A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions
Finite Element (FE) modeling of machining processes has received growing attention over the last two decades. Since machining processes operate at severe deformation conditions, involving very high strain, strain rate, stress, and temperature, the modeling procedure is still a challenging task even...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 96; no. 9-12; pp. 3747 - 3791 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0268-3768 1433-3015 |
DOI | 10.1007/s00170-018-1759-6 |
Cover
Loading…
Abstract | Finite Element (FE) modeling of machining processes has received growing attention over the last two decades. Since machining processes operate at severe deformation conditions, involving very high strain, strain rate, stress, and temperature, the modeling procedure is still a challenging task even with new advanced software and computers. Therefore, most of the published research works were mainly performed for the simplest configuration of machining known as orthogonal cutting, in which a plane strain deformation state is assumed. This configuration leads to reducing the number of elements in the FE model and the computational time of the solution, compared to conventional machining processes (turning, milling, and drilling). Nevertheless, FE modeling of orthogonal turning is still considered as an open-ended subject as most of the phenomena involved in the orthogonal turning process, which also exist in other machining operations, are not fully well understood. The present review article deals with finite element modeling of orthogonal machining process. The paper consists of several related parts. First, the fundamentals of the FE simulation of orthogonal turning process are briefly described. Then, a detailed review on the FE prediction of machining characteristics including chip morphology, cutting forces, cutting temperature, tool wear, and burr formation is provided. Also, the FE prediction of surface integrity characteristics including residual stresses and microstructural changes is discussed. The influence of input model and parameters including thermal, material, and frictional models as well as size and arrangement of elements on machining and surface integrity characteristics are explained as well. Both technical and statistical aspects of the FE simulation of orthogonal turning are treated. Since there is no review paper thoroughly and specifically discussing the methods and findings of the finite element simulation of turning operations, the present article can be used as a reference for researchers who are active and/or interested in this filed. |
---|---|
AbstractList | Finite Element (FE) modeling of machining processes has received growing attention over the last two decades. Since machining processes operate at severe deformation conditions, involving very high strain, strain rate, stress, and temperature, the modeling procedure is still a challenging task even with new advanced software and computers. Therefore, most of the published research works were mainly performed for the simplest configuration of machining known as orthogonal cutting, in which a plane strain deformation state is assumed. This configuration leads to reducing the number of elements in the FE model and the computational time of the solution, compared to conventional machining processes (turning, milling, and drilling). Nevertheless, FE modeling of orthogonal turning is still considered as an open-ended subject as most of the phenomena involved in the orthogonal turning process, which also exist in other machining operations, are not fully well understood. The present review article deals with finite element modeling of orthogonal machining process. The paper consists of several related parts. First, the fundamentals of the FE simulation of orthogonal turning process are briefly described. Then, a detailed review on the FE prediction of machining characteristics including chip morphology, cutting forces, cutting temperature, tool wear, and burr formation is provided. Also, the FE prediction of surface integrity characteristics including residual stresses and microstructural changes is discussed. The influence of input model and parameters including thermal, material, and frictional models as well as size and arrangement of elements on machining and surface integrity characteristics are explained as well. Both technical and statistical aspects of the FE simulation of orthogonal turning are treated. Since there is no review paper thoroughly and specifically discussing the methods and findings of the finite element simulation of turning operations, the present article can be used as a reference for researchers who are active and/or interested in this filed. |
Author | Sadeghifar, Morteza Jomaa, Walid Sedaghati, Ramin Songmene, Victor |
Author_xml | – sequence: 1 givenname: Morteza surname: Sadeghifar fullname: Sadeghifar, Morteza organization: Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University – sequence: 2 givenname: Ramin surname: Sedaghati fullname: Sedaghati, Ramin email: ramin.sedaghati@concordia.ca organization: Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University – sequence: 3 givenname: Walid surname: Jomaa fullname: Jomaa, Walid organization: Department of Mechanical Engineering, Université Laval – sequence: 4 givenname: Victor surname: Songmene fullname: Songmene, Victor organization: Department of Mechanical Engineering, École de Technologie Supérieure |
BookMark | eNp9kc1qGzEURkVJoE6aB-hO0PW0upqxfroLoU0DgWzatZA0d2yFGcmV5JSs--KV60IgUK8En865XOm7IGcxRSTkPbCPwJj8VBgDyToGqgO51p14Q1Yw9H3XM1ifkRXjQnW9FOotuSjlsdEChFqR39fUp2WXcYuxhCekGZ8C_qJpolOIoSLFGReMlS5pxDnEzeEq5bpNmxTtTBfrtw1s-S4nj6V8pi3Y0SnlxdaQIrVxpGWfJ-uRhlhxk0N9bjSOwR-A8o6cT3YuePXvvCQ_vn75fvOtu3-4vbu5vu98L3nt0FnNLHq_9jhqPSrnBhBO6F5YqdYKpG2J067XFtQ0OC7Z5EAjSme9kv0l-XCc2zb9ucdSzWPa5_aIYvigmRKKD3CS4oLDoECfnsUGzpWSg2qUPFI-p1IyTsaH-vdXarZhNsDMoT1zbM-09syhPSOaCa_MXQ6Lzc8nHX50SmPjBvPLTv-X_gA6_bCA |
CitedBy_id | crossref_primary_10_1051_mfreview_2021022 crossref_primary_10_4028_www_scientific_net_MSF_978_106 crossref_primary_10_1016_j_procir_2021_09_075 crossref_primary_10_1109_TMECH_2020_2991421 crossref_primary_10_3390_jmmp8030107 crossref_primary_10_1080_00207543_2022_2152126 crossref_primary_10_1016_j_procir_2024_10_323 crossref_primary_10_1016_j_mechmat_2024_105184 crossref_primary_10_1016_j_cirpj_2024_03_008 crossref_primary_10_1080_10584587_2020_1728637 crossref_primary_10_1007_s40436_022_00432_y crossref_primary_10_1016_j_procir_2023_03_014 crossref_primary_10_1016_j_mtcomm_2022_103162 crossref_primary_10_1007_s00170_020_05150_y crossref_primary_10_3390_ma14154293 crossref_primary_10_1002_mawe_202200088 crossref_primary_10_1016_j_procir_2021_09_008 crossref_primary_10_1016_j_matpr_2022_04_402 crossref_primary_10_1016_j_engfracmech_2024_109882 crossref_primary_10_1016_j_simpat_2023_102816 crossref_primary_10_1007_s00170_021_06922_w crossref_primary_10_1080_10910344_2023_2241140 crossref_primary_10_1016_j_cirp_2024_05_004 crossref_primary_10_1016_j_cja_2024_05_022 crossref_primary_10_3390_ma17030688 crossref_primary_10_1007_s00170_022_09592_4 crossref_primary_10_3390_ma16103702 crossref_primary_10_3390_ma13030567 crossref_primary_10_1007_s40430_021_03075_5 crossref_primary_10_1115_1_4062749 crossref_primary_10_1177_0954406221994883 crossref_primary_10_1038_s41598_025_95018_6 crossref_primary_10_1007_s00170_020_05904_8 crossref_primary_10_2139_ssrn_4144543 crossref_primary_10_1016_j_jmapro_2022_01_007 crossref_primary_10_1016_j_cirpj_2024_07_003 crossref_primary_10_1016_j_mfglet_2021_04_002 crossref_primary_10_1016_j_rineng_2022_100789 crossref_primary_10_1007_s10845_023_02260_8 crossref_primary_10_1016_j_simpat_2019_02_006 crossref_primary_10_1016_j_matpr_2020_05_056 crossref_primary_10_1007_s00170_020_06281_y crossref_primary_10_1016_j_simpat_2020_102141 crossref_primary_10_1007_s00170_020_06200_1 crossref_primary_10_1007_s00170_019_04704_z crossref_primary_10_1115_1_4056749 crossref_primary_10_3390_pr11040996 crossref_primary_10_1007_s00170_023_10877_5 crossref_primary_10_1016_j_cirpj_2021_08_005 crossref_primary_10_1007_s00170_020_04945_3 crossref_primary_10_1007_s11740_021_01058_y crossref_primary_10_1016_j_ijmecsci_2022_108031 crossref_primary_10_3390_jmmp6020033 crossref_primary_10_1016_j_jmrt_2023_03_044 crossref_primary_10_1115_1_4051605 crossref_primary_10_1080_10910344_2021_1971709 crossref_primary_10_1088_2631_8695_ac2e10 crossref_primary_10_1016_j_cirpj_2021_06_001 crossref_primary_10_1007_s11831_023_10026_x crossref_primary_10_1016_j_ijmecsci_2023_108807 crossref_primary_10_1515_mt_2020_0069 crossref_primary_10_1016_j_jmrt_2020_07_087 crossref_primary_10_1007_s00170_019_04225_9 crossref_primary_10_1016_j_cirpj_2022_12_012 crossref_primary_10_1016_j_jmapro_2022_11_038 crossref_primary_10_1007_s00170_020_05665_4 crossref_primary_10_1016_j_procir_2022_04_021 crossref_primary_10_1007_s00170_018_2210_8 crossref_primary_10_1007_s00170_019_04498_0 crossref_primary_10_1016_j_jmapro_2022_01_027 |
Cites_doi | 10.1007/s00170-012-4122-3 10.1016/j.ijmachtools.2007.10.014 10.1080/10910344.2010.500957 10.1007/s00170-015-7179-y 10.1016/S0007-8506(07)62651-1 10.1016/j.ijmachtools.2004.02.014 10.1007/s00170-006-0720-2 10.1007/s00170-017-1032-4 10.1007/s00170-008-1784-y 10.1016/j.ijmecsci.2005.06.001 10.1016/j.jmatprotec.2008.11.029 10.1007/s00170-004-2417-8 10.1007/s12289-009-0405-0 10.1016/0029-5493(84)90169-9 10.1081/MST-120003183 10.1016/j.ijmachtools.2008.03.013 10.1115/IMECE2005-81046 10.1016/j.cirp.2009.03.109 10.1080/10426914.2013.811738 10.1016/S0007-8506(07)62547-5 10.1002/nme.1620382108 10.1080/10910344.2015.1051541 10.1016/j.jmatprotec.2007.05.007 10.1007/BF02905931 10.1016/S0020-7403(99)00042-9 10.1016/j.ijmecsci.2006.03.009 10.1016/j.jmatprotec.2006.12.018 10.1016/j.jmatprotec.2009.02.011 10.1016/S0924-0136(03)00845-8 10.1115/1.3438875 10.1016/j.ijmachtools.2010.08.004 10.1016/j.jmatprotec.2007.03.022 10.1016/j.wear.2007.11.025 10.1007/s11661-009-9983-1 10.1016/S0924-0136(03)00846-X 10.1115/IMECE2003-42329 10.1016/S0924-0136(00)00480-5 10.1016/j.asoc.2015.09.034 10.1007/s11665-016-1950-6 10.1016/j.jmatprotec.2008.10.034 10.1115/1.2772338 10.1007/s00170-009-2328-9 10.1016/j.ijmecsci.2009.10.001 10.1007/s00170-014-5877-5 10.1080/10910340902776051 10.1016/S0890-6955(02)00185-2 10.1016/j.ijmachtools.2006.05.007 10.1016/j.simpat.2009.12.004 10.1016/j.ijmachtools.2007.09.007 10.1115/1.3186008 10.1016/j.procir.2015.03.032 10.1007/s00170-008-1644-9 10.1115/1.1286557 10.1016/j.applthermaleng.2005.01.006 10.1016/j.simpat.2010.11.011 10.1016/j.surfcoat.2003.11.027 10.1016/S0890-6955(99)00051-6 10.1016/j.ijmachtools.2004.01.016 10.1016/j.ijmachtools.2005.07.001 10.1063/1.1766514 10.1016/j.jmatprotec.2005.06.015 10.1016/j.jmatprotec.2005.06.087 10.1115/1.1813473 10.1115/1.482791 10.1016/j.ijmecsci.2006.09.012 10.1016/S0924-0136(01)00969-4 10.1016/j.ijmecsci.2014.08.007 10.1063/1.338024 10.1016/j.ijmachtools.2005.11.013 10.1080/10910344.2015.1018537 10.1016/j.simpat.2009.10.001 10.1016/j.ijmachtools.2006.03.020 10.1016/j.procir.2015.03.045 10.1016/j.commatsci.2011.05.020 10.1007/s00170-009-2117-5 10.1016/j.jmatprotec.2005.02.118 10.1115/1.3670869 10.1016/j.ijmachtools.2006.06.006 10.1115/1.4025740 10.1243/0954405041486064 10.1115/1.3120834 10.1080/10910344.2011.600203 10.1016/j.acme.2014.01.003 10.1016/j.simpat.2015.02.003 10.1081/MST-200051211 10.1016/j.simpat.2010.09.006 10.1081/MST-100108618 10.1007/s00170-010-3012-9 10.1098/rspa.1977.0141 10.1007/s11661-000-1002-5 10.1115/1.1430678 10.1016/j.ijmachtools.2009.02.008 10.1016/j.cirp.2010.03.064 10.1081/MST-200051380 10.1007/s00170-014-6191-y 10.1016/j.msea.2004.01.012 10.1016/j.ijmecsci.2014.05.034 10.1016/j.msea.2014.03.033 10.1016/S0168-874X(01)00110-X 10.1016/j.jmatprotec.2008.10.013 10.1115/1.4007464 10.1016/j.jmatprotec.2005.08.002 10.1016/j.jmatprotec.2005.02.136 10.1115/IMECE2014-39503 10.1016/j.jmatprotec.2004.04.210 10.1016/j.finel.2007.11.005 10.1016/j.finel.2013.10.006 10.1007/s11661-006-0219-3 10.1007/978-1-4471-4330-7 10.1016/j.cirpj.2012.07.003 10.1016/S0924-0136(00)00595-1 10.1007/s00170-014-6583-z 10.1081/MST-120016256 10.1016/j.ijmachtools.2006.03.004 10.1007/s00170-010-2789-x 10.1016/j.jmatprotec.2007.04.137 10.1016/j.jmatprotec.2014.09.021 10.1016/S0890-6955(02)00046-9 10.1016/j.msea.2004.11.011 10.1016/j.ijmecsci.2012.07.011 10.1081/MST-200029230 10.1016/S0924-0136(00)00861-X 10.1007/s00170-010-2901-2 10.1016/j.wear.2004.11.004 10.1016/j.jmatprotec.2004.10.013 10.1007/s12289-010-0800-6 10.1016/j.ijmecsci.2014.02.017 10.1115/1.2193549 10.1007/s00231-015-1499-1 10.2493/jjspe1933.48.510 10.1016/j.procir.2014.04.048 10.1016/j.msea.2007.04.116 10.1016/j.jmatprotec.2006.02.019 10.1080/10940340008945698 10.1115/1.482792 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved. Springer-Verlag London Ltd., part of Springer Nature 2018. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 – notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved. – notice: Springer-Verlag London Ltd., part of Springer Nature 2018. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-018-1759-6 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 3791 |
ExternalDocumentID | 10_1007_s00170_018_1759_6 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c372t-eba90aecc5ced99d8bb416b6936a785817abb4b9b39a18f4b270fb19ee7bac873 |
IEDL.DBID | 8FG |
ISSN | 0268-3768 |
IngestDate | Fri Jul 25 11:04:44 EDT 2025 Fri Jul 25 11:10:58 EDT 2025 Fri Jul 25 11:01:41 EDT 2025 Thu Apr 24 23:09:14 EDT 2025 Tue Jul 01 00:40:07 EDT 2025 Fri Feb 21 02:30:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-12 |
Keywords | Machinability Surface integrity Finite element modeling Metal cutting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-eba90aecc5ced99d8bb416b6936a785817abb4b9b39a18f4b270fb19ee7bac873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2262148197 |
PQPubID | 2044010 |
PageCount | 45 |
ParticipantIDs | proquest_journals_2490868241 proquest_journals_2262148197 proquest_journals_2042288748 crossref_citationtrail_10_1007_s00170_018_1759_6 crossref_primary_10_1007_s00170_018_1759_6 springer_journals_10_1007_s00170_018_1759_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2018 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | GrzesikWBartoszukMNieslonyPFinite element modeling of temperature distribution in the cutting zone in turning processes with differently coated toolsJ Mater Process Technol2005164-16512041211 ZerilliFJArmstrongRWDislocation-mechanics-based constitutive relations for material dynamics calculationsJ Appl Phys19876118161825 RaczyAElmadagliMAltenhofWJAlpasATAn Eulerian finite-element model for determination of deformation state of a copper subjected to orthogonal cuttingMetall Mater Trans A200435A23932400 MabroukiTGirardinFAsadMRigalJFNumerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351)Int J Mach Tools Manuf20084811871197 NasrMNANgE-GElbestawiMAA modified time-efficient FE approach for predicting machining-induced residual stressesFinite Elem Anal Des200844149161 StrenkowskiJSCarrollJTA finite element model of orthogonal metal cuttingJ Eng Ind1985107349354 UmbrelloDHuaJShivpuriRHardness-based flow stress and fracture models for numerical simulation of hard machining of AISI 52100 bearing steelMater Sci Eng A200437490100 NakayamaKAraiMBurr formation in metal cuttingCIRP Ann Manuf Technol1987363336 GuoYBLiuCRFEM analysis of mechanical state on sequentially machined surfacesMach Sci Technol200262141 LjustinaGLarssonRFagerströmMA FE based machining simulation methodology accounting for cast iron microstructureFinite Elem Anal Des201480110 RhimSHOhSIPrediction of serrated chip formation in metal cutting process with new flow stress model for AISI 1045 steelJ Mater Process Technol2006171417422 MenezesPLAvdeevIVLovellMRHiggsCFIIIAn explicit finite element model to study the influence of rake angle and friction during orthogonal metal cuttingInt J Adv Manuf Technol201473875885 SartkulvanichPAltanTGocmenAEffects of flow stress and friction models in finite element simulation of orthogonal cutting—a sensitivity analysisMach Sci Technol20079126 Sadeghifar M (2017) Development of the analysis and optimization strategies for prediction of residual stresses induced by turning processes, Concordia University, Canada, PhD Dissertation XiYBerminghamMWangGDarguschMFinite element modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloyJ Manuf Sci Eng20131350610140610119 MaekawaKShirakashiTUsuiEFlow stress of low carbon steel at high temperature and strain rate (part 2)—flow stress under variable temperature and variable strain rateB Jpn Soc Prec Eng198317167172 HuangYLiangSYCutting forces modeling considering the effect of tool thermal property-application to CBN hard turningInt J Mach Tools Manuf200343307315 ChandrasekeranHKapoorDVPhotoelastic analysis of tool-chip interface stressJ Eng Ind196587B495502 MarusichTOrtizMModeling and simulation of high-speed machiningInt J Numer Methods Eng199538367536940835.73077 OzelTZerenEFinite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machiningInt J Adv Manuf Technol200735255267 BagciEOzcelikBFinite element and experimental investigation of temperature changes on a twist drill in sequential dry drillingInt J Adv Manuf Technol200628680687 DucobuFRivière-LorphèvreEFilippiEOn the introduction of adaptive mass scaling in a finite element model of Ti6Al4V orthogonal cuttingSimul Model Pract Theory201553114 KlockeFRaedtH-WHoppeS2D-FEM simulation of the orthogonal high speed cutting processMach Sci Technol20015323340 Rhim SH, Oh SI (2003) Prediction of serrated chip formation in metal cutting process. In: US-Korea Workshop on Advance in Metallic Structural Materials, Hawaii UcunIAslantasKNumerical simulation of orthogonal machining process using multilayer and single-layer coated toolsInt J Adv Manuf Technol201154899910 WoonKSRahmanMFangFZNeoKSLiuKInvestigations of tool edge radius effect in micromachining: a FEM simulation approachJ Mater Process Technol2008195204211 MovahhedyMGadalaMSAltintasYSimulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element methodJ Mater Process Technol2000103267275 HaglundAJKishawyHARogersRJAn exploration of friction models for the chip-tool interface using an Arbitrary Lagrangian-Eulerian finite element modelWear2008265452460 Ozel T, Zeren E (2005) Finite element modeling of stresses induced by high speed machining with round edge cutting tools. In: Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition IMECE2005, Orlando, FL, USA, November 5-11 BonnetCValiorgueFRechJHamdiHImprovement of the numerical modeling in orthogonal dry cutting of an AISI316L stainless steel by the introduction of a new friction modelJ Mater Process Technol20081114118 AbukhshimNAMativengaPTSheikhMAAn investigation of the tool-chip contact length and wear in high-speed turning of EN19 steelProc Inst Mech Eng B J Eng Manuf2004218889903 El-WardanyTIKishawyHAElbestawiMASurface integrity of die material in high speed hard machining, part 2: microhardness variations and residual stressesJ Manuf Sci Eng2000122632641 KountanyaRAl-ZkeriIAltanTEffect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of 100Cr6 steelJ Mater Process Technol200920950685076 DaoudMChatelainJFBouzidAEffect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulationInt J Adv Manuf Technol20158119871997 Nordgren A, Zargari Samani B, M’Saoubi R (2014) Experimental study and modeling of plastic deformation of cemented carbide tools in turning. In: 6th CIRP International Conference on High Performance Cutting (HPC2014), Procedia CIRP 14:599–604 JiangFLiJSunJZhangSWangZYanLAl7050-T7451 turning simulation based on the modified power-law material modelInt J Adv Manuf Technol201048871880 ShiGDengXShetCA finite element study of the effect of friction in orthogonal metal cuttingFinite Elem Anal Des2002388638831100.74644 Bammann DJ, Chiesa ML, Johnson GC (1996) Modeling large deformation and failure in manufacturing process. In: 19th International Congress on Theoretical and Applied Mechanics (ICTAM), Kyoto, Japan. ChandrasekaranHM’SaoubiRChazalHModeling of material flow stress in chip formation process from orthogonal milling and split Hopkinson bar testsMach Sci Technol20059131145 OzelTAltanTDetermination of workpiece flow stress and friction at the chip-tool contact for high-speed cuttingInt J Mach Tools Manuf200040133152 DavimJPMaranhaoCFariaPAbraoARubioJCSilvaLRPrecision radial turning of AISI D2 steelInt J Adv Manuf Technol200942842849 GuoYBLiuCR3D FEA modeling of hard turningJ Manuf Sci Eng2002124189199 FieldMKahlesJFThe surface integrity of machined and ground high strength steelsDMIC Rep1964201054 LiuRSalahshoorMMelkoteSNMarusichTA unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC copperJ Mater Process Technol2015216328338 SchulzeVAutenriethHDeuchertMWeuleHInvestigation of surface near residual stress states after micro-cutting by finite element simulationCIRP Ann Manuf Technol201059117120 EeKCDillon JrOWJawahirISFinite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radiusInt J Mech Sci200547161116281192.74356 KlockeFRizzutiSFrankPGerschwilerKLungDSettineriLExperimental and numerical investigation on the delamination behaviour of PVD-coated tools in turning of austenitic steelInt J Mater Form20103435438 JomaaWSongmeneVBocherPAn hybrid approach based on machining and dynamic tests data for the identification of material constitutive equationsJ Mater Eng Perform20162510101027 CalamazMCoupardDNouariMGirotFNumerical analysis of chip formation and shear localization processes in machining the Ti-6Al-4V titanium alloyInt J Adv Manuf Technol201152887895 ShiJLiuCRThe influence of material models on finite element simulation of machiningJ Manuf Sci Eng2005126849857 XieL-JSchmidtJSchmidtCBiesingerF2D FEM estimate of tool wear in turning operationWear200525814791490 SartkulvanichJKoppkaFAltanTDetermination of flow stress for metal cutting simulation—a progress reportJ Mater Process Technol20041466171 SunSBrandtMDarguschMCharacteristics of cutting forces and chip formation in machining of titanium alloysInt J Mach Tools Manuf200949561568 IssaMLabergereCSaanouniKRassineuxANumerical prediction of thermomechanical field localization in orthogonal cuttingJ Manuf Sci Technol20125175195 Changeux B, Touratier M, Lebrun JL, Thomas T, Clisson J (2001) High-speed shear tests for the identification of the Johnson-Cook law. In: Fourth International ESAFORM Conference, Liege, Belgium, April 23–25 TangLHuangJXieLFinite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting toolInt J Adv Manuf Technol20115311671181 IwataKUedaKOkudaKStudy of mechanism of burrs formation in cutting based on direct SEM observationJ Jpn Soc Prec Eng198248510515 ArrazolaPJOzelTInvestigations on the effects of friction modeling in finite element simulation of machiningInt J Mech Sci2010523142 OxleyPHastingsWPredicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditionsProc R Soc Lond A Math Phys Eng Sci1977356395410 HaddagBAtlatiSNouariMZenasniMAnalysis of the heat transfer at the tool-workpiece interface in machining: determination of heat generation and heat transfer coefficientsHeat Mass Transf20155113551370 JafarianFImaz CiaranMUmbrelloDArrazolaPJFiliceLAmirabadiHFinite element simulation of machining Inconel 718 alloy including microstructure changesInt J Mech Sci201488110121 OzelTThe influence of friction models on finite element simulations of machiningInt J Mach Tools Manuf200646518530 YenY-CJainAChigurupatiPWuW-TAltanTComputer simulation of orthogonal cutting using a tool with multiple coatingsMach Sci Technol20048305326 FangNWuQA comparative study of the cutting forces in high speed machini M Issa (1759_CR100) 2012; 5 YC Yen (1759_CR46) 2004; 146 Y Long (1759_CR60) 2012; 16 F Ducobu (1759_CR70) 2015; 53 F Ducobu (1759_CR69) 2014; 81 FJ Zerilli (1759_CR77) 1987; 61 DJ Bammann (1759_CR138) 1990; 43 L Filice (1759_CR19) 2007; 47 J Lorentzon (1759_CR25) 2009; 209 B Haddag (1759_CR73) 2015; 51 M Daoud (1759_CR14) 2015; 77 F Klocke (1759_CR101) 2001; 5 F Jiang (1759_CR8) 2010; 48 F Kara (1759_CR153) 2016; 38 T Ozel (1759_CR2) 2000; 40 1759_CR156 K Iwata (1759_CR123) 1982; 48 W Jomaa (1759_CR113) 2016; 25 W Grzesik (1759_CR119) 2004; 44 A Ramesh (1759_CR20) 2008; 48 JP Davim (1759_CR7) 2009; 42 YB Guo (1759_CR85) 2002; 6 1759_CR32 R Kountanya (1759_CR6) 2009; 209 M Calamaz (1759_CR58) 2010; 14 T Ozel (1759_CR66) 2006; 46 P Oxley (1759_CR79) 1977; 356 V Schulze (1759_CR128) 2010; 59 D Umbrello (1759_CR42) 2004; 374 M Daoud (1759_CR91) 2015; 81 Y Xi (1759_CR99) 2013; 135 P Majumdar (1759_CR115) 2005; 25 E Bagci (1759_CR31) 2006; 28 NB Moussa (1759_CR11) 2012; 64 H Chandrasekaran (1759_CR140) 2005; 9 F Klocke (1759_CR61) 2013; 28 M Baker (1759_CR104) 2006; 176 JC Outeiro (1759_CR129) 2015; 19 PJ Arrazola (1759_CR9) 2010; 52 K Maekawa (1759_CR78) 1983; 17 DW Tang (1759_CR29) 2009; 40 M Sadeghifar (1759_CR155) 2018; 94 Y Huang (1759_CR150) 2003; 43 Y-C Yen (1759_CR112) 2004; 8 M Calamaz (1759_CR54) 2008; 48 C Hortig (1759_CR52) 2007; 186 F Jiang (1759_CR12) 2013; 64 T MacGinley (1759_CR44) 2001; 118 MR Vaziri (1759_CR92) 2011; 19 G Shi (1759_CR45) 2002; 38 M Salio (1759_CR49) 2006; 48 V Schulze (1759_CR147) 2000; 31 NA Abukhshim (1759_CR106) 2004; 218 F Klocke (1759_CR109) 2010; 3 D Umbrello (1759_CR98) 2007; 47 YB Guo (1759_CR3) 2006; 128 UM Reddy Paturi (1759_CR62) 2014; 605 C Bonnet (1759_CR68) 2008; 1 THC Childs (1759_CR145) 1989; 38 J Hua (1759_CR43) 2005; 394 1759_CR97 S Ranganath (1759_CR23) 2009; 58 P Pres (1759_CR64) 2014; 14 1759_CR96 G Fang (1759_CR75) 2005; 168 T Marusich (1759_CR80) 1995; 38 1759_CR105 I Al-Zkeri (1759_CR24) 2009; 13 YB Guo (1759_CR84) 2002; 124 E Doege (1759_CR102) 1986 TI El-Wardany (1759_CR110) 2000; 122 J Hua (1759_CR154) 2006; 171 RT Coelho (1759_CR71) 2007; 47 T Mabrouki (1759_CR21) 2008; 48 H Bil (1759_CR18) 2004; 44 J Sartkulvanich (1759_CR146) 2004; 146 IW Park (1759_CR125) 2000; 122 1759_CR1 L Gillespie (1759_CR121) 1996; 116 JC Outeiro (1759_CR4) 2006; 46 A Muñoz-Sanchez (1759_CR27) 2011; 19 S Atlati (1759_CR13) 2014; 87 C Maranhao (1759_CR108) 2010; 18 1759_CR65 D Umbrello (1759_CR5) 2008; 196 1759_CR116 1759_CR114 M Sima (1759_CR57) 2010; 50 SH Rhim (1759_CR40) 2006; 171 PL Menezes (1759_CR63) 2014; 73 W Grzesik (1759_CR93) 2005; 164-165 F Akbar (1759_CR16) 2010; 46 ZT Tang (1759_CR28) 2009; 209 N Tounsi (1759_CR143) 2002; 42 K Liu (1759_CR51) 2007; 49 L Tang (1759_CR117) 2011; 53 S Eck (1759_CR33) 2015; 19 K Khalili (1759_CR55) 2009; 2 1759_CR72 G Ljustina (1759_CR135) 2014; 80 WJ Deng (1759_CR56) 2009; 43 B Wang (1759_CR30) 2014; 75 1759_CR76 1759_CR127 M Field (1759_CR126) 1964; 2010 H Ding (1759_CR134) 2012; 134 CR Liu (1759_CR37) 2000; 42 LK Gillespie (1759_CR122) 1976; 98 Y-C Yen (1759_CR120) 2002; 6 I Ucun (1759_CR10) 2011; 54 YB Guo (1759_CR47) 2004; 155-156 M Barge (1759_CR48) 2005; 164-165 N Fang (1759_CR90) 2009; 209 MNA Nasr (1759_CR94) 2007; 47 P Sartkulvanich (1759_CR50) 2007; 9 S Subbiah (1759_CR22) 2008; 474 AJ Haglund (1759_CR107) 2008; 265 KS Woon (1759_CR53) 2008; 195 1759_CR81 J Shi (1759_CR89) 2005; 126 L-J Xie (1759_CR41) 2005; 258 SH Rhim (1759_CR148) 2002 R Liu (1759_CR137) 2015; 216 1759_CR139 J Rech (1759_CR118) 2004; 186 J Lemaitre (1759_CR152) 1984; 80 K Nakayama (1759_CR124) 1987; 36 M Movahhedy (1759_CR87) 2000; 103 AP Markopoulos (1759_CR34) 2013 IW Park (1759_CR36) 2000; 122 JS Strenkowski (1759_CR86) 1985; 107 1759_CR130 1759_CR131 M Field (1759_CR132) 1972; 20 HY Wu (1759_CR39) 2005; 167 C Shet (1759_CR35) 2000; 105 JO Hallquist (1759_CR151) 2006 1759_CR149 AG Mamalis (1759_CR38) 2001; 110 M Mohammadpour (1759_CR26) 2010; 18 H Chandrasekeran (1759_CR144) 1965; 87B MR Movahhedy (1759_CR74) 2000; 4 MNA Nasr (1759_CR15) 2015; 31 F Jafarian (1759_CR136) 2014; 88 A Raczy (1759_CR17) 2004; 35A P Lorong (1759_CR82) 2006; 13 H Ding (1759_CR133) 2011; 50 KC Ee (1759_CR83) 2005; 47 MNA Nasr (1759_CR67) 2008; 44 MNA Nasr (1759_CR95) 2007; 129 L Qian (1759_CR111) 2007; 191 S Sun (1759_CR103) 2009; 49 M Calamaz (1759_CR59) 2011; 52 T Ozel (1759_CR88) 2007; 35 1759_CR141 1759_CR142 |
References_xml | – reference: SchulzeVVohringerOInfluence of alloying elements on the strain rate and temperature dependence of the flow stress of steelsMetall Mater Trans A200031825830 – reference: BammannDJModeling temperature and strain rate dependent large deformation of metalsAppl Mech Rev199043312319 – reference: GrzesikWNieslonyPPhysics based modeling of interface temperatures in machining with multilayer coated tools at moderate cutting speedsInt J Mach Tools Manuf200444889901 – reference: UmbrelloDHuaJShivpuriRHardness-based flow stress and fracture models for numerical simulation of hard machining of AISI 52100 bearing steelMater Sci Eng A200437490100 – reference: Nordgren A, Zargari Samani B, M’Saoubi R (2014) Experimental study and modeling of plastic deformation of cemented carbide tools in turning. In: 6th CIRP International Conference on High Performance Cutting (HPC2014), Procedia CIRP 14:599–604 – reference: DucobuFRivière-LorphèvreEFilippiEOn the introduction of adaptive mass scaling in a finite element model of Ti6Al4V orthogonal cuttingSimul Model Pract Theory201553114 – reference: GrzesikWBartoszukMNieslonyPFinite element modeling of temperature distribution in the cutting zone in turning processes with differently coated toolsJ Mater Process Technol2005164-16512041211 – reference: XiYBerminghamMWangGDarguschMFinite element modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloyJ Manuf Sci Eng20131350610140610119 – reference: Matsumura T, Tamura S (2015) Cutting simulation of titanium alloy drilling with energy analysis and FEM. In: 15th CIRP Conference on Modeling of Machining Operations, Procedia CIRP 31:252–557 – reference: JiangFYanLRongYOrthogonal cutting of hardened AISI D2 steel with TiAlN-coated inserts—simulations and experimentsInt J Adv Manuf Technol20136415551563 – reference: DaoudMJomaaWChatelainJFBouzidAA machining-based methodology to identify material constitutive law for finite element simulationInt J Adv Manuf Technol20157720192033 – reference: AbukhshimNAMativengaPTSheikhMAAn investigation of the tool-chip contact length and wear in high-speed turning of EN19 steelProc Inst Mech Eng B J Eng Manuf2004218889903 – reference: CalamazMCoupardDGirotFNumerical simulation of titanium alloy dry machining with a strain softening constitutive lawMach Sci Technol201014244257 – reference: OuteiroJCUmbrelloDM’SaoubiRJawahirISEvaluation of present numerical models for predicting metal cutting performance and residual stressesMach Sci Technol201519183216 – reference: Sadeghifar M, Sedaghati R, Songmene V (2016) FE modeling and optimization of cutting temperature in orthogonal turning. In: 24th International Congress of Theoretical and Applied Mechanics (ICTAM), Montreal, Canada, August 21–26 – reference: BakerMFinite element simulation of high-speed cutting forcesJ Mater Process Technol2006176117126 – reference: LjustinaGLarssonRFagerströmMA FE based machining simulation methodology accounting for cast iron microstructureFinite Elem Anal Des201480110 – reference: DavimJPMaranhaoCFariaPAbraoARubioJCSilvaLRPrecision radial turning of AISI D2 steelInt J Adv Manuf Technol200942842849 – reference: NasrMNAEffects of sequential cuts on residual stresses when orthogonal cutting steel AISI 1045, in: 15th CIRP Conference on Modeling of Machining OperationsProcedia CIRP201531118123 – reference: FieldMKahlesJFThe surface integrity of machined and ground high strength steelsDMIC Rep1964201054 – reference: FieldMKahlesJFReview of surface integrity of machined componentsCIRP Ann197220153162 – reference: JafarianFImaz CiaranMUmbrelloDArrazolaPJFiliceLAmirabadiHFinite element simulation of machining Inconel 718 alloy including microstructure changesInt J Mech Sci201488110121 – reference: ZerilliFJArmstrongRWDislocation-mechanics-based constitutive relations for material dynamics calculationsJ Appl Phys19876118161825 – reference: RanganathSGuoCHegdePA finite element modeling approach to predicting white layer formation in nickel superalloysCIRP Ann Manuf Technol2009587780 – reference: ParkIWDornfeldAA study of burr formation processes using the finite element method: part II—the influences of exit angle, rake angle, and backup material on burr formation processesJ Eng Mater Technol2000122229237 – reference: SartkulvanichPAltanTGocmenAEffects of flow stress and friction models in finite element simulation of orthogonal cutting—a sensitivity analysisMach Sci Technol20079126 – reference: RameshAMelkoteSNModeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steelInt J Mach Tools Manuf200848402414 – reference: UcunIAslantasKNumerical simulation of orthogonal machining process using multilayer and single-layer coated toolsInt J Adv Manuf Technol201154899910 – reference: RechJKusiakABattagliaJLTribological and thermal functions of cutting tool coatingsSurf Coat Tech2004186364371 – reference: YenY-CJainAChigurupatiPWuW-TAltanTComputer simulation of orthogonal cutting using a tool with multiple coatingsMach Sci Technol20048305326 – reference: Nasr MNA (2007) On modeling of machining-induced residual stresses, McMaster University, Canada, PhD Dissertation – reference: RhimSHOhSIPrediction of serrated chip formation in metal cutting process with new flow stress model for AISI 1045 steelJ Mater Process Technol2006171417422 – reference: WoonKSRahmanMFangFZNeoKSLiuKInvestigations of tool edge radius effect in micromachining: a FEM simulation approachJ Mater Process Technol2008195204211 – reference: M’Saoubi R (1998) Aspects Thermiques et Microstructuraux de la coupe. Application a` la coupe orthogonale des aciers auste´ nitiques, Ecole nationale supérieure d'arts et métiers, France, PhD Dissertation – reference: SadeghifarMSedaghatiRJomaaWSongmeneVFinite element analysis and response surface method for robust multi-performance optimization of radial turning of hard 300M steelInt J Adv Manuf Technol20189424572474 – reference: ShiJLiuCRThe influence of material models on finite element simulation of machiningJ Manuf Sci Eng2005126849857 – reference: HuaJUmbrelloDShivpuriRInvestigation of cutting conditions and cutting edge preparations for enhanced compressive subsurface residual stress in the hard turning of bearing steelJ Mater Process Technol2006171180187 – reference: HallquistJOLS-DYNA theory manual2006USALivermore Software Technology Corporation – reference: AtlatiSHaddagBNouariMZenasniMThermomechanical modeling of the tool-work material interface in machining and its implementation using the ABAQUS VUINTER subroutineInt J Mech Sci201487102117 – reference: HaddagBAtlatiSNouariMZenasniMAnalysis of the heat transfer at the tool-workpiece interface in machining: determination of heat generation and heat transfer coefficientsHeat Mass Transf20155113551370 – reference: SubbiahSMelkoteSNEffect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3Mater Sci Eng A2008474283300 – reference: KlockeFRizzutiSFrankPGerschwilerKLungDSettineriLExperimental and numerical investigation on the delamination behaviour of PVD-coated tools in turning of austenitic steelInt J Mater Form20103435438 – reference: El-WardanyTIKishawyHAElbestawiMASurface integrity of die material in high speed hard machining, part 2: microhardness variations and residual stressesJ Manuf Sci Eng2000122632641 – reference: ShiGDengXShetCA finite element study of the effect of friction in orthogonal metal cuttingFinite Elem Anal Des2002388638831100.74644 – reference: OzelTAltanTDetermination of workpiece flow stress and friction at the chip-tool contact for high-speed cuttingInt J Mach Tools Manuf200040133152 – reference: LiuKMelkoteSNFinite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting processInt J Mech Sci200749650660 – reference: Outeiro JC, Ee KC, Dillon Jr OW, Wanigarathne PC, Jawahir IS (2006) Some observations on comparing the modelled and measured residual stresses on the machined surface induced by orthogonal cutting of AISI 316L steel. In: 9th CIRP International Workshop on Modeling of Machining Operations, Bled, Slovenia, may 11–12 – reference: LemaitreJHow to use damage mechanicsNucl Eng Des198480233245 – reference: EeKCDillon JrOWJawahirISFinite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radiusInt J Mech Sci200547161116281192.74356 – reference: MarusichTOrtizMModeling and simulation of high-speed machiningInt J Numer Methods Eng199538367536940835.73077 – reference: GuoYBLiuCR3D FEA modeling of hard turningJ Manuf Sci Eng2002124189199 – reference: KaraFAslantasKCicekAPrediction of cutting temperature in orthogonal machining of AISI316L using artificial neural networkAppl Soft Comput2016386474 – reference: XieL-JSchmidtJSchmidtCBiesingerF2D FEM estimate of tool wear in turning operationWear200525814791490 – reference: SalioMBerrutiTDe PoliGPrediction of residual stress distribution after turning in turbine disksInt J Mech Sci200648976984 – reference: HaglundAJKishawyHARogersRJAn exploration of friction models for the chip-tool interface using an Arbitrary Lagrangian-Eulerian finite element modelWear2008265452460 – reference: TangZTLiuZQPanYZWanYAiXThe influence of tool flank wear on residual stresses induced by milling aluminum alloyJ Mater Process Technol200920945024508 – reference: Ozel T, Zeren E (2005) Finite element modeling of stresses induced by high speed machining with round edge cutting tools. In: Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition IMECE2005, Orlando, FL, USA, November 5-11 – reference: CalamazMCoupardDNouariMGirotFNumerical analysis of chip formation and shear localization processes in machining the Ti-6Al-4V titanium alloyInt J Adv Manuf Technol201152887895 – reference: Muñoz-SanchezACanteliJACanteroJLMiguélezMHNumerical analysis of the tool wear effect in the machining induced residual stressesSimul Model Pract Theory201119872886 – reference: LorongPYvonnetJCoffignalGCohenSContribution of computational mechanics in numerical simulation of machining and blanking: state-of-the-artArch Comput Meth Eng20061345901099.74073 – reference: TangLHuangJXieLFinite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting toolInt J Adv Manuf Technol20115311671181 – reference: BargeMHamdiHRechJBergheauJ-MNumerical modeling of orthogonal cutting: influence of numerical parametersJ Mater Process Technol2005164-16511481153 – reference: BonnetCValiorgueFRechJHamdiHImprovement of the numerical modeling in orthogonal dry cutting of an AISI316L stainless steel by the introduction of a new friction modelJ Mater Process Technol20081114118 – reference: Filice L, Umbrello D, Micari F, Settineri L (2005) On the finite element simulation of thermal phenomena in machining processes. In: Proceedings of the Eighth ESAFORM Conference, 729–732 – reference: Ceretti E, Attanasio A, Giardini C, Filice L, Rizzuti S, Umbrello D (2008) Evaluation of accuracy in 2D and 3D simulation of orthogonal cutting processes. In: Proceedings of 11th CIRP Conference on modeling of machining operations – reference: GillespieLThe battle of the burr: new strategies and new tricksManuf Eng19961166970 – reference: TangDWWangCYHuYNSongYXFinite-element simulation of conventional and high-speed peripheral milling of hardened mold steelMetall Mater Trans A20094032453257 – reference: MarkopoulosAPFinite element method in machining processes20131New YorkSpringer – reference: MovahhedyMRGadalaMSAltintasYSimulation of chip formation in orthogonal metal cutting process: an ALE finite element approachMach Sci Technol200041542 – reference: ChandrasekeranHKapoorDVPhotoelastic analysis of tool-chip interface stressJ Eng Ind196587B495502 – reference: ChandrasekaranHM’SaoubiRChazalHModeling of material flow stress in chip formation process from orthogonal milling and split Hopkinson bar testsMach Sci Technol20059131145 – reference: MohammadpourMRazfarMRJalili SaffarRNumerical investigating the effect of machining parameters on residual stresses in orthogonal cuttingSimul Model Pract Theory201018378389 – reference: UmbrelloDM’SaoubiROuteiroJCThe influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steelInt J Mach Tools Manuf200747462470 – reference: TounsiNVincentiJOthoAElbestawiMAFrom the basics of orthogonal metal cutting toward the identification of the constitutive equationInt J Mach Tools Manuf20024213731383 – reference: Sadeghifar M (2017) Development of the analysis and optimization strategies for prediction of residual stresses induced by turning processes, Concordia University, Canada, PhD Dissertation – reference: KlockeFLungDBuchkremerSJawahirISFrom orthogonal cutting experiments towards easy-to-implement and accurate flow stress dataMater Manuf Process20132812221227 – reference: DucobuFRivière-LorphèvreEFilippiENumerical contribution to the comprehension of saw-toothed Ti6Al4V chip formation in orthogonal cuttingInt J Mech Sci2014817787 – reference: SimaMOzelTModified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4VInt J Mach Tools Manuf201050943960 – reference: MabroukiTGirardinFAsadMRigalJFNumerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351)Int J Mach Tools Manuf20084811871197 – reference: EckSGanserHPMarsonerSEckerWError analysis for finite element simulation of orthogonal cutting and its validation via quick stop experimentsMach Sci Technol201519460478 – reference: FangNWuQA comparative study of the cutting forces in high speed machining of Ti-6Al-4V and Inconel 718 with a round cutting edge toolJ Mater Process Technol200920943854389 – reference: MenezesPLAvdeevIVLovellMRHiggsCFIIIAn explicit finite element model to study the influence of rake angle and friction during orthogonal metal cuttingInt J Adv Manuf Technol201473875885 – reference: SunSBrandtMDarguschMCharacteristics of cutting forces and chip formation in machining of titanium alloysInt J Mach Tools Manuf200949561568 – reference: DingHShinYCA metallo-thermomechanically coupled analysis of orthogonal cutting of AISI 1045 steelJ Manuf Sci Eng201213405101405101112 – reference: IwataKUedaKOkudaKStudy of mechanism of burrs formation in cutting based on direct SEM observationJ Jpn Soc Prec Eng198248510515 – reference: LiuCRGuoYBFinite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layerInt J Mech Sci200042106910861065.74613 – reference: OzelTZerenEFinite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machiningInt J Adv Manuf Technol200735255267 – reference: LiuRSalahshoorMMelkoteSNMarusichTA unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC copperJ Mater Process Technol2015216328338 – reference: UmbrelloDFinite element simulation of conventional and high speed machining of Ti6Al4V alloyJ Mater Process Technol20081967987 – reference: NasrMNANgE-GElbestawiMAEffects of strain hardening and initial yield strength on machining-induced residual stressesASME J Eng Mater Technol2007129567579 – reference: Reddy PaturiUMReddy NaralaSKSingh PundirRConstitutive flow stress formulation, model validation and FE cutting simulation for AA7075-T6 aluminum alloyMater Sci Eng A2014605176185 – reference: Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, Vol 21, pp 541–547 – reference: RaczyAElmadagliMAltenhofWJAlpasATAn Eulerian finite-element model for determination of deformation state of a copper subjected to orthogonal cuttingMetall Mater Trans A200435A23932400 – reference: Bammann DJ, Chiesa ML, Johnson GC (1996) Modeling large deformation and failure in manufacturing process. In: 19th International Congress on Theoretical and Applied Mechanics (ICTAM), Kyoto, Japan. – reference: CoelhoRTNgEGElbestawiMATool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditionsInt J Mach Tools Manuf200747263272 – reference: StrenkowskiJSCarrollJTA finite element model of orthogonal metal cuttingJ Eng Ind1985107349354 – reference: Jomaa W (2015) Contributions to understanding the high speed machining effects on aeronautic part surface integrity, École de technologie supérieure, Canada, PhD Dissertation – reference: MamalisAGHorvathMBranisASManolakosDEFinite element simulation of chip formation in orthogonal metal cuttingJ Mater Process Technol20011101927 – reference: MovahhedyMGadalaMSAltintasYSimulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element methodJ Mater Process Technol2000103267275 – reference: Marusich TD, Usui S, McDaniel RJ (2003) Three-dimensional finite element prediction of machining-induced stresses, In: Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition IMECE2003, Washington, DC, USA, November 15-21 – reference: NasrMNANgE-GElbestawiMAModeling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316LInt J Mach Tools Manuf200747401411 – reference: RhimSHOhSISimulation of serrated chip formation in metal cutting process by using a new flow stress model2002ParisCIRP January Meeting – reference: ArrazolaPJOzelTInvestigations on the effects of friction modeling in finite element simulation of machiningInt J Mech Sci2010523142 – reference: AkbarFMatiengaPTSheikhMAAn experimental and coupled thermo-mechanical finite element study of heat partition effects in machiningInt J Adv Manuf Technol201046491507 – reference: Changeux B, Touratier M, Lebrun JL, Thomas T, Clisson J (2001) High-speed shear tests for the identification of the Johnson-Cook law. In: Fourth International ESAFORM Conference, Liege, Belgium, April 23–25, – reference: Jomaa W, Daoud M, Songmene V, Bocher P, Châtelain JF(2014) Identification and validation of Marusich’s constitutive law for finite element modeling of high speed, In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition IMECE2014, Montreal, QC, Canada, November 14-20 – reference: OxleyPHastingsWPredicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditionsProc R Soc Lond A Math Phys Eng Sci1977356395410 – reference: SchulzeVAutenriethHDeuchertMWeuleHInvestigation of surface near residual stress states after micro-cutting by finite element simulationCIRP Ann Manuf Technol201059117120 – reference: Rhim SH, Oh SI (2003) Prediction of serrated chip formation in metal cutting process. In: US-Korea Workshop on Advance in Metallic Structural Materials, Hawaii – reference: GuoYBLiuCRFEM analysis of mechanical state on sequentially machined surfacesMach Sci Technol200262141 – reference: KountanyaRAl-ZkeriIAltanTEffect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of 100Cr6 steelJ Mater Process Technol200920950685076 – reference: MacGinleyTMonaghanJModeling the orthogonal machining process using coated cemented carbide cutting toolsJ Mater Process Technol2001118293300 – reference: DaoudMChatelainJFBouzidAEffect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulationInt J Adv Manuf Technol20158119871997 – reference: LongYGuoCFinite element modeling of burr formation in orthogonal cuttingMach Sci Technol201216321336 – reference: WuHYLeeWBCheungCFS. ToChenYPComputer simulation of single-point diamond turning using finite element methodJ Mater Process Technol2005167549554 – reference: DoegeEMeyer-NnolkemperHSaeedIFließkurvenatlas metallischer Werkstoffe1986MunichHanser-Verlag – reference: JiangFLiJSunJZhangSWangZYanLAl7050-T7451 turning simulation based on the modified power-law material modelInt J Adv Manuf Technol201048871880 – reference: NakayamaKAraiMBurr formation in metal cuttingCIRP Ann Manuf Technol1987363336 – reference: Stenberg N, Proudian J (2013) Numerical modeling of turning to find residual stresses. In: 14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO), Procedia CIRP 8:258–264 – reference: BilHKılıcSETekkayaAEA comparison of orthogonal cutting data from experiments with three different finite element modelsInt J Mach Tools Manuf200444933944 – reference: ShetCDengXFinite element analysis of the orthogonal metal cutting processJ Mater Process Technol200010595109 – reference: NasrMNANgE-GElbestawiMAA modified time-efficient FE approach for predicting machining-induced residual stressesFinite Elem Anal Des200844149161 – reference: MoussaNBSidhomHBrahamCNumerical and experimental analysis of residual stress and plastic strain distributions in machined stainless steelInt J Mech Sci2012648293 – reference: KlockeFRaedtH-WHoppeS2D-FEM simulation of the orthogonal high speed cutting processMach Sci Technol20015323340 – reference: HuaJShivpuriRChengXBedekarVMatsumotoYHashimotoFWatkinsTREffect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer+hone cutting edge geometryMater Sci Eng A2005394238248 – reference: KhaliliKSafaeiMFEM analysis of edge preparation for chamfered toolsInt J Mater Form20092217224 – reference: ChildsTHCMahdiMIOn the stress distribution between the chip and tool during metal turningCIRP Ann Manuf Technol1989385558 – reference: IssaMLabergereCSaanouniKRassineuxANumerical prediction of thermomechanical field localization in orthogonal cuttingJ Manuf Sci Technol20125175195 – reference: ParkIWDornfeldAA study of burr formation processes using the finite element method: part IJ Eng Mater Technol2000122221228 – reference: YenYCJainAAltanTA finite element analysis of orthogonal machining using different tool edge geometriesJ Mater Process Technol20041467281 – reference: DingHShenNShinYCModeling of grain refinement in aluminum and copper subjected to cuttingComput Mater Sci20115030163025 – reference: FangGZengPThree-dimensional thermos-elastic-plastic coupled FEM simulations for metal oblique cutting processesJ Mater Process Technol20051684248 – reference: FiliceLMicariFRizzutiSUmbrelloDA critical analysis on the friction modeling in orthogonal machiningInt J Mach Tools Manuf200747709714 – reference: MajumdarPJayaramachandranRGanesanSFinite element analysis of temperature rise in metal cutting processesAppl Therm Eng20052521522168 – reference: GillespieLKBlotterPTThe formation and properties of machining burrsJ Eng Ind1976986674 – reference: Pu Z, Umbrello D, Dillon Jr OW, Jawahir IS ((2014)) Finite element simulation of residual stresses in cryogenic machining of AZ31B Mg alloy. In: 2nd CIRP Conference on Surface Integrity (CSI), Procedia CIRP 13:282–287 – reference: WangBLiuZInvestigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4VInt J Adv Manuf Technol20147510651076 – reference: YenY-CSöhnerJWeuleHSchmidtJAltanTEstimation of tool wear of carbide tool in orthogonal cutting using FEM simulationMach Sci Technol20026467486 – reference: PresPSkoczyńskiWJaśkiewiczKResearch and modeling workpiece edge formation process during orthogonal cuttingArch Civil Mech Eng201414622635 – reference: MaranhaoCPaulo DavimJFinite element modeling of machining of AISI 316 steel: numerical simulation and experimental validationSimul Model Pract Theory201018139156 – reference: QianLHossanMREffect on cutting force in turning hardened tool steels with cubic boron nitride insertsJ Mater Process Technol2007191274278 – reference: VaziriMRSalimiMMashayekhiMEvaluation of chip formation simulation models for material separation in the presence of damage modelsSimul Model Pract Theory201119718733 – reference: LorentzonJJärvstratNJosefsonBLModeling chip formation of alloy 718J Mater Process Technol200920946454653 – reference: BagciEOzcelikBFinite element and experimental investigation of temperature changes on a twist drill in sequential dry drillingInt J Adv Manuf Technol200628680687 – reference: GuoYBYenDWA FEM study on mechanisms of discontinuous chip formation in hard machiningJ Mater Process Technol2004155-15613501356 – reference: DengWJXiaWTangYFinite element simulation for burr formation near the exit of orthogonal cuttingInt J Adv Manuf Technol20094310351045 – reference: Al-ZkeriIRechJAltanTHamdiHValiorgueFOptimization of the cutting edge geometry of coated carbide tools in dry turning of steels using a finite element analysisMach Sci Technol2009133651 – reference: GuoYBWenQWoodburyKADynamic material behavior modeling using internal state variable plasticity and its application in hard machining simulationsJ Manuf Sci Eng2006128749759 – reference: OuteiroJCUmbrelloDM’SaoubiRExperimental and numerical modeling of the residual stresses induced in orthogonal cutting of AISI 316L steelInt J Mach Tools Manuf20064617861794 – reference: JomaaWSongmeneVBocherPAn hybrid approach based on machining and dynamic tests data for the identification of material constitutive equationsJ Mater Eng Perform20162510101027 – reference: HuangYLiangSYCutting forces modeling considering the effect of tool thermal property-application to CBN hard turningInt J Mach Tools Manuf200343307315 – reference: MaekawaKShirakashiTUsuiEFlow stress of low carbon steel at high temperature and strain rate (part 2)—flow stress under variable temperature and variable strain rateB Jpn Soc Prec Eng198317167172 – reference: SartkulvanichJKoppkaFAltanTDetermination of flow stress for metal cutting simulation—a progress reportJ Mater Process Technol20041466171 – reference: OzelTThe influence of friction models on finite element simulations of machiningInt J Mach Tools Manuf200646518530 – reference: HortigCSvendsenBSimulation of chip formation during high-speed cuttingJ Mater Process Technol20071866676 – reference: CalamazMCoupardDGirotFA new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4VInt J Mach Tools Manuf200848275288 – volume: 64 start-page: 1555 year: 2013 ident: 1759_CR12 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4122-3 – volume: 48 start-page: 275 year: 2008 ident: 1759_CR54 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2007.10.014 – volume: 14 start-page: 244 year: 2010 ident: 1759_CR58 publication-title: Mach Sci Technol doi: 10.1080/10910344.2010.500957 – volume: 81 start-page: 1987 year: 2015 ident: 1759_CR91 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7179-y – volume: 38 start-page: 55 year: 1989 ident: 1759_CR145 publication-title: CIRP Ann Manuf Technol doi: 10.1016/S0007-8506(07)62651-1 – volume: 44 start-page: 889 year: 2004 ident: 1759_CR119 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2004.02.014 – ident: 1759_CR130 – volume: 35 start-page: 255 year: 2007 ident: 1759_CR88 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-006-0720-2 – volume: 94 start-page: 2457 year: 2018 ident: 1759_CR155 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-017-1032-4 – volume: 43 start-page: 1035 year: 2009 ident: 1759_CR56 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-008-1784-y – volume: 47 start-page: 1611 year: 2005 ident: 1759_CR83 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2005.06.001 – volume: 209 start-page: 4645 year: 2009 ident: 1759_CR25 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.11.029 – volume: 28 start-page: 680 year: 2006 ident: 1759_CR31 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-004-2417-8 – volume: 2 start-page: 217 year: 2009 ident: 1759_CR55 publication-title: Int J Mater Form doi: 10.1007/s12289-009-0405-0 – volume: 80 start-page: 233 year: 1984 ident: 1759_CR152 publication-title: Nucl Eng Des doi: 10.1016/0029-5493(84)90169-9 – volume: 6 start-page: 21 year: 2002 ident: 1759_CR85 publication-title: Mach Sci Technol doi: 10.1081/MST-120003183 – volume: 48 start-page: 1187 year: 2008 ident: 1759_CR21 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2008.03.013 – volume: 116 start-page: 69 year: 1996 ident: 1759_CR121 publication-title: Manuf Eng – ident: 1759_CR156 – ident: 1759_CR97 doi: 10.1115/IMECE2005-81046 – volume: 58 start-page: 77 year: 2009 ident: 1759_CR23 publication-title: CIRP Ann Manuf Technol doi: 10.1016/j.cirp.2009.03.109 – volume: 28 start-page: 1222 year: 2013 ident: 1759_CR61 publication-title: Mater Manuf Process doi: 10.1080/10426914.2013.811738 – ident: 1759_CR96 – ident: 1759_CR127 – volume: 36 start-page: 33 year: 1987 ident: 1759_CR124 publication-title: CIRP Ann Manuf Technol doi: 10.1016/S0007-8506(07)62547-5 – volume: 38 start-page: 3675 year: 1995 ident: 1759_CR80 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620382108 – volume: 19 start-page: 460 year: 2015 ident: 1759_CR33 publication-title: Mach Sci Technol doi: 10.1080/10910344.2015.1051541 – volume: 196 start-page: 79 year: 2008 ident: 1759_CR5 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.05.007 – volume: 13 start-page: 45 year: 2006 ident: 1759_CR82 publication-title: Arch Comput Meth Eng doi: 10.1007/BF02905931 – ident: 1759_CR141 – volume: 42 start-page: 1069 year: 2000 ident: 1759_CR37 publication-title: Int J Mech Sci doi: 10.1016/S0020-7403(99)00042-9 – volume: 48 start-page: 976 year: 2006 ident: 1759_CR49 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2006.03.009 – volume: 186 start-page: 66 year: 2007 ident: 1759_CR52 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2006.12.018 – volume: 209 start-page: 5068 year: 2009 ident: 1759_CR6 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2009.02.011 – volume: 146 start-page: 61 year: 2004 ident: 1759_CR146 publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00845-8 – volume: 98 start-page: 66 year: 1976 ident: 1759_CR122 publication-title: J Eng Ind doi: 10.1115/1.3438875 – volume: 50 start-page: 943 year: 2010 ident: 1759_CR57 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2010.08.004 – volume: 191 start-page: 274 year: 2007 ident: 1759_CR111 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.03.022 – volume: 265 start-page: 452 year: 2008 ident: 1759_CR107 publication-title: Wear doi: 10.1016/j.wear.2007.11.025 – volume: 40 start-page: 3245 year: 2009 ident: 1759_CR29 publication-title: Metall Mater Trans A doi: 10.1007/s11661-009-9983-1 – volume: 146 start-page: 72 year: 2004 ident: 1759_CR46 publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00846-X – ident: 1759_CR72 doi: 10.1115/IMECE2003-42329 – volume: 103 start-page: 267 year: 2000 ident: 1759_CR87 publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(00)00480-5 – volume: 38 start-page: 64 year: 2016 ident: 1759_CR153 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.09.034 – volume: 25 start-page: 1010 year: 2016 ident: 1759_CR113 publication-title: J Mater Eng Perform doi: 10.1007/s11665-016-1950-6 – volume: 209 start-page: 4502 year: 2009 ident: 1759_CR28 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.10.034 – volume: 129 start-page: 567 year: 2007 ident: 1759_CR95 publication-title: ASME J Eng Mater Technol doi: 10.1115/1.2772338 – volume: 48 start-page: 871 year: 2010 ident: 1759_CR8 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2328-9 – volume: 52 start-page: 31 year: 2010 ident: 1759_CR9 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2009.10.001 – volume: 73 start-page: 875 year: 2014 ident: 1759_CR63 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-5877-5 – volume: 13 start-page: 36 year: 2009 ident: 1759_CR24 publication-title: Mach Sci Technol doi: 10.1080/10910340902776051 – volume: 43 start-page: 307 year: 2003 ident: 1759_CR150 publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(02)00185-2 – volume: 47 start-page: 709 year: 2007 ident: 1759_CR19 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2006.05.007 – volume: 18 start-page: 378 year: 2010 ident: 1759_CR26 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2009.12.004 – volume: 48 start-page: 402 year: 2008 ident: 1759_CR20 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2007.09.007 – ident: 1759_CR116 – ident: 1759_CR139 – volume: 107 start-page: 349 year: 1985 ident: 1759_CR86 publication-title: J Eng Ind doi: 10.1115/1.3186008 – volume: 31 start-page: 118 year: 2015 ident: 1759_CR15 publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.03.032 – volume: 42 start-page: 842 year: 2009 ident: 1759_CR7 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-008-1644-9 – ident: 1759_CR142 – volume: 122 start-page: 632 year: 2000 ident: 1759_CR110 publication-title: J Manuf Sci Eng doi: 10.1115/1.1286557 – volume: 25 start-page: 2152 year: 2005 ident: 1759_CR115 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2005.01.006 – volume: 19 start-page: 872 year: 2011 ident: 1759_CR27 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2010.11.011 – volume: 186 start-page: 364 year: 2004 ident: 1759_CR118 publication-title: Surf Coat Tech doi: 10.1016/j.surfcoat.2003.11.027 – volume: 40 start-page: 133 year: 2000 ident: 1759_CR2 publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(99)00051-6 – volume: 44 start-page: 933 year: 2004 ident: 1759_CR18 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2004.01.016 – volume: 46 start-page: 518 year: 2006 ident: 1759_CR66 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2005.07.001 – volume: 20 start-page: 153 year: 1972 ident: 1759_CR132 publication-title: CIRP Ann – ident: 1759_CR149 doi: 10.1063/1.1766514 – volume: 167 start-page: 549 year: 2005 ident: 1759_CR39 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.06.015 – volume: 171 start-page: 180 year: 2006 ident: 1759_CR154 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.06.087 – volume: 126 start-page: 849 year: 2005 ident: 1759_CR89 publication-title: J Manuf Sci Eng doi: 10.1115/1.1813473 – volume: 122 start-page: 221 year: 2000 ident: 1759_CR36 publication-title: J Eng Mater Technol doi: 10.1115/1.482791 – volume: 49 start-page: 650 year: 2007 ident: 1759_CR51 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2006.09.012 – volume: 1 start-page: 114 year: 2008 ident: 1759_CR68 publication-title: J Mater Process Technol – volume: 118 start-page: 293 year: 2001 ident: 1759_CR44 publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(01)00969-4 – volume-title: Fließkurvenatlas metallischer Werkstoffe year: 1986 ident: 1759_CR102 – volume: 88 start-page: 110 year: 2014 ident: 1759_CR136 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2014.08.007 – volume: 61 start-page: 1816 year: 1987 ident: 1759_CR77 publication-title: J Appl Phys doi: 10.1063/1.338024 – volume: 46 start-page: 1786 year: 2006 ident: 1759_CR4 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2005.11.013 – volume: 19 start-page: 183 year: 2015 ident: 1759_CR129 publication-title: Mach Sci Technol doi: 10.1080/10910344.2015.1018537 – ident: 1759_CR105 – volume: 18 start-page: 139 year: 2010 ident: 1759_CR108 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2009.10.001 – volume: 47 start-page: 263 year: 2007 ident: 1759_CR71 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2006.03.020 – ident: 1759_CR32 doi: 10.1016/j.procir.2015.03.045 – volume: 50 start-page: 3016 year: 2011 ident: 1759_CR133 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2011.05.020 – volume: 46 start-page: 491 year: 2010 ident: 1759_CR16 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-009-2117-5 – volume: 2010 start-page: 54 year: 1964 ident: 1759_CR126 publication-title: DMIC Rep – volume: 164-165 start-page: 1148 year: 2005 ident: 1759_CR48 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.02.118 – ident: 1759_CR114 – volume: 87B start-page: 495 year: 1965 ident: 1759_CR144 publication-title: J Eng Ind doi: 10.1115/1.3670869 – volume: 47 start-page: 462 year: 2007 ident: 1759_CR98 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2006.06.006 – volume: 135 start-page: 061014 year: 2013 ident: 1759_CR99 publication-title: J Manuf Sci Eng doi: 10.1115/1.4025740 – volume: 218 start-page: 889 year: 2004 ident: 1759_CR106 publication-title: Proc Inst Mech Eng B J Eng Manuf doi: 10.1243/0954405041486064 – volume: 43 start-page: 312 year: 1990 ident: 1759_CR138 publication-title: Appl Mech Rev doi: 10.1115/1.3120834 – volume: 16 start-page: 321 year: 2012 ident: 1759_CR60 publication-title: Mach Sci Technol doi: 10.1080/10910344.2011.600203 – volume: 14 start-page: 622 year: 2014 ident: 1759_CR64 publication-title: Arch Civil Mech Eng doi: 10.1016/j.acme.2014.01.003 – volume: 53 start-page: 1 year: 2015 ident: 1759_CR70 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2015.02.003 – volume: 9 start-page: 1 year: 2007 ident: 1759_CR50 publication-title: Mach Sci Technol doi: 10.1081/MST-200051211 – volume: 19 start-page: 718 year: 2011 ident: 1759_CR92 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2010.09.006 – volume: 5 start-page: 323 year: 2001 ident: 1759_CR101 publication-title: Mach Sci Technol doi: 10.1081/MST-100108618 – volume: 54 start-page: 899 year: 2011 ident: 1759_CR10 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-3012-9 – volume: 356 start-page: 395 year: 1977 ident: 1759_CR79 publication-title: Proc R Soc Lond A Math Phys Eng Sci doi: 10.1098/rspa.1977.0141 – volume: 31 start-page: 825 year: 2000 ident: 1759_CR147 publication-title: Metall Mater Trans A doi: 10.1007/s11661-000-1002-5 – volume: 124 start-page: 189 year: 2002 ident: 1759_CR84 publication-title: J Manuf Sci Eng doi: 10.1115/1.1430678 – volume: 49 start-page: 561 year: 2009 ident: 1759_CR103 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2009.02.008 – volume: 59 start-page: 117 year: 2010 ident: 1759_CR128 publication-title: CIRP Ann Manuf Technol doi: 10.1016/j.cirp.2010.03.064 – volume: 9 start-page: 131 year: 2005 ident: 1759_CR140 publication-title: Mach Sci Technol doi: 10.1081/MST-200051380 – volume: 75 start-page: 1065 year: 2014 ident: 1759_CR30 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6191-y – volume: 374 start-page: 90 year: 2004 ident: 1759_CR42 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2004.01.012 – volume: 87 start-page: 102 year: 2014 ident: 1759_CR13 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2014.05.034 – volume: 605 start-page: 176 year: 2014 ident: 1759_CR62 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2014.03.033 – volume: 38 start-page: 863 year: 2002 ident: 1759_CR45 publication-title: Finite Elem Anal Des doi: 10.1016/S0168-874X(01)00110-X – volume: 209 start-page: 4385 year: 2009 ident: 1759_CR90 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.10.013 – volume: 17 start-page: 167 year: 1983 ident: 1759_CR78 publication-title: B Jpn Soc Prec Eng – volume: 134 start-page: 051014 year: 2012 ident: 1759_CR134 publication-title: J Manuf Sci Eng doi: 10.1115/1.4007464 – volume: 171 start-page: 417 year: 2006 ident: 1759_CR40 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.08.002 – volume: 164-165 start-page: 1204 year: 2005 ident: 1759_CR93 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.02.136 – ident: 1759_CR65 doi: 10.1115/IMECE2014-39503 – volume-title: LS-DYNA theory manual year: 2006 ident: 1759_CR151 – ident: 1759_CR76 – volume: 155-156 start-page: 1350 year: 2004 ident: 1759_CR47 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.04.210 – volume: 44 start-page: 149 year: 2008 ident: 1759_CR67 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2007.11.005 – volume: 80 start-page: 1 year: 2014 ident: 1759_CR135 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2013.10.006 – volume: 35A start-page: 2393 year: 2004 ident: 1759_CR17 publication-title: Metall Mater Trans A doi: 10.1007/s11661-006-0219-3 – volume-title: Finite element method in machining processes year: 2013 ident: 1759_CR34 doi: 10.1007/978-1-4471-4330-7 – volume: 5 start-page: 175 year: 2012 ident: 1759_CR100 publication-title: J Manuf Sci Technol doi: 10.1016/j.cirpj.2012.07.003 – volume: 105 start-page: 95 year: 2000 ident: 1759_CR35 publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(00)00595-1 – volume: 77 start-page: 2019 year: 2015 ident: 1759_CR14 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-014-6583-z – volume: 6 start-page: 467 year: 2002 ident: 1759_CR120 publication-title: Mach Sci Technol doi: 10.1081/MST-120016256 – volume: 47 start-page: 401 year: 2007 ident: 1759_CR94 publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2006.03.004 – volume: 52 start-page: 887 year: 2011 ident: 1759_CR59 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2789-x – volume: 195 start-page: 204 year: 2008 ident: 1759_CR53 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.04.137 – ident: 1759_CR81 – volume: 216 start-page: 328 year: 2015 ident: 1759_CR137 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2014.09.021 – volume: 42 start-page: 1373 year: 2002 ident: 1759_CR143 publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(02)00046-9 – volume: 394 start-page: 238 year: 2005 ident: 1759_CR43 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2004.11.011 – volume: 64 start-page: 82 year: 2012 ident: 1759_CR11 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2012.07.011 – volume: 8 start-page: 305 year: 2004 ident: 1759_CR112 publication-title: Mach Sci Technol doi: 10.1081/MST-200029230 – ident: 1759_CR1 – volume: 110 start-page: 19 year: 2001 ident: 1759_CR38 publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(00)00861-X – volume: 53 start-page: 1167 year: 2011 ident: 1759_CR117 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2901-2 – volume: 258 start-page: 1479 year: 2005 ident: 1759_CR41 publication-title: Wear doi: 10.1016/j.wear.2004.11.004 – volume: 168 start-page: 42 year: 2005 ident: 1759_CR75 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.10.013 – volume: 3 start-page: 435 year: 2010 ident: 1759_CR109 publication-title: Int J Mater Form doi: 10.1007/s12289-010-0800-6 – volume: 81 start-page: 77 year: 2014 ident: 1759_CR69 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2014.02.017 – volume: 128 start-page: 749 year: 2006 ident: 1759_CR3 publication-title: J Manuf Sci Eng doi: 10.1115/1.2193549 – volume: 51 start-page: 1355 year: 2015 ident: 1759_CR73 publication-title: Heat Mass Transf doi: 10.1007/s00231-015-1499-1 – volume: 48 start-page: 510 year: 1982 ident: 1759_CR123 publication-title: J Jpn Soc Prec Eng doi: 10.2493/jjspe1933.48.510 – ident: 1759_CR131 doi: 10.1016/j.procir.2014.04.048 – volume: 474 start-page: 283 year: 2008 ident: 1759_CR22 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2007.04.116 – volume: 176 start-page: 117 year: 2006 ident: 1759_CR104 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2006.02.019 – volume: 4 start-page: 15 year: 2000 ident: 1759_CR74 publication-title: Mach Sci Technol doi: 10.1080/10940340008945698 – volume: 122 start-page: 229 year: 2000 ident: 1759_CR125 publication-title: J Eng Mater Technol doi: 10.1115/1.482792 – volume-title: Simulation of serrated chip formation in metal cutting process by using a new flow stress model year: 2002 ident: 1759_CR148 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.462486 |
Snippet | Finite Element (FE) modeling of machining processes has received growing attention over the last two decades. Since machining processes operate at severe... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3747 |
SubjectTerms | CAE) and Design Chip formation Computer simulation Computer-Aided Engineering (CAD Computing time Configurations Cutting force Cutting parameters Cutting wear Deformation mechanisms Engineering Finite element method Industrial and Production Engineering Integrity Mathematical models Mechanical Engineering Media Management Milling (machining) Morphology Original Article Plane strain Residual stress Simulation Software Strain rate Tool wear Turning (machining) |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA46XvQgrjg6Sg6elECbtlm8DeIwCHpyYG4lSRMVtDPM8gv8476ky6iMgte8pC19X5rv9W0IXVKpgXVYRYxlEUkptURplZDIGmqcgwMiZKU9PLLhKL0fZ-M6j3veRLs3LsnwpW6T3UKpFzB9werhmSRsE21lYLp7WI9ovwFRLLlvhNmCjErffX4F4iTNksq1VbsaWBzy5eBCwu820bg-193y--G1YqQ_nKjhbBrsod2aVOJ-hYJ9tGHLA7TzpdTgIfroYx89PrMvVcQ6rnJW8MRh9-p5J7ZVIDkOvXFgjRd5p87k2ZN1_B6iLv34tMotuMEwMMVt9iNWZYHny5lTxuKqCgUwfJjtXUEB3UdoNLh7uh2SugEDMQmnC2K1kpECJWfGFlIWQmvgb5rJhCkuMhFzBSNa6kSqWLhUUx45HUtruVZG8OQYdcpJaU8Q5jp2ljnum5ylylAwvFURcV4YBZwu5l0UNW82N3V1ct8k4y1v6yoHZeSgjNwrI2dddNUumValOf6a3GvUlde7dJ7TUABN8FSsF1NGwVoERK0Xe58pE0CBuui6AcBK_OujnP5r9hnaph6A4cdPD3UWs6U9Bx600BcB959bf_w2 priority: 102 providerName: Springer Nature |
Title | A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions |
URI | https://link.springer.com/article/10.1007/s00170-018-1759-6 https://www.proquest.com/docview/2042288748 https://www.proquest.com/docview/2262148197 https://www.proquest.com/docview/2490868241 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbhMxFLWg3cCighZE2lJ50RXIYuyZ-NFNlVRJKxARqohUViPbYxckSNIk_YL-eO_1PFJQ6WokX08S5Z4ZH_s-DiHHwjhgHcEyH2TGCiECs87mLAte-BhhgUhVaV8n8mJafL7qXzUHbqsmrbJ9J6YXdTX3eEb-CWiCAOrOjTpd3DBUjcLoaiOh8Zxsc1hpEOF6fN7iCeaiJmaHN2FQiH6D57zo53WUq4k6SJ5K52BbovHB020UNEtNR5NEC4c9F3wqk3-vYxty-k88NS1T41dkp-GXdFAD4jV5Fma75OWDroN75G5AMZF8GX7Wyeu0Ll-h80jjL6SgNNQ55TTJ5MA9aML4zvwaeTv9kxIwcXxRlxmcUBhY0K4QktpZRVe3y2h9oHVDCiD7MBujQgnob8h0PPp-dsEaLQbmcyXWLDhrMgv-7vtQGVNp54DKOWlyaZXua64sjDjjcmO5joUTKouOmxCUs16r_C3Zms1n4R2hyvEYZFSod1ZYL2APbqtMqcpboHdc9UjW_rOlbxqVo17G77JrsZycUYIzSnRGKXvkQ3fLou7S8dTkw9ZdZfPArkqReqFpVejHzR36Hjdj-FRqYEM98rEFwMb835-y__R3HZAXAhGXDn0OydZ6eRveAwdau6ME9COyPRgPhxO8nv_4MoLrcDT5dgnWqRjcA5lZBU8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqe6tIAPcAFZJHbWD6SqqoBlSx-nVuot2I4NSLC77G6FOPN_-I3M2EkWUOmtV9txrMzY_ibz-Ah5yo0D1BEs80EWrOI8MOusYEXw3McIF0TKSjs6luPT6v3Z8GyN_OpyYTCssjsT00HdTD3-I38JMIEDdC-N2p19Y8gahd7VjkIjq8VB-PEdTLbFzv4bkO8zzkdvT16PWcsqwLxQfMmCs6awsPKhD40xjXYOQImTRkir9FCXykKLM04YW-pYOa6K6EoTgnLWayVg3mvkeiWEwRBCPXrX6S-sDTk4e_3mBonvV_tHVEORvWqtl0OWKVUPzCCNG113XtciFTlNlDAl2HgwK5N_35srMPyP_zZdi6PbZKPFs3QvK-AdshYmd8mtP6oc3iM_9ygGrs_DpxwsT3O6DJ1GGj8j5KUhx7DTRMsDz2AX-pOmH9FOoF9TwCe2z3JawysKDTPaJ15SO2no4nwerQ80F8AA4wJGoxcqbaz75PRKpPSArE-mk7BJqHJlDDIq5FerrOdg89umUKrxFuBkqQak6L5s7dvC6MjP8aXuSzonYdQgjBqFUcsBed4_MstVQS4bvN2Jq24PiEXNU-01rSp9cXev7Rd3o7tWakBfA_KiU4BV93-X8vDydz0hN8YnR4f14f7xwRa5yVH70g-nbbK-nJ-HR4C_lu5xUnpKPlz1LvsNe48-xA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSKgcqj7FUtr60BNVROIkfvS2arui0CIOrMQtsh0bkCC72scv4I8zYydZQEulXm1HiTKf428yM98Q8pUpA6zD6cQ6niYFYy7RRudJ6iyz3sMBEarS_p7yo3FxfFFetH1O5122exeSjDUNqNLULA6ntT_sC9-C7Au4weABiVIl_AXZgq9xhjldYzbsAJUpgU0xe8AxhZ3oV4DOizKPYa427MCzUDsHfonEnSe7MOi6Wz4-yFbs9ElANZxTo9fkVUsw6TAi4g3ZcM1bsvNAdvAduRtSzCSfuauYvU5j_QqdeOqvkYNSF5PKaeiTA9fgFAZ4JpdI3OltyMDE8WmsM_hOYWBK-0pIqpuazpczr62jUZEC2D6sxrBQQPp7Mh79Ov9xlLTNGBKbC7ZInNEq1WDw0rpaqVoaA1zOcJVzLWQpM6FhxCiTK51JXxgmUm8y5Zww2kqRfyCbzaRxu4QKk3nHvcCGZ4W2DJxwXadC1FYDv8vEgKTdm61sq1SODTNuql5jORijAmNUaIyKD8hBf8k0ynT8a_F-Z66q3bHzigUxNCkKuX6acQaeIyBq_TTGT7kEOjQg3zoArKaffZS9_1r9hWyf_RxVf36fnnwkLxliMfwP2iebi9nSfQJ6tDCfwxa4ByOmA3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+of+finite+element+modeling+of+orthogonal+machining+process%3A+chip+formation+and+surface+integrity+predictions&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Sadeghifar%2C+Morteza&rft.au=Sedaghati%2C+Ramin&rft.au=Jomaa%2C+Walid&rft.au=Songmene%2C+Victor&rft.date=2018-06-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=96&rft.issue=9-12&rft.spage=3747&rft.epage=3791&rft_id=info:doi/10.1007%2Fs00170-018-1759-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_018_1759_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |