The Bending of Beams in Finite Elasticity

In this paper the analysis for the anticlastic bending under constant curvature of nonlinear solids and beams, presented by Lanzoni, Tarantino (J. Elast. 131:137–170, 2018 ), is extended and further developed for the class of slender beams. Following a semi-inverse approach, the problem is studied b...

Full description

Saved in:
Bibliographic Details
Published inJournal of elasticity Vol. 139; no. 1; pp. 91 - 121
Main Authors Lanzoni, Luca, Tarantino, Angelo Marcello
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2020
Subjects
Online AccessGet full text
ISSN0374-3535
1573-2681
DOI10.1007/s10659-019-09746-8

Cover

Abstract In this paper the analysis for the anticlastic bending under constant curvature of nonlinear solids and beams, presented by Lanzoni, Tarantino (J. Elast. 131:137–170, 2018 ), is extended and further developed for the class of slender beams. Following a semi-inverse approach, the problem is studied by a three-dimensional kinematic model for the longitudinal inflexion, which is based on the hypothesis that cross sections deform preserving their planarity. A compressible Mooney-Rivlin law is assumed for the stored energy function and from the equilibrium equations, the free parameter of the kinematic model is computed. Thus, taking into account the three-dimensionality of the beam, explicit formulae for the displacement field, the stretches and stresses in every point of the body, following both Lagrangian and Eulerian description, are derived. Subsequently, slender beams under variable curvature were examined, focusing on the local determination of the curvature and bending moment along the deformed beam axis. The governing equations take the form of a coupled system of three equations in integral form, which is solved numerically. The proposed analysis allows to study a very wide class of equilibrium problems for nonlinear beams under different restraint conditions and subject to generic external load systems. By way of example, the Euler beam and a cantilever beam loaded by a dead or live (follower) concentrated force applied at the free end have been considered, showing the shape assumed by the beam as the load multiplier increases.
AbstractList In this paper the analysis for the anticlastic bending under constant curvature of nonlinear solids and beams, presented by Lanzoni, Tarantino (J. Elast. 131:137–170, 2018 ), is extended and further developed for the class of slender beams. Following a semi-inverse approach, the problem is studied by a three-dimensional kinematic model for the longitudinal inflexion, which is based on the hypothesis that cross sections deform preserving their planarity. A compressible Mooney-Rivlin law is assumed for the stored energy function and from the equilibrium equations, the free parameter of the kinematic model is computed. Thus, taking into account the three-dimensionality of the beam, explicit formulae for the displacement field, the stretches and stresses in every point of the body, following both Lagrangian and Eulerian description, are derived. Subsequently, slender beams under variable curvature were examined, focusing on the local determination of the curvature and bending moment along the deformed beam axis. The governing equations take the form of a coupled system of three equations in integral form, which is solved numerically. The proposed analysis allows to study a very wide class of equilibrium problems for nonlinear beams under different restraint conditions and subject to generic external load systems. By way of example, the Euler beam and a cantilever beam loaded by a dead or live (follower) concentrated force applied at the free end have been considered, showing the shape assumed by the beam as the load multiplier increases.
Author Tarantino, Angelo Marcello
Lanzoni, Luca
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0002-3513-0273
  surname: Lanzoni
  fullname: Lanzoni, Luca
  email: luca.lanzoni@unimore.it
  organization: DIEF, Università di Modena e Reggio Emilia
– sequence: 2
  givenname: Angelo Marcello
  surname: Tarantino
  fullname: Tarantino, Angelo Marcello
  organization: DIEF, Università di Modena e Reggio Emilia
BookMark eNp9j7FOwzAQhi1UJNrCCzBlZTCc4yQ-j1C1gFSJpcyW41yKq9ZBdhj69hjKxNDhdLd89__fjE3CEIixWwH3AkA9JAFNrTmIPFpVDccLNhW1krxsUEzYFKSquKxlfcVmKe0AQGMFU3a3-aDiiULnw7YY-nzaQyp8KFY--JGK5d6m0Ts_Hq_ZZW_3iW7-9py9r5abxQtfvz2_Lh7X3ElVjpx0hwhl22HV1Y2znVLKolbkFJF1rUSBpSZUUOtSNhJ666hTUmJVtYCNnLPy9NfFIaVIvfmM_mDj0QgwP7LmJGuyrPmVNZgh_Aflynb0Qxij9fvzqDyhKeeELUWzG75iyIrnqG-RXGmt
CitedBy_id crossref_primary_10_1016_j_ijnonlinmec_2024_104673
crossref_primary_10_1016_j_euromechsol_2024_105373
crossref_primary_10_1016_j_euromechsol_2024_105292
crossref_primary_10_1007_s10659_019_09759_3
crossref_primary_10_3390_ma13071597
crossref_primary_10_1016_j_euromechsol_2021_104374
crossref_primary_10_1007_s10659_023_10018_9
crossref_primary_10_1016_j_euromechsol_2022_104720
crossref_primary_10_1016_j_ijmecsci_2021_106500
crossref_primary_10_1016_j_apm_2021_07_006
crossref_primary_10_1016_j_engstruct_2020_111176
crossref_primary_10_1016_j_euromechsol_2020_104131
crossref_primary_10_1080_15376494_2021_1908645
crossref_primary_10_1007_s00161_020_00940_x
crossref_primary_10_1007_s00161_022_01166_9
crossref_primary_10_1080_15376494_2022_2093425
crossref_primary_10_1007_s10659_022_09928_x
crossref_primary_10_1590_1679_78255963
crossref_primary_10_3390_applmech4010015
crossref_primary_10_1016_j_compstruc_2021_106676
crossref_primary_10_1016_j_ijmecsci_2021_106287
crossref_primary_10_1016_j_ijmecsci_2022_107187
Cites_doi 10.1016/0020-7683(72)90069-8
10.1007/BF00385969
10.1007/978-3-030-14676-4
10.1016/0020-7403(61)90005-4
10.1007/s10659-017-9649-y
10.1098/rspa.1949.0004
10.1016/j.hbrcj.2013.11.003
10.1093/imamat/hxq020
10.1016/j.ijmecsci.2013.08.006
10.1093/qjmam/48.3.375
10.1177/1081286505036421
10.1007/s000330050039
10.1016/j.mechrescom.2019.04.011
10.1007/s10659-013-9439-0
10.1007/BF01601214
10.1016/j.ijnonlinmec.2013.12.001
10.1016/0045-7825(84)90060-4
10.1007/s00033-014-0397-6
10.1016/j.ijnonlinmec.2016.04.008
10.1093/qjmam/51.2.179
10.1007/s10409-012-0053-3
10.1098/rspa.2016.0870
10.1007/s10659-019-09731-1
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s10659-019-09746-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1573-2681
EndPage 121
ExternalDocumentID 10_1007_s10659_019_09746_8
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7S
Z7Y
Z7Z
Z86
Z8N
Z8S
Z8T
ZMTXR
ZY4
~02
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c372t-e9d8802bd84d56cad777a897ec7eeacb381829e8705923630faced733844b0863
IEDL.DBID U2A
ISSN 0374-3535
IngestDate Tue Jul 01 00:20:27 EDT 2025
Thu Apr 24 23:04:58 EDT 2025
Fri Feb 21 02:25:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Beam
74G05
74K10
Bending moment
Finite elasticity
74B20
Equilibrium
Hyperelasticity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-e9d8802bd84d56cad777a897ec7eeacb381829e8705923630faced733844b0863
ORCID 0000-0002-3513-0273
OpenAccessLink http://hdl.handle.net/11380/1179378
PageCount 31
ParticipantIDs crossref_primary_10_1007_s10659_019_09746_8
crossref_citationtrail_10_1007_s10659_019_09746_8
springer_journals_10_1007_s10659_019_09746_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle The Physical and Mathematical Science of Solids
PublicationTitle Journal of elasticity
PublicationTitleAbbrev J Elast
PublicationYear 2020
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References Tarantino (CR15) 2005; 10
Tarantino, Lanzoni, Falope (CR9) 2019
Holden (CR19) 1972; 8
Wang, Lee, Zienkiewicz (CR18) 1961; 3
Carroll (CR4) 1968; 21
Lanzoni, Tarantino (CR1) 2018; 131
Lanzoni, Tarantino (CR11) 2014; 60
CR14
Tarantino (CR26) 1997; 48
Frisch-Fay (CR17) 1962
Aron, Wang (CR6) 1995; 48
Tarantino (CR27) 1998; 51
Wang (CR5) 1991; 114
Ericksen (CR3) 1954; 5
Love (CR16) 1927
Brojan, Cebron, Kosel (CR22) 2012; 28
Tarantino (CR10) 2014; 114
Armanini, Dal Corso, Misseroni, Bigoni (CR25) 2017; 473
Lanzoni, Tarantino (CR13) 2016; 84
Rivlin (CR2) 1949; 195
Lanzoni, Tarantino (CR12) 2015; 66
Saje, Srpčič (CR21) 1984; 46
Batista (CR23) 2013; 75
Roccabianca, Gei, Bigoni (CR7) 2010; 75
Alliney, Tralli (CR20) 1984; 46
Falope, Lanzoni, Tarantino (CR8) 2019; 97
Hatami, Vahdami, Ganji (CR24) 2014; 10
A.M. Tarantino (9746_CR26) 1997; 48
F.O. Falope (9746_CR8) 2019; 97
M. Saje (9746_CR21) 1984; 46
L. Lanzoni (9746_CR13) 2016; 84
T.M. Wang (9746_CR18) 1961; 3
M.M. Carroll (9746_CR4) 1968; 21
A.M. Tarantino (9746_CR15) 2005; 10
R.S. Rivlin (9746_CR2) 1949; 195
S. Roccabianca (9746_CR7) 2010; 75
A.M. Tarantino (9746_CR10) 2014; 114
M. Hatami (9746_CR24) 2014; 10
M. Batista (9746_CR23) 2013; 75
L. Lanzoni (9746_CR1) 2018; 131
J.L. Ericksen (9746_CR3) 1954; 5
A.M. Tarantino (9746_CR9) 2019
A.E.H. Love (9746_CR16) 1927
A.M. Tarantino (9746_CR27) 1998; 51
L. Lanzoni (9746_CR11) 2014; 60
J.T. Holden (9746_CR19) 1972; 8
9746_CR14
S. Alliney (9746_CR20) 1984; 46
M. Brojan (9746_CR22) 2012; 28
L. Lanzoni (9746_CR12) 2015; 66
C. Armanini (9746_CR25) 2017; 473
C.C. Wang (9746_CR5) 1991; 114
R. Frisch-Fay (9746_CR17) 1962
M. Aron (9746_CR6) 1995; 48
References_xml – volume: 8
  start-page: 1051
  year: 1972
  end-page: 1055
  ident: CR19
  article-title: On the finite deflections of thin beams
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(72)90069-8
– volume: 114
  start-page: 195
  year: 1991
  end-page: 236
  ident: CR5
  article-title: Normal configurations and the nonlinear elastoplastic problems of bending, torsion, expansion, and eversion for compressible bodies
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00385969
– year: 2019
  ident: CR9
  publication-title: The Bending Theory of Fully Nonlinear Beams
  doi: 10.1007/978-3-030-14676-4
– volume: 3
  start-page: 219
  year: 1961
  end-page: 228
  ident: CR18
  article-title: Numerical analysis of large deflections of beams
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/0020-7403(61)90005-4
– volume: 131
  start-page: 137
  year: 2018
  end-page: 170
  ident: CR1
  article-title: Finite anticlastic bending of hyperelastic solids and beams
  publication-title: J. Elast.
  doi: 10.1007/s10659-017-9649-y
– ident: CR14
– volume: 21
  start-page: 148
  year: 1968
  end-page: 170
  ident: CR4
  article-title: Finite deformations of incompressible simple solids, I: isotropic solids
  publication-title: Q. J. Mech. Appl. Math.
– volume: 195
  start-page: 463
  year: 1949
  end-page: 473
  ident: CR2
  article-title: Large elastic deformations of isotropic materials, V: the problem of flexure
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1949.0004
– year: 1927
  ident: CR16
  publication-title: A Treatise on the Mathematical Theory of Elasticity
– volume: 10
  start-page: 191
  year: 2014
  end-page: 197
  ident: CR24
  article-title: Deflection prediction of a cantilever beam subjected to static co-planar loading by analytical methods
  publication-title: HBRC J.
  doi: 10.1016/j.hbrcj.2013.11.003
– volume: 75
  start-page: 525
  year: 2010
  end-page: 548
  ident: CR7
  article-title: Plane strain bifurcation of elastic layered structures subject to finite bending: theory versus experiments
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxq020
– volume: 46
  start-page: 177
  year: 1984
  end-page: 194
  ident: CR21
  article-title: Large deformations of in-plane beam
  publication-title: Int. J. Solids Struct.
– volume: 75
  start-page: 388
  year: 2013
  end-page: 395
  ident: CR23
  article-title: Large deflections of shear-deformable cantilever beam subject to a tip follower force
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2013.08.006
– volume: 48
  start-page: 375
  year: 1995
  end-page: 387
  ident: CR6
  article-title: On deformations with constant modified stretches describing the bending of rectangular blocks
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/48.3.375
– volume: 10
  start-page: 577
  year: 2005
  end-page: 601
  ident: CR15
  article-title: Crack propagation in finite elastodynamics
  publication-title: Math. Mech. Solids
  doi: 10.1177/1081286505036421
– volume: 48
  start-page: 370
  year: 1997
  end-page: 388
  ident: CR26
  article-title: The singular equilibrium field at the notch-tip of a compressible material in finite elastostatics
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s000330050039
– year: 1962
  ident: CR17
  publication-title: Flexible Bars
– volume: 97
  start-page: 52
  year: 2019
  end-page: 56
  ident: CR8
  article-title: Bending device and anticlastic surface measurement of solids under large deformations and displacements
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2019.04.011
– volume: 114
  start-page: 225
  year: 2014
  end-page: 250
  ident: CR10
  article-title: Equilibrium paths of a hyperelastic body under progressive damage
  publication-title: J. Elast.
  doi: 10.1007/s10659-013-9439-0
– volume: 5
  start-page: 466
  year: 1954
  end-page: 489
  ident: CR3
  article-title: Deformations possible in every isotropic, incompressible, perfectly elastic body
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF01601214
– volume: 60
  start-page: 9
  year: 2014
  end-page: 22
  ident: CR11
  article-title: Damaged hyperelastic membranes
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2013.12.001
– volume: 46
  start-page: 177
  year: 1984
  end-page: 194
  ident: CR20
  article-title: Extended variational formulations and F.E. model for nonlinear beams under nonconservative loading
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(84)90060-4
– volume: 66
  start-page: 171
  year: 2015
  end-page: 190
  ident: CR12
  article-title: Equilibrium configurations and stability of a damaged body under uniaxial tractions
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-014-0397-6
– volume: 84
  start-page: 94
  year: 2016
  end-page: 104
  ident: CR13
  article-title: A simple nonlinear model to simulate the localized necking and neck propagation
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2016.04.008
– volume: 51
  start-page: 179
  year: 1998
  end-page: 190
  ident: CR27
  article-title: On extreme thinning at the notch-tip of a neo-Hookean sheet
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/51.2.179
– volume: 28
  start-page: 863
  year: 2012
  end-page: 869
  ident: CR22
  article-title: Large deflections of non-prismatic nonlinearly elastic cantilever beams subjected to non-uniform continuous load and a concentrated load at the free end
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-012-0053-3
– volume: 473
  year: 2017
  ident: CR25
  article-title: From the elastic compass to the elastica catapult: an essay on the mechanics of soft robot arm
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.2016.0870
– volume: 48
  start-page: 370
  year: 1997
  ident: 9746_CR26
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s000330050039
– volume: 46
  start-page: 177
  year: 1984
  ident: 9746_CR21
  publication-title: Int. J. Solids Struct.
– ident: 9746_CR14
  doi: 10.1007/s10659-019-09731-1
– volume: 10
  start-page: 577
  year: 2005
  ident: 9746_CR15
  publication-title: Math. Mech. Solids
  doi: 10.1177/1081286505036421
– volume: 28
  start-page: 863
  year: 2012
  ident: 9746_CR22
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-012-0053-3
– volume: 75
  start-page: 388
  year: 2013
  ident: 9746_CR23
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2013.08.006
– volume: 84
  start-page: 94
  year: 2016
  ident: 9746_CR13
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2016.04.008
– volume: 8
  start-page: 1051
  year: 1972
  ident: 9746_CR19
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(72)90069-8
– volume: 66
  start-page: 171
  year: 2015
  ident: 9746_CR12
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-014-0397-6
– volume: 97
  start-page: 52
  year: 2019
  ident: 9746_CR8
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2019.04.011
– volume: 195
  start-page: 463
  year: 1949
  ident: 9746_CR2
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1949.0004
– volume: 10
  start-page: 191
  year: 2014
  ident: 9746_CR24
  publication-title: HBRC J.
  doi: 10.1016/j.hbrcj.2013.11.003
– volume: 48
  start-page: 375
  year: 1995
  ident: 9746_CR6
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/48.3.375
– volume: 60
  start-page: 9
  year: 2014
  ident: 9746_CR11
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2013.12.001
– volume: 46
  start-page: 177
  year: 1984
  ident: 9746_CR20
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(84)90060-4
– volume: 51
  start-page: 179
  year: 1998
  ident: 9746_CR27
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/51.2.179
– volume-title: Flexible Bars
  year: 1962
  ident: 9746_CR17
– volume-title: The Bending Theory of Fully Nonlinear Beams
  year: 2019
  ident: 9746_CR9
  doi: 10.1007/978-3-030-14676-4
– volume: 114
  start-page: 225
  year: 2014
  ident: 9746_CR10
  publication-title: J. Elast.
  doi: 10.1007/s10659-013-9439-0
– volume: 21
  start-page: 148
  year: 1968
  ident: 9746_CR4
  publication-title: Q. J. Mech. Appl. Math.
– volume: 473
  year: 2017
  ident: 9746_CR25
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.2016.0870
– volume: 114
  start-page: 195
  year: 1991
  ident: 9746_CR5
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00385969
– volume: 5
  start-page: 466
  year: 1954
  ident: 9746_CR3
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF01601214
– volume: 3
  start-page: 219
  year: 1961
  ident: 9746_CR18
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/0020-7403(61)90005-4
– volume: 75
  start-page: 525
  year: 2010
  ident: 9746_CR7
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxq020
– volume: 131
  start-page: 137
  year: 2018
  ident: 9746_CR1
  publication-title: J. Elast.
  doi: 10.1007/s10659-017-9649-y
– volume-title: A Treatise on the Mathematical Theory of Elasticity
  year: 1927
  ident: 9746_CR16
SSID ssj0009840
Score 2.3672903
Snippet In this paper the analysis for the anticlastic bending under constant curvature of nonlinear solids and beams, presented by Lanzoni, Tarantino (J. Elast....
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 91
SubjectTerms Automotive Engineering
Classical Mechanics
Physics
Physics and Astronomy
Title The Bending of Beams in Finite Elasticity
URI https://link.springer.com/article/10.1007/s10659-019-09746-8
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60RdCDj6pYH2UPXkQX0iT7yLFKa1H0ZKGeQnazgYKmYuLBf-_sdmtbkIK3QCYhfJvZ-T52HgCXSNoCrYsu1YlAgWICQbNCK1oI_OxCBEXipig8PfPhKH4Ys7EvCqvm2e7zI0m3Uy8Vu3Fmc3tsio-IOZWb0GSo3a07jsLeotWudGWQtrEKjVjEfKnM3-9YDUerZ6EuxAz2YddzQ9KbLeYBbJiyBXueJxLvhVULdpaaCLZgyyVx6uoQrnDNya1xdSpkWuBl9l6RSUkGE8ssSR-Zsk2irr-PYDTov9wNqR-FQHUkwpqaJEdHC1Uu45xxneVCiEwmwmhhcOtUNu6GiUHnY8jYeBQUmTa5QP0ZxwpVS3QMjXJamhMgHOHHGyrjKIV0pBLJjQhUhMRBSSa7bejOEUm17xNux1W8pYsOxxbFFFFMHYqpbMP17zMfsy4Za61v5kCn3mOqNean_zM_g-3QamKXXXMOjfrzy1wgcahVB5q9-9fHfsf9Lz9KVLcm
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60IurBR1Wszz14EV1I89jdHKu0VG17aqG3kN1soKCtmHjw3zu73dgWpOAtkEkIs5mdb9hvvgG4RdDmKZU3qYo5Fija4zTNlaQ5x8_OuZfHdopCf8C6o_BlHI1dU1hRsd2rI0m7Uy81u7HIcHsMxYeHjIpN2EIwIMzcgpHfWkjtCtsGaYRVaBAFkWuV-fsdq-lo9SzUppjOIew7bEha88U8gg09rcOBw4nERWFRh70lEcE6bFsSpyqO4Q7XnDxq26dCZjlepu8FmUxJZ2KQJWkjUjYk6vL7BEad9vCpS90oBKoC7pdUxxkGmi8zEWYRU2nGOU9FzLXiGrdOafKuH2sMvggRGwu8PFU641h_hqHEqiU4hdp0NtVnQBi6H2_IlGEppAIZC6a5JwMEDlJEotmAZuWRRDmdcDOu4i1ZKBwbLyboxcR6MRENuP995mOukrHW-qFydOIiplhjfv4_8xvY6Q77vaT3PHi9gF3f1MeWaXMJtfLzS18hiCjltf1nfgBPdbiF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60oujBR1Wszxy8iIbuO9lj1Zb6Kh4s9LZssgkUdFvc9eC_d5JubQtS8Lawk2WZyWS-ITPfAFwiaHOk1C6VMcMERTmMploKqhn-tmaOju0UhZde1O0Hj4NwMNfFb6vdp1eSk54Gw9KUl81xpptzjW9RaOp8TLkPCyLKV2ENj2PX7PS-15rR7nLbEmlIVqgf-mHVNvP3NxZD0-K9qA03nV3YrnAiaU0MuwcrKq_DToUZSeWRRR225ggF67BuCzplsQ9XaH9yq2zPChlpfEw_CjLMSWdoUCZpI2o2BdXl9wH0O-23uy6txiJQ6TOvpCrO0Ok8kfEgCyOZZoyxlMdMSabwGBUmBnuxQkcMEb1FvqNTqTKGuWgQCMxg_EOo5aNcHQGJ0BT4QqQRpkXSFzGPFHOEjyBC8JC7DXCnGklkxRluRle8JzO2Y6PFBLWYWC0mvAHXv2vGE8aMpdI3U0UnlfcUS8SP_yd-ARuv953k-aH3dAKbnkmVbdHNKdTKzy91hniiFOd2y_wAmZm8wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Bending+of+Beams+in+Finite+Elasticity&rft.jtitle=Journal+of+elasticity&rft.au=Lanzoni%2C+Luca&rft.au=Tarantino%2C+Angelo+Marcello&rft.date=2020-04-01&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=139&rft.issue=1&rft.spage=91&rft.epage=121&rft_id=info:doi/10.1007%2Fs10659-019-09746-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10659_019_09746_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon