A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions

Finite Element (FE) modeling of machining processes has received growing attention over the last two decades. Since machining processes operate at severe deformation conditions, involving very high strain, strain rate, stress, and temperature, the modeling procedure is still a challenging task even...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 96; no. 9-12; pp. 3747 - 3791
Main Authors Sadeghifar, Morteza, Sedaghati, Ramin, Jomaa, Walid, Songmene, Victor
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-018-1759-6

Cover

Loading…
Abstract Finite Element (FE) modeling of machining processes has received growing attention over the last two decades. Since machining processes operate at severe deformation conditions, involving very high strain, strain rate, stress, and temperature, the modeling procedure is still a challenging task even with new advanced software and computers. Therefore, most of the published research works were mainly performed for the simplest configuration of machining known as orthogonal cutting, in which a plane strain deformation state is assumed. This configuration leads to reducing the number of elements in the FE model and the computational time of the solution, compared to conventional machining processes (turning, milling, and drilling). Nevertheless, FE modeling of orthogonal turning is still considered as an open-ended subject as most of the phenomena involved in the orthogonal turning process, which also exist in other machining operations, are not fully well understood. The present review article deals with finite element modeling of orthogonal machining process. The paper consists of several related parts. First, the fundamentals of the FE simulation of orthogonal turning process are briefly described. Then, a detailed review on the FE prediction of machining characteristics including chip morphology, cutting forces, cutting temperature, tool wear, and burr formation is provided. Also, the FE prediction of surface integrity characteristics including residual stresses and microstructural changes is discussed. The influence of input model and parameters including thermal, material, and frictional models as well as size and arrangement of elements on machining and surface integrity characteristics are explained as well. Both technical and statistical aspects of the FE simulation of orthogonal turning are treated. Since there is no review paper thoroughly and specifically discussing the methods and findings of the finite element simulation of turning operations, the present article can be used as a reference for researchers who are active and/or interested in this filed.
AbstractList Finite Element (FE) modeling of machining processes has received growing attention over the last two decades. Since machining processes operate at severe deformation conditions, involving very high strain, strain rate, stress, and temperature, the modeling procedure is still a challenging task even with new advanced software and computers. Therefore, most of the published research works were mainly performed for the simplest configuration of machining known as orthogonal cutting, in which a plane strain deformation state is assumed. This configuration leads to reducing the number of elements in the FE model and the computational time of the solution, compared to conventional machining processes (turning, milling, and drilling). Nevertheless, FE modeling of orthogonal turning is still considered as an open-ended subject as most of the phenomena involved in the orthogonal turning process, which also exist in other machining operations, are not fully well understood. The present review article deals with finite element modeling of orthogonal machining process. The paper consists of several related parts. First, the fundamentals of the FE simulation of orthogonal turning process are briefly described. Then, a detailed review on the FE prediction of machining characteristics including chip morphology, cutting forces, cutting temperature, tool wear, and burr formation is provided. Also, the FE prediction of surface integrity characteristics including residual stresses and microstructural changes is discussed. The influence of input model and parameters including thermal, material, and frictional models as well as size and arrangement of elements on machining and surface integrity characteristics are explained as well. Both technical and statistical aspects of the FE simulation of orthogonal turning are treated. Since there is no review paper thoroughly and specifically discussing the methods and findings of the finite element simulation of turning operations, the present article can be used as a reference for researchers who are active and/or interested in this filed.
Author Sadeghifar, Morteza
Jomaa, Walid
Sedaghati, Ramin
Songmene, Victor
Author_xml – sequence: 1
  givenname: Morteza
  surname: Sadeghifar
  fullname: Sadeghifar, Morteza
  organization: Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University
– sequence: 2
  givenname: Ramin
  surname: Sedaghati
  fullname: Sedaghati, Ramin
  email: ramin.sedaghati@concordia.ca
  organization: Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University
– sequence: 3
  givenname: Walid
  surname: Jomaa
  fullname: Jomaa, Walid
  organization: Department of Mechanical Engineering, Université Laval
– sequence: 4
  givenname: Victor
  surname: Songmene
  fullname: Songmene, Victor
  organization: Department of Mechanical Engineering, École de Technologie Supérieure
BookMark eNp9kc1qGzEURkVJoE6aB-hO0PW0upqxfroLoU0DgWzatZA0d2yFGcmV5JSs--KV60IgUK8En865XOm7IGcxRSTkPbCPwJj8VBgDyToGqgO51p14Q1Yw9H3XM1ifkRXjQnW9FOotuSjlsdEChFqR39fUp2WXcYuxhCekGZ8C_qJpolOIoSLFGReMlS5pxDnEzeEq5bpNmxTtTBfrtw1s-S4nj6V8pi3Y0SnlxdaQIrVxpGWfJ-uRhlhxk0N9bjSOwR-A8o6cT3YuePXvvCQ_vn75fvOtu3-4vbu5vu98L3nt0FnNLHq_9jhqPSrnBhBO6F5YqdYKpG2J067XFtQ0OC7Z5EAjSme9kv0l-XCc2zb9ucdSzWPa5_aIYvigmRKKD3CS4oLDoECfnsUGzpWSg2qUPFI-p1IyTsaH-vdXarZhNsDMoT1zbM-09syhPSOaCa_MXQ6Lzc8nHX50SmPjBvPLTv-X_gA6_bCA
CitedBy_id crossref_primary_10_1051_mfreview_2021022
crossref_primary_10_4028_www_scientific_net_MSF_978_106
crossref_primary_10_1016_j_procir_2021_09_075
crossref_primary_10_1109_TMECH_2020_2991421
crossref_primary_10_3390_jmmp8030107
crossref_primary_10_1080_00207543_2022_2152126
crossref_primary_10_1016_j_procir_2024_10_323
crossref_primary_10_1016_j_mechmat_2024_105184
crossref_primary_10_1016_j_cirpj_2024_03_008
crossref_primary_10_1080_10584587_2020_1728637
crossref_primary_10_1007_s40436_022_00432_y
crossref_primary_10_1016_j_procir_2023_03_014
crossref_primary_10_1016_j_mtcomm_2022_103162
crossref_primary_10_1007_s00170_020_05150_y
crossref_primary_10_3390_ma14154293
crossref_primary_10_1002_mawe_202200088
crossref_primary_10_1016_j_procir_2021_09_008
crossref_primary_10_1016_j_matpr_2022_04_402
crossref_primary_10_1016_j_engfracmech_2024_109882
crossref_primary_10_1016_j_simpat_2023_102816
crossref_primary_10_1007_s00170_021_06922_w
crossref_primary_10_1080_10910344_2023_2241140
crossref_primary_10_1016_j_cirp_2024_05_004
crossref_primary_10_1016_j_cja_2024_05_022
crossref_primary_10_3390_ma17030688
crossref_primary_10_1007_s00170_022_09592_4
crossref_primary_10_3390_ma16103702
crossref_primary_10_3390_ma13030567
crossref_primary_10_1007_s40430_021_03075_5
crossref_primary_10_1115_1_4062749
crossref_primary_10_1177_0954406221994883
crossref_primary_10_1038_s41598_025_95018_6
crossref_primary_10_1007_s00170_020_05904_8
crossref_primary_10_2139_ssrn_4144543
crossref_primary_10_1016_j_jmapro_2022_01_007
crossref_primary_10_1016_j_cirpj_2024_07_003
crossref_primary_10_1016_j_mfglet_2021_04_002
crossref_primary_10_1016_j_rineng_2022_100789
crossref_primary_10_1007_s10845_023_02260_8
crossref_primary_10_1016_j_simpat_2019_02_006
crossref_primary_10_1016_j_matpr_2020_05_056
crossref_primary_10_1007_s00170_020_06281_y
crossref_primary_10_1016_j_simpat_2020_102141
crossref_primary_10_1007_s00170_020_06200_1
crossref_primary_10_1007_s00170_019_04704_z
crossref_primary_10_1115_1_4056749
crossref_primary_10_3390_pr11040996
crossref_primary_10_1007_s00170_023_10877_5
crossref_primary_10_1016_j_cirpj_2021_08_005
crossref_primary_10_1007_s00170_020_04945_3
crossref_primary_10_1007_s11740_021_01058_y
crossref_primary_10_1016_j_ijmecsci_2022_108031
crossref_primary_10_3390_jmmp6020033
crossref_primary_10_1016_j_jmrt_2023_03_044
crossref_primary_10_1115_1_4051605
crossref_primary_10_1080_10910344_2021_1971709
crossref_primary_10_1088_2631_8695_ac2e10
crossref_primary_10_1016_j_cirpj_2021_06_001
crossref_primary_10_1007_s11831_023_10026_x
crossref_primary_10_1016_j_ijmecsci_2023_108807
crossref_primary_10_1515_mt_2020_0069
crossref_primary_10_1016_j_jmrt_2020_07_087
crossref_primary_10_1007_s00170_019_04225_9
crossref_primary_10_1016_j_cirpj_2022_12_012
crossref_primary_10_1016_j_jmapro_2022_11_038
crossref_primary_10_1007_s00170_020_05665_4
crossref_primary_10_1016_j_procir_2022_04_021
crossref_primary_10_1007_s00170_018_2210_8
crossref_primary_10_1007_s00170_019_04498_0
crossref_primary_10_1016_j_jmapro_2022_01_027
Cites_doi 10.1007/s00170-012-4122-3
10.1016/j.ijmachtools.2007.10.014
10.1080/10910344.2010.500957
10.1007/s00170-015-7179-y
10.1016/S0007-8506(07)62651-1
10.1016/j.ijmachtools.2004.02.014
10.1007/s00170-006-0720-2
10.1007/s00170-017-1032-4
10.1007/s00170-008-1784-y
10.1016/j.ijmecsci.2005.06.001
10.1016/j.jmatprotec.2008.11.029
10.1007/s00170-004-2417-8
10.1007/s12289-009-0405-0
10.1016/0029-5493(84)90169-9
10.1081/MST-120003183
10.1016/j.ijmachtools.2008.03.013
10.1115/IMECE2005-81046
10.1016/j.cirp.2009.03.109
10.1080/10426914.2013.811738
10.1016/S0007-8506(07)62547-5
10.1002/nme.1620382108
10.1080/10910344.2015.1051541
10.1016/j.jmatprotec.2007.05.007
10.1007/BF02905931
10.1016/S0020-7403(99)00042-9
10.1016/j.ijmecsci.2006.03.009
10.1016/j.jmatprotec.2006.12.018
10.1016/j.jmatprotec.2009.02.011
10.1016/S0924-0136(03)00845-8
10.1115/1.3438875
10.1016/j.ijmachtools.2010.08.004
10.1016/j.jmatprotec.2007.03.022
10.1016/j.wear.2007.11.025
10.1007/s11661-009-9983-1
10.1016/S0924-0136(03)00846-X
10.1115/IMECE2003-42329
10.1016/S0924-0136(00)00480-5
10.1016/j.asoc.2015.09.034
10.1007/s11665-016-1950-6
10.1016/j.jmatprotec.2008.10.034
10.1115/1.2772338
10.1007/s00170-009-2328-9
10.1016/j.ijmecsci.2009.10.001
10.1007/s00170-014-5877-5
10.1080/10910340902776051
10.1016/S0890-6955(02)00185-2
10.1016/j.ijmachtools.2006.05.007
10.1016/j.simpat.2009.12.004
10.1016/j.ijmachtools.2007.09.007
10.1115/1.3186008
10.1016/j.procir.2015.03.032
10.1007/s00170-008-1644-9
10.1115/1.1286557
10.1016/j.applthermaleng.2005.01.006
10.1016/j.simpat.2010.11.011
10.1016/j.surfcoat.2003.11.027
10.1016/S0890-6955(99)00051-6
10.1016/j.ijmachtools.2004.01.016
10.1016/j.ijmachtools.2005.07.001
10.1063/1.1766514
10.1016/j.jmatprotec.2005.06.015
10.1016/j.jmatprotec.2005.06.087
10.1115/1.1813473
10.1115/1.482791
10.1016/j.ijmecsci.2006.09.012
10.1016/S0924-0136(01)00969-4
10.1016/j.ijmecsci.2014.08.007
10.1063/1.338024
10.1016/j.ijmachtools.2005.11.013
10.1080/10910344.2015.1018537
10.1016/j.simpat.2009.10.001
10.1016/j.ijmachtools.2006.03.020
10.1016/j.procir.2015.03.045
10.1016/j.commatsci.2011.05.020
10.1007/s00170-009-2117-5
10.1016/j.jmatprotec.2005.02.118
10.1115/1.3670869
10.1016/j.ijmachtools.2006.06.006
10.1115/1.4025740
10.1243/0954405041486064
10.1115/1.3120834
10.1080/10910344.2011.600203
10.1016/j.acme.2014.01.003
10.1016/j.simpat.2015.02.003
10.1081/MST-200051211
10.1016/j.simpat.2010.09.006
10.1081/MST-100108618
10.1007/s00170-010-3012-9
10.1098/rspa.1977.0141
10.1007/s11661-000-1002-5
10.1115/1.1430678
10.1016/j.ijmachtools.2009.02.008
10.1016/j.cirp.2010.03.064
10.1081/MST-200051380
10.1007/s00170-014-6191-y
10.1016/j.msea.2004.01.012
10.1016/j.ijmecsci.2014.05.034
10.1016/j.msea.2014.03.033
10.1016/S0168-874X(01)00110-X
10.1016/j.jmatprotec.2008.10.013
10.1115/1.4007464
10.1016/j.jmatprotec.2005.08.002
10.1016/j.jmatprotec.2005.02.136
10.1115/IMECE2014-39503
10.1016/j.jmatprotec.2004.04.210
10.1016/j.finel.2007.11.005
10.1016/j.finel.2013.10.006
10.1007/s11661-006-0219-3
10.1007/978-1-4471-4330-7
10.1016/j.cirpj.2012.07.003
10.1016/S0924-0136(00)00595-1
10.1007/s00170-014-6583-z
10.1081/MST-120016256
10.1016/j.ijmachtools.2006.03.004
10.1007/s00170-010-2789-x
10.1016/j.jmatprotec.2007.04.137
10.1016/j.jmatprotec.2014.09.021
10.1016/S0890-6955(02)00046-9
10.1016/j.msea.2004.11.011
10.1016/j.ijmecsci.2012.07.011
10.1081/MST-200029230
10.1016/S0924-0136(00)00861-X
10.1007/s00170-010-2901-2
10.1016/j.wear.2004.11.004
10.1016/j.jmatprotec.2004.10.013
10.1007/s12289-010-0800-6
10.1016/j.ijmecsci.2014.02.017
10.1115/1.2193549
10.1007/s00231-015-1499-1
10.2493/jjspe1933.48.510
10.1016/j.procir.2014.04.048
10.1016/j.msea.2007.04.116
10.1016/j.jmatprotec.2006.02.019
10.1080/10940340008945698
10.1115/1.482792
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved.
Springer-Verlag London Ltd., part of Springer Nature 2018.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
– notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved.
– notice: Springer-Verlag London Ltd., part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-018-1759-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database
Engineering Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 3791
ExternalDocumentID 10_1007_s00170_018_1759_6
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c372t-eba90aecc5ced99d8bb416b6936a785817abb4b9b39a18f4b270fb19ee7bac873
IEDL.DBID 8FG
ISSN 0268-3768
IngestDate Fri Jul 25 11:04:44 EDT 2025
Fri Jul 25 11:10:58 EDT 2025
Fri Jul 25 11:01:41 EDT 2025
Thu Apr 24 23:09:14 EDT 2025
Tue Jul 01 00:40:07 EDT 2025
Fri Feb 21 02:30:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9-12
Keywords Machinability
Surface integrity
Finite element modeling
Metal cutting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-eba90aecc5ced99d8bb416b6936a785817abb4b9b39a18f4b270fb19ee7bac873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2262148197
PQPubID 2044010
PageCount 45
ParticipantIDs proquest_journals_2490868241
proquest_journals_2262148197
proquest_journals_2042288748
crossref_citationtrail_10_1007_s00170_018_1759_6
crossref_primary_10_1007_s00170_018_1759_6
springer_journals_10_1007_s00170_018_1759_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2018
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References GrzesikWBartoszukMNieslonyPFinite element modeling of temperature distribution in the cutting zone in turning processes with differently coated toolsJ Mater Process Technol2005164-16512041211
ZerilliFJArmstrongRWDislocation-mechanics-based constitutive relations for material dynamics calculationsJ Appl Phys19876118161825
RaczyAElmadagliMAltenhofWJAlpasATAn Eulerian finite-element model for determination of deformation state of a copper subjected to orthogonal cuttingMetall Mater Trans A200435A23932400
MabroukiTGirardinFAsadMRigalJFNumerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351)Int J Mach Tools Manuf20084811871197
NasrMNANgE-GElbestawiMAA modified time-efficient FE approach for predicting machining-induced residual stressesFinite Elem Anal Des200844149161
StrenkowskiJSCarrollJTA finite element model of orthogonal metal cuttingJ Eng Ind1985107349354
UmbrelloDHuaJShivpuriRHardness-based flow stress and fracture models for numerical simulation of hard machining of AISI 52100 bearing steelMater Sci Eng A200437490100
NakayamaKAraiMBurr formation in metal cuttingCIRP Ann Manuf Technol1987363336
GuoYBLiuCRFEM analysis of mechanical state on sequentially machined surfacesMach Sci Technol200262141
LjustinaGLarssonRFagerströmMA FE based machining simulation methodology accounting for cast iron microstructureFinite Elem Anal Des201480110
RhimSHOhSIPrediction of serrated chip formation in metal cutting process with new flow stress model for AISI 1045 steelJ Mater Process Technol2006171417422
MenezesPLAvdeevIVLovellMRHiggsCFIIIAn explicit finite element model to study the influence of rake angle and friction during orthogonal metal cuttingInt J Adv Manuf Technol201473875885
SartkulvanichPAltanTGocmenAEffects of flow stress and friction models in finite element simulation of orthogonal cutting—a sensitivity analysisMach Sci Technol20079126
Sadeghifar M (2017) Development of the analysis and optimization strategies for prediction of residual stresses induced by turning processes, Concordia University, Canada, PhD Dissertation
XiYBerminghamMWangGDarguschMFinite element modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloyJ Manuf Sci Eng20131350610140610119
MaekawaKShirakashiTUsuiEFlow stress of low carbon steel at high temperature and strain rate (part 2)—flow stress under variable temperature and variable strain rateB Jpn Soc Prec Eng198317167172
HuangYLiangSYCutting forces modeling considering the effect of tool thermal property-application to CBN hard turningInt J Mach Tools Manuf200343307315
ChandrasekeranHKapoorDVPhotoelastic analysis of tool-chip interface stressJ Eng Ind196587B495502
MarusichTOrtizMModeling and simulation of high-speed machiningInt J Numer Methods Eng199538367536940835.73077
OzelTZerenEFinite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machiningInt J Adv Manuf Technol200735255267
BagciEOzcelikBFinite element and experimental investigation of temperature changes on a twist drill in sequential dry drillingInt J Adv Manuf Technol200628680687
DucobuFRivière-LorphèvreEFilippiEOn the introduction of adaptive mass scaling in a finite element model of Ti6Al4V orthogonal cuttingSimul Model Pract Theory201553114
KlockeFRaedtH-WHoppeS2D-FEM simulation of the orthogonal high speed cutting processMach Sci Technol20015323340
Rhim SH, Oh SI (2003) Prediction of serrated chip formation in metal cutting process. In: US-Korea Workshop on Advance in Metallic Structural Materials, Hawaii
UcunIAslantasKNumerical simulation of orthogonal machining process using multilayer and single-layer coated toolsInt J Adv Manuf Technol201154899910
WoonKSRahmanMFangFZNeoKSLiuKInvestigations of tool edge radius effect in micromachining: a FEM simulation approachJ Mater Process Technol2008195204211
MovahhedyMGadalaMSAltintasYSimulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element methodJ Mater Process Technol2000103267275
HaglundAJKishawyHARogersRJAn exploration of friction models for the chip-tool interface using an Arbitrary Lagrangian-Eulerian finite element modelWear2008265452460
Ozel T, Zeren E (2005) Finite element modeling of stresses induced by high speed machining with round edge cutting tools. In: Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition IMECE2005, Orlando, FL, USA, November 5-11
BonnetCValiorgueFRechJHamdiHImprovement of the numerical modeling in orthogonal dry cutting of an AISI316L stainless steel by the introduction of a new friction modelJ Mater Process Technol20081114118
AbukhshimNAMativengaPTSheikhMAAn investigation of the tool-chip contact length and wear in high-speed turning of EN19 steelProc Inst Mech Eng B J Eng Manuf2004218889903
El-WardanyTIKishawyHAElbestawiMASurface integrity of die material in high speed hard machining, part 2: microhardness variations and residual stressesJ Manuf Sci Eng2000122632641
KountanyaRAl-ZkeriIAltanTEffect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of 100Cr6 steelJ Mater Process Technol200920950685076
DaoudMChatelainJFBouzidAEffect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulationInt J Adv Manuf Technol20158119871997
Nordgren A, Zargari Samani B, M’Saoubi R (2014) Experimental study and modeling of plastic deformation of cemented carbide tools in turning. In: 6th CIRP International Conference on High Performance Cutting (HPC2014), Procedia CIRP 14:599–604
JiangFLiJSunJZhangSWangZYanLAl7050-T7451 turning simulation based on the modified power-law material modelInt J Adv Manuf Technol201048871880
ShiGDengXShetCA finite element study of the effect of friction in orthogonal metal cuttingFinite Elem Anal Des2002388638831100.74644
Bammann DJ, Chiesa ML, Johnson GC (1996) Modeling large deformation and failure in manufacturing process. In: 19th International Congress on Theoretical and Applied Mechanics (ICTAM), Kyoto, Japan.
ChandrasekaranHM’SaoubiRChazalHModeling of material flow stress in chip formation process from orthogonal milling and split Hopkinson bar testsMach Sci Technol20059131145
OzelTAltanTDetermination of workpiece flow stress and friction at the chip-tool contact for high-speed cuttingInt J Mach Tools Manuf200040133152
DavimJPMaranhaoCFariaPAbraoARubioJCSilvaLRPrecision radial turning of AISI D2 steelInt J Adv Manuf Technol200942842849
GuoYBLiuCR3D FEA modeling of hard turningJ Manuf Sci Eng2002124189199
FieldMKahlesJFThe surface integrity of machined and ground high strength steelsDMIC Rep1964201054
LiuRSalahshoorMMelkoteSNMarusichTA unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC copperJ Mater Process Technol2015216328338
SchulzeVAutenriethHDeuchertMWeuleHInvestigation of surface near residual stress states after micro-cutting by finite element simulationCIRP Ann Manuf Technol201059117120
EeKCDillon JrOWJawahirISFinite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radiusInt J Mech Sci200547161116281192.74356
KlockeFRizzutiSFrankPGerschwilerKLungDSettineriLExperimental and numerical investigation on the delamination behaviour of PVD-coated tools in turning of austenitic steelInt J Mater Form20103435438
JomaaWSongmeneVBocherPAn hybrid approach based on machining and dynamic tests data for the identification of material constitutive equationsJ Mater Eng Perform20162510101027
CalamazMCoupardDNouariMGirotFNumerical analysis of chip formation and shear localization processes in machining the Ti-6Al-4V titanium alloyInt J Adv Manuf Technol201152887895
ShiJLiuCRThe influence of material models on finite element simulation of machiningJ Manuf Sci Eng2005126849857
XieL-JSchmidtJSchmidtCBiesingerF2D FEM estimate of tool wear in turning operationWear200525814791490
SartkulvanichJKoppkaFAltanTDetermination of flow stress for metal cutting simulation—a progress reportJ Mater Process Technol20041466171
SunSBrandtMDarguschMCharacteristics of cutting forces and chip formation in machining of titanium alloysInt J Mach Tools Manuf200949561568
IssaMLabergereCSaanouniKRassineuxANumerical prediction of thermomechanical field localization in orthogonal cuttingJ Manuf Sci Technol20125175195
Changeux B, Touratier M, Lebrun JL, Thomas T, Clisson J (2001) High-speed shear tests for the identification of the Johnson-Cook law. In: Fourth International ESAFORM Conference, Liege, Belgium, April 23–25
TangLHuangJXieLFinite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting toolInt J Adv Manuf Technol20115311671181
IwataKUedaKOkudaKStudy of mechanism of burrs formation in cutting based on direct SEM observationJ Jpn Soc Prec Eng198248510515
ArrazolaPJOzelTInvestigations on the effects of friction modeling in finite element simulation of machiningInt J Mech Sci2010523142
OxleyPHastingsWPredicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditionsProc R Soc Lond A Math Phys Eng Sci1977356395410
HaddagBAtlatiSNouariMZenasniMAnalysis of the heat transfer at the tool-workpiece interface in machining: determination of heat generation and heat transfer coefficientsHeat Mass Transf20155113551370
JafarianFImaz CiaranMUmbrelloDArrazolaPJFiliceLAmirabadiHFinite element simulation of machining Inconel 718 alloy including microstructure changesInt J Mech Sci201488110121
OzelTThe influence of friction models on finite element simulations of machiningInt J Mach Tools Manuf200646518530
YenY-CJainAChigurupatiPWuW-TAltanTComputer simulation of orthogonal cutting using a tool with multiple coatingsMach Sci Technol20048305326
FangNWuQA comparative study of the cutting forces in high speed machini
M Issa (1759_CR100) 2012; 5
YC Yen (1759_CR46) 2004; 146
Y Long (1759_CR60) 2012; 16
F Ducobu (1759_CR70) 2015; 53
F Ducobu (1759_CR69) 2014; 81
FJ Zerilli (1759_CR77) 1987; 61
DJ Bammann (1759_CR138) 1990; 43
L Filice (1759_CR19) 2007; 47
J Lorentzon (1759_CR25) 2009; 209
B Haddag (1759_CR73) 2015; 51
M Daoud (1759_CR14) 2015; 77
F Klocke (1759_CR101) 2001; 5
F Jiang (1759_CR8) 2010; 48
F Kara (1759_CR153) 2016; 38
T Ozel (1759_CR2) 2000; 40
1759_CR156
K Iwata (1759_CR123) 1982; 48
W Jomaa (1759_CR113) 2016; 25
W Grzesik (1759_CR119) 2004; 44
A Ramesh (1759_CR20) 2008; 48
JP Davim (1759_CR7) 2009; 42
YB Guo (1759_CR85) 2002; 6
1759_CR32
R Kountanya (1759_CR6) 2009; 209
M Calamaz (1759_CR58) 2010; 14
T Ozel (1759_CR66) 2006; 46
P Oxley (1759_CR79) 1977; 356
V Schulze (1759_CR128) 2010; 59
D Umbrello (1759_CR42) 2004; 374
M Daoud (1759_CR91) 2015; 81
Y Xi (1759_CR99) 2013; 135
P Majumdar (1759_CR115) 2005; 25
E Bagci (1759_CR31) 2006; 28
NB Moussa (1759_CR11) 2012; 64
H Chandrasekaran (1759_CR140) 2005; 9
F Klocke (1759_CR61) 2013; 28
M Baker (1759_CR104) 2006; 176
JC Outeiro (1759_CR129) 2015; 19
PJ Arrazola (1759_CR9) 2010; 52
K Maekawa (1759_CR78) 1983; 17
DW Tang (1759_CR29) 2009; 40
M Sadeghifar (1759_CR155) 2018; 94
Y Huang (1759_CR150) 2003; 43
Y-C Yen (1759_CR112) 2004; 8
M Calamaz (1759_CR54) 2008; 48
C Hortig (1759_CR52) 2007; 186
F Jiang (1759_CR12) 2013; 64
T MacGinley (1759_CR44) 2001; 118
MR Vaziri (1759_CR92) 2011; 19
G Shi (1759_CR45) 2002; 38
M Salio (1759_CR49) 2006; 48
V Schulze (1759_CR147) 2000; 31
NA Abukhshim (1759_CR106) 2004; 218
F Klocke (1759_CR109) 2010; 3
D Umbrello (1759_CR98) 2007; 47
YB Guo (1759_CR3) 2006; 128
UM Reddy Paturi (1759_CR62) 2014; 605
C Bonnet (1759_CR68) 2008; 1
THC Childs (1759_CR145) 1989; 38
J Hua (1759_CR43) 2005; 394
1759_CR97
S Ranganath (1759_CR23) 2009; 58
P Pres (1759_CR64) 2014; 14
1759_CR96
G Fang (1759_CR75) 2005; 168
T Marusich (1759_CR80) 1995; 38
1759_CR105
I Al-Zkeri (1759_CR24) 2009; 13
YB Guo (1759_CR84) 2002; 124
E Doege (1759_CR102) 1986
TI El-Wardany (1759_CR110) 2000; 122
J Hua (1759_CR154) 2006; 171
RT Coelho (1759_CR71) 2007; 47
T Mabrouki (1759_CR21) 2008; 48
H Bil (1759_CR18) 2004; 44
J Sartkulvanich (1759_CR146) 2004; 146
IW Park (1759_CR125) 2000; 122
1759_CR1
L Gillespie (1759_CR121) 1996; 116
JC Outeiro (1759_CR4) 2006; 46
A Muñoz-Sanchez (1759_CR27) 2011; 19
S Atlati (1759_CR13) 2014; 87
C Maranhao (1759_CR108) 2010; 18
1759_CR65
D Umbrello (1759_CR5) 2008; 196
1759_CR116
1759_CR114
M Sima (1759_CR57) 2010; 50
SH Rhim (1759_CR40) 2006; 171
PL Menezes (1759_CR63) 2014; 73
W Grzesik (1759_CR93) 2005; 164-165
F Akbar (1759_CR16) 2010; 46
ZT Tang (1759_CR28) 2009; 209
N Tounsi (1759_CR143) 2002; 42
K Liu (1759_CR51) 2007; 49
L Tang (1759_CR117) 2011; 53
S Eck (1759_CR33) 2015; 19
K Khalili (1759_CR55) 2009; 2
1759_CR72
G Ljustina (1759_CR135) 2014; 80
WJ Deng (1759_CR56) 2009; 43
B Wang (1759_CR30) 2014; 75
1759_CR76
1759_CR127
M Field (1759_CR126) 1964; 2010
H Ding (1759_CR134) 2012; 134
CR Liu (1759_CR37) 2000; 42
LK Gillespie (1759_CR122) 1976; 98
Y-C Yen (1759_CR120) 2002; 6
I Ucun (1759_CR10) 2011; 54
YB Guo (1759_CR47) 2004; 155-156
M Barge (1759_CR48) 2005; 164-165
N Fang (1759_CR90) 2009; 209
MNA Nasr (1759_CR94) 2007; 47
P Sartkulvanich (1759_CR50) 2007; 9
S Subbiah (1759_CR22) 2008; 474
AJ Haglund (1759_CR107) 2008; 265
KS Woon (1759_CR53) 2008; 195
1759_CR81
J Shi (1759_CR89) 2005; 126
L-J Xie (1759_CR41) 2005; 258
SH Rhim (1759_CR148) 2002
R Liu (1759_CR137) 2015; 216
1759_CR139
J Rech (1759_CR118) 2004; 186
J Lemaitre (1759_CR152) 1984; 80
K Nakayama (1759_CR124) 1987; 36
M Movahhedy (1759_CR87) 2000; 103
AP Markopoulos (1759_CR34) 2013
IW Park (1759_CR36) 2000; 122
JS Strenkowski (1759_CR86) 1985; 107
1759_CR130
1759_CR131
M Field (1759_CR132) 1972; 20
HY Wu (1759_CR39) 2005; 167
C Shet (1759_CR35) 2000; 105
JO Hallquist (1759_CR151) 2006
1759_CR149
AG Mamalis (1759_CR38) 2001; 110
M Mohammadpour (1759_CR26) 2010; 18
H Chandrasekeran (1759_CR144) 1965; 87B
MR Movahhedy (1759_CR74) 2000; 4
MNA Nasr (1759_CR15) 2015; 31
F Jafarian (1759_CR136) 2014; 88
A Raczy (1759_CR17) 2004; 35A
P Lorong (1759_CR82) 2006; 13
H Ding (1759_CR133) 2011; 50
KC Ee (1759_CR83) 2005; 47
MNA Nasr (1759_CR67) 2008; 44
MNA Nasr (1759_CR95) 2007; 129
L Qian (1759_CR111) 2007; 191
S Sun (1759_CR103) 2009; 49
M Calamaz (1759_CR59) 2011; 52
T Ozel (1759_CR88) 2007; 35
1759_CR141
1759_CR142
References_xml – reference: SchulzeVVohringerOInfluence of alloying elements on the strain rate and temperature dependence of the flow stress of steelsMetall Mater Trans A200031825830
– reference: BammannDJModeling temperature and strain rate dependent large deformation of metalsAppl Mech Rev199043312319
– reference: GrzesikWNieslonyPPhysics based modeling of interface temperatures in machining with multilayer coated tools at moderate cutting speedsInt J Mach Tools Manuf200444889901
– reference: UmbrelloDHuaJShivpuriRHardness-based flow stress and fracture models for numerical simulation of hard machining of AISI 52100 bearing steelMater Sci Eng A200437490100
– reference: Nordgren A, Zargari Samani B, M’Saoubi R (2014) Experimental study and modeling of plastic deformation of cemented carbide tools in turning. In: 6th CIRP International Conference on High Performance Cutting (HPC2014), Procedia CIRP 14:599–604
– reference: DucobuFRivière-LorphèvreEFilippiEOn the introduction of adaptive mass scaling in a finite element model of Ti6Al4V orthogonal cuttingSimul Model Pract Theory201553114
– reference: GrzesikWBartoszukMNieslonyPFinite element modeling of temperature distribution in the cutting zone in turning processes with differently coated toolsJ Mater Process Technol2005164-16512041211
– reference: XiYBerminghamMWangGDarguschMFinite element modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloyJ Manuf Sci Eng20131350610140610119
– reference: Matsumura T, Tamura S (2015) Cutting simulation of titanium alloy drilling with energy analysis and FEM. In: 15th CIRP Conference on Modeling of Machining Operations, Procedia CIRP 31:252–557
– reference: JiangFYanLRongYOrthogonal cutting of hardened AISI D2 steel with TiAlN-coated inserts—simulations and experimentsInt J Adv Manuf Technol20136415551563
– reference: DaoudMJomaaWChatelainJFBouzidAA machining-based methodology to identify material constitutive law for finite element simulationInt J Adv Manuf Technol20157720192033
– reference: AbukhshimNAMativengaPTSheikhMAAn investigation of the tool-chip contact length and wear in high-speed turning of EN19 steelProc Inst Mech Eng B J Eng Manuf2004218889903
– reference: CalamazMCoupardDGirotFNumerical simulation of titanium alloy dry machining with a strain softening constitutive lawMach Sci Technol201014244257
– reference: OuteiroJCUmbrelloDM’SaoubiRJawahirISEvaluation of present numerical models for predicting metal cutting performance and residual stressesMach Sci Technol201519183216
– reference: Sadeghifar M, Sedaghati R, Songmene V (2016) FE modeling and optimization of cutting temperature in orthogonal turning. In: 24th International Congress of Theoretical and Applied Mechanics (ICTAM), Montreal, Canada, August 21–26
– reference: BakerMFinite element simulation of high-speed cutting forcesJ Mater Process Technol2006176117126
– reference: LjustinaGLarssonRFagerströmMA FE based machining simulation methodology accounting for cast iron microstructureFinite Elem Anal Des201480110
– reference: DavimJPMaranhaoCFariaPAbraoARubioJCSilvaLRPrecision radial turning of AISI D2 steelInt J Adv Manuf Technol200942842849
– reference: NasrMNAEffects of sequential cuts on residual stresses when orthogonal cutting steel AISI 1045, in: 15th CIRP Conference on Modeling of Machining OperationsProcedia CIRP201531118123
– reference: FieldMKahlesJFThe surface integrity of machined and ground high strength steelsDMIC Rep1964201054
– reference: FieldMKahlesJFReview of surface integrity of machined componentsCIRP Ann197220153162
– reference: JafarianFImaz CiaranMUmbrelloDArrazolaPJFiliceLAmirabadiHFinite element simulation of machining Inconel 718 alloy including microstructure changesInt J Mech Sci201488110121
– reference: ZerilliFJArmstrongRWDislocation-mechanics-based constitutive relations for material dynamics calculationsJ Appl Phys19876118161825
– reference: RanganathSGuoCHegdePA finite element modeling approach to predicting white layer formation in nickel superalloysCIRP Ann Manuf Technol2009587780
– reference: ParkIWDornfeldAA study of burr formation processes using the finite element method: part II—the influences of exit angle, rake angle, and backup material on burr formation processesJ Eng Mater Technol2000122229237
– reference: SartkulvanichPAltanTGocmenAEffects of flow stress and friction models in finite element simulation of orthogonal cutting—a sensitivity analysisMach Sci Technol20079126
– reference: RameshAMelkoteSNModeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steelInt J Mach Tools Manuf200848402414
– reference: UcunIAslantasKNumerical simulation of orthogonal machining process using multilayer and single-layer coated toolsInt J Adv Manuf Technol201154899910
– reference: RechJKusiakABattagliaJLTribological and thermal functions of cutting tool coatingsSurf Coat Tech2004186364371
– reference: YenY-CJainAChigurupatiPWuW-TAltanTComputer simulation of orthogonal cutting using a tool with multiple coatingsMach Sci Technol20048305326
– reference: Nasr MNA (2007) On modeling of machining-induced residual stresses, McMaster University, Canada, PhD Dissertation
– reference: RhimSHOhSIPrediction of serrated chip formation in metal cutting process with new flow stress model for AISI 1045 steelJ Mater Process Technol2006171417422
– reference: WoonKSRahmanMFangFZNeoKSLiuKInvestigations of tool edge radius effect in micromachining: a FEM simulation approachJ Mater Process Technol2008195204211
– reference: M’Saoubi R (1998) Aspects Thermiques et Microstructuraux de la coupe. Application a` la coupe orthogonale des aciers auste´ nitiques, Ecole nationale supérieure d'arts et métiers, France, PhD Dissertation
– reference: SadeghifarMSedaghatiRJomaaWSongmeneVFinite element analysis and response surface method for robust multi-performance optimization of radial turning of hard 300M steelInt J Adv Manuf Technol20189424572474
– reference: ShiJLiuCRThe influence of material models on finite element simulation of machiningJ Manuf Sci Eng2005126849857
– reference: HuaJUmbrelloDShivpuriRInvestigation of cutting conditions and cutting edge preparations for enhanced compressive subsurface residual stress in the hard turning of bearing steelJ Mater Process Technol2006171180187
– reference: HallquistJOLS-DYNA theory manual2006USALivermore Software Technology Corporation
– reference: AtlatiSHaddagBNouariMZenasniMThermomechanical modeling of the tool-work material interface in machining and its implementation using the ABAQUS VUINTER subroutineInt J Mech Sci201487102117
– reference: HaddagBAtlatiSNouariMZenasniMAnalysis of the heat transfer at the tool-workpiece interface in machining: determination of heat generation and heat transfer coefficientsHeat Mass Transf20155113551370
– reference: SubbiahSMelkoteSNEffect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3Mater Sci Eng A2008474283300
– reference: KlockeFRizzutiSFrankPGerschwilerKLungDSettineriLExperimental and numerical investigation on the delamination behaviour of PVD-coated tools in turning of austenitic steelInt J Mater Form20103435438
– reference: El-WardanyTIKishawyHAElbestawiMASurface integrity of die material in high speed hard machining, part 2: microhardness variations and residual stressesJ Manuf Sci Eng2000122632641
– reference: ShiGDengXShetCA finite element study of the effect of friction in orthogonal metal cuttingFinite Elem Anal Des2002388638831100.74644
– reference: OzelTAltanTDetermination of workpiece flow stress and friction at the chip-tool contact for high-speed cuttingInt J Mach Tools Manuf200040133152
– reference: LiuKMelkoteSNFinite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting processInt J Mech Sci200749650660
– reference: Outeiro JC, Ee KC, Dillon Jr OW, Wanigarathne PC, Jawahir IS (2006) Some observations on comparing the modelled and measured residual stresses on the machined surface induced by orthogonal cutting of AISI 316L steel. In: 9th CIRP International Workshop on Modeling of Machining Operations, Bled, Slovenia, may 11–12
– reference: LemaitreJHow to use damage mechanicsNucl Eng Des198480233245
– reference: EeKCDillon JrOWJawahirISFinite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radiusInt J Mech Sci200547161116281192.74356
– reference: MarusichTOrtizMModeling and simulation of high-speed machiningInt J Numer Methods Eng199538367536940835.73077
– reference: GuoYBLiuCR3D FEA modeling of hard turningJ Manuf Sci Eng2002124189199
– reference: KaraFAslantasKCicekAPrediction of cutting temperature in orthogonal machining of AISI316L using artificial neural networkAppl Soft Comput2016386474
– reference: XieL-JSchmidtJSchmidtCBiesingerF2D FEM estimate of tool wear in turning operationWear200525814791490
– reference: SalioMBerrutiTDe PoliGPrediction of residual stress distribution after turning in turbine disksInt J Mech Sci200648976984
– reference: HaglundAJKishawyHARogersRJAn exploration of friction models for the chip-tool interface using an Arbitrary Lagrangian-Eulerian finite element modelWear2008265452460
– reference: TangZTLiuZQPanYZWanYAiXThe influence of tool flank wear on residual stresses induced by milling aluminum alloyJ Mater Process Technol200920945024508
– reference: Ozel T, Zeren E (2005) Finite element modeling of stresses induced by high speed machining with round edge cutting tools. In: Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition IMECE2005, Orlando, FL, USA, November 5-11
– reference: CalamazMCoupardDNouariMGirotFNumerical analysis of chip formation and shear localization processes in machining the Ti-6Al-4V titanium alloyInt J Adv Manuf Technol201152887895
– reference: Muñoz-SanchezACanteliJACanteroJLMiguélezMHNumerical analysis of the tool wear effect in the machining induced residual stressesSimul Model Pract Theory201119872886
– reference: LorongPYvonnetJCoffignalGCohenSContribution of computational mechanics in numerical simulation of machining and blanking: state-of-the-artArch Comput Meth Eng20061345901099.74073
– reference: TangLHuangJXieLFinite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with CBN cutting toolInt J Adv Manuf Technol20115311671181
– reference: BargeMHamdiHRechJBergheauJ-MNumerical modeling of orthogonal cutting: influence of numerical parametersJ Mater Process Technol2005164-16511481153
– reference: BonnetCValiorgueFRechJHamdiHImprovement of the numerical modeling in orthogonal dry cutting of an AISI316L stainless steel by the introduction of a new friction modelJ Mater Process Technol20081114118
– reference: Filice L, Umbrello D, Micari F, Settineri L (2005) On the finite element simulation of thermal phenomena in machining processes. In: Proceedings of the Eighth ESAFORM Conference, 729–732
– reference: Ceretti E, Attanasio A, Giardini C, Filice L, Rizzuti S, Umbrello D (2008) Evaluation of accuracy in 2D and 3D simulation of orthogonal cutting processes. In: Proceedings of 11th CIRP Conference on modeling of machining operations
– reference: GillespieLThe battle of the burr: new strategies and new tricksManuf Eng19961166970
– reference: TangDWWangCYHuYNSongYXFinite-element simulation of conventional and high-speed peripheral milling of hardened mold steelMetall Mater Trans A20094032453257
– reference: MarkopoulosAPFinite element method in machining processes20131New YorkSpringer
– reference: MovahhedyMRGadalaMSAltintasYSimulation of chip formation in orthogonal metal cutting process: an ALE finite element approachMach Sci Technol200041542
– reference: ChandrasekeranHKapoorDVPhotoelastic analysis of tool-chip interface stressJ Eng Ind196587B495502
– reference: ChandrasekaranHM’SaoubiRChazalHModeling of material flow stress in chip formation process from orthogonal milling and split Hopkinson bar testsMach Sci Technol20059131145
– reference: MohammadpourMRazfarMRJalili SaffarRNumerical investigating the effect of machining parameters on residual stresses in orthogonal cuttingSimul Model Pract Theory201018378389
– reference: UmbrelloDM’SaoubiROuteiroJCThe influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steelInt J Mach Tools Manuf200747462470
– reference: TounsiNVincentiJOthoAElbestawiMAFrom the basics of orthogonal metal cutting toward the identification of the constitutive equationInt J Mach Tools Manuf20024213731383
– reference: Sadeghifar M (2017) Development of the analysis and optimization strategies for prediction of residual stresses induced by turning processes, Concordia University, Canada, PhD Dissertation
– reference: KlockeFLungDBuchkremerSJawahirISFrom orthogonal cutting experiments towards easy-to-implement and accurate flow stress dataMater Manuf Process20132812221227
– reference: DucobuFRivière-LorphèvreEFilippiENumerical contribution to the comprehension of saw-toothed Ti6Al4V chip formation in orthogonal cuttingInt J Mech Sci2014817787
– reference: SimaMOzelTModified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4VInt J Mach Tools Manuf201050943960
– reference: MabroukiTGirardinFAsadMRigalJFNumerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351)Int J Mach Tools Manuf20084811871197
– reference: EckSGanserHPMarsonerSEckerWError analysis for finite element simulation of orthogonal cutting and its validation via quick stop experimentsMach Sci Technol201519460478
– reference: FangNWuQA comparative study of the cutting forces in high speed machining of Ti-6Al-4V and Inconel 718 with a round cutting edge toolJ Mater Process Technol200920943854389
– reference: MenezesPLAvdeevIVLovellMRHiggsCFIIIAn explicit finite element model to study the influence of rake angle and friction during orthogonal metal cuttingInt J Adv Manuf Technol201473875885
– reference: SunSBrandtMDarguschMCharacteristics of cutting forces and chip formation in machining of titanium alloysInt J Mach Tools Manuf200949561568
– reference: DingHShinYCA metallo-thermomechanically coupled analysis of orthogonal cutting of AISI 1045 steelJ Manuf Sci Eng201213405101405101112
– reference: IwataKUedaKOkudaKStudy of mechanism of burrs formation in cutting based on direct SEM observationJ Jpn Soc Prec Eng198248510515
– reference: LiuCRGuoYBFinite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layerInt J Mech Sci200042106910861065.74613
– reference: OzelTZerenEFinite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machiningInt J Adv Manuf Technol200735255267
– reference: LiuRSalahshoorMMelkoteSNMarusichTA unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC copperJ Mater Process Technol2015216328338
– reference: UmbrelloDFinite element simulation of conventional and high speed machining of Ti6Al4V alloyJ Mater Process Technol20081967987
– reference: NasrMNANgE-GElbestawiMAEffects of strain hardening and initial yield strength on machining-induced residual stressesASME J Eng Mater Technol2007129567579
– reference: Reddy PaturiUMReddy NaralaSKSingh PundirRConstitutive flow stress formulation, model validation and FE cutting simulation for AA7075-T6 aluminum alloyMater Sci Eng A2014605176185
– reference: Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, Vol 21, pp 541–547
– reference: RaczyAElmadagliMAltenhofWJAlpasATAn Eulerian finite-element model for determination of deformation state of a copper subjected to orthogonal cuttingMetall Mater Trans A200435A23932400
– reference: Bammann DJ, Chiesa ML, Johnson GC (1996) Modeling large deformation and failure in manufacturing process. In: 19th International Congress on Theoretical and Applied Mechanics (ICTAM), Kyoto, Japan.
– reference: CoelhoRTNgEGElbestawiMATool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditionsInt J Mach Tools Manuf200747263272
– reference: StrenkowskiJSCarrollJTA finite element model of orthogonal metal cuttingJ Eng Ind1985107349354
– reference: Jomaa W (2015) Contributions to understanding the high speed machining effects on aeronautic part surface integrity, École de technologie supérieure, Canada, PhD Dissertation
– reference: MamalisAGHorvathMBranisASManolakosDEFinite element simulation of chip formation in orthogonal metal cuttingJ Mater Process Technol20011101927
– reference: MovahhedyMGadalaMSAltintasYSimulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element methodJ Mater Process Technol2000103267275
– reference: Marusich TD, Usui S, McDaniel RJ (2003) Three-dimensional finite element prediction of machining-induced stresses, In: Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition IMECE2003, Washington, DC, USA, November 15-21
– reference: NasrMNANgE-GElbestawiMAModeling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316LInt J Mach Tools Manuf200747401411
– reference: RhimSHOhSISimulation of serrated chip formation in metal cutting process by using a new flow stress model2002ParisCIRP January Meeting
– reference: ArrazolaPJOzelTInvestigations on the effects of friction modeling in finite element simulation of machiningInt J Mech Sci2010523142
– reference: AkbarFMatiengaPTSheikhMAAn experimental and coupled thermo-mechanical finite element study of heat partition effects in machiningInt J Adv Manuf Technol201046491507
– reference: Changeux B, Touratier M, Lebrun JL, Thomas T, Clisson J (2001) High-speed shear tests for the identification of the Johnson-Cook law. In: Fourth International ESAFORM Conference, Liege, Belgium, April 23–25,
– reference: Jomaa W, Daoud M, Songmene V, Bocher P, Châtelain JF(2014) Identification and validation of Marusich’s constitutive law for finite element modeling of high speed, In: Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition IMECE2014, Montreal, QC, Canada, November 14-20
– reference: OxleyPHastingsWPredicting the strain rate in the zone of intense shear in which the chip is formed in machining from the dynamic flow stress properties of the work material and the cutting conditionsProc R Soc Lond A Math Phys Eng Sci1977356395410
– reference: SchulzeVAutenriethHDeuchertMWeuleHInvestigation of surface near residual stress states after micro-cutting by finite element simulationCIRP Ann Manuf Technol201059117120
– reference: Rhim SH, Oh SI (2003) Prediction of serrated chip formation in metal cutting process. In: US-Korea Workshop on Advance in Metallic Structural Materials, Hawaii
– reference: GuoYBLiuCRFEM analysis of mechanical state on sequentially machined surfacesMach Sci Technol200262141
– reference: KountanyaRAl-ZkeriIAltanTEffect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of 100Cr6 steelJ Mater Process Technol200920950685076
– reference: MacGinleyTMonaghanJModeling the orthogonal machining process using coated cemented carbide cutting toolsJ Mater Process Technol2001118293300
– reference: DaoudMChatelainJFBouzidAEffect of rake angle on Johnson-Cook material constants and their impact on cutting process parameters of Al2024-T3 alloy machining simulationInt J Adv Manuf Technol20158119871997
– reference: LongYGuoCFinite element modeling of burr formation in orthogonal cuttingMach Sci Technol201216321336
– reference: WuHYLeeWBCheungCFS. ToChenYPComputer simulation of single-point diamond turning using finite element methodJ Mater Process Technol2005167549554
– reference: DoegeEMeyer-NnolkemperHSaeedIFließkurvenatlas metallischer Werkstoffe1986MunichHanser-Verlag
– reference: JiangFLiJSunJZhangSWangZYanLAl7050-T7451 turning simulation based on the modified power-law material modelInt J Adv Manuf Technol201048871880
– reference: NakayamaKAraiMBurr formation in metal cuttingCIRP Ann Manuf Technol1987363336
– reference: Stenberg N, Proudian J (2013) Numerical modeling of turning to find residual stresses. In: 14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO), Procedia CIRP 8:258–264
– reference: BilHKılıcSETekkayaAEA comparison of orthogonal cutting data from experiments with three different finite element modelsInt J Mach Tools Manuf200444933944
– reference: ShetCDengXFinite element analysis of the orthogonal metal cutting processJ Mater Process Technol200010595109
– reference: NasrMNANgE-GElbestawiMAA modified time-efficient FE approach for predicting machining-induced residual stressesFinite Elem Anal Des200844149161
– reference: MoussaNBSidhomHBrahamCNumerical and experimental analysis of residual stress and plastic strain distributions in machined stainless steelInt J Mech Sci2012648293
– reference: KlockeFRaedtH-WHoppeS2D-FEM simulation of the orthogonal high speed cutting processMach Sci Technol20015323340
– reference: HuaJShivpuriRChengXBedekarVMatsumotoYHashimotoFWatkinsTREffect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer+hone cutting edge geometryMater Sci Eng A2005394238248
– reference: KhaliliKSafaeiMFEM analysis of edge preparation for chamfered toolsInt J Mater Form20092217224
– reference: ChildsTHCMahdiMIOn the stress distribution between the chip and tool during metal turningCIRP Ann Manuf Technol1989385558
– reference: IssaMLabergereCSaanouniKRassineuxANumerical prediction of thermomechanical field localization in orthogonal cuttingJ Manuf Sci Technol20125175195
– reference: ParkIWDornfeldAA study of burr formation processes using the finite element method: part IJ Eng Mater Technol2000122221228
– reference: YenYCJainAAltanTA finite element analysis of orthogonal machining using different tool edge geometriesJ Mater Process Technol20041467281
– reference: DingHShenNShinYCModeling of grain refinement in aluminum and copper subjected to cuttingComput Mater Sci20115030163025
– reference: FangGZengPThree-dimensional thermos-elastic-plastic coupled FEM simulations for metal oblique cutting processesJ Mater Process Technol20051684248
– reference: FiliceLMicariFRizzutiSUmbrelloDA critical analysis on the friction modeling in orthogonal machiningInt J Mach Tools Manuf200747709714
– reference: MajumdarPJayaramachandranRGanesanSFinite element analysis of temperature rise in metal cutting processesAppl Therm Eng20052521522168
– reference: GillespieLKBlotterPTThe formation and properties of machining burrsJ Eng Ind1976986674
– reference: Pu Z, Umbrello D, Dillon Jr OW, Jawahir IS ((2014)) Finite element simulation of residual stresses in cryogenic machining of AZ31B Mg alloy. In: 2nd CIRP Conference on Surface Integrity (CSI), Procedia CIRP 13:282–287
– reference: WangBLiuZInvestigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4VInt J Adv Manuf Technol20147510651076
– reference: YenY-CSöhnerJWeuleHSchmidtJAltanTEstimation of tool wear of carbide tool in orthogonal cutting using FEM simulationMach Sci Technol20026467486
– reference: PresPSkoczyńskiWJaśkiewiczKResearch and modeling workpiece edge formation process during orthogonal cuttingArch Civil Mech Eng201414622635
– reference: MaranhaoCPaulo DavimJFinite element modeling of machining of AISI 316 steel: numerical simulation and experimental validationSimul Model Pract Theory201018139156
– reference: QianLHossanMREffect on cutting force in turning hardened tool steels with cubic boron nitride insertsJ Mater Process Technol2007191274278
– reference: VaziriMRSalimiMMashayekhiMEvaluation of chip formation simulation models for material separation in the presence of damage modelsSimul Model Pract Theory201119718733
– reference: LorentzonJJärvstratNJosefsonBLModeling chip formation of alloy 718J Mater Process Technol200920946454653
– reference: BagciEOzcelikBFinite element and experimental investigation of temperature changes on a twist drill in sequential dry drillingInt J Adv Manuf Technol200628680687
– reference: GuoYBYenDWA FEM study on mechanisms of discontinuous chip formation in hard machiningJ Mater Process Technol2004155-15613501356
– reference: DengWJXiaWTangYFinite element simulation for burr formation near the exit of orthogonal cuttingInt J Adv Manuf Technol20094310351045
– reference: Al-ZkeriIRechJAltanTHamdiHValiorgueFOptimization of the cutting edge geometry of coated carbide tools in dry turning of steels using a finite element analysisMach Sci Technol2009133651
– reference: GuoYBWenQWoodburyKADynamic material behavior modeling using internal state variable plasticity and its application in hard machining simulationsJ Manuf Sci Eng2006128749759
– reference: OuteiroJCUmbrelloDM’SaoubiRExperimental and numerical modeling of the residual stresses induced in orthogonal cutting of AISI 316L steelInt J Mach Tools Manuf20064617861794
– reference: JomaaWSongmeneVBocherPAn hybrid approach based on machining and dynamic tests data for the identification of material constitutive equationsJ Mater Eng Perform20162510101027
– reference: HuangYLiangSYCutting forces modeling considering the effect of tool thermal property-application to CBN hard turningInt J Mach Tools Manuf200343307315
– reference: MaekawaKShirakashiTUsuiEFlow stress of low carbon steel at high temperature and strain rate (part 2)—flow stress under variable temperature and variable strain rateB Jpn Soc Prec Eng198317167172
– reference: SartkulvanichJKoppkaFAltanTDetermination of flow stress for metal cutting simulation—a progress reportJ Mater Process Technol20041466171
– reference: OzelTThe influence of friction models on finite element simulations of machiningInt J Mach Tools Manuf200646518530
– reference: HortigCSvendsenBSimulation of chip formation during high-speed cuttingJ Mater Process Technol20071866676
– reference: CalamazMCoupardDGirotFA new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4VInt J Mach Tools Manuf200848275288
– volume: 64
  start-page: 1555
  year: 2013
  ident: 1759_CR12
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-012-4122-3
– volume: 48
  start-page: 275
  year: 2008
  ident: 1759_CR54
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2007.10.014
– volume: 14
  start-page: 244
  year: 2010
  ident: 1759_CR58
  publication-title: Mach Sci Technol
  doi: 10.1080/10910344.2010.500957
– volume: 81
  start-page: 1987
  year: 2015
  ident: 1759_CR91
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7179-y
– volume: 38
  start-page: 55
  year: 1989
  ident: 1759_CR145
  publication-title: CIRP Ann Manuf Technol
  doi: 10.1016/S0007-8506(07)62651-1
– volume: 44
  start-page: 889
  year: 2004
  ident: 1759_CR119
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2004.02.014
– ident: 1759_CR130
– volume: 35
  start-page: 255
  year: 2007
  ident: 1759_CR88
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-006-0720-2
– volume: 94
  start-page: 2457
  year: 2018
  ident: 1759_CR155
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-017-1032-4
– volume: 43
  start-page: 1035
  year: 2009
  ident: 1759_CR56
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-008-1784-y
– volume: 47
  start-page: 1611
  year: 2005
  ident: 1759_CR83
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2005.06.001
– volume: 209
  start-page: 4645
  year: 2009
  ident: 1759_CR25
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.11.029
– volume: 28
  start-page: 680
  year: 2006
  ident: 1759_CR31
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-004-2417-8
– volume: 2
  start-page: 217
  year: 2009
  ident: 1759_CR55
  publication-title: Int J Mater Form
  doi: 10.1007/s12289-009-0405-0
– volume: 80
  start-page: 233
  year: 1984
  ident: 1759_CR152
  publication-title: Nucl Eng Des
  doi: 10.1016/0029-5493(84)90169-9
– volume: 6
  start-page: 21
  year: 2002
  ident: 1759_CR85
  publication-title: Mach Sci Technol
  doi: 10.1081/MST-120003183
– volume: 48
  start-page: 1187
  year: 2008
  ident: 1759_CR21
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2008.03.013
– volume: 116
  start-page: 69
  year: 1996
  ident: 1759_CR121
  publication-title: Manuf Eng
– ident: 1759_CR156
– ident: 1759_CR97
  doi: 10.1115/IMECE2005-81046
– volume: 58
  start-page: 77
  year: 2009
  ident: 1759_CR23
  publication-title: CIRP Ann Manuf Technol
  doi: 10.1016/j.cirp.2009.03.109
– volume: 28
  start-page: 1222
  year: 2013
  ident: 1759_CR61
  publication-title: Mater Manuf Process
  doi: 10.1080/10426914.2013.811738
– ident: 1759_CR96
– ident: 1759_CR127
– volume: 36
  start-page: 33
  year: 1987
  ident: 1759_CR124
  publication-title: CIRP Ann Manuf Technol
  doi: 10.1016/S0007-8506(07)62547-5
– volume: 38
  start-page: 3675
  year: 1995
  ident: 1759_CR80
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620382108
– volume: 19
  start-page: 460
  year: 2015
  ident: 1759_CR33
  publication-title: Mach Sci Technol
  doi: 10.1080/10910344.2015.1051541
– volume: 196
  start-page: 79
  year: 2008
  ident: 1759_CR5
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.05.007
– volume: 13
  start-page: 45
  year: 2006
  ident: 1759_CR82
  publication-title: Arch Comput Meth Eng
  doi: 10.1007/BF02905931
– ident: 1759_CR141
– volume: 42
  start-page: 1069
  year: 2000
  ident: 1759_CR37
  publication-title: Int J Mech Sci
  doi: 10.1016/S0020-7403(99)00042-9
– volume: 48
  start-page: 976
  year: 2006
  ident: 1759_CR49
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2006.03.009
– volume: 186
  start-page: 66
  year: 2007
  ident: 1759_CR52
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2006.12.018
– volume: 209
  start-page: 5068
  year: 2009
  ident: 1759_CR6
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2009.02.011
– volume: 146
  start-page: 61
  year: 2004
  ident: 1759_CR146
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00845-8
– volume: 98
  start-page: 66
  year: 1976
  ident: 1759_CR122
  publication-title: J Eng Ind
  doi: 10.1115/1.3438875
– volume: 50
  start-page: 943
  year: 2010
  ident: 1759_CR57
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2010.08.004
– volume: 191
  start-page: 274
  year: 2007
  ident: 1759_CR111
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.03.022
– volume: 265
  start-page: 452
  year: 2008
  ident: 1759_CR107
  publication-title: Wear
  doi: 10.1016/j.wear.2007.11.025
– volume: 40
  start-page: 3245
  year: 2009
  ident: 1759_CR29
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-009-9983-1
– volume: 146
  start-page: 72
  year: 2004
  ident: 1759_CR46
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00846-X
– ident: 1759_CR72
  doi: 10.1115/IMECE2003-42329
– volume: 103
  start-page: 267
  year: 2000
  ident: 1759_CR87
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(00)00480-5
– volume: 38
  start-page: 64
  year: 2016
  ident: 1759_CR153
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.09.034
– volume: 25
  start-page: 1010
  year: 2016
  ident: 1759_CR113
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-016-1950-6
– volume: 209
  start-page: 4502
  year: 2009
  ident: 1759_CR28
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.10.034
– volume: 129
  start-page: 567
  year: 2007
  ident: 1759_CR95
  publication-title: ASME J Eng Mater Technol
  doi: 10.1115/1.2772338
– volume: 48
  start-page: 871
  year: 2010
  ident: 1759_CR8
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2328-9
– volume: 52
  start-page: 31
  year: 2010
  ident: 1759_CR9
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2009.10.001
– volume: 73
  start-page: 875
  year: 2014
  ident: 1759_CR63
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-5877-5
– volume: 13
  start-page: 36
  year: 2009
  ident: 1759_CR24
  publication-title: Mach Sci Technol
  doi: 10.1080/10910340902776051
– volume: 43
  start-page: 307
  year: 2003
  ident: 1759_CR150
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(02)00185-2
– volume: 47
  start-page: 709
  year: 2007
  ident: 1759_CR19
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2006.05.007
– volume: 18
  start-page: 378
  year: 2010
  ident: 1759_CR26
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2009.12.004
– volume: 48
  start-page: 402
  year: 2008
  ident: 1759_CR20
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2007.09.007
– ident: 1759_CR116
– ident: 1759_CR139
– volume: 107
  start-page: 349
  year: 1985
  ident: 1759_CR86
  publication-title: J Eng Ind
  doi: 10.1115/1.3186008
– volume: 31
  start-page: 118
  year: 2015
  ident: 1759_CR15
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.03.032
– volume: 42
  start-page: 842
  year: 2009
  ident: 1759_CR7
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-008-1644-9
– ident: 1759_CR142
– volume: 122
  start-page: 632
  year: 2000
  ident: 1759_CR110
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.1286557
– volume: 25
  start-page: 2152
  year: 2005
  ident: 1759_CR115
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2005.01.006
– volume: 19
  start-page: 872
  year: 2011
  ident: 1759_CR27
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2010.11.011
– volume: 186
  start-page: 364
  year: 2004
  ident: 1759_CR118
  publication-title: Surf Coat Tech
  doi: 10.1016/j.surfcoat.2003.11.027
– volume: 40
  start-page: 133
  year: 2000
  ident: 1759_CR2
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(99)00051-6
– volume: 44
  start-page: 933
  year: 2004
  ident: 1759_CR18
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2004.01.016
– volume: 46
  start-page: 518
  year: 2006
  ident: 1759_CR66
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2005.07.001
– volume: 20
  start-page: 153
  year: 1972
  ident: 1759_CR132
  publication-title: CIRP Ann
– ident: 1759_CR149
  doi: 10.1063/1.1766514
– volume: 167
  start-page: 549
  year: 2005
  ident: 1759_CR39
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.06.015
– volume: 171
  start-page: 180
  year: 2006
  ident: 1759_CR154
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.06.087
– volume: 126
  start-page: 849
  year: 2005
  ident: 1759_CR89
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.1813473
– volume: 122
  start-page: 221
  year: 2000
  ident: 1759_CR36
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.482791
– volume: 49
  start-page: 650
  year: 2007
  ident: 1759_CR51
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2006.09.012
– volume: 1
  start-page: 114
  year: 2008
  ident: 1759_CR68
  publication-title: J Mater Process Technol
– volume: 118
  start-page: 293
  year: 2001
  ident: 1759_CR44
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(01)00969-4
– volume-title: Fließkurvenatlas metallischer Werkstoffe
  year: 1986
  ident: 1759_CR102
– volume: 88
  start-page: 110
  year: 2014
  ident: 1759_CR136
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2014.08.007
– volume: 61
  start-page: 1816
  year: 1987
  ident: 1759_CR77
  publication-title: J Appl Phys
  doi: 10.1063/1.338024
– volume: 46
  start-page: 1786
  year: 2006
  ident: 1759_CR4
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2005.11.013
– volume: 19
  start-page: 183
  year: 2015
  ident: 1759_CR129
  publication-title: Mach Sci Technol
  doi: 10.1080/10910344.2015.1018537
– ident: 1759_CR105
– volume: 18
  start-page: 139
  year: 2010
  ident: 1759_CR108
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2009.10.001
– volume: 47
  start-page: 263
  year: 2007
  ident: 1759_CR71
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2006.03.020
– ident: 1759_CR32
  doi: 10.1016/j.procir.2015.03.045
– volume: 50
  start-page: 3016
  year: 2011
  ident: 1759_CR133
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2011.05.020
– volume: 46
  start-page: 491
  year: 2010
  ident: 1759_CR16
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2117-5
– volume: 2010
  start-page: 54
  year: 1964
  ident: 1759_CR126
  publication-title: DMIC Rep
– volume: 164-165
  start-page: 1148
  year: 2005
  ident: 1759_CR48
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.02.118
– ident: 1759_CR114
– volume: 87B
  start-page: 495
  year: 1965
  ident: 1759_CR144
  publication-title: J Eng Ind
  doi: 10.1115/1.3670869
– volume: 47
  start-page: 462
  year: 2007
  ident: 1759_CR98
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2006.06.006
– volume: 135
  start-page: 061014
  year: 2013
  ident: 1759_CR99
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4025740
– volume: 218
  start-page: 889
  year: 2004
  ident: 1759_CR106
  publication-title: Proc Inst Mech Eng B J Eng Manuf
  doi: 10.1243/0954405041486064
– volume: 43
  start-page: 312
  year: 1990
  ident: 1759_CR138
  publication-title: Appl Mech Rev
  doi: 10.1115/1.3120834
– volume: 16
  start-page: 321
  year: 2012
  ident: 1759_CR60
  publication-title: Mach Sci Technol
  doi: 10.1080/10910344.2011.600203
– volume: 14
  start-page: 622
  year: 2014
  ident: 1759_CR64
  publication-title: Arch Civil Mech Eng
  doi: 10.1016/j.acme.2014.01.003
– volume: 53
  start-page: 1
  year: 2015
  ident: 1759_CR70
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2015.02.003
– volume: 9
  start-page: 1
  year: 2007
  ident: 1759_CR50
  publication-title: Mach Sci Technol
  doi: 10.1081/MST-200051211
– volume: 19
  start-page: 718
  year: 2011
  ident: 1759_CR92
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2010.09.006
– volume: 5
  start-page: 323
  year: 2001
  ident: 1759_CR101
  publication-title: Mach Sci Technol
  doi: 10.1081/MST-100108618
– volume: 54
  start-page: 899
  year: 2011
  ident: 1759_CR10
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-010-3012-9
– volume: 356
  start-page: 395
  year: 1977
  ident: 1759_CR79
  publication-title: Proc R Soc Lond A Math Phys Eng Sci
  doi: 10.1098/rspa.1977.0141
– volume: 31
  start-page: 825
  year: 2000
  ident: 1759_CR147
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-000-1002-5
– volume: 124
  start-page: 189
  year: 2002
  ident: 1759_CR84
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.1430678
– volume: 49
  start-page: 561
  year: 2009
  ident: 1759_CR103
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2009.02.008
– volume: 59
  start-page: 117
  year: 2010
  ident: 1759_CR128
  publication-title: CIRP Ann Manuf Technol
  doi: 10.1016/j.cirp.2010.03.064
– volume: 9
  start-page: 131
  year: 2005
  ident: 1759_CR140
  publication-title: Mach Sci Technol
  doi: 10.1081/MST-200051380
– volume: 75
  start-page: 1065
  year: 2014
  ident: 1759_CR30
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6191-y
– volume: 374
  start-page: 90
  year: 2004
  ident: 1759_CR42
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.01.012
– volume: 87
  start-page: 102
  year: 2014
  ident: 1759_CR13
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2014.05.034
– volume: 605
  start-page: 176
  year: 2014
  ident: 1759_CR62
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2014.03.033
– volume: 38
  start-page: 863
  year: 2002
  ident: 1759_CR45
  publication-title: Finite Elem Anal Des
  doi: 10.1016/S0168-874X(01)00110-X
– volume: 209
  start-page: 4385
  year: 2009
  ident: 1759_CR90
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.10.013
– volume: 17
  start-page: 167
  year: 1983
  ident: 1759_CR78
  publication-title: B Jpn Soc Prec Eng
– volume: 134
  start-page: 051014
  year: 2012
  ident: 1759_CR134
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.4007464
– volume: 171
  start-page: 417
  year: 2006
  ident: 1759_CR40
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.08.002
– volume: 164-165
  start-page: 1204
  year: 2005
  ident: 1759_CR93
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.02.136
– ident: 1759_CR65
  doi: 10.1115/IMECE2014-39503
– volume-title: LS-DYNA theory manual
  year: 2006
  ident: 1759_CR151
– ident: 1759_CR76
– volume: 155-156
  start-page: 1350
  year: 2004
  ident: 1759_CR47
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.04.210
– volume: 44
  start-page: 149
  year: 2008
  ident: 1759_CR67
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2007.11.005
– volume: 80
  start-page: 1
  year: 2014
  ident: 1759_CR135
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2013.10.006
– volume: 35A
  start-page: 2393
  year: 2004
  ident: 1759_CR17
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-006-0219-3
– volume-title: Finite element method in machining processes
  year: 2013
  ident: 1759_CR34
  doi: 10.1007/978-1-4471-4330-7
– volume: 5
  start-page: 175
  year: 2012
  ident: 1759_CR100
  publication-title: J Manuf Sci Technol
  doi: 10.1016/j.cirpj.2012.07.003
– volume: 105
  start-page: 95
  year: 2000
  ident: 1759_CR35
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(00)00595-1
– volume: 77
  start-page: 2019
  year: 2015
  ident: 1759_CR14
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6583-z
– volume: 6
  start-page: 467
  year: 2002
  ident: 1759_CR120
  publication-title: Mach Sci Technol
  doi: 10.1081/MST-120016256
– volume: 47
  start-page: 401
  year: 2007
  ident: 1759_CR94
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2006.03.004
– volume: 52
  start-page: 887
  year: 2011
  ident: 1759_CR59
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-010-2789-x
– volume: 195
  start-page: 204
  year: 2008
  ident: 1759_CR53
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.04.137
– ident: 1759_CR81
– volume: 216
  start-page: 328
  year: 2015
  ident: 1759_CR137
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2014.09.021
– volume: 42
  start-page: 1373
  year: 2002
  ident: 1759_CR143
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(02)00046-9
– volume: 394
  start-page: 238
  year: 2005
  ident: 1759_CR43
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2004.11.011
– volume: 64
  start-page: 82
  year: 2012
  ident: 1759_CR11
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2012.07.011
– volume: 8
  start-page: 305
  year: 2004
  ident: 1759_CR112
  publication-title: Mach Sci Technol
  doi: 10.1081/MST-200029230
– ident: 1759_CR1
– volume: 110
  start-page: 19
  year: 2001
  ident: 1759_CR38
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(00)00861-X
– volume: 53
  start-page: 1167
  year: 2011
  ident: 1759_CR117
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-010-2901-2
– volume: 258
  start-page: 1479
  year: 2005
  ident: 1759_CR41
  publication-title: Wear
  doi: 10.1016/j.wear.2004.11.004
– volume: 168
  start-page: 42
  year: 2005
  ident: 1759_CR75
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.10.013
– volume: 3
  start-page: 435
  year: 2010
  ident: 1759_CR109
  publication-title: Int J Mater Form
  doi: 10.1007/s12289-010-0800-6
– volume: 81
  start-page: 77
  year: 2014
  ident: 1759_CR69
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2014.02.017
– volume: 128
  start-page: 749
  year: 2006
  ident: 1759_CR3
  publication-title: J Manuf Sci Eng
  doi: 10.1115/1.2193549
– volume: 51
  start-page: 1355
  year: 2015
  ident: 1759_CR73
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-015-1499-1
– volume: 48
  start-page: 510
  year: 1982
  ident: 1759_CR123
  publication-title: J Jpn Soc Prec Eng
  doi: 10.2493/jjspe1933.48.510
– ident: 1759_CR131
  doi: 10.1016/j.procir.2014.04.048
– volume: 474
  start-page: 283
  year: 2008
  ident: 1759_CR22
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2007.04.116
– volume: 176
  start-page: 117
  year: 2006
  ident: 1759_CR104
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2006.02.019
– volume: 4
  start-page: 15
  year: 2000
  ident: 1759_CR74
  publication-title: Mach Sci Technol
  doi: 10.1080/10940340008945698
– volume: 122
  start-page: 229
  year: 2000
  ident: 1759_CR125
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.482792
– volume-title: Simulation of serrated chip formation in metal cutting process by using a new flow stress model
  year: 2002
  ident: 1759_CR148
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.462486
Snippet Finite Element (FE) modeling of machining processes has received growing attention over the last two decades. Since machining processes operate at severe...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3747
SubjectTerms CAE) and Design
Chip formation
Computer simulation
Computer-Aided Engineering (CAD
Computing time
Configurations
Cutting force
Cutting parameters
Cutting wear
Deformation mechanisms
Engineering
Finite element method
Industrial and Production Engineering
Integrity
Mathematical models
Mechanical Engineering
Media Management
Milling (machining)
Morphology
Original Article
Plane strain
Residual stress
Simulation
Software
Strain rate
Tool wear
Turning (machining)
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA46XvQgrjg6Sg6elECbtlm8DeIwCHpyYG4lSRMVtDPM8gv8476ky6iMgte8pC19X5rv9W0IXVKpgXVYRYxlEUkptURplZDIGmqcgwMiZKU9PLLhKL0fZ-M6j3veRLs3LsnwpW6T3UKpFzB9werhmSRsE21lYLp7WI9ovwFRLLlvhNmCjErffX4F4iTNksq1VbsaWBzy5eBCwu820bg-193y--G1YqQ_nKjhbBrsod2aVOJ-hYJ9tGHLA7TzpdTgIfroYx89PrMvVcQ6rnJW8MRh9-p5J7ZVIDkOvXFgjRd5p87k2ZN1_B6iLv34tMotuMEwMMVt9iNWZYHny5lTxuKqCgUwfJjtXUEB3UdoNLh7uh2SugEDMQmnC2K1kpECJWfGFlIWQmvgb5rJhCkuMhFzBSNa6kSqWLhUUx45HUtruVZG8OQYdcpJaU8Q5jp2ljnum5ylylAwvFURcV4YBZwu5l0UNW82N3V1ct8k4y1v6yoHZeSgjNwrI2dddNUumValOf6a3GvUlde7dJ7TUABN8FSsF1NGwVoERK0Xe58pE0CBuui6AcBK_OujnP5r9hnaph6A4cdPD3UWs6U9Bx600BcB959bf_w2
  priority: 102
  providerName: Springer Nature
Title A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions
URI https://link.springer.com/article/10.1007/s00170-018-1759-6
https://www.proquest.com/docview/2042288748
https://www.proquest.com/docview/2262148197
https://www.proquest.com/docview/2490868241
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbhMxFLWg3cCighZE2lJ50RXIYuyZ-NFNlVRJKxARqohUViPbYxckSNIk_YL-eO_1PFJQ6WokX08S5Z4ZH_s-DiHHwjhgHcEyH2TGCiECs87mLAte-BhhgUhVaV8n8mJafL7qXzUHbqsmrbJ9J6YXdTX3eEb-CWiCAOrOjTpd3DBUjcLoaiOh8Zxsc1hpEOF6fN7iCeaiJmaHN2FQiH6D57zo53WUq4k6SJ5K52BbovHB020UNEtNR5NEC4c9F3wqk3-vYxty-k88NS1T41dkp-GXdFAD4jV5Fma75OWDroN75G5AMZF8GX7Wyeu0Ll-h80jjL6SgNNQ55TTJ5MA9aML4zvwaeTv9kxIwcXxRlxmcUBhY0K4QktpZRVe3y2h9oHVDCiD7MBujQgnob8h0PPp-dsEaLQbmcyXWLDhrMgv-7vtQGVNp54DKOWlyaZXua64sjDjjcmO5joUTKouOmxCUs16r_C3Zms1n4R2hyvEYZFSod1ZYL2APbqtMqcpboHdc9UjW_rOlbxqVo17G77JrsZycUYIzSnRGKXvkQ3fLou7S8dTkw9ZdZfPArkqReqFpVejHzR36Hjdj-FRqYEM98rEFwMb835-y__R3HZAXAhGXDn0OydZ6eRveAwdau6ME9COyPRgPhxO8nv_4MoLrcDT5dgnWqRjcA5lZBU8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqe6tIAPcAFZJHbWD6SqqoBlSx-nVuot2I4NSLC77G6FOPN_-I3M2EkWUOmtV9txrMzY_ibz-Ah5yo0D1BEs80EWrOI8MOusYEXw3McIF0TKSjs6luPT6v3Z8GyN_OpyYTCssjsT00HdTD3-I38JMIEDdC-N2p19Y8gahd7VjkIjq8VB-PEdTLbFzv4bkO8zzkdvT16PWcsqwLxQfMmCs6awsPKhD40xjXYOQImTRkir9FCXykKLM04YW-pYOa6K6EoTgnLWayVg3mvkeiWEwRBCPXrX6S-sDTk4e_3mBonvV_tHVEORvWqtl0OWKVUPzCCNG113XtciFTlNlDAl2HgwK5N_35srMPyP_zZdi6PbZKPFs3QvK-AdshYmd8mtP6oc3iM_9ygGrs_DpxwsT3O6DJ1GGj8j5KUhx7DTRMsDz2AX-pOmH9FOoF9TwCe2z3JawysKDTPaJ15SO2no4nwerQ80F8AA4wJGoxcqbaz75PRKpPSArE-mk7BJqHJlDDIq5FerrOdg89umUKrxFuBkqQak6L5s7dvC6MjP8aXuSzonYdQgjBqFUcsBed4_MstVQS4bvN2Jq24PiEXNU-01rSp9cXev7Rd3o7tWakBfA_KiU4BV93-X8vDydz0hN8YnR4f14f7xwRa5yVH70g-nbbK-nJ-HR4C_lu5xUnpKPlz1LvsNe48-xA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSKgcqj7FUtr60BNVROIkfvS2arui0CIOrMQtsh0bkCC72scv4I8zYydZQEulXm1HiTKf428yM98Q8pUpA6zD6cQ6niYFYy7RRudJ6iyz3sMBEarS_p7yo3FxfFFetH1O5122exeSjDUNqNLULA6ntT_sC9-C7Au4weABiVIl_AXZgq9xhjldYzbsAJUpgU0xe8AxhZ3oV4DOizKPYa427MCzUDsHfonEnSe7MOi6Wz4-yFbs9ElANZxTo9fkVUsw6TAi4g3ZcM1bsvNAdvAduRtSzCSfuauYvU5j_QqdeOqvkYNSF5PKaeiTA9fgFAZ4JpdI3OltyMDE8WmsM_hOYWBK-0pIqpuazpczr62jUZEC2D6sxrBQQPp7Mh79Ov9xlLTNGBKbC7ZInNEq1WDw0rpaqVoaA1zOcJVzLWQpM6FhxCiTK51JXxgmUm8y5Zww2kqRfyCbzaRxu4QKk3nHvcCGZ4W2DJxwXadC1FYDv8vEgKTdm61sq1SODTNuql5jORijAmNUaIyKD8hBf8k0ynT8a_F-Z66q3bHzigUxNCkKuX6acQaeIyBq_TTGT7kEOjQg3zoArKaffZS9_1r9hWyf_RxVf36fnnwkLxliMfwP2iebi9nSfQJ6tDCfwxa4ByOmA3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+review+of+finite+element+modeling+of+orthogonal+machining+process%3A+chip+formation+and+surface+integrity+predictions&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Sadeghifar%2C+Morteza&rft.au=Sedaghati%2C+Ramin&rft.au=Jomaa%2C+Walid&rft.au=Songmene%2C+Victor&rft.date=2018-06-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=96&rft.issue=9-12&rft.spage=3747&rft.epage=3791&rft_id=info:doi/10.1007%2Fs00170-018-1759-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_018_1759_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon