017; 28 Gai (10.1016/j.future.2019.01.059_b27) 2018; 14 Qiu (10.1016/j.future.2019.01.059_b20) 2015; 64 Sutton (10.1016/j.future.2019.01.059_b22) 1998 Wang (10.1016/j.future.2019.01.059_b9) 2015 |
References_xml | – volume: 91 start-page: 205 year: 2015 end-page: 228 ident: b10 article-title: Dynamic service migration and workload scheduling in edge-clouds publication-title: Perform. Eval. – start-page: 835 year: 2014 end-page: 840 ident: b7 article-title: Mobility-induced service migration in mobile micro-clouds publication-title: 2014 IEEE Military Communications Conference – start-page: 1 year: 2016 end-page: 6 ident: b8 article-title: Mobility prediction model-based service migration procedure for follow me cloud to support qos and qoe publication-title: 2016 IEEE International Conference on Communications (ICC) – reference: D. Farinacci, V. Fuller, D. Meyer, D. Lewis, The Locator/ID Separation Protocol (LISP), RFC 6830 (Jan. 2013). – start-page: 1 year: 2016 end-page: 6 ident: b26 article-title: A reinforcement learning approach for cost- and energy-aware mobile data offloading publication-title: Proc. 16th Asia-Pacific Network Operations and Management Symposium (APNOMS 2016) – year: 2018 ident: b13 article-title: Follow-me cloud: When cloud services follow mobile users publication-title: IEEE Trans. Cloud Comput. – reference: . URL – start-page: 1350 year: 2014 end-page: 1354 ident: b6 article-title: A Markov decision process-based service migration procedure for follow me cloud publication-title: 2014 IEEE International Conference on Communications (ICC) – volume: 1 start-page: 7 year: 2010 end-page: 18 ident: b1 article-title: Cloud computing: state-of-the-art and research challenges publication-title: J. Internet Serv. Appl. – volume: 14 start-page: 25:1 year: 2009 end-page: 25:30 ident: b18 article-title: Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems publication-title: ACM Trans. Des. Autom. Electron. Syst. – volume: 14 start-page: 3590 year: 2018 end-page: 3598 ident: b27 article-title: Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers publication-title: IEEE Trans. Ind. Inf. – year: 2015 ident: b16 article-title: Adaptive VM Handoff Across Cloudlets – volume: 64 start-page: 3528 year: 2015 end-page: 3540 ident: b20 article-title: Phase-change memory optimization for green cloud with genetic algorithm publication-title: IEEE Trans. Comput. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b23 article-title: Deep learning publication-title: Nature – volume: 13 start-page: 927 year: 2016 end-page: 940 ident: b11 article-title: Linking virtual machine mobility to user mobility publication-title: IEEE Trans. Netw. Serv. Manag. – volume: E101-B year: 2018 ident: b25 article-title: Cost- and energy-aware multi-flow mobile data offloading using Markov decision process publication-title: IEICE Trans. Commun. – volume: 60 start-page: 800 year: 2011 end-page: 812 ident: b19 article-title: Qos-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters publication-title: IEEE Trans. Comput. – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: b21 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 19 start-page: 1628 year: 2017 end-page: 1656 ident: b5 article-title: Mobile edge computing: A survey on architecture and computation offloading publication-title: IEEE Commun. Surv. Tutor. – volume: 13 start-page: 1587 year: 2011 end-page: 1611 ident: b4 article-title: A survey of mobile cloud computing: architecture, applications, and approaches publication-title: Wireless Commun. Mobile Comput. – reference: . – start-page: 1291 year: 2013 end-page: 1296 ident: b12 article-title: An analytical model for follow me cloud publication-title: 2013 IEEE Global Communications Conference (GLOBECOM) – start-page: 1 year: 2016 end-page: 6 ident: b14 article-title: Primal: PRofit Maximization Avatar pLacement for mobile edge computing publication-title: 2016 IEEE International Conference on Communications (ICC) – year: 1998 ident: b22 article-title: Reinforcement Learning: An Introduction – volume: 11 start-page: 88 year: 2017 end-page: 95 ident: b2 article-title: Health-CPS: Healthcare cyber-physical system assisted by cloud and big data publication-title: IEEE Syst. J. – volume: 28 start-page: 1002 year: 2017 end-page: 1016 ident: b15 article-title: Dynamic service placement for mobile micro-clouds with predicted future costs publication-title: IEEE Trans. Parallel Distrib. Syst. – start-page: 5504 year: 2015 end-page: 5510 ident: b9 article-title: Dynamic service placement for mobile micro-clouds with predicted future costs publication-title: 2015 IEEE International Conference on Communications (ICC) – year: 1957 ident: b24 article-title: Dynamic Programming – volume: 5 start-page: 450 year: 2018 end-page: 465 ident: b3 article-title: Mobile edge computing: A survey publication-title: IEEE Internet Things J. – year: 2015 ident: 10.1016/j.future.2019.01.059_b16 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.future.2019.01.059_b21 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – year: 2018 ident: 10.1016/j.future.2019.01.059_b13 article-title: Follow-me cloud: When cloud services follow mobile users publication-title: IEEE Trans. Cloud Comput. – volume: 28 start-page: 1002 issue: 4 year: 2017 ident: 10.1016/j.future.2019.01.059_b15 article-title: Dynamic service placement for mobile micro-clouds with predicted future costs publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2016.2604814 – start-page: 1350 year: 2014 ident: 10.1016/j.future.2019.01.059_b6 article-title: A Markov decision process-based service migration procedure for follow me cloud – volume: 91 start-page: 205 year: 2015 ident: 10.1016/j.future.2019.01.059_b10 article-title: Dynamic service migration and workload scheduling in edge-clouds publication-title: Perform. Eval. doi: 10.1016/j.peva.2015.06.013 – volume: 60 start-page: 800 issue: 6 year: 2011 ident: 10.1016/j.future.2019.01.059_b19 article-title: Qos-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2011.68 – start-page: 1 year: 2016 ident: 10.1016/j.future.2019.01.059_b14 article-title: Primal: PRofit Maximization Avatar pLacement for mobile edge computing – volume: 5 start-page: 450 issue: 1 year: 2018 ident: 10.1016/j.future.2019.01.059_b3 article-title: Mobile edge computing: A survey publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2750180 – volume: 1 start-page: 7 issue: 1 year: 2010 ident: 10.1016/j.future.2019.01.059_b1 article-title: Cloud computing: state-of-the-art and research challenges publication-title: J. Internet Serv. Appl. doi: 10.1007/s13174-010-0007-6 – year: 1957 ident: 10.1016/j.future.2019.01.059_b24 – volume: 64 start-page: 3528 issue: 12 year: 2015 ident: 10.1016/j.future.2019.01.059_b20 article-title: Phase-change memory optimization for green cloud with genetic algorithm publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2015.2409857 – start-page: 1 year: 2016 ident: 10.1016/j.future.2019.01.059_b26 article-title: A reinforcement learning approach for cost- and energy-aware mobile data offloading – volume: 14 start-page: 3590 issue: 8 year: 2018 ident: 10.1016/j.future.2019.01.059_b27 article-title: Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2780885 – start-page: 835 year: 2014 ident: 10.1016/j.future.2019.01.059_b7 article-title: Mobility-induced service migration in mobile micro-clouds – year: 1998 ident: 10.1016/j.future.2019.01.059_b22 – volume: 11 start-page: 88 issue: 1 year: 2017 ident: 10.1016/j.future.2019.01.059_b2 article-title: Health-CPS: Healthcare cyber-physical system assisted by cloud and big data publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2015.2460747 – start-page: 5504 year: 2015 ident: 10.1016/j.future.2019.01.059_b9 article-title: Dynamic service placement for mobile micro-clouds with predicted future costs – volume: 13 start-page: 927 issue: 4 year: 2016 ident: 10.1016/j.future.2019.01.059_b11 article-title: Linking virtual machine mobility to user mobility publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2016.2592241 – ident: 10.1016/j.future.2019.01.059_b17 doi: 10.17487/rfc6830 – start-page: 1 year: 2016 ident: 10.1016/j.future.2019.01.059_b8 article-title: Mobility prediction model-based service migration procedure for follow me cloud to support qos and qoe – volume: 19 start-page: 1628 issue: 3 year: 2017 ident: 10.1016/j.future.2019.01.059_b5 article-title: Mobile edge computing: A survey on architecture and computation offloading publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2682318 – volume: E101-B issue: 3 year: 2018 ident: 10.1016/j.future.2019.01.059_b25 article-title: Cost- and energy-aware multi-flow mobile data offloading using Markov decision process publication-title: IEICE Trans. Commun. doi: 10.1587/transcom.2017NRP0014 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.future.2019.01.059_b23 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 1291 year: 2013 ident: 10.1016/j.future.2019.01.059_b12 article-title: An analytical model for follow me cloud – volume: 13 start-page: 1587 issue: 18 year: 2011 ident: 10.1016/j.future.2019.01.059_b4 article-title: A survey of mobile cloud computing: architecture, applications, and approaches publication-title: Wireless Commun. Mobile Comput. doi: 10.1002/wcm.1203 – volume: 14 start-page: 25:1 issue: 2 year: 2009 ident: 10.1016/j.future.2019.01.059_b18 article-title: Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems publication-title: ACM Trans. Des. Autom. Electron. Syst. doi: 10.1145/1497561.1497568 |
SSID | ssj0001731 |
Score | 2.5838006 |
Snippet | Mobile edge computing (MEC) is a new network architecture that puts computing capabilities and storage resource at the edges of the network in a distributed... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111 |
SubjectTerms | Deep reinforcement learning Mobile edge computing Service migration |
Title | Task migration for mobile edge computing using deep reinforcement learning |
URI | https://dx.doi.org/10.1016/j.future.2019.01.059 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lbtz4FuujZOF27LTJJJNlKZZaoRtb6C7kcadU7YNat367SSbjA0TB5Qy5EM7cnBsyJ-cidC0ynup2xhNrrP_NqB0PAidJKnRRaGUIM8Htc8QGEzqcZtMa6lV3YbysMnJ_yemBreObVkSztZ7PWw9eQM-JmPqkFIx7T1BKuc_ym7dPmUebx56EjhD86Or6XNB4lb4dXuAlgnmndyz9qTx9KTn9A7QX94q4W07nENVgeYT2qz4MOC7LYzQcq5cnvJjPyq-J3T4UL1barXfsT8uwCRGuRmGvcp9hC7DGGwieqSYcD-LYPGJ2gib923FvkMQeCYkhvLNNoKBtQyDnkIMAYCJXjJAOKEGozoHZwqbaAlXWEE2oyRW1ijmCy4gqjMPvFNWXqyWcIexqFWSGpwIKRY0Gzd3QXOjcEqYZLxqIVNBIEw3EfR-LZ1kpxR5lCaj0gMq0LR2gDZR8RK1LA40_xvMKdfktEaTj-F8jz_8deYF2_VOpwr1E9e3mFa7cXmOrmyGZmmine3c_GL0DjYXXdw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFHVFWH7hGTerEjo9VRVVa6IUi9WZ5mVRlKVUp_4-dOAgkBBLXxCNZL_abkfP8BuBKZDzWScYja6z_zagdDyKnUSx0UWhlKDOl2-eI9R_SwSSbrEG3vgvjZZWB-ytOL9k6PGkFNFuL2ax17wX0nIqJX5SC8XQdNrw7VdaAjc7NsD_6JOSEh7aEjhN8QH2DrpR5VdYdXuMlSv9Ob1r6U4b6knV6u7AdykXSqWa0B2s434eduhUDCTvzAAZj9fZEXmbT6oMSV4qSl1fttjzxB2bElBEuTREvdJ8Si7ggSyxtU015QkhC_4jpITz0rsfdfhTaJESG8vYqwiJNDMWcY44CkYlcMUrbqARNdY7MFjbWFlNlDdU0NblKrWKO4zKqCuMgPILG_HWOx0BcusLM8FhgoVKjUXM3NBc6t5Rpxosm0BoaaYKHuG9l8SxrsdijrACVHlAZJ9IB2oToM2pReWj8MZ7XqMtva0E6mv818uTfkZew2R_f3crbm9HwFLb8m0qUewaN1fIdz13psdIXYWl9APUj2ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+migration+for+mobile+edge+computing+using+deep+reinforcement+learning&rft.jtitle=Future+generation+computer+systems&rft.au=Zhang%2C+Cheng&rft.au=Zheng%2C+Zixuan&rft.date=2019-07-01&rft.issn=0167-739X&rft.volume=96&rft.spage=111&rft.epage=118&rft_id=info:doi/10.1016%2Fj.future.2019.01.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2019_01_059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |