Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses
Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and vi...
Saved in:
Published in | Journal of vision (Charlottesville, Va.) Vol. 19; no. 13; p. 22 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
The Association for Research in Vision and Ophthalmology
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels. |
---|---|
AbstractList | Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels. Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels.Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels. |
Author | Boffa, Jack Palanker, Daniel Ho, Elton |
Author_xml | – sequence: 1 givenname: Elton surname: Ho fullname: Ho, Elton organization: Department of Physics, Stanford University, Stanford, CA, USA, Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA, eltonho@stanford.edu – sequence: 2 givenname: Jack surname: Boffa fullname: Boffa, Jack organization: Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA – sequence: 3 givenname: Daniel surname: Palanker fullname: Palanker, Daniel organization: Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA, Department of Ophthalmology, Stanford University, Stanford, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31770773$$D View this record in MEDLINE/PubMed |
BookMark | eNplkU1r3DAQhkVIyDfkFxQdc_FWI62t9aUQQpMUAu0hdzGWxxulsrWV5ND8-2jJZ-lpBuaZ9x3eOWK7U5iIsTMQC4BGf4V2AWoh5Q47hFotK60aufupP2BHKT0IIUUtYJ8dKNBaaK0Omf1FcQhxxMkSDwO3Ydx4-ssfXZrR84zpd-JzctOaJzfOHjP1fBNDyveUnd1yLkylIMd5PdJU5lUk9C4_8bXHlCidsL0BfaLT13rM7q6-313eVLc_r39cXtxWVmmZK-q7mpaoBoLSWaskdBJa1UkNMAhplwqpJTGgJi1IAnV1r3Tb0Er1Q62O2bcX2c3cjdTbcktEbzbRjRifTEBn_p1M7t6sw6NpViuxWjZF4PxVIIY_M6VsRpcseY8ThTkZqaCVJUS1Rb989no3eQu2AIsXwJasUqTBWJcxl6yKtfMGhNl-zkBrQBkpP8zfF940_0OfAWZFmy4 |
CitedBy_id | crossref_primary_10_1111_ceo_13971 crossref_primary_10_1111_opo_13268 crossref_primary_10_1155_2022_2826724 crossref_primary_10_7554_eLife_83424 crossref_primary_10_1002_advs_202405789 crossref_primary_10_1167_jov_23_5_5 crossref_primary_10_1088_1741_2552_aceca2 crossref_primary_10_3928_23258160_20221017_01 crossref_primary_10_1016_j_paid_2021_111195 crossref_primary_10_1088_1741_2552_abb5bc crossref_primary_10_1364_BOE_405026 crossref_primary_10_1088_1741_2552_ac5a5c crossref_primary_10_3389_fnins_2021_663062 |
Cites_doi | 10.1186/1477-7525-4-97 10.1088/1741-2560/2/1/015 10.1126/scitranslmed.aaf2838 10.1016/j.visres.2017.06.002 10.1038/nm.3851 10.1046/j.1525-1594.2003.07309.x 10.1163/156856897X00366 10.1136/bmjopen-2016-011504 10.1109/TBME.2016.2567300 10.1016/j.brainres.2014.11.020 10.1016/j.visres.2014.10.023 10.1016/j.visres.2014.09.007 10.1016/j.ophtha.2011.09.028 10.1167/iovs.03-0341 10.1523/JNEUROSCI.4968-08.2008 10.1046/j.1525-1594.2003.07305.x 10.1111/j.1460-9568.2008.06279.x 10.1063/PT.3.3970 10.1088/1741-2560/9/4/046012 10.1097/00006982-200208000-00012 10.1016/S2214-109X(13)70145-1 10.1038/s41598-018-21447-1 10.1167/iovs.13-12835 10.1016/j.visres.2013.02.015 10.1163/156856897X00357 10.1002/ajmg.c.31534 10.1088/1741-2560/11/4/046009 10.1111/j.1525-1594.2011.01347.x 10.1016/j.visres.2015.03.001 10.1109/10.126616 10.1167/iovs.05-0157 10.1016/j.preteyeres.2015.09.003 10.1017/S0952523814000212 |
ContentType | Journal Article |
Copyright | Copyright 2019 The Authors 2019 |
Copyright_xml | – notice: Copyright 2019 The Authors 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1167/19.13.22 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Ho, Boffa, & Palanker |
EISSN | 1534-7362 |
ExternalDocumentID | PMC6880846 31770773 10_1167_19_13_22 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY018608 – fundername: NEI NIH HHS grantid: R01 EY027786 |
GroupedDBID | --- 29L 2WC 53G 5GY 5VS AAFWJ AAYXX ABIVO ACGFO ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GROUPED_DOAJ GX1 KQ8 M~E OK1 OVT P2P RNS RPM TR2 TRV W2D W8F XSB CGR CUY CVF ECM EIF NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c372t-edb5e4a3fe1db5cc321b2193b2711f02c43ae9e0fa7e70e21eb5d3796e83df53 |
ISSN | 1534-7362 |
IngestDate | Thu Aug 21 18:43:22 EDT 2025 Fri Jul 11 14:53:57 EDT 2025 Thu Jan 02 22:59:05 EST 2025 Tue Jul 01 00:24:01 EDT 2025 Thu Apr 24 23:07:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c372t-edb5e4a3fe1db5cc321b2193b2711f02c43ae9e0fa7e70e21eb5d3796e83df53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1167/19.13.22 |
PMID | 31770773 |
PQID | 2319200236 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6880846 proquest_miscellaneous_2319200236 pubmed_primary_31770773 crossref_citationtrail_10_1167_19_13_22 crossref_primary_10_1167_19_13_22 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of vision (Charlottesville, Va.) |
PublicationTitleAlternate | J Vis |
PublicationYear | 2019 |
Publisher | The Association for Research in Vision and Ophthalmology |
Publisher_xml | – name: The Association for Research in Vision and Ophthalmology |
References | i1534-7362-19-13-22-Lewis1 i1534-7362-19-13-22-Hayes1 i1534-7362-19-13-22-Flores1 i1534-7362-19-13-22-Barrett1 i1534-7362-19-13-22-Ho1 i1534-7362-19-13-22-Ho2 i1534-7362-19-13-22-Rubin1 i1534-7362-19-13-22-Ho3 i1534-7362-19-13-22-Mazzoni1 i1534-7362-19-13-22-Mitchell1 i1534-7362-19-13-22-Kleiner1 i1534-7362-19-13-22-Taylor1 i1534-7362-19-13-22-Humayun1 i1534-7362-19-13-22-Kim1 i1534-7362-19-13-22-Palanker2 i1534-7362-19-13-22-Humayun2 i1534-7362-19-13-22-Palanker1 i1534-7362-19-13-22-Brainard1 i1534-7362-19-13-22-Dagnelie1 i1534-7362-19-13-22-Friedman1 i1534-7362-19-13-22-Irons1 i1534-7362-19-13-22-Pelli1 i1534-7362-19-13-22-Wang1 i1534-7362-19-13-22-Seiler1 i1534-7362-19-13-22-Shannon1 i1534-7362-19-13-22-Chen2 i1534-7362-19-13-22-Chen1 i1534-7362-19-13-22-Veraart1 i1534-7362-19-13-22-Sengillo1 i1534-7362-19-13-22-Sommerhalder1 i1534-7362-19-13-22-Chang1 i1534-7362-19-13-22-Sommerhalder2 i1534-7362-19-13-22-Wong1 i1534-7362-19-13-22-Scholl1 i1534-7362-19-13-22-Li1 i1534-7362-19-13-22-Luo1 i1534-7362-19-13-22-Nguyen1 i1534-7362-19-13-22-Lorach2 i1534-7362-19-13-22-Stingl1 i1534-7362-19-13-22-Lorach3 i1534-7362-19-13-22-Jung1 i1534-7362-19-13-22-Lorach1 i1534-7362-19-13-22-Stingl2 i1534-7362-19-13-22-Thompson1 |
References_xml | – ident: i1534-7362-19-13-22-Mitchell1 doi: 10.1186/1477-7525-4-97 – ident: i1534-7362-19-13-22-Chen1 doi: 10.1088/1741-2560/2/1/015 – ident: i1534-7362-19-13-22-Kleiner1 – ident: i1534-7362-19-13-22-Scholl1 doi: 10.1126/scitranslmed.aaf2838 – ident: i1534-7362-19-13-22-Irons1 doi: 10.1016/j.visres.2017.06.002 – ident: i1534-7362-19-13-22-Friedman1 – ident: i1534-7362-19-13-22-Humayun2 – ident: i1534-7362-19-13-22-Lorach2 doi: 10.1038/nm.3851 – ident: i1534-7362-19-13-22-Hayes1 doi: 10.1046/j.1525-1594.2003.07309.x – ident: i1534-7362-19-13-22-Lorach3 – ident: i1534-7362-19-13-22-Palanker2 – ident: i1534-7362-19-13-22-Pelli1 doi: 10.1163/156856897X00366 – ident: i1534-7362-19-13-22-Taylor1 doi: 10.1136/bmjopen-2016-011504 – ident: i1534-7362-19-13-22-Nguyen1 doi: 10.1109/TBME.2016.2567300 – ident: i1534-7362-19-13-22-Lewis1 doi: 10.1016/j.brainres.2014.11.020 – ident: i1534-7362-19-13-22-Jung1 doi: 10.1016/j.visres.2014.10.023 – ident: i1534-7362-19-13-22-Lorach1 doi: 10.1016/j.visres.2014.09.007 – ident: i1534-7362-19-13-22-Sommerhalder2 – ident: i1534-7362-19-13-22-Humayun1 doi: 10.1016/j.ophtha.2011.09.028 – ident: i1534-7362-19-13-22-Thompson1 doi: 10.1167/iovs.03-0341 – ident: i1534-7362-19-13-22-Ho3 – ident: i1534-7362-19-13-22-Mazzoni1 doi: 10.1523/JNEUROSCI.4968-08.2008 – ident: i1534-7362-19-13-22-Veraart1 doi: 10.1046/j.1525-1594.2003.07305.x – ident: i1534-7362-19-13-22-Seiler1 doi: 10.1111/j.1460-9568.2008.06279.x – ident: i1534-7362-19-13-22-Palanker1 doi: 10.1063/PT.3.3970 – ident: i1534-7362-19-13-22-Chang1 doi: 10.1088/1741-2560/9/4/046012 – ident: i1534-7362-19-13-22-Kim1 doi: 10.1097/00006982-200208000-00012 – ident: i1534-7362-19-13-22-Chen2 – ident: i1534-7362-19-13-22-Wong1 doi: 10.1016/S2214-109X(13)70145-1 – ident: i1534-7362-19-13-22-Flores1 – ident: i1534-7362-19-13-22-Ho1 doi: 10.1038/s41598-018-21447-1 – ident: i1534-7362-19-13-22-Stingl2 doi: 10.1167/iovs.13-12835 – ident: i1534-7362-19-13-22-Rubin1 doi: 10.1016/j.visres.2013.02.015 – ident: i1534-7362-19-13-22-Sommerhalder1 – ident: i1534-7362-19-13-22-Brainard1 doi: 10.1163/156856897X00357 – ident: i1534-7362-19-13-22-Sengillo1 doi: 10.1002/ajmg.c.31534 – ident: i1534-7362-19-13-22-Wang1 doi: 10.1088/1741-2560/11/4/046009 – ident: i1534-7362-19-13-22-Li1 doi: 10.1111/j.1525-1594.2011.01347.x – ident: i1534-7362-19-13-22-Stingl1 doi: 10.1016/j.visres.2015.03.001 – ident: i1534-7362-19-13-22-Shannon1 doi: 10.1109/10.126616 – ident: i1534-7362-19-13-22-Dagnelie1 doi: 10.1167/iovs.05-0157 – ident: i1534-7362-19-13-22-Luo1 doi: 10.1016/j.preteyeres.2015.09.003 – ident: i1534-7362-19-13-22-Ho2 – ident: i1534-7362-19-13-22-Barrett1 doi: 10.1017/S0952523814000212 |
SSID | ssj0020501 |
Score | 2.3561437 |
Snippet | Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 22 |
SubjectTerms | Adolescent Adult Aged Augmented Reality Computer Simulation Contrast Sensitivity - physiology Female Humans Male Middle Aged Psychomotor Performance - physiology Vision Disorders - physiopathology Visual Acuity - physiology Visual Fields - physiology Visual Perception - physiology Visual Prosthesis Young Adult |
Title | Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31770773 https://www.proquest.com/docview/2319200236 https://pubmed.ncbi.nlm.nih.gov/PMC6880846 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgkRAXxJvyWBkJiUOVEttJXB8BdVWh7bKHrtRb5LgTtgISRNIV4sBvZ-w4j9IeFg5NIjdxq87X8Tf2zGdCXk815FZZLUA2gQEKE1GANCQPtDGQAIeQTW2B8-IsmV9EH1fxqt8u1VWX1NnE_DpYV_I_VsU2tKutkv0Hy3adYgNeo33xiBbG47VsfD7I-m_Tw-Hn-GpT2aKQWldfqvHWTQZUm292ny6wogBlhaTP6rQ2deV40mO9_ezUOdcBkkjHzB2t9gmG--TVP2qXgO16fVkjY72yZYUub1ZPBhMM87JJH6v7Bf_3ZZ77HF3TVQqd2yRLn-PRFL4PZySY8qV5QycaBVJ4LwsH2lrPq4YIE0M_yg-798QJBKgJExPO-yGsXbY_-5SeXJyepsvZanmT3OIYOljft_g964LwMA69hm7zfbwgMfb8tu13l6LsxR1_p88O-MjyHrnrbUHfNai4T25A8YDcXvhUiYfEDMBBy5x6cNAGHNSBgzpw0A4ctAcHbSyMJ033wEE9OB6R5cls-WEe-B01AiMkrwNYZzFEWuTA8MoYwVmGQ5bIuGQsD7mJhAYFYa4lyBA4gyxeC6kSmIp1HovH5KgoC3hKqIq4BGS3kVb4klpNQyFFlukEu4oEjMib9jdMjVebt5uefE1d1JnIlKmUiZTzEXnV3fm9UVg5dE9rhhTdn13T0gWU2yrF8ERxtw3CiDxpzNL1gtRYoh8SIyJ3DNbdYKXVd98pNpdOYj3BYQ2Z-bNrfO5zcqf_E7wgR_WPLbxEolpnx26C59jh7w-4qpqo |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+complex+visual+tasks+using+simulated+prosthetic+vision+via+augmented-reality+glasses&rft.jtitle=Journal+of+vision+%28Charlottesville%2C+Va.%29&rft.au=Ho%2C+Elton&rft.au=Boffa%2C+Jack&rft.au=Palanker%2C+Daniel&rft.date=2019-11-01&rft.issn=1534-7362&rft.eissn=1534-7362&rft.volume=19&rft.issue=13&rft.spage=22&rft_id=info:doi/10.1167%2F19.13.22&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-7362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-7362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-7362&client=summon |