Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses

Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and vi...

Full description

Saved in:
Bibliographic Details
Published inJournal of vision (Charlottesville, Va.) Vol. 19; no. 13; p. 22
Main Authors Ho, Elton, Boffa, Jack, Palanker, Daniel
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels.
AbstractList Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels.
Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels.Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels.
Author Boffa, Jack
Palanker, Daniel
Ho, Elton
Author_xml – sequence: 1
  givenname: Elton
  surname: Ho
  fullname: Ho, Elton
  organization: Department of Physics, Stanford University, Stanford, CA, USA, Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA, eltonho@stanford.edu
– sequence: 2
  givenname: Jack
  surname: Boffa
  fullname: Boffa, Jack
  organization: Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
– sequence: 3
  givenname: Daniel
  surname: Palanker
  fullname: Palanker, Daniel
  organization: Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA, Department of Ophthalmology, Stanford University, Stanford, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31770773$$D View this record in MEDLINE/PubMed
BookMark eNplkU1r3DAQhkVIyDfkFxQdc_FWI62t9aUQQpMUAu0hdzGWxxulsrWV5ND8-2jJZ-lpBuaZ9x3eOWK7U5iIsTMQC4BGf4V2AWoh5Q47hFotK60aufupP2BHKT0IIUUtYJ8dKNBaaK0Omf1FcQhxxMkSDwO3Ydx4-ssfXZrR84zpd-JzctOaJzfOHjP1fBNDyveUnd1yLkylIMd5PdJU5lUk9C4_8bXHlCidsL0BfaLT13rM7q6-313eVLc_r39cXtxWVmmZK-q7mpaoBoLSWaskdBJa1UkNMAhplwqpJTGgJi1IAnV1r3Tb0Er1Q62O2bcX2c3cjdTbcktEbzbRjRifTEBn_p1M7t6sw6NpViuxWjZF4PxVIIY_M6VsRpcseY8ThTkZqaCVJUS1Rb989no3eQu2AIsXwJasUqTBWJcxl6yKtfMGhNl-zkBrQBkpP8zfF940_0OfAWZFmy4
CitedBy_id crossref_primary_10_1111_ceo_13971
crossref_primary_10_1111_opo_13268
crossref_primary_10_1155_2022_2826724
crossref_primary_10_7554_eLife_83424
crossref_primary_10_1002_advs_202405789
crossref_primary_10_1167_jov_23_5_5
crossref_primary_10_1088_1741_2552_aceca2
crossref_primary_10_3928_23258160_20221017_01
crossref_primary_10_1016_j_paid_2021_111195
crossref_primary_10_1088_1741_2552_abb5bc
crossref_primary_10_1364_BOE_405026
crossref_primary_10_1088_1741_2552_ac5a5c
crossref_primary_10_3389_fnins_2021_663062
Cites_doi 10.1186/1477-7525-4-97
10.1088/1741-2560/2/1/015
10.1126/scitranslmed.aaf2838
10.1016/j.visres.2017.06.002
10.1038/nm.3851
10.1046/j.1525-1594.2003.07309.x
10.1163/156856897X00366
10.1136/bmjopen-2016-011504
10.1109/TBME.2016.2567300
10.1016/j.brainres.2014.11.020
10.1016/j.visres.2014.10.023
10.1016/j.visres.2014.09.007
10.1016/j.ophtha.2011.09.028
10.1167/iovs.03-0341
10.1523/JNEUROSCI.4968-08.2008
10.1046/j.1525-1594.2003.07305.x
10.1111/j.1460-9568.2008.06279.x
10.1063/PT.3.3970
10.1088/1741-2560/9/4/046012
10.1097/00006982-200208000-00012
10.1016/S2214-109X(13)70145-1
10.1038/s41598-018-21447-1
10.1167/iovs.13-12835
10.1016/j.visres.2013.02.015
10.1163/156856897X00357
10.1002/ajmg.c.31534
10.1088/1741-2560/11/4/046009
10.1111/j.1525-1594.2011.01347.x
10.1016/j.visres.2015.03.001
10.1109/10.126616
10.1167/iovs.05-0157
10.1016/j.preteyeres.2015.09.003
10.1017/S0952523814000212
ContentType Journal Article
Copyright Copyright 2019 The Authors 2019
Copyright_xml – notice: Copyright 2019 The Authors 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1167/19.13.22
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Ho, Boffa, & Palanker
EISSN 1534-7362
ExternalDocumentID PMC6880846
31770773
10_1167_19_13_22
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY018608
– fundername: NEI NIH HHS
  grantid: R01 EY027786
GroupedDBID ---
29L
2WC
53G
5GY
5VS
AAFWJ
AAYXX
ABIVO
ACGFO
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GROUPED_DOAJ
GX1
KQ8
M~E
OK1
OVT
P2P
RNS
RPM
TR2
TRV
W2D
W8F
XSB
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c372t-edb5e4a3fe1db5cc321b2193b2711f02c43ae9e0fa7e70e21eb5d3796e83df53
ISSN 1534-7362
IngestDate Thu Aug 21 18:43:22 EDT 2025
Fri Jul 11 14:53:57 EDT 2025
Thu Jan 02 22:59:05 EST 2025
Tue Jul 01 00:24:01 EDT 2025
Thu Apr 24 23:07:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-edb5e4a3fe1db5cc321b2193b2711f02c43ae9e0fa7e70e21eb5d3796e83df53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1167/19.13.22
PMID 31770773
PQID 2319200236
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6880846
proquest_miscellaneous_2319200236
pubmed_primary_31770773
crossref_citationtrail_10_1167_19_13_22
crossref_primary_10_1167_19_13_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of vision (Charlottesville, Va.)
PublicationTitleAlternate J Vis
PublicationYear 2019
Publisher The Association for Research in Vision and Ophthalmology
Publisher_xml – name: The Association for Research in Vision and Ophthalmology
References i1534-7362-19-13-22-Lewis1
i1534-7362-19-13-22-Hayes1
i1534-7362-19-13-22-Flores1
i1534-7362-19-13-22-Barrett1
i1534-7362-19-13-22-Ho1
i1534-7362-19-13-22-Ho2
i1534-7362-19-13-22-Rubin1
i1534-7362-19-13-22-Ho3
i1534-7362-19-13-22-Mazzoni1
i1534-7362-19-13-22-Mitchell1
i1534-7362-19-13-22-Kleiner1
i1534-7362-19-13-22-Taylor1
i1534-7362-19-13-22-Humayun1
i1534-7362-19-13-22-Kim1
i1534-7362-19-13-22-Palanker2
i1534-7362-19-13-22-Humayun2
i1534-7362-19-13-22-Palanker1
i1534-7362-19-13-22-Brainard1
i1534-7362-19-13-22-Dagnelie1
i1534-7362-19-13-22-Friedman1
i1534-7362-19-13-22-Irons1
i1534-7362-19-13-22-Pelli1
i1534-7362-19-13-22-Wang1
i1534-7362-19-13-22-Seiler1
i1534-7362-19-13-22-Shannon1
i1534-7362-19-13-22-Chen2
i1534-7362-19-13-22-Chen1
i1534-7362-19-13-22-Veraart1
i1534-7362-19-13-22-Sengillo1
i1534-7362-19-13-22-Sommerhalder1
i1534-7362-19-13-22-Chang1
i1534-7362-19-13-22-Sommerhalder2
i1534-7362-19-13-22-Wong1
i1534-7362-19-13-22-Scholl1
i1534-7362-19-13-22-Li1
i1534-7362-19-13-22-Luo1
i1534-7362-19-13-22-Nguyen1
i1534-7362-19-13-22-Lorach2
i1534-7362-19-13-22-Stingl1
i1534-7362-19-13-22-Lorach3
i1534-7362-19-13-22-Jung1
i1534-7362-19-13-22-Lorach1
i1534-7362-19-13-22-Stingl2
i1534-7362-19-13-22-Thompson1
References_xml – ident: i1534-7362-19-13-22-Mitchell1
  doi: 10.1186/1477-7525-4-97
– ident: i1534-7362-19-13-22-Chen1
  doi: 10.1088/1741-2560/2/1/015
– ident: i1534-7362-19-13-22-Kleiner1
– ident: i1534-7362-19-13-22-Scholl1
  doi: 10.1126/scitranslmed.aaf2838
– ident: i1534-7362-19-13-22-Irons1
  doi: 10.1016/j.visres.2017.06.002
– ident: i1534-7362-19-13-22-Friedman1
– ident: i1534-7362-19-13-22-Humayun2
– ident: i1534-7362-19-13-22-Lorach2
  doi: 10.1038/nm.3851
– ident: i1534-7362-19-13-22-Hayes1
  doi: 10.1046/j.1525-1594.2003.07309.x
– ident: i1534-7362-19-13-22-Lorach3
– ident: i1534-7362-19-13-22-Palanker2
– ident: i1534-7362-19-13-22-Pelli1
  doi: 10.1163/156856897X00366
– ident: i1534-7362-19-13-22-Taylor1
  doi: 10.1136/bmjopen-2016-011504
– ident: i1534-7362-19-13-22-Nguyen1
  doi: 10.1109/TBME.2016.2567300
– ident: i1534-7362-19-13-22-Lewis1
  doi: 10.1016/j.brainres.2014.11.020
– ident: i1534-7362-19-13-22-Jung1
  doi: 10.1016/j.visres.2014.10.023
– ident: i1534-7362-19-13-22-Lorach1
  doi: 10.1016/j.visres.2014.09.007
– ident: i1534-7362-19-13-22-Sommerhalder2
– ident: i1534-7362-19-13-22-Humayun1
  doi: 10.1016/j.ophtha.2011.09.028
– ident: i1534-7362-19-13-22-Thompson1
  doi: 10.1167/iovs.03-0341
– ident: i1534-7362-19-13-22-Ho3
– ident: i1534-7362-19-13-22-Mazzoni1
  doi: 10.1523/JNEUROSCI.4968-08.2008
– ident: i1534-7362-19-13-22-Veraart1
  doi: 10.1046/j.1525-1594.2003.07305.x
– ident: i1534-7362-19-13-22-Seiler1
  doi: 10.1111/j.1460-9568.2008.06279.x
– ident: i1534-7362-19-13-22-Palanker1
  doi: 10.1063/PT.3.3970
– ident: i1534-7362-19-13-22-Chang1
  doi: 10.1088/1741-2560/9/4/046012
– ident: i1534-7362-19-13-22-Kim1
  doi: 10.1097/00006982-200208000-00012
– ident: i1534-7362-19-13-22-Chen2
– ident: i1534-7362-19-13-22-Wong1
  doi: 10.1016/S2214-109X(13)70145-1
– ident: i1534-7362-19-13-22-Flores1
– ident: i1534-7362-19-13-22-Ho1
  doi: 10.1038/s41598-018-21447-1
– ident: i1534-7362-19-13-22-Stingl2
  doi: 10.1167/iovs.13-12835
– ident: i1534-7362-19-13-22-Rubin1
  doi: 10.1016/j.visres.2013.02.015
– ident: i1534-7362-19-13-22-Sommerhalder1
– ident: i1534-7362-19-13-22-Brainard1
  doi: 10.1163/156856897X00357
– ident: i1534-7362-19-13-22-Sengillo1
  doi: 10.1002/ajmg.c.31534
– ident: i1534-7362-19-13-22-Wang1
  doi: 10.1088/1741-2560/11/4/046009
– ident: i1534-7362-19-13-22-Li1
  doi: 10.1111/j.1525-1594.2011.01347.x
– ident: i1534-7362-19-13-22-Stingl1
  doi: 10.1016/j.visres.2015.03.001
– ident: i1534-7362-19-13-22-Shannon1
  doi: 10.1109/10.126616
– ident: i1534-7362-19-13-22-Dagnelie1
  doi: 10.1167/iovs.05-0157
– ident: i1534-7362-19-13-22-Luo1
  doi: 10.1016/j.preteyeres.2015.09.003
– ident: i1534-7362-19-13-22-Ho2
– ident: i1534-7362-19-13-22-Barrett1
  doi: 10.1017/S0952523814000212
SSID ssj0020501
Score 2.3561437
Snippet Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 22
SubjectTerms Adolescent
Adult
Aged
Augmented Reality
Computer Simulation
Contrast Sensitivity - physiology
Female
Humans
Male
Middle Aged
Psychomotor Performance - physiology
Vision Disorders - physiopathology
Visual Acuity - physiology
Visual Fields - physiology
Visual Perception - physiology
Visual Prosthesis
Young Adult
Title Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses
URI https://www.ncbi.nlm.nih.gov/pubmed/31770773
https://www.proquest.com/docview/2319200236
https://pubmed.ncbi.nlm.nih.gov/PMC6880846
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgkRAXxJvyWBkJiUOVEttJXB8BdVWh7bKHrtRb5LgTtgISRNIV4sBvZ-w4j9IeFg5NIjdxq87X8Tf2zGdCXk815FZZLUA2gQEKE1GANCQPtDGQAIeQTW2B8-IsmV9EH1fxqt8u1VWX1NnE_DpYV_I_VsU2tKutkv0Hy3adYgNeo33xiBbG47VsfD7I-m_Tw-Hn-GpT2aKQWldfqvHWTQZUm292ny6wogBlhaTP6rQ2deV40mO9_ezUOdcBkkjHzB2t9gmG--TVP2qXgO16fVkjY72yZYUub1ZPBhMM87JJH6v7Bf_3ZZ77HF3TVQqd2yRLn-PRFL4PZySY8qV5QycaBVJ4LwsH2lrPq4YIE0M_yg-798QJBKgJExPO-yGsXbY_-5SeXJyepsvZanmT3OIYOljft_g964LwMA69hm7zfbwgMfb8tu13l6LsxR1_p88O-MjyHrnrbUHfNai4T25A8YDcXvhUiYfEDMBBy5x6cNAGHNSBgzpw0A4ctAcHbSyMJ033wEE9OB6R5cls-WEe-B01AiMkrwNYZzFEWuTA8MoYwVmGQ5bIuGQsD7mJhAYFYa4lyBA4gyxeC6kSmIp1HovH5KgoC3hKqIq4BGS3kVb4klpNQyFFlukEu4oEjMib9jdMjVebt5uefE1d1JnIlKmUiZTzEXnV3fm9UVg5dE9rhhTdn13T0gWU2yrF8ERxtw3CiDxpzNL1gtRYoh8SIyJ3DNbdYKXVd98pNpdOYj3BYQ2Z-bNrfO5zcqf_E7wgR_WPLbxEolpnx26C59jh7w-4qpqo
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+complex+visual+tasks+using+simulated+prosthetic+vision+via+augmented-reality+glasses&rft.jtitle=Journal+of+vision+%28Charlottesville%2C+Va.%29&rft.au=Ho%2C+Elton&rft.au=Boffa%2C+Jack&rft.au=Palanker%2C+Daniel&rft.date=2019-11-01&rft.issn=1534-7362&rft.eissn=1534-7362&rft.volume=19&rft.issue=13&rft.spage=22&rft_id=info:doi/10.1167%2F19.13.22&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-7362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-7362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-7362&client=summon