Task migration for mobile edge computing using deep reinforcement learning

Mobile edge computing (MEC) is a new network architecture that puts computing capabilities and storage resource at the edges of the network in a distributed manner, instead of a kind of centralized cloud computing architecture. The computation tasks of the users can be offloaded to the nearby MEC se...

Full description

Saved in:
Bibliographic Details
Published inFuture generation computer systems Vol. 96; pp. 111 - 118
Main Authors Zhang, Cheng, Zheng, Zixuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2019
Subjects
Online AccessGet full text
ISSN0167-739X
1872-7115
DOI10.1016/j.future.2019.01.059

Cover

Loading…
Abstract Mobile edge computing (MEC) is a new network architecture that puts computing capabilities and storage resource at the edges of the network in a distributed manner, instead of a kind of centralized cloud computing architecture. The computation tasks of the users can be offloaded to the nearby MEC servers to achieve high quality of computation experience. As many applications’ users have high mobility, such as applications of autonomous driving, the original MEC server with the offloaded tasks may become far from the users. Therefore, the key challenge of the MEC is to make decisions on where and when the tasks had better be migrated according to users’ mobility. Existing works formulated this problem as a sequential decision making model and using Markov decision process (MDP) to solve, with assumption that mobility pattern of the users is known ahead. However, it is difficult to get users’ mobility pattern in advance. In this paper, we propose a deep Q-network (DQN) based technique for task migration in MEC system. It can learn the optimal task migration policy from previous experiences without necessarily acquiring the information about users’ mobility pattern in advance. Our proposed task migration algorithm is validated by conducting extensive simulations in the MEC system. •Mobile edging computing (MEC) is an effective way to reduce the computation time for users.•Task migration is necessary for high mobility users.•Deep reinforcement learning is effective for task migration in MEC.
AbstractList Mobile edge computing (MEC) is a new network architecture that puts computing capabilities and storage resource at the edges of the network in a distributed manner, instead of a kind of centralized cloud computing architecture. The computation tasks of the users can be offloaded to the nearby MEC servers to achieve high quality of computation experience. As many applications’ users have high mobility, such as applications of autonomous driving, the original MEC server with the offloaded tasks may become far from the users. Therefore, the key challenge of the MEC is to make decisions on where and when the tasks had better be migrated according to users’ mobility. Existing works formulated this problem as a sequential decision making model and using Markov decision process (MDP) to solve, with assumption that mobility pattern of the users is known ahead. However, it is difficult to get users’ mobility pattern in advance. In this paper, we propose a deep Q-network (DQN) based technique for task migration in MEC system. It can learn the optimal task migration policy from previous experiences without necessarily acquiring the information about users’ mobility pattern in advance. Our proposed task migration algorithm is validated by conducting extensive simulations in the MEC system. •Mobile edging computing (MEC) is an effective way to reduce the computation time for users.•Task migration is necessary for high mobility users.•Deep reinforcement learning is effective for task migration in MEC.
Author Zheng, Zixuan
Zhang, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Zhang
  fullname: Zhang, Cheng
  email: cheng.zhang@akane.waseda.jp
– sequence: 2
  givenname: Zixuan
  surname: Zheng
  fullname: Zheng, Zixuan
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDyTYcRonLJBQxVOV2BSJneXYk8olsSvbQeLvcSgrFrCZWcw9I92zQDPrLCB0SUlOCa2u9nk3xtFDXhDa5ITmZNWcoDmteZFxSlczNE8xnnHWvJ2hRQh7QgjljM7R81aGdzyYnZfROIs75_HgWtMDBr0DrNxwGKOxOzyGaWqAA_ZgbAoqGMBG3IP0Nt3O0Wkn-wAXP3uJXu_vtuvHbPPy8LS-3WSK8SJm0JVUMag51NAAVE0tK8YKkA0r2xoq3WnSaiilVqxlpaplqWVFUw0mO8U5W6Ly-Fd5F4KHThy8GaT_FJSIyYfYi6MPMfkQhIrkI2HXvzBl4nfp6KXp_4NvjjCkYh8GvAjKgFWgjQcVhXbm7wdfKGiDcQ
CitedBy_id crossref_primary_10_1109_JIOT_2022_3164441
crossref_primary_10_1109_TWC_2023_3305321
crossref_primary_10_1109_TPDS_2020_3046737
crossref_primary_10_3390_fi16010016
crossref_primary_10_1109_JIOT_2020_3014970
crossref_primary_10_1016_j_phycom_2021_101397
crossref_primary_10_1016_j_procs_2021_07_012
crossref_primary_10_1145_3544836
crossref_primary_10_1007_s10586_023_04100_z
crossref_primary_10_1109_TNSM_2021_3086146
crossref_primary_10_1016_j_ins_2019_12_028
crossref_primary_10_1109_JIOT_2020_3024694
crossref_primary_10_1007_s11265_019_01473_6
crossref_primary_10_1007_s10586_022_03817_7
crossref_primary_10_1016_j_jpdc_2020_08_008
crossref_primary_10_1109_ACCESS_2020_3024683
crossref_primary_10_1016_j_asoc_2019_105759
crossref_primary_10_1016_j_asoc_2020_106582
crossref_primary_10_1016_j_pmcj_2024_101996
crossref_primary_10_3390_drones5040148
crossref_primary_10_1016_j_tcs_2024_114462
crossref_primary_10_1109_JIOT_2021_3051427
crossref_primary_10_1016_j_comnet_2024_110249
crossref_primary_10_1109_JAS_2023_123993
crossref_primary_10_1109_TSC_2022_3208783
crossref_primary_10_1142_S0219467823500559
crossref_primary_10_1587_transcom_2021TMP0014
crossref_primary_10_21015_vtse_v12i2_1768
crossref_primary_10_1016_j_jpdc_2023_104745
crossref_primary_10_1109_TSMC_2023_3327959
crossref_primary_10_1155_2021_5587656
crossref_primary_10_1109_MCOM_001_1900143
crossref_primary_10_1145_3589639
crossref_primary_10_1109_TBC_2020_2977577
crossref_primary_10_1109_TETC_2020_2971831
crossref_primary_10_1109_TNSE_2022_3213651
crossref_primary_10_1007_s11277_024_10883_0
crossref_primary_10_1109_JIOT_2020_3043749
crossref_primary_10_1016_j_future_2019_09_060
crossref_primary_10_1109_TMC_2021_3085527
crossref_primary_10_1109_TSC_2023_3332308
crossref_primary_10_1016_j_adhoc_2024_103411
crossref_primary_10_1016_j_comnet_2024_110791
crossref_primary_10_1364_JOCN_495765
crossref_primary_10_1186_s13638_023_02331_7
crossref_primary_10_1109_ACCESS_2020_2974484
crossref_primary_10_1186_s13677_022_00377_4
crossref_primary_10_1109_JIOT_2021_3107431
crossref_primary_10_1016_j_future_2019_08_030
crossref_primary_10_1002_spe_3014
crossref_primary_10_1002_spe_3179
crossref_primary_10_1007_s11235_023_01094_2
crossref_primary_10_1016_j_ins_2023_119306
crossref_primary_10_1109_TMC_2019_2957804
crossref_primary_10_1007_s11042_023_17775_8
crossref_primary_10_1016_j_future_2019_05_067
crossref_primary_10_1016_j_jnca_2021_102974
crossref_primary_10_1109_TNSM_2023_3344192
crossref_primary_10_1007_s11277_024_11258_1
crossref_primary_10_1109_JIOT_2019_2953988
crossref_primary_10_1109_TITS_2020_3003211
crossref_primary_10_1145_3485129
crossref_primary_10_1016_j_dcan_2022_03_003
crossref_primary_10_1109_OJCS_2020_2996184
crossref_primary_10_1007_s10515_021_00318_6
crossref_primary_10_1007_s10723_020_09530_2
crossref_primary_10_1109_COMST_2023_3330953
crossref_primary_10_1155_2020_6684293
crossref_primary_10_1109_JPROC_2021_3119950
crossref_primary_10_1016_j_measen_2023_100939
crossref_primary_10_1007_s00354_022_00199_7
crossref_primary_10_1109_ACCESS_2019_2915290
crossref_primary_10_1109_MNET_012_1900434
crossref_primary_10_1109_TITS_2024_3378920
crossref_primary_10_1007_s13198_024_02616_0
crossref_primary_10_1016_j_comnet_2020_107496
crossref_primary_10_1109_ACCESS_2020_3045632
crossref_primary_10_1177_1550147721993403
crossref_primary_10_1007_s10723_025_09794_6
crossref_primary_10_1016_j_adhoc_2022_103044
crossref_primary_10_1016_j_ins_2022_07_115
crossref_primary_10_1109_JIOT_2020_2981338
crossref_primary_10_1109_ACCESS_2020_2974227
crossref_primary_10_1109_ACCESS_2020_3028553
crossref_primary_10_1109_COMST_2023_3273121
crossref_primary_10_1007_s10489_021_02786_5
crossref_primary_10_3390_app11030944
crossref_primary_10_1007_s11704_023_1346_3
crossref_primary_10_3390_electronics11030341
crossref_primary_10_32604_csse_2023_031841
crossref_primary_10_1109_TIA_2019_2959550
Cites_doi 10.1038/nature14236
10.1109/TPDS.2016.2604814
10.1016/j.peva.2015.06.013
10.1109/TC.2011.68
10.1109/JIOT.2017.2750180
10.1007/s13174-010-0007-6
10.1109/TC.2015.2409857
10.1109/TII.2017.2780885
10.1109/JSYST.2015.2460747
10.1109/TNSM.2016.2592241
10.17487/rfc6830
10.1109/COMST.2017.2682318
10.1587/transcom.2017NRP0014
10.1038/nature14539
10.1002/wcm.1203
10.1145/1497561.1497568
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2019.01.059
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 118
ExternalDocumentID 10_1016_j_future_2019_01_059
S0167739X18329674
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-ef41c3e87e8e9ee698a6332ea934b8e6dfd0bde4adc3b34c8a4da611153afc773
IEDL.DBID .~1
ISSN 0167-739X
IngestDate Tue Jul 01 01:42:39 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Fri Feb 23 02:49:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 99-00
Deep reinforcement learning
00-01
Service migration
Mobile edge computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-ef41c3e87e8e9ee698a6332ea934b8e6dfd0bde4adc3b34c8a4da611153afc773
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_future_2019_01_059
crossref_citationtrail_10_1016_j_future_2019_01_059
elsevier_sciencedirect_doi_10_1016_j_future_2019_01_059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Taleb, Ksentini (b12) 2013
Taleb, Ksentini, Frangoudis (b13) 2018
Zhang, Gu, Liu, Yamori, Tanaka (b26) 2016
URL
Qiu, Ming, Li, Gai, Zong (b20) 2015; 64
D. Farinacci, V. Fuller, D. Meyer, D. Lewis, The Locator/ID Separation Protocol (LISP), RFC 6830 (Jan. 2013).
Gai, Qiu (b27) 2018; 14
Wang, Urgaonkar, He, Zafer, Chan, Leung (b7) 2014
Wang, Urgaonkar, Chan, He, Zafer, Leung (b9) 2015
LeCun, Bengio, Hinton (b23) 2015; 521
Zhu, Qin, Qiu (b19) 2011; 60
Dinh, Lee, Niyato, Wang (b4) 2011; 13
Sun, Ansari (b14) 2016
Nadembega, Hafid, Brisebois (b8) 2016
Qiu, Sha (b18) 2009; 14
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King, Kumaran, Wierstra, Legg, Hassabis (b21) 2015; 518
Wang, Urgaonkar, He, Chan, Zafer, Leung (b15) 2017; 28
Ha, Abe, Chen, Hu, Amos, Pillai, Satyanarayanan (b16) 2015
Sutton, Barto (b22) 1998
.
Bellman (b24) 1957
Zhang, Cheng, Boutaba (b1) 2010; 1
Ksentini, Taleb, Chen (b6) 2014
Zhang, Gu, Liu, Yamori, Tanaka (b25) 2018; E101-B
Abbas, Zhang, Taherkordi, Skeie (b3) 2018; 5
Secci, Raad, Gallard (b11) 2016; 13
Mach, Becvar (b5) 2017; 19
Urgaonkar, Wang, He, Zafer, Chan, Leung (b10) 2015; 91
Zhang, Qiu, Tsai, Hassan, Alamri (b2) 2017; 11
10.1016/j.future.2019.01.059_b17
Taleb (10.1016/j.future.2019.01.059_b12) 2013
Zhang (10.1016/j.future.2019.01.059_b26) 2016
Qiu (10.1016/j.future.2019.01.059_b18) 2009; 14
Bellman (10.1016/j.future.2019.01.059_b24) 1957
Wang (10.1016/j.future.2019.01.059_b7) 2014
Zhang (10.1016/j.future.2019.01.059_b25) 2018; E101-B
Mnih (10.1016/j.future.2019.01.059_b21) 2015; 518
Zhang (10.1016/j.future.2019.01.059_b2) 2017; 11
Dinh (10.1016/j.future.2019.01.059_b4) 2011; 13
Ha (10.1016/j.future.2019.01.059_b16) 2015
Ksentini (10.1016/j.future.2019.01.059_b6) 2014
Abbas (10.1016/j.future.2019.01.059_b3) 2018; 5
Zhu (10.1016/j.future.2019.01.059_b19) 2011; 60
Taleb (10.1016/j.future.2019.01.059_b13) 2018
Mach (10.1016/j.future.2019.01.059_b5) 2017; 19
Sun (10.1016/j.future.2019.01.059_b14) 2016
Urgaonkar (10.1016/j.future.2019.01.059_b10) 2015; 91
Secci (10.1016/j.future.2019.01.059_b11) 2016; 13
LeCun (10.1016/j.future.2019.01.059_b23) 2015; 521
Nadembega (10.1016/j.future.2019.01.059_b8) 2016
Zhang (10.1016/j.future.2019.01.059_b1) 2010; 1
Wang (10.1016/j.future.2019.01.059_b15) 2017; 28
Gai (10.1016/j.future.2019.01.059_b27) 2018; 14
Qiu (10.1016/j.future.2019.01.059_b20) 2015; 64
Sutton (10.1016/j.future.2019.01.059_b22) 1998
Wang (10.1016/j.future.2019.01.059_b9) 2015
References_xml – volume: 91
  start-page: 205
  year: 2015
  end-page: 228
  ident: b10
  article-title: Dynamic service migration and workload scheduling in edge-clouds
  publication-title: Perform. Eval.
– start-page: 835
  year: 2014
  end-page: 840
  ident: b7
  article-title: Mobility-induced service migration in mobile micro-clouds
  publication-title: 2014 IEEE Military Communications Conference
– start-page: 1
  year: 2016
  end-page: 6
  ident: b8
  article-title: Mobility prediction model-based service migration procedure for follow me cloud to support qos and qoe
  publication-title: 2016 IEEE International Conference on Communications (ICC)
– reference: D. Farinacci, V. Fuller, D. Meyer, D. Lewis, The Locator/ID Separation Protocol (LISP), RFC 6830 (Jan. 2013).
– start-page: 1
  year: 2016
  end-page: 6
  ident: b26
  article-title: A reinforcement learning approach for cost- and energy-aware mobile data offloading
  publication-title: Proc. 16th Asia-Pacific Network Operations and Management Symposium (APNOMS 2016)
– year: 2018
  ident: b13
  article-title: Follow-me cloud: When cloud services follow mobile users
  publication-title: IEEE Trans. Cloud Comput.
– reference: . URL
– start-page: 1350
  year: 2014
  end-page: 1354
  ident: b6
  article-title: A Markov decision process-based service migration procedure for follow me cloud
  publication-title: 2014 IEEE International Conference on Communications (ICC)
– volume: 1
  start-page: 7
  year: 2010
  end-page: 18
  ident: b1
  article-title: Cloud computing: state-of-the-art and research challenges
  publication-title: J. Internet Serv. Appl.
– volume: 14
  start-page: 25:1
  year: 2009
  end-page: 25:30
  ident: b18
  article-title: Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems
  publication-title: ACM Trans. Des. Autom. Electron. Syst.
– volume: 14
  start-page: 3590
  year: 2018
  end-page: 3598
  ident: b27
  article-title: Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers
  publication-title: IEEE Trans. Ind. Inf.
– year: 2015
  ident: b16
  article-title: Adaptive VM Handoff Across Cloudlets
– volume: 64
  start-page: 3528
  year: 2015
  end-page: 3540
  ident: b20
  article-title: Phase-change memory optimization for green cloud with genetic algorithm
  publication-title: IEEE Trans. Comput.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b23
  article-title: Deep learning
  publication-title: Nature
– volume: 13
  start-page: 927
  year: 2016
  end-page: 940
  ident: b11
  article-title: Linking virtual machine mobility to user mobility
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: E101-B
  year: 2018
  ident: b25
  article-title: Cost- and energy-aware multi-flow mobile data offloading using Markov decision process
  publication-title: IEICE Trans. Commun.
– volume: 60
  start-page: 800
  year: 2011
  end-page: 812
  ident: b19
  article-title: Qos-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters
  publication-title: IEEE Trans. Comput.
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b21
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 19
  start-page: 1628
  year: 2017
  end-page: 1656
  ident: b5
  article-title: Mobile edge computing: A survey on architecture and computation offloading
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 13
  start-page: 1587
  year: 2011
  end-page: 1611
  ident: b4
  article-title: A survey of mobile cloud computing: architecture, applications, and approaches
  publication-title: Wireless Commun. Mobile Comput.
– reference: .
– start-page: 1291
  year: 2013
  end-page: 1296
  ident: b12
  article-title: An analytical model for follow me cloud
  publication-title: 2013 IEEE Global Communications Conference (GLOBECOM)
– start-page: 1
  year: 2016
  end-page: 6
  ident: b14
  article-title: Primal: PRofit Maximization Avatar pLacement for mobile edge computing
  publication-title: 2016 IEEE International Conference on Communications (ICC)
– year: 1998
  ident: b22
  article-title: Reinforcement Learning: An Introduction
– volume: 11
  start-page: 88
  year: 2017
  end-page: 95
  ident: b2
  article-title: Health-CPS: Healthcare cyber-physical system assisted by cloud and big data
  publication-title: IEEE Syst. J.
– volume: 28
  start-page: 1002
  year: 2017
  end-page: 1016
  ident: b15
  article-title: Dynamic service placement for mobile micro-clouds with predicted future costs
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 5504
  year: 2015
  end-page: 5510
  ident: b9
  article-title: Dynamic service placement for mobile micro-clouds with predicted future costs
  publication-title: 2015 IEEE International Conference on Communications (ICC)
– year: 1957
  ident: b24
  article-title: Dynamic Programming
– volume: 5
  start-page: 450
  year: 2018
  end-page: 465
  ident: b3
  article-title: Mobile edge computing: A survey
  publication-title: IEEE Internet Things J.
– year: 2015
  ident: 10.1016/j.future.2019.01.059_b16
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.future.2019.01.059_b21
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– year: 2018
  ident: 10.1016/j.future.2019.01.059_b13
  article-title: Follow-me cloud: When cloud services follow mobile users
  publication-title: IEEE Trans. Cloud Comput.
– volume: 28
  start-page: 1002
  issue: 4
  year: 2017
  ident: 10.1016/j.future.2019.01.059_b15
  article-title: Dynamic service placement for mobile micro-clouds with predicted future costs
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2016.2604814
– start-page: 1350
  year: 2014
  ident: 10.1016/j.future.2019.01.059_b6
  article-title: A Markov decision process-based service migration procedure for follow me cloud
– volume: 91
  start-page: 205
  year: 2015
  ident: 10.1016/j.future.2019.01.059_b10
  article-title: Dynamic service migration and workload scheduling in edge-clouds
  publication-title: Perform. Eval.
  doi: 10.1016/j.peva.2015.06.013
– volume: 60
  start-page: 800
  issue: 6
  year: 2011
  ident: 10.1016/j.future.2019.01.059_b19
  article-title: Qos-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2011.68
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2019.01.059_b14
  article-title: Primal: PRofit Maximization Avatar pLacement for mobile edge computing
– volume: 5
  start-page: 450
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2019.01.059_b3
  article-title: Mobile edge computing: A survey
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2750180
– volume: 1
  start-page: 7
  issue: 1
  year: 2010
  ident: 10.1016/j.future.2019.01.059_b1
  article-title: Cloud computing: state-of-the-art and research challenges
  publication-title: J. Internet Serv. Appl.
  doi: 10.1007/s13174-010-0007-6
– year: 1957
  ident: 10.1016/j.future.2019.01.059_b24
– volume: 64
  start-page: 3528
  issue: 12
  year: 2015
  ident: 10.1016/j.future.2019.01.059_b20
  article-title: Phase-change memory optimization for green cloud with genetic algorithm
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2015.2409857
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2019.01.059_b26
  article-title: A reinforcement learning approach for cost- and energy-aware mobile data offloading
– volume: 14
  start-page: 3590
  issue: 8
  year: 2018
  ident: 10.1016/j.future.2019.01.059_b27
  article-title: Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2780885
– start-page: 835
  year: 2014
  ident: 10.1016/j.future.2019.01.059_b7
  article-title: Mobility-induced service migration in mobile micro-clouds
– year: 1998
  ident: 10.1016/j.future.2019.01.059_b22
– volume: 11
  start-page: 88
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2019.01.059_b2
  article-title: Health-CPS: Healthcare cyber-physical system assisted by cloud and big data
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2015.2460747
– start-page: 5504
  year: 2015
  ident: 10.1016/j.future.2019.01.059_b9
  article-title: Dynamic service placement for mobile micro-clouds with predicted future costs
– volume: 13
  start-page: 927
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2019.01.059_b11
  article-title: Linking virtual machine mobility to user mobility
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2016.2592241
– ident: 10.1016/j.future.2019.01.059_b17
  doi: 10.17487/rfc6830
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2019.01.059_b8
  article-title: Mobility prediction model-based service migration procedure for follow me cloud to support qos and qoe
– volume: 19
  start-page: 1628
  issue: 3
  year: 2017
  ident: 10.1016/j.future.2019.01.059_b5
  article-title: Mobile edge computing: A survey on architecture and computation offloading
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2682318
– volume: E101-B
  issue: 3
  year: 2018
  ident: 10.1016/j.future.2019.01.059_b25
  article-title: Cost- and energy-aware multi-flow mobile data offloading using Markov decision process
  publication-title: IEICE Trans. Commun.
  doi: 10.1587/transcom.2017NRP0014
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.future.2019.01.059_b23
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1291
  year: 2013
  ident: 10.1016/j.future.2019.01.059_b12
  article-title: An analytical model for follow me cloud
– volume: 13
  start-page: 1587
  issue: 18
  year: 2011
  ident: 10.1016/j.future.2019.01.059_b4
  article-title: A survey of mobile cloud computing: architecture, applications, and approaches
  publication-title: Wireless Commun. Mobile Comput.
  doi: 10.1002/wcm.1203
– volume: 14
  start-page: 25:1
  issue: 2
  year: 2009
  ident: 10.1016/j.future.2019.01.059_b18
  article-title: Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems
  publication-title: ACM Trans. Des. Autom. Electron. Syst.
  doi: 10.1145/1497561.1497568
SSID ssj0001731
Score 2.5838006
Snippet Mobile edge computing (MEC) is a new network architecture that puts computing capabilities and storage resource at the edges of the network in a distributed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111
SubjectTerms Deep reinforcement learning
Mobile edge computing
Service migration
Title Task migration for mobile edge computing using deep reinforcement learning
URI https://dx.doi.org/10.1016/j.future.2019.01.059
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA2lbtz4FuujZOF27LTJJJNlKZZaoRtb6C7kcadU7YNat367SSbjA0TB5Qy5EM7cnBsyJ-cidC0ynup2xhNrrP_NqB0PAidJKnRRaGUIM8Htc8QGEzqcZtMa6lV3YbysMnJ_yemBreObVkSztZ7PWw9eQM-JmPqkFIx7T1BKuc_ym7dPmUebx56EjhD86Or6XNB4lb4dXuAlgnmndyz9qTx9KTn9A7QX94q4W07nENVgeYT2qz4MOC7LYzQcq5cnvJjPyq-J3T4UL1barXfsT8uwCRGuRmGvcp9hC7DGGwieqSYcD-LYPGJ2gib923FvkMQeCYkhvLNNoKBtQyDnkIMAYCJXjJAOKEGozoHZwqbaAlXWEE2oyRW1ijmCy4gqjMPvFNWXqyWcIexqFWSGpwIKRY0Gzd3QXOjcEqYZLxqIVNBIEw3EfR-LZ1kpxR5lCaj0gMq0LR2gDZR8RK1LA40_xvMKdfktEaTj-F8jz_8deYF2_VOpwr1E9e3mFa7cXmOrmyGZmmine3c_GL0DjYXXdw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFHVFWH7hGTerEjo9VRVVa6IUi9WZ5mVRlKVUp_4-dOAgkBBLXxCNZL_abkfP8BuBKZDzWScYja6z_zagdDyKnUSx0UWhlKDOl2-eI9R_SwSSbrEG3vgvjZZWB-ytOL9k6PGkFNFuL2ax17wX0nIqJX5SC8XQdNrw7VdaAjc7NsD_6JOSEh7aEjhN8QH2DrpR5VdYdXuMlSv9Ob1r6U4b6knV6u7AdykXSqWa0B2s434eduhUDCTvzAAZj9fZEXmbT6oMSV4qSl1fttjzxB2bElBEuTREvdJ8Si7ggSyxtU015QkhC_4jpITz0rsfdfhTaJESG8vYqwiJNDMWcY44CkYlcMUrbqARNdY7MFjbWFlNlDdU0NblKrWKO4zKqCuMgPILG_HWOx0BcusLM8FhgoVKjUXM3NBc6t5Rpxosm0BoaaYKHuG9l8SxrsdijrACVHlAZJ9IB2oToM2pReWj8MZ7XqMtva0E6mv818uTfkZew2R_f3crbm9HwFLb8m0qUewaN1fIdz13psdIXYWl9APUj2ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+migration+for+mobile+edge+computing+using+deep+reinforcement+learning&rft.jtitle=Future+generation+computer+systems&rft.au=Zhang%2C+Cheng&rft.au=Zheng%2C+Zixuan&rft.date=2019-07-01&rft.issn=0167-739X&rft.volume=96&rft.spage=111&rft.epage=118&rft_id=info:doi/10.1016%2Fj.future.2019.01.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2019_01_059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon