Co-axial silicon/perovskite heterojunction arrays for high-performance direct-conversion pixelated X-ray detectors
Creating monolithic silicon/perovskite structures is a promising approach to engage emerging perovskite materials with silicon circuitry, which is essential to achieve industry-scale applications such as high performance X-ray detection. In particular, to achieve pixelated perovskite is a key step t...
Saved in:
Published in | Nano energy Vol. 78; p. 105335 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Creating monolithic silicon/perovskite structures is a promising approach to engage emerging perovskite materials with silicon circuitry, which is essential to achieve industry-scale applications such as high performance X-ray detection. In particular, to achieve pixelated perovskite is a key step to address the issue of electrical crosstalk and low spatial resolution in imaging caused by inefficient migration and collection of carriers in the direction of signal collection. However, with the existing top-down methods, the thickness of patterned perovskite is limited to be in submicron level, which is far from highly efficient absorption of X-ray energy, further compromising the detection sensitivity. Here, we successfully demonstrate 3D hybrid perovskite crystal arrays with the thickness of ~300 μm on pixelated silicon substrate (forming co-axial silicon/perovskite heterojunction arrays) by melting PbBr2 and in situ chemical vapor conversion. Both morphological and optical properties of the resulting heterojunction arrays are systematically investigated. Furthermore, we demonstrate a high performance direct-conversion flat panel X-ray detector which exhibits high sensitivity of 242 μC Gyair−1 cm−2 that is much higher than the commercially available α-Se, and fast response speed (rising and falling time are 0.5 ms and 1.3 ms, respectively). The proposed strategy addresses the trade-off problem between the high sensitivity (requiring ~ mm-thickness perovskite crystal) and high spatial resolution (patterning of perovskite crystal) to achieve high-performance X-ray detection. This work not only offers a new pathway to fabricate pixelated μm-thick perovskite-based X-ray detectors, but also impacts on the application and functionalization of perovskite materials in silicon circuitry.
[Display omitted]
•The demonstration of high sensitivity (242 μC Gyair−1 cm−2) X-ray detector with fast response speed (~0.5 ms).•The demonstration of Si/perovskite detector for high-resolution X-ray imaging.•The addressing of the trade-off problem between the high sensitivity and high spatial resolution.•The demonstration of a new pathway (in situ synthesis) to fabricate pixelated μm-thick perovskite-based X-ray detectors. |
---|---|
AbstractList | Creating monolithic silicon/perovskite structures is a promising approach to engage emerging perovskite materials with silicon circuitry, which is essential to achieve industry-scale applications such as high performance X-ray detection. In particular, to achieve pixelated perovskite is a key step to address the issue of electrical crosstalk and low spatial resolution in imaging caused by inefficient migration and collection of carriers in the direction of signal collection. However, with the existing top-down methods, the thickness of patterned perovskite is limited to be in submicron level, which is far from highly efficient absorption of X-ray energy, further compromising the detection sensitivity. Here, we successfully demonstrate 3D hybrid perovskite crystal arrays with the thickness of ~300 μm on pixelated silicon substrate (forming co-axial silicon/perovskite heterojunction arrays) by melting PbBr2 and in situ chemical vapor conversion. Both morphological and optical properties of the resulting heterojunction arrays are systematically investigated. Furthermore, we demonstrate a high performance direct-conversion flat panel X-ray detector which exhibits high sensitivity of 242 μC Gyair−1 cm−2 that is much higher than the commercially available α-Se, and fast response speed (rising and falling time are 0.5 ms and 1.3 ms, respectively). The proposed strategy addresses the trade-off problem between the high sensitivity (requiring ~ mm-thickness perovskite crystal) and high spatial resolution (patterning of perovskite crystal) to achieve high-performance X-ray detection. This work not only offers a new pathway to fabricate pixelated μm-thick perovskite-based X-ray detectors, but also impacts on the application and functionalization of perovskite materials in silicon circuitry.
[Display omitted]
•The demonstration of high sensitivity (242 μC Gyair−1 cm−2) X-ray detector with fast response speed (~0.5 ms).•The demonstration of Si/perovskite detector for high-resolution X-ray imaging.•The addressing of the trade-off problem between the high sensitivity and high spatial resolution.•The demonstration of a new pathway (in situ synthesis) to fabricate pixelated μm-thick perovskite-based X-ray detectors. |
ArticleNumber | 105335 |
Author | Du, Bi Wei, Lei Li, Wenjie Tao, Guangming Tian, Shukai Yang, Chunlei Ge, Yongshuai He, Ke Wang, Zongpeng Cheng, Guanming Chen, Ming Wang, Zhixun Ning, De Sui, Fan Wang, Zhongguo |
Author_xml | – sequence: 1 givenname: Shukai surname: Tian fullname: Tian, Shukai organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China – sequence: 2 givenname: Fan surname: Sui fullname: Sui, Fan email: fan.sui@siat.ac.cn organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China – sequence: 3 givenname: Ke surname: He fullname: He, Ke organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China – sequence: 4 givenname: Guanming surname: Cheng fullname: Cheng, Guanming organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China – sequence: 5 givenname: Yongshuai surname: Ge fullname: Ge, Yongshuai organization: Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China – sequence: 6 givenname: De surname: Ning fullname: Ning, De organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China – sequence: 7 givenname: Zhongguo surname: Wang fullname: Wang, Zhongguo organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China – sequence: 8 givenname: Zhixun surname: Wang fullname: Wang, Zhixun organization: School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore – sequence: 9 givenname: Guangming surname: Tao fullname: Tao, Guangming organization: Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China – sequence: 10 givenname: Zongpeng surname: Wang fullname: Wang, Zongpeng organization: Shenzhen Angell Technology Co. Ltd., Shenzhen, 518057, People's Republic of China – sequence: 11 givenname: Bi surname: Du fullname: Du, Bi organization: Shenzhen Angell Technology Co. Ltd., Shenzhen, 518057, People's Republic of China – sequence: 12 givenname: Lei surname: Wei fullname: Wei, Lei organization: School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore – sequence: 13 givenname: Wenjie surname: Li fullname: Li, Wenjie organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China – sequence: 14 givenname: Chunlei surname: Yang fullname: Yang, Chunlei email: cl.yang@siat.ac.cn organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China – sequence: 15 givenname: Ming surname: Chen fullname: Chen, Ming email: ming.chen2@siat.ac.cn organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China |
BookMark | eNqFkMtKAzEUhrOoYNW-gYu8QNpJZjIXF4IUb1Bwo-AuZDInNuM0KUks7dubYVy50HAgOYfz_ZDvAs2ss4DQNc2WNKPlql9aaR3YJcvYOOJ5zmdozhilhNWcn6NFCH2WTslpRdkc-bUj8mjkgIMZjHJ2tQfvDuHTRMBbiKnpv6yKxlksvZengLXzeGs-tiRtpvdOWgW4Mx5UJCngAD6M23tzhEFG6PA7SRzuUpiKzocrdKblEGDxc1-it4f71_UT2bw8Pq_vNkTlFYsEGlVT1YAu26YrZNbmZakrlbOqST3XOUBJJZOFLJuCK17IOlWngdetzto6v0TFlKu8C8GDFntvdtKfBM3EqEv0YtIlRl1i0pWwm1-YMlGOAqKXZvgPvp1gSB87GPAiKANJ0ORHdM78HfANmJuQYg |
CitedBy_id | crossref_primary_10_1007_s40820_024_01393_6 crossref_primary_10_1109_TED_2022_3193876 crossref_primary_10_1002_adfm_202401017 crossref_primary_10_1002_ange_202315817 crossref_primary_10_3389_fphy_2021_752476 crossref_primary_10_1002_admt_202300714 crossref_primary_10_1063_5_0127816 crossref_primary_10_1002_adom_202101607 crossref_primary_10_1016_j_xcrp_2023_101723 crossref_primary_10_1002_eom2_12258 crossref_primary_10_1016_j_cej_2024_153077 crossref_primary_10_1016_j_nima_2024_169372 crossref_primary_10_1016_j_matt_2020_11_015 crossref_primary_10_1021_acsami_4c06863 crossref_primary_10_1021_acsnano_3c10116 crossref_primary_10_1038_s41566_021_00909_5 crossref_primary_10_1021_acs_chemrev_2c00404 crossref_primary_10_1109_JEDS_2024_3365732 crossref_primary_10_1126_sciadv_adh2255 crossref_primary_10_1002_anie_202315817 crossref_primary_10_1002_smll_202401624 crossref_primary_10_1021_acsenergylett_0c02430 crossref_primary_10_1002_adma_202106562 crossref_primary_10_1021_acs_jpclett_4c00165 crossref_primary_10_1021_acsami_3c11409 crossref_primary_10_1002_advs_202205536 crossref_primary_10_1021_acsnano_2c01074 crossref_primary_10_1002_advs_202302236 crossref_primary_10_1002_lpor_202400470 crossref_primary_10_1016_j_cej_2024_151908 |
Cites_doi | 10.1088/1674-4926/41/5/051205 10.1021/acs.jpclett.5b02558 10.1038/nmat4271 10.1039/C7EE01666B 10.1109/23.682433 10.1002/pssb.200304296 10.1038/nature12340 10.1021/acsnano.8b09592 10.1016/S0022-0248(97)00808-7 10.1016/S0168-9002(00)00857-3 10.1002/adma.201402271 10.1118/1.597471 10.1109/JPHOTOV.2015.2416913 10.1126/science.1245473 10.1109/TNS.1974.4327475 10.1063/1.1659173 10.1002/adma.201600669 10.1109/TNS.2007.914034 10.1002/inf2.12012 10.1038/ncomms6404 10.1109/TNS.2004.829437 10.1016/j.nima.2007.01.172 10.1038/nphoton.2015.156 10.1063/1.1436298 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2020.105335 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2020_105335 S2211285520309125 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC BNPGV EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSH SSM SSR SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c372t-e9c81c9ef6b9d4a0b366f7c32799d45f3ee61a2a4a6945c54a84a8dfe58bf0b83 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 22:55:15 EDT 2025 Tue Jul 01 00:56:41 EDT 2025 Sun Apr 06 06:54:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | X-ray detector Organometallic perovskite Co-axial heterostructure Monolithic integration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-e9c81c9ef6b9d4a0b366f7c32799d45f3ee61a2a4a6945c54a84a8dfe58bf0b83 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2020_105335 crossref_citationtrail_10_1016_j_nanoen_2020_105335 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Alias, Yang, Ng, Dursun, Shi, Saidaminov, Priante, Bakr, Ooi (bib25) 2016; 7 Kim, Park, Kang, Cha, Cho, Shin, Son, Nam (bib2) 2007; 576 Zeman, DiBianca, Lovhoiden (bib3) 1995 Shah, Street, Dmitriyev, Bennett, Cirignano, Klugerman, Squillante, Entine (bib11) 2001; 458 Eisen, Shor (bib8) 1998; 184 Eisen, Shor, Mardor (bib6) 2004; 51 Fang, Dong, Shao, Yuan, Huang (bib18) 2015; 9 Alias, Dursun, Shi, Saidaminov, Diallo, Priante, Ng, Bakr, Ooi (bib24) 2015; 33 Moon, Yum, Löfgren, Walter, Sansonnens, Benkhaira, Nicolay, Bailat, Ballif (bib26) 2015; 5 Cao, Cheng, Zhang, Zhang, Chen, Huang, Yan, Pei, Chen (bib22) 2020; 41 Swierkowski, Armantrout, Wichner (bib13) 1974; 21 Zhu, Fu, Meng, Wu, Gong, Ding, Gustafsson, Trinh, Jin, Zhu (bib19) 2015; 14 Zhao, Xu, Wang, Lin, Liu (bib21) 2019; 1 Nagarkar, Gupta, Miller, Klugerman, Squillante, Entine (bib1) 1998; 45 Street, Ready, Van Schuylenbergh, Ho, Boyce, Nylen, Shah, Melekhov, Hermon (bib12) 2002; 91 Dou, Yang, You, Hong, Chang, Li, Yang (bib17) 2014; 5 Donovan (bib4) 1970; 41 Veldhuis, Boix, Yantara, Li, Sum, Mathews, Mhaisalkar (bib20) 2016; 28 Harwell, Burch, Fikouras, Gather, Di Falco, Samuel (bib23) 2019; 13 Szeles (bib9) 2004; 241 Hodes (bib15) 2013; 342 Lee, Kwon, Hwang, Ra, Yoo, Ahn, Park, Cho (bib16) 2015; 27 Que, Rowlands (bib5) 1995; 22 Szeles, Soldner, Vydrin, Graves, Bale (bib7) 2008; 55 Burschka, Pellet, Moon, Humphry-Baker, Gao, Nazeeruddin, Grätzel (bib14) 2013; 499 Shah, Bennett, Dmitriyev, Cirignano, Klugerman, Squillante, Street, Rahn, Ready (bib10) 1999 Kim, Yoon, Jeong, Heo, Jang, Seo, Walker, Kim (bib27) 2017; 10 Zeman (10.1016/j.nanoen.2020.105335_bib3) 1995 Hodes (10.1016/j.nanoen.2020.105335_bib15) 2013; 342 Harwell (10.1016/j.nanoen.2020.105335_bib23) 2019; 13 Moon (10.1016/j.nanoen.2020.105335_bib26) 2015; 5 Lee (10.1016/j.nanoen.2020.105335_bib16) 2015; 27 Shah (10.1016/j.nanoen.2020.105335_bib10) 1999 Cao (10.1016/j.nanoen.2020.105335_bib22) 2020; 41 Que (10.1016/j.nanoen.2020.105335_bib5) 1995; 22 Dou (10.1016/j.nanoen.2020.105335_bib17) 2014; 5 Kim (10.1016/j.nanoen.2020.105335_bib2) 2007; 576 Swierkowski (10.1016/j.nanoen.2020.105335_bib13) 1974; 21 Veldhuis (10.1016/j.nanoen.2020.105335_bib20) 2016; 28 Eisen (10.1016/j.nanoen.2020.105335_bib8) 1998; 184 Burschka (10.1016/j.nanoen.2020.105335_bib14) 2013; 499 Nagarkar (10.1016/j.nanoen.2020.105335_bib1) 1998; 45 Donovan (10.1016/j.nanoen.2020.105335_bib4) 1970; 41 Fang (10.1016/j.nanoen.2020.105335_bib18) 2015; 9 Alias (10.1016/j.nanoen.2020.105335_bib24) 2015; 33 Eisen (10.1016/j.nanoen.2020.105335_bib6) 2004; 51 Szeles (10.1016/j.nanoen.2020.105335_bib9) 2004; 241 Shah (10.1016/j.nanoen.2020.105335_bib11) 2001; 458 Zhu (10.1016/j.nanoen.2020.105335_bib19) 2015; 14 Szeles (10.1016/j.nanoen.2020.105335_bib7) 2008; 55 Kim (10.1016/j.nanoen.2020.105335_bib27) 2017; 10 Street (10.1016/j.nanoen.2020.105335_bib12) 2002; 91 Alias (10.1016/j.nanoen.2020.105335_bib25) 2016; 7 Zhao (10.1016/j.nanoen.2020.105335_bib21) 2019; 1 |
References_xml | – volume: 14 start-page: 636 year: 2015 end-page: 642 ident: bib19 article-title: Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors publication-title: Nat. Mater. – volume: 45 start-page: 492 year: 1998 end-page: 496 ident: bib1 article-title: Structured CsI (Tl) scintillators for X-ray imaging applications publication-title: IEEE Trans. Nucl. Sci. – volume: 9 start-page: 679 year: 2015 ident: bib18 article-title: Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination publication-title: Nat. Photon. – volume: 27 start-page: 41 year: 2015 end-page: 46 ident: bib16 article-title: High‐performance perovskite–graphene hybrid photodetector publication-title: Adv. Mater. – volume: 184 start-page: 1302 year: 1998 end-page: 1312 ident: bib8 article-title: CdTe and CdZnTe materials for room-temperature X-ray and gamma ray detectors publication-title: J. Cryst. Growth – volume: 13 start-page: 3823 year: 2019 end-page: 3829 ident: bib23 article-title: Patterning multicolor hybrid perovskite films via top-down lithography publication-title: ACS Nano – volume: 28 start-page: 6804 year: 2016 end-page: 6834 ident: bib20 article-title: Perovskite materials for light‐emitting diodes and lasers publication-title: Adv. Mater. – volume: 41 year: 2020 ident: bib22 article-title: The application of halide perovskites in memristors publication-title: J. Semiconduct. – volume: 576 start-page: 70 year: 2007 end-page: 74 ident: bib2 article-title: Investigation of the imaging characteristics of the Gd2O3: Eu nanophosphor for high-resolution digital X-ray imaging system publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. – volume: 499 start-page: 316 year: 2013 end-page: 319 ident: bib14 article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells publication-title: Nature – volume: 5 start-page: 1 year: 2014 end-page: 6 ident: bib17 article-title: Solution-processed hybrid perovskite photodetectors with high detectivity publication-title: Nat. Commun. – volume: 1 start-page: 183 year: 2019 end-page: 210 ident: bib21 article-title: Memristors with organic‐inorganic halide perovskites publication-title: InfoMat – volume: 5 start-page: 1087 year: 2015 end-page: 1092 ident: bib26 article-title: Laser-scribing patterning for the production of organometallic halide perovskite solar modules publication-title: IEEE.J.Photovoltaics – start-page: 454 year: 1995 end-page: 461 ident: bib3 article-title: In high-resolution x-ray imaging with a Gd2O3 (Eu) transparent ceramic scintillator, medical imaging 1995: physics of medical imaging publication-title: Int.Soc. Optic Photon. – volume: 458 start-page: 140 year: 2001 end-page: 147 ident: bib11 article-title: X-ray imaging with PbI2-based a-Si: H flat panel detectors publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. – volume: 241 start-page: 783 year: 2004 end-page: 790 ident: bib9 article-title: CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications publication-title: physica status solidi (b) – volume: 33 year: 2015 ident: bib24 article-title: Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications publication-title: J. Vac. Sci. Technol., B.Nanotechnol.Microelectron.: Mater.Process.Meas.Phenom. – start-page: 164 year: 1999 end-page: 171 ident: bib10 article-title: In PbI2 for high-resolution digital x-ray imaging, Medical Applications of Penetrating Radiation publication-title: Int.Soc. Optic Photon. – volume: 21 start-page: 302 year: 1974 end-page: 304 ident: bib13 article-title: Recent advances with HgI2 X-ray detectors publication-title: IEEE Trans. Nucl. Sci. – volume: 7 start-page: 137 year: 2016 end-page: 142 ident: bib25 article-title: Enhanced etching, surface damage recovery, and submicron patterning of hybrid perovskites using a chemically gas-assisted focused-ion beam for subwavelength grating photonic applications publication-title: J. Phys. Chem. Lett. – volume: 51 start-page: 1191 year: 2004 end-page: 1198 ident: bib6 article-title: CdTe and CdZnTe X-ray and gamma-ray detectors for imaging systems publication-title: IEEE Trans. Nucl. Sci. – volume: 55 start-page: 572 year: 2008 end-page: 582 ident: bib7 article-title: CdZnTe semiconductor detectors for spectroscopic x-ray imaging publication-title: IEEE Trans. Nucl. Sci. – volume: 91 start-page: 3345 year: 2002 end-page: 3355 ident: bib12 article-title: Comparison of PbI 2 and HgI 2 for direct detection active matrix x-ray image sensors publication-title: J. Appl. Phys. – volume: 22 start-page: 365 year: 1995 end-page: 374 ident: bib5 article-title: X‐ray imaging using amorphous selenium: inherent spatial resolution publication-title: Med. Phys. – volume: 342 start-page: 317 year: 2013 end-page: 318 ident: bib15 article-title: Perovskite-based solar cells publication-title: Science – volume: 41 start-page: 2109 year: 1970 end-page: 2114 ident: bib4 article-title: Xeroradiographic properties of amorphous selenium publication-title: J. Appl. Phys. – volume: 10 start-page: 1950 year: 2017 end-page: 1957 ident: bib27 article-title: Peroptronic devices: perovskite-based light-emitting solar cells publication-title: Energy Environ. Sci. – volume: 41 issue: 5 year: 2020 ident: 10.1016/j.nanoen.2020.105335_bib22 article-title: The application of halide perovskites in memristors publication-title: J. Semiconduct. doi: 10.1088/1674-4926/41/5/051205 – volume: 7 start-page: 137 issue: 1 year: 2016 ident: 10.1016/j.nanoen.2020.105335_bib25 article-title: Enhanced etching, surface damage recovery, and submicron patterning of hybrid perovskites using a chemically gas-assisted focused-ion beam for subwavelength grating photonic applications publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02558 – start-page: 164 year: 1999 ident: 10.1016/j.nanoen.2020.105335_bib10 article-title: In PbI2 for high-resolution digital x-ray imaging, Medical Applications of Penetrating Radiation publication-title: Int.Soc. Optic Photon. – volume: 14 start-page: 636 issue: 6 year: 2015 ident: 10.1016/j.nanoen.2020.105335_bib19 article-title: Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors publication-title: Nat. Mater. doi: 10.1038/nmat4271 – start-page: 454 year: 1995 ident: 10.1016/j.nanoen.2020.105335_bib3 article-title: In high-resolution x-ray imaging with a Gd2O3 (Eu) transparent ceramic scintillator, medical imaging 1995: physics of medical imaging publication-title: Int.Soc. Optic Photon. – volume: 10 start-page: 1950 issue: 9 year: 2017 ident: 10.1016/j.nanoen.2020.105335_bib27 article-title: Peroptronic devices: perovskite-based light-emitting solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01666B – volume: 45 start-page: 492 issue: 3 year: 1998 ident: 10.1016/j.nanoen.2020.105335_bib1 article-title: Structured CsI (Tl) scintillators for X-ray imaging applications publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/23.682433 – volume: 241 start-page: 783 issue: 3 year: 2004 ident: 10.1016/j.nanoen.2020.105335_bib9 article-title: CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications publication-title: physica status solidi (b) doi: 10.1002/pssb.200304296 – volume: 499 start-page: 316 issue: 7458 year: 2013 ident: 10.1016/j.nanoen.2020.105335_bib14 article-title: Sequential deposition as a route to high-performance perovskite-sensitized solar cells publication-title: Nature doi: 10.1038/nature12340 – volume: 13 start-page: 3823 issue: 4 year: 2019 ident: 10.1016/j.nanoen.2020.105335_bib23 article-title: Patterning multicolor hybrid perovskite films via top-down lithography publication-title: ACS Nano doi: 10.1021/acsnano.8b09592 – volume: 184 start-page: 1302 year: 1998 ident: 10.1016/j.nanoen.2020.105335_bib8 article-title: CdTe and CdZnTe materials for room-temperature X-ray and gamma ray detectors publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(97)00808-7 – volume: 458 start-page: 140 issue: 1–2 year: 2001 ident: 10.1016/j.nanoen.2020.105335_bib11 article-title: X-ray imaging with PbI2-based a-Si: H flat panel detectors publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. doi: 10.1016/S0168-9002(00)00857-3 – volume: 27 start-page: 41 issue: 1 year: 2015 ident: 10.1016/j.nanoen.2020.105335_bib16 article-title: High‐performance perovskite–graphene hybrid photodetector publication-title: Adv. Mater. doi: 10.1002/adma.201402271 – volume: 22 start-page: 365 issue: 4 year: 1995 ident: 10.1016/j.nanoen.2020.105335_bib5 article-title: X‐ray imaging using amorphous selenium: inherent spatial resolution publication-title: Med. Phys. doi: 10.1118/1.597471 – volume: 5 start-page: 1087 issue: 4 year: 2015 ident: 10.1016/j.nanoen.2020.105335_bib26 article-title: Laser-scribing patterning for the production of organometallic halide perovskite solar modules publication-title: IEEE.J.Photovoltaics doi: 10.1109/JPHOTOV.2015.2416913 – volume: 33 issue: 5 year: 2015 ident: 10.1016/j.nanoen.2020.105335_bib24 article-title: Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications publication-title: J. Vac. Sci. Technol., B.Nanotechnol.Microelectron.: Mater.Process.Meas.Phenom. – volume: 342 start-page: 317 issue: 6156 year: 2013 ident: 10.1016/j.nanoen.2020.105335_bib15 article-title: Perovskite-based solar cells publication-title: Science doi: 10.1126/science.1245473 – volume: 21 start-page: 302 issue: 1 year: 1974 ident: 10.1016/j.nanoen.2020.105335_bib13 article-title: Recent advances with HgI2 X-ray detectors publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.1974.4327475 – volume: 41 start-page: 2109 issue: 5 year: 1970 ident: 10.1016/j.nanoen.2020.105335_bib4 article-title: Xeroradiographic properties of amorphous selenium publication-title: J. Appl. Phys. doi: 10.1063/1.1659173 – volume: 28 start-page: 6804 issue: 32 year: 2016 ident: 10.1016/j.nanoen.2020.105335_bib20 article-title: Perovskite materials for light‐emitting diodes and lasers publication-title: Adv. Mater. doi: 10.1002/adma.201600669 – volume: 55 start-page: 572 issue: 1 year: 2008 ident: 10.1016/j.nanoen.2020.105335_bib7 article-title: CdZnTe semiconductor detectors for spectroscopic x-ray imaging publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2007.914034 – volume: 1 start-page: 183 issue: 2 year: 2019 ident: 10.1016/j.nanoen.2020.105335_bib21 article-title: Memristors with organic‐inorganic halide perovskites publication-title: InfoMat doi: 10.1002/inf2.12012 – volume: 5 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.nanoen.2020.105335_bib17 article-title: Solution-processed hybrid perovskite photodetectors with high detectivity publication-title: Nat. Commun. doi: 10.1038/ncomms6404 – volume: 51 start-page: 1191 issue: 3 year: 2004 ident: 10.1016/j.nanoen.2020.105335_bib6 article-title: CdTe and CdZnTe X-ray and gamma-ray detectors for imaging systems publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2004.829437 – volume: 576 start-page: 70 issue: 1 year: 2007 ident: 10.1016/j.nanoen.2020.105335_bib2 article-title: Investigation of the imaging characteristics of the Gd2O3: Eu nanophosphor for high-resolution digital X-ray imaging system publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. doi: 10.1016/j.nima.2007.01.172 – volume: 9 start-page: 679 issue: 10 year: 2015 ident: 10.1016/j.nanoen.2020.105335_bib18 article-title: Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.156 – volume: 91 start-page: 3345 issue: 5 year: 2002 ident: 10.1016/j.nanoen.2020.105335_bib12 article-title: Comparison of PbI 2 and HgI 2 for direct detection active matrix x-ray image sensors publication-title: J. Appl. Phys. doi: 10.1063/1.1436298 |
SSID | ssj0000651712 |
Score | 2.433952 |
Snippet | Creating monolithic silicon/perovskite structures is a promising approach to engage emerging perovskite materials with silicon circuitry, which is essential to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105335 |
SubjectTerms | Co-axial heterostructure Monolithic integration Organometallic perovskite X-ray detector |
Title | Co-axial silicon/perovskite heterojunction arrays for high-performance direct-conversion pixelated X-ray detectors |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.105335 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvQgPvFNDl5jbZsmzVEWZVXYiwp7K2mS4i7SXbZV1ou_3Zm01RVEQeglTQbKzDAznXwzQ8iZlVyDJ3JMC20Yt0oznYuQWRkWOjVgNo1H-Q7F4JHfjpLRCul3tTAIq2xtf2PTvbVu3wQtN4PZeBzcR_DvEqVJEuEtAfhprGDnErX8_D38zLOAiw2lv_TE8wwJugo6D_MqdTl12Ag18jNvYz_37QcPteR1rjfJRhsu0svmi7bIiiu3yfpSE8EdMu9PmV6AGtFq_AxyLQPs_f1aYVqWPiHaZToB54UCoHo-128VhUCVYp9iNvsqG6ANI5iHofscGp2NFwiVc5aOGNBR62qf4692yeP11UN_wNpJCszEMqqZUyYNjXKFyJUF4eSxEIU0cSQVrJMidk6EOtJcC8UTk3CdwmMLl6R5cZGn8R7pldPS7RPKTWGkscqoQnDYVxZjIGdCiJxil0QHJO64l5m2zThOu3jOOjzZJGt4niHPs4bnB4R9Us2aNht_nJedYLJv6pKBJ_iV8vDflEdkDVcNluWY9Or5izuBiKTOT73KnZLVy5u7wfADUnDjmg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4t9AAcqvISFFp8gKNZ4jhOfOBQ8dDCApcu0t6CYztiEcquNkvZvfRP8Qc7dhLYSlUrVULKJbEnsj6PZsb25xmAfRNzhZ7IUiWUptxIRVUmAmriIFeJRrOpPcv3RnRu-WU_6rfgpbkL42iVte2vbLq31vWXdo1mezQYtL8zXLuwJIqYOyVAP10zK7t29ozrtvL44hQn-YCx87PeSYfWpQWoDmM2oVbqJNDS5iKTBkebhULksQ5ZLPE9ykNrRaCY4kpIHumIqwQfk9soyfKjLAnxvwvwgaO5cGUTDn8Grxs76NOD2J-yugFSN8Lmyp7nlRWqGFqXeZX5IruhLzT3B5c45-bOP8HHOj4l3yoIVqFlizVYmctauA7jkyFVU9RbUg4eUZGKtks2_qN0-8Dk3tFrhg_oLd2MEzUeq1lJMDImLjEyHb3dUyAV8tTz3v2mHRkNpo6bZw3pU5Qjxk78oUK5Abfvgu8mLBbDwm4B4TrXsTZSy1xwbJfGBV1WBxiqhTZi2xA26KW6zmvuyms8pg2B7SGtME8d5mmF-TbQV6lRldfjH_3jZmLS3_QzRdfzV8nP_y25B0ud3vVVenVx092BZddSEWl2YXEyfrJfMByaZF-9-hG4e299_wW68yBp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-axial+silicon%2Fperovskite+heterojunction+arrays+for+high-performance+direct-conversion+pixelated+X-ray+detectors&rft.jtitle=Nano+energy&rft.au=Tian%2C+Shukai&rft.au=Sui%2C+Fan&rft.au=He%2C+Ke&rft.au=Cheng%2C+Guanming&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=78&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105335&rft.externalDocID=S2211285520309125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |