Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals

[Display omitted] •TEMPO-oxidized wood cellulose fibers can be converted to diverse nanocelluloses.•Cellulose nanonetworks, nanofibers, and nanocrystals dispersed in water are obtained.•Cellulose nanofibers and nanocrystals have homogeneous widths of ∼3 nm.•Cellulose nanocrystals have needle-like mo...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in solid state & materials science Vol. 23; no. 2; pp. 101 - 106
Main Authors Isogai, Akira, Zhou, Yaxin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •TEMPO-oxidized wood cellulose fibers can be converted to diverse nanocelluloses.•Cellulose nanonetworks, nanofibers, and nanocrystals dispersed in water are obtained.•Cellulose nanofibers and nanocrystals have homogeneous widths of ∼3 nm.•Cellulose nanocrystals have needle-like morphologies with aspect ratios of ∼50.•Cellulose nanofibers have aspect ratios of > 150. When wood cellulose fibers are oxidized with NaClO and catalytic amounts of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and NaBr in water at pH 10, significant amounts of sodium carboxylate groups (≤1.7 mmol/g) are introduced into the oxidized celluloses. The original fibrous morphologies and cellulose I crystal structures are unchanged by oxidation. The TEMPO-oxidized cellulose fibers can be converted to partially fibrillated nanonetworks, completely individualized cellulose nanofibers with high aspect ratios, and needle-like cellulose nanocrystals with low aspect ratios by controlling the conditions of mechanical disintegration in water. It is therefore possible to prepare diverse nanocelluloses with different morphologies and properties from the same TEMPO-oxidized cellulose fibers, for various end uses and applications. All TEMPO-oxidized nanocelluloses contain large amounts of carboxylate groups. These provide scaffolds for versatile surface modification of nanocelluloses by simple ion exchange of sodium for other metal ions and alkylammonium ions.
AbstractList [Display omitted] •TEMPO-oxidized wood cellulose fibers can be converted to diverse nanocelluloses.•Cellulose nanonetworks, nanofibers, and nanocrystals dispersed in water are obtained.•Cellulose nanofibers and nanocrystals have homogeneous widths of ∼3 nm.•Cellulose nanocrystals have needle-like morphologies with aspect ratios of ∼50.•Cellulose nanofibers have aspect ratios of > 150. When wood cellulose fibers are oxidized with NaClO and catalytic amounts of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and NaBr in water at pH 10, significant amounts of sodium carboxylate groups (≤1.7 mmol/g) are introduced into the oxidized celluloses. The original fibrous morphologies and cellulose I crystal structures are unchanged by oxidation. The TEMPO-oxidized cellulose fibers can be converted to partially fibrillated nanonetworks, completely individualized cellulose nanofibers with high aspect ratios, and needle-like cellulose nanocrystals with low aspect ratios by controlling the conditions of mechanical disintegration in water. It is therefore possible to prepare diverse nanocelluloses with different morphologies and properties from the same TEMPO-oxidized cellulose fibers, for various end uses and applications. All TEMPO-oxidized nanocelluloses contain large amounts of carboxylate groups. These provide scaffolds for versatile surface modification of nanocelluloses by simple ion exchange of sodium for other metal ions and alkylammonium ions.
Author Isogai, Akira
Zhou, Yaxin
Author_xml – sequence: 1
  givenname: Akira
  surname: Isogai
  fullname: Isogai, Akira
  email: aisogai@mail.ecc.u-tokyo.ac.jp
– sequence: 2
  givenname: Yaxin
  surname: Zhou
  fullname: Zhou, Yaxin
BookMark eNqFkMtOwzAQRb0oEm3hD1j4A5pgJ6nrdIGESnlIhbIoa8u1x5JLGld2-uLrcQliwQJWV5qZe2fm9FCndjUgdEVJSgll16tUuRDWIc0ILVNCU0JoB3VpPiwTknF2jnohrAghBWOsi7Z3dgc-AK5l7RRU1bZyAQLeeNhIDxob79Z4MX1-nSfuYLX9iLW9cxr_DGNjlzFijF_k6ZZm7_x7GHwFtp0BlrVuF_hjaGQVLtCZiQKX39pHb_fTxeQxmc0fnia3s0Tlo6xJgBrOJdcFN6xkTI54kS25NGCGlGqjRpBTI03BJShOyiXQYR4hkEzyrFBc5X1UtLnKRygejNh4u5b-KCgRJ1xiJVpc4oRLECoirmgb_7Ip28jGurrx0lb_mW9aM8THdha8CMpCrUBbD6oR2tm_Az4BnNaQwA
CitedBy_id crossref_primary_10_1016_j_biortech_2024_130401
crossref_primary_10_1007_s10570_023_05374_7
crossref_primary_10_1016_j_ccr_2020_213482
crossref_primary_10_1016_j_cej_2025_161190
crossref_primary_10_3390_polym14204257
crossref_primary_10_1016_j_carpta_2025_100714
crossref_primary_10_1016_j_microc_2021_106393
crossref_primary_10_1016_j_jclepro_2021_128673
crossref_primary_10_1007_s10570_020_03543_6
crossref_primary_10_1016_j_apt_2023_104241
crossref_primary_10_1016_j_cej_2024_155872
crossref_primary_10_1016_j_carbpol_2022_119945
crossref_primary_10_6023_A23120542
crossref_primary_10_1021_acsapm_4c01033
crossref_primary_10_1177_08927057231205451
crossref_primary_10_3390_polym16192774
crossref_primary_10_3390_polym16071016
crossref_primary_10_1039_D3FO05219B
crossref_primary_10_1007_s10570_024_06019_z
crossref_primary_10_1016_j_progpolymsci_2021_101418
crossref_primary_10_1007_s10570_023_05215_7
crossref_primary_10_1038_s41598_021_91420_y
crossref_primary_10_1016_j_carbpol_2024_122395
crossref_primary_10_1016_j_heliyon_2025_e41646
crossref_primary_10_2139_ssrn_4194362
crossref_primary_10_1021_acs_biomac_0c00281
crossref_primary_10_1007_s10965_021_02693_w
crossref_primary_10_1016_j_aca_2024_342211
crossref_primary_10_3390_biomimetics9100624
crossref_primary_10_1007_s10570_024_05743_w
crossref_primary_10_3390_ma16083104
crossref_primary_10_3390_nano12050790
crossref_primary_10_1039_D1RA08086E
crossref_primary_10_1088_2053_1591_ab3b49
crossref_primary_10_1021_acsapm_2c00276
crossref_primary_10_3390_nano13152258
crossref_primary_10_1016_j_trac_2020_115884
crossref_primary_10_1021_acs_chemrev_2c00611
crossref_primary_10_1021_acs_biomac_0c01406
crossref_primary_10_1021_acs_biomac_4c01838
crossref_primary_10_1155_2021_5545409
crossref_primary_10_1016_j_indcrop_2022_114555
crossref_primary_10_1016_j_scitotenv_2022_156903
crossref_primary_10_3390_polym13193241
crossref_primary_10_1016_j_ijbiomac_2023_127997
crossref_primary_10_1021_acsabm_4c00213
crossref_primary_10_1016_j_ijbiomac_2024_129612
crossref_primary_10_1007_s10570_019_02849_4
crossref_primary_10_1016_j_foodhyd_2021_106771
crossref_primary_10_1016_j_measurement_2024_115499
crossref_primary_10_1016_j_carbpol_2020_116180
crossref_primary_10_1016_j_carbpol_2024_122103
crossref_primary_10_1039_D2MH01125E
crossref_primary_10_1021_acsanm_4c02590
crossref_primary_10_1016_j_cej_2024_157595
crossref_primary_10_1016_j_carbpol_2022_119406
crossref_primary_10_1002_pc_29690
crossref_primary_10_1016_j_carbpol_2021_117981
crossref_primary_10_1016_j_carbpol_2022_120129
crossref_primary_10_1016_j_ijbiomac_2023_124557
crossref_primary_10_1021_acs_iecr_2c03563
crossref_primary_10_1080_10408398_2022_2097638
crossref_primary_10_1021_acsagscitech_4c00593
crossref_primary_10_1007_s10570_022_04713_4
crossref_primary_10_1007_s10924_022_02609_9
crossref_primary_10_1016_j_ijbiomac_2022_02_151
crossref_primary_10_3389_fchem_2020_00037
crossref_primary_10_1007_s10570_024_05978_7
crossref_primary_10_1039_D2TA05277F
crossref_primary_10_1016_j_cossms_2019_100773
crossref_primary_10_1063_5_0123058
crossref_primary_10_1016_j_compscitech_2022_109725
crossref_primary_10_1002_adfm_202302785
crossref_primary_10_1016_j_compscitech_2021_108734
crossref_primary_10_1016_j_ijbiomac_2024_139409
crossref_primary_10_1016_j_carbpol_2020_116745
crossref_primary_10_1007_s11223_023_00569_6
crossref_primary_10_1016_j_lwt_2024_116563
crossref_primary_10_1016_j_carbpol_2019_115215
crossref_primary_10_1038_s41428_021_00580_1
crossref_primary_10_1002_slct_202402065
crossref_primary_10_1016_j_ijbiomac_2023_126287
crossref_primary_10_1016_j_jcis_2022_09_152
crossref_primary_10_1016_j_carbpol_2024_122362
crossref_primary_10_1016_j_nanoen_2024_110159
crossref_primary_10_1051_epjap_2025005
crossref_primary_10_2166_wst_2020_434
crossref_primary_10_1039_D2NR01967A
crossref_primary_10_1515_npprj_2024_0001
crossref_primary_10_1007_s10570_023_05662_2
crossref_primary_10_1007_s10570_024_06261_5
crossref_primary_10_1007_s10570_022_04938_3
crossref_primary_10_3390_ma15145076
crossref_primary_10_1007_s10570_023_05462_8
crossref_primary_10_1007_s10570_020_03176_9
crossref_primary_10_1016_j_carbpol_2020_115942
crossref_primary_10_1039_D2GC00393G
crossref_primary_10_1021_acsami_4c14188
crossref_primary_10_1021_acsanm_5c00293
crossref_primary_10_1002_ppsc_201900382
crossref_primary_10_1007_s10570_024_05824_w
crossref_primary_10_1016_j_jallcom_2022_165868
crossref_primary_10_3390_ma13225062
crossref_primary_10_1002_eem2_12651
crossref_primary_10_1021_acs_macromol_1c00903
crossref_primary_10_1016_j_carpta_2024_100500
crossref_primary_10_1016_j_carbpol_2023_121325
crossref_primary_10_1016_j_jconrel_2021_06_004
crossref_primary_10_1016_j_scp_2023_101399
crossref_primary_10_1021_acs_chemrev_0c01333
crossref_primary_10_1021_acssuschemeng_3c04750
crossref_primary_10_1039_D0NA00408A
crossref_primary_10_1016_j_jechem_2022_05_006
crossref_primary_10_1021_acs_jafc_0c00538
crossref_primary_10_1016_j_cej_2025_161285
crossref_primary_10_1016_j_carbpol_2023_121097
crossref_primary_10_3390_chemosensors10090352
crossref_primary_10_1007_s11356_023_25679_1
crossref_primary_10_1016_j_jcis_2023_11_132
crossref_primary_10_1016_j_ijbiomac_2023_125415
crossref_primary_10_1007_s12221_020_9859_y
crossref_primary_10_1007_s10570_023_05600_2
crossref_primary_10_1016_j_biotechadv_2021_107856
crossref_primary_10_1016_j_carbpol_2025_123516
crossref_primary_10_1021_acs_biomac_2c00234
crossref_primary_10_1021_acsomega_1c00359
crossref_primary_10_3390_nano11082077
crossref_primary_10_1021_acsomega_9b04326
crossref_primary_10_1177_20412479221122271
crossref_primary_10_1016_j_eurpolymj_2021_110789
crossref_primary_10_3390_pharmaceutics15030981
crossref_primary_10_1007_s10570_024_06262_4
crossref_primary_10_3390_f14122339
crossref_primary_10_18321_cpc22_4_343_362
crossref_primary_10_1016_j_cej_2024_152660
crossref_primary_10_1039_D3QM00856H
crossref_primary_10_1016_j_ijbiomac_2020_08_074
crossref_primary_10_1016_j_ijbiomac_2022_11_010
crossref_primary_10_1016_j_indcrop_2021_113877
crossref_primary_10_1016_j_carbpol_2022_119442
crossref_primary_10_3390_polym15030757
crossref_primary_10_1016_j_cej_2020_125070
crossref_primary_10_1007_s10570_025_06477_z
crossref_primary_10_1016_j_compscitech_2020_108005
crossref_primary_10_1016_j_indcrop_2024_118326
crossref_primary_10_1016_j_indcrop_2024_119137
crossref_primary_10_1002_adma_202000630
crossref_primary_10_1021_acssuschemeng_2c01354
crossref_primary_10_1016_j_ijbiomac_2024_135925
crossref_primary_10_1039_D1GC02657G
crossref_primary_10_3390_nano11102593
crossref_primary_10_1039_D2RA04125A
crossref_primary_10_1016_j_carpta_2024_100525
crossref_primary_10_1016_j_rechem_2022_100540
crossref_primary_10_1021_acs_nanolett_4c02223
crossref_primary_10_1007_s10570_022_04580_z
crossref_primary_10_1007_s10570_024_06201_3
crossref_primary_10_1016_j_ijbiomac_2024_135883
crossref_primary_10_1177_0021998320951602
crossref_primary_10_1007_s10853_023_08803_x
crossref_primary_10_61186_jcc_5_1_7
crossref_primary_10_1007_s10570_020_03572_1
crossref_primary_10_1007_s42765_024_00454_0
crossref_primary_10_1007_s10570_023_05241_5
crossref_primary_10_1007_s10570_025_06445_7
crossref_primary_10_1016_j_ijbiomac_2023_127054
crossref_primary_10_1016_j_mtcomm_2025_111744
crossref_primary_10_1016_j_carbpol_2022_119730
crossref_primary_10_1016_j_polymdegradstab_2024_111158
crossref_primary_10_1039_D1GC02292J
crossref_primary_10_1039_D4TA03808H
Cites_doi 10.1038/nature09540
10.1007/s10570-012-9794-1
10.1021/bm2017542
10.1039/C0NR00583E
10.1021/bm061215p
10.1021/bm100214b
10.1002/anie.201001273
10.1016/j.pbi.2004.09.008
10.1016/j.reactfunctpolym.2014.06.011
10.1007/s10570-015-0853-2
10.1016/j.eurpolymj.2007.05.038
10.1021/bm800038n
10.1021/bm900414t
10.1021/acs.biomac.7b01730
10.1021/bm1002575
10.1007/s10570-010-9484-9
10.1016/j.ijbiomac.2012.05.016
10.1021/bm0703970
10.1073/pnas.73.1.143
10.1021/acs.biomac.5b00539
10.1007/s10570-018-1675-9
10.1021/acs.biomac.5b01117
10.1016/j.compscitech.2011.07.003
10.1039/c0cs00108b
10.1007/s10570-010-9405-y
10.1023/A:1009208603673
10.1021/bm060154s
10.1016/j.progpolymsci.2018.07.007
10.1002/smll.201001715
10.1021/ar400243m
10.1002/adma.201304966
10.1021/bm0497769
10.1021/la702481v
10.1023/A:1009260511939
10.1021/acs.langmuir.7b03920
10.1007/s10570-014-0308-1
10.1039/c1sm06050c
10.1038/ncomms11515
10.1016/0008-6215(94)00343-E
10.1021/bm2008907
10.1021/cr900339w
10.1007/s10570-017-1191-3
10.1016/j.carbpol.2009.04.012
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cossms.2019.01.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EndPage 106
ExternalDocumentID 10_1016_j_cossms_2019_01_001
S1359028618301207
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-e1f88a8d48f6966a7842b8afef511dfc7e31faf48aec809be15310102a824c8c3
IEDL.DBID .~1
ISSN 1359-0286
IngestDate Thu Apr 24 22:51:42 EDT 2025
Tue Jul 01 01:27:21 EDT 2025
Fri Feb 23 02:26:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Wood cellulose
Microfibril
Nanonetwork
Nanofiber
CNC
CNF
TEMPO
Nanocrystal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-e1f88a8d48f6966a7842b8afef511dfc7e31faf48aec809be15310102a824c8c3
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_cossms_2019_01_001
crossref_citationtrail_10_1016_j_cossms_2019_01_001
elsevier_sciencedirect_doi_10_1016_j_cossms_2019_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationTitle Current opinion in solid state & materials science
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tanaka, Saito, Hondo, Isogai (b0210) 2015; 16
Pääkkö, Ankerfors, Kosonen, Nykanen, Ahola, Osterberg, Ruokolainen, Laine, Larsson, Ikkala, Lindström (b0030) 2007; 8
Wasteneys (b0025) 2004; 7
Khan, Hamad, MacLachlan (b0100) 2014; 26
Isogai, Hänninen, Fujisawa, Saito (b0015) 2018; 86
Isogai, Saito, Fukuzumi (b0005) 2011; 3
Zhou, Saito, Bergström, Isogai (b0195) 2018; 19
Shopsowitz, Qi, Hamad, MacLachlan (b0090) 2010; 468
Tanaka, Saito, Isogai (b0155) 2012; 51
Saito, Hirota, Tamura, Kimura, Fukuzumi, Heux, Isogai (b0150) 2009; 10
Okita, Saito, Isogai (b0185) 2010; 11
Daicho, Saito, Isogai (b0205) 2019
Noguchi, Homma, Matsubara (b0135) 2017; 24
Isogai, Saito, Isogai (b0165) 2011; 18
Brown, Montezinos (b0020) 1976; 73
Klemm, Kramer, Moritz, Lindström, Ankerfors, Gray, Dorris (b0050) 2011; 50
Varanashi, Batchelor (b0055) 2013; 20
Dong, Revol, Gray (b0075) 1998; 5
Tran, Hamad, MacLachlan (b0110) 2018; 34
Saito, Isogai (b0180) 2004; 5
Henriksson, Henriksson, Berglund, Lindström (b0035) 2007; 43
Wang, Hamad, MacLachlan (b0105) 2016; 7
Sehaqui, Zhou, Berglund (b0070) 2011; 71
Saito, Uematsu, Kimura, Enomae, Isogai (b0140) 2011; 7
Kuramae, Saito, Isogai (b0190) 2015; 85
Sehaqui, Zhou, Ikkala, Berglund (b0065) 2011; 12
Ghanadpour, Carosio, Larsson, Wågberg (b0130) 2015; 16
Mascheroni, Rampazzo, Ortenzi, Piva, Bonetti, Piergiovanni (b0230) 2016; 23
Zhou, Fujisawa, Saito, Isogai (b0200) 2019
Castro-Guerrero, Gray (b0225) 2014; 21
Isogai, Kato (b0170) 1998; 5
Hirota, Tamura, Saito, Isogai (b0175) 2009; 78
Wågberg, Decher, Norgren, Lindström, Ankerfors, Axnas (b0040) 2008; 24
Isogai, Bergström (b0010) 2018; 12
Hiraoki, Tanaka, Ono, Nakamura, Isogai, Saito, Isogai (b0215) 2018; 25
Isogai, Saito, Isogai (b0160) 2010; 11
de Nooy, Besemer, van Bekkum (b0145) 1995; 269
Habibi, Lucian, Rojas (b0080) 2010; 110
Leung, Hrapovic, Lam, Liu, Male, Mahmoud, Luong (b0220) 2011; 7
Henriksson, Berglund, Isaksson, Lindström, Nishino (b0060) 2008; 9
Saito, Kimura, Nishiyama, Isogai (b0120) 2007; 8
Moon, Martini, Nairn, Simonsen, Yungblood (b0085) 2011; 40
Kelly, Giese, Shopsowitz, Hamad, MacLachlan (b0095) 2014; 47
Saito, Nishiyama, Putaux, Vignon, Isogai (b0115) 2006; 7
Shinoda, Saito, Okita, Isogai (b0125) 2012; 13
Siró, Plackett (b0045) 2010; 17
Shinoda (10.1016/j.cossms.2019.01.001_b0125) 2012; 13
Daicho (10.1016/j.cossms.2019.01.001_b0205) 2019
Klemm (10.1016/j.cossms.2019.01.001_b0050) 2011; 50
Brown (10.1016/j.cossms.2019.01.001_b0020) 1976; 73
Dong (10.1016/j.cossms.2019.01.001_b0075) 1998; 5
Isogai (10.1016/j.cossms.2019.01.001_b0165) 2011; 18
Castro-Guerrero (10.1016/j.cossms.2019.01.001_b0225) 2014; 21
Varanashi (10.1016/j.cossms.2019.01.001_b0055) 2013; 20
Sehaqui (10.1016/j.cossms.2019.01.001_b0065) 2011; 12
Isogai (10.1016/j.cossms.2019.01.001_b0160) 2010; 11
Henriksson (10.1016/j.cossms.2019.01.001_b0035) 2007; 43
Leung (10.1016/j.cossms.2019.01.001_b0220) 2011; 7
Saito (10.1016/j.cossms.2019.01.001_b0150) 2009; 10
Isogai (10.1016/j.cossms.2019.01.001_b0170) 1998; 5
Kelly (10.1016/j.cossms.2019.01.001_b0095) 2014; 47
Isogai (10.1016/j.cossms.2019.01.001_b0010) 2018; 12
Saito (10.1016/j.cossms.2019.01.001_b0180) 2004; 5
Noguchi (10.1016/j.cossms.2019.01.001_b0135) 2017; 24
Saito (10.1016/j.cossms.2019.01.001_b0120) 2007; 8
Khan (10.1016/j.cossms.2019.01.001_b0100) 2014; 26
Wågberg (10.1016/j.cossms.2019.01.001_b0040) 2008; 24
Isogai (10.1016/j.cossms.2019.01.001_b0015) 2018; 86
Shopsowitz (10.1016/j.cossms.2019.01.001_b0090) 2010; 468
Hirota (10.1016/j.cossms.2019.01.001_b0175) 2009; 78
Okita (10.1016/j.cossms.2019.01.001_b0185) 2010; 11
Kuramae (10.1016/j.cossms.2019.01.001_b0190) 2015; 85
Saito (10.1016/j.cossms.2019.01.001_b0115) 2006; 7
Sehaqui (10.1016/j.cossms.2019.01.001_b0070) 2011; 71
Habibi (10.1016/j.cossms.2019.01.001_b0080) 2010; 110
de Nooy (10.1016/j.cossms.2019.01.001_b0145) 1995; 269
Ghanadpour (10.1016/j.cossms.2019.01.001_b0130) 2015; 16
Hiraoki (10.1016/j.cossms.2019.01.001_b0215) 2018; 25
Zhou (10.1016/j.cossms.2019.01.001_b0200) 2019
Siró (10.1016/j.cossms.2019.01.001_b0045) 2010; 17
Henriksson (10.1016/j.cossms.2019.01.001_b0060) 2008; 9
Zhou (10.1016/j.cossms.2019.01.001_b0195) 2018; 19
Tran (10.1016/j.cossms.2019.01.001_b0110) 2018; 34
Tanaka (10.1016/j.cossms.2019.01.001_b0155) 2012; 51
Moon (10.1016/j.cossms.2019.01.001_b0085) 2011; 40
Wang (10.1016/j.cossms.2019.01.001_b0105) 2016; 7
Wasteneys (10.1016/j.cossms.2019.01.001_b0025) 2004; 7
Pääkkö (10.1016/j.cossms.2019.01.001_b0030) 2007; 8
Mascheroni (10.1016/j.cossms.2019.01.001_b0230) 2016; 23
Saito (10.1016/j.cossms.2019.01.001_b0140) 2011; 7
Isogai (10.1016/j.cossms.2019.01.001_b0005) 2011; 3
Tanaka (10.1016/j.cossms.2019.01.001_b0210) 2015; 16
References_xml – volume: 7
  start-page: 1687
  year: 2006
  end-page: 1691
  ident: b0115
  article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose
  publication-title: Biomacromolecules
– volume: 34
  start-page: 646
  year: 2018
  end-page: 652
  ident: b0110
  article-title: Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures
  publication-title: Langmuir
– volume: 24
  start-page: 1296
  year: 2017
  end-page: 1305
  ident: b0135
  article-title: Complete nanofibrillation of cellulose prepared by phosphorylation
  publication-title: Cellulose
– volume: 5
  start-page: 1983
  year: 2004
  end-page: 1989
  ident: b0180
  article-title: TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions
  publication-title: Biomacromolecules
– volume: 23
  start-page: 779
  year: 2016
  end-page: 793
  ident: b0230
  article-title: Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials
  publication-title: Cellulose
– volume: 5
  start-page: 153
  year: 1998
  end-page: 164
  ident: b0170
  article-title: Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation
  publication-title: Cellulose
– year: 2019
  ident: b0205
  article-title: The dispersion-induced disordering of the fibril interfaces in biologically-structured cellulose determines the crystallinity of cellulose nanofibers
  publication-title: ACS Appl. Nano Mater.
– volume: 50
  start-page: 5438
  year: 2011
  end-page: 5466
  ident: b0050
  article-title: Nanocelluloses: A new family of nature-based materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 2323
  year: 2014
  end-page: 2328
  ident: b0100
  article-title: Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1593
  year: 2010
  end-page: 1599
  ident: b0160
  article-title: TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber
  publication-title: Biomacromolecules
– volume: 73
  start-page: 143
  year: 1976
  end-page: 147
  ident: b0020
  article-title: Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma membrane
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 7
  start-page: 8804
  year: 2011
  end-page: 8809
  ident: b0140
  article-title: Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials
  publication-title: Soft Matter
– volume: 12
  start-page: 3638
  year: 2011
  end-page: 3644
  ident: b0065
  article-title: Strong and tough cellulose nanopaper with high specific surface area and porosity
  publication-title: Biomacromolecules
– volume: 40
  start-page: 3941
  year: 2011
  end-page: 3994
  ident: b0085
  article-title: Cellulose nanomaterials review: Structure, properties and nanocomposites
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 228
  year: 2012
  end-page: 234
  ident: b0155
  article-title: Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO
  publication-title: Int. J. Biol. Macromol.
– volume: 85
  start-page: 126
  year: 2015
  end-page: 133
  ident: b0190
  article-title: TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses
  publication-title: React. Funct. Polym.
– volume: 86
  start-page: 122
  year: 2018
  end-page: 148
  ident: b0015
  article-title: Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions
  publication-title: Prog. Polym. Sci.
– volume: 269
  start-page: 89
  year: 1995
  end-page: 98
  ident: b0145
  article-title: Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans
  publication-title: Carbohydr. Res.
– volume: 21
  start-page: 2567
  year: 2014
  end-page: 2577
  ident: b0225
  article-title: Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate
  publication-title: Cellulose
– volume: 9
  start-page: 1579
  year: 2008
  end-page: 1585
  ident: b0060
  article-title: Cellulose nanopaper structures of high toughness
  publication-title: Biomacromolecules
– volume: 110
  start-page: 3479
  year: 2010
  end-page: 3500
  ident: b0080
  article-title: Cellulose nanocrystals: Chemistry, self-assembly, and applications
  publication-title: Chem. Rev.
– volume: 7
  start-page: 11515
  year: 2016
  ident: b0105
  article-title: Structure and transformation of tactoids in cellulose nanocrystal suspensions
  publication-title: Nat. Commun.
– volume: 7
  start-page: 302
  year: 2011
  end-page: 305
  ident: b0220
  article-title: Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure
  publication-title: Small
– volume: 20
  start-page: 211
  year: 2013
  end-page: 215
  ident: b0055
  article-title: Rapid preparation of cellulose nanofiber sheet
  publication-title: Cellulose
– volume: 13
  start-page: 842
  year: 2012
  end-page: 849
  ident: b0125
  article-title: Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils
  publication-title: Biomacromolecules
– volume: 3
  start-page: 71
  year: 2011
  end-page: 85
  ident: b0005
  article-title: TEMPO-oxidized cellulose nanofibers
  publication-title: Nanoscale
– volume: 24
  start-page: 784
  year: 2008
  end-page: 795
  ident: b0040
  article-title: The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes
  publication-title: Langmuir
– volume: 16
  start-page: 3399
  year: 2015
  end-page: 3410
  ident: b0130
  article-title: Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials
  publication-title: Biomacromolecules
– volume: 18
  start-page: 421
  year: 2011
  end-page: 431
  ident: b0165
  article-title: Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation
  publication-title: Cellulose
– volume: 7
  start-page: 651
  year: 2004
  end-page: 660
  ident: b0025
  article-title: Progress in understanding the role of microtubules in plant cells
  publication-title: Curr. Opin. Plant Biol.
– volume: 5
  start-page: 19
  year: 1998
  end-page: 32
  ident: b0075
  article-title: Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose
  publication-title: Cellulose
– volume: 47
  start-page: 1088
  year: 2014
  end-page: 1096
  ident: b0095
  article-title: The development of chiral nematic mesoporous materials
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 2485
  year: 2007
  end-page: 2491
  ident: b0120
  article-title: Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose
  publication-title: Biomacromolecules
– volume: 16
  start-page: 2127
  year: 2015
  end-page: 2131
  ident: b0210
  article-title: Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions
  publication-title: Biomacromolecules
– volume: 25
  start-page: 1599
  year: 2018
  end-page: 1606
  ident: b0215
  article-title: Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser light scattering analysis
  publication-title: Cellulose
– volume: 78
  start-page: 330
  year: 2009
  end-page: 335
  ident: b0175
  article-title: Oxidation of regenerated cellulose with NaClO
  publication-title: Carbohydr. Polym.
– volume: 17
  start-page: 459
  year: 2010
  end-page: 494
  ident: b0045
  article-title: Microfibrillated cellulose and new nanocomposite materials: a review
  publication-title: Cellulose
– volume: 19
  start-page: 633
  year: 2018
  end-page: 639
  ident: b0195
  article-title: Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation
  publication-title: Biomacromolecules
– year: 2019
  ident: b0200
  article-title: Characterization of concentration-dependent gelation behavior of aqueous 2,2,6,6-tetramethylpiperidine-1-oxyl−cellulose nanocrystal dispersions using dynamic light scattering
  publication-title: Biomacromolecules
– volume: 43
  start-page: 3434
  year: 2007
  end-page: 3441
  ident: b0035
  article-title: An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers
  publication-title: Eur. Polym. J.
– volume: 8
  start-page: 1934
  year: 2007
  end-page: 1941
  ident: b0030
  article-title: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels
  publication-title: Biomacromolecules
– volume: 12
  start-page: 15
  year: 2018
  end-page: 21
  ident: b0010
  article-title: Preparation of cellulose nanofibers using green and sustainable chemistry
  publication-title: Curr. Opin. Green Sust. Chem.
– volume: 10
  start-page: 1992
  year: 2009
  end-page: 1996
  ident: b0150
  article-title: Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions
  publication-title: Biomacromolecules
– volume: 11
  start-page: 1696
  year: 2010
  end-page: 1700
  ident: b0185
  article-title: Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation
  publication-title: Biomacromolecules
– volume: 468
  start-page: 422
  year: 2010
  end-page: U246
  ident: b0090
  article-title: Free-standing mesoporous silica films with tunable chiral nematic structures
  publication-title: Nature
– volume: 71
  start-page: 1593
  year: 2011
  end-page: 1599
  ident: b0070
  article-title: High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC)
  publication-title: Comp. Sci. Technol.
– volume: 468
  start-page: 422
  year: 2010
  ident: 10.1016/j.cossms.2019.01.001_b0090
  article-title: Free-standing mesoporous silica films with tunable chiral nematic structures
  publication-title: Nature
  doi: 10.1038/nature09540
– volume: 20
  start-page: 211
  year: 2013
  ident: 10.1016/j.cossms.2019.01.001_b0055
  article-title: Rapid preparation of cellulose nanofiber sheet
  publication-title: Cellulose
  doi: 10.1007/s10570-012-9794-1
– volume: 13
  start-page: 842
  year: 2012
  ident: 10.1016/j.cossms.2019.01.001_b0125
  article-title: Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils
  publication-title: Biomacromolecules
  doi: 10.1021/bm2017542
– volume: 3
  start-page: 71
  year: 2011
  ident: 10.1016/j.cossms.2019.01.001_b0005
  article-title: TEMPO-oxidized cellulose nanofibers
  publication-title: Nanoscale
  doi: 10.1039/C0NR00583E
– volume: 8
  start-page: 1934
  year: 2007
  ident: 10.1016/j.cossms.2019.01.001_b0030
  article-title: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels
  publication-title: Biomacromolecules
  doi: 10.1021/bm061215p
– volume: 11
  start-page: 1696
  year: 2010
  ident: 10.1016/j.cossms.2019.01.001_b0185
  article-title: Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation
  publication-title: Biomacromolecules
  doi: 10.1021/bm100214b
– volume: 50
  start-page: 5438
  year: 2011
  ident: 10.1016/j.cossms.2019.01.001_b0050
  article-title: Nanocelluloses: A new family of nature-based materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201001273
– volume: 7
  start-page: 651
  year: 2004
  ident: 10.1016/j.cossms.2019.01.001_b0025
  article-title: Progress in understanding the role of microtubules in plant cells
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2004.09.008
– year: 2019
  ident: 10.1016/j.cossms.2019.01.001_b0200
  article-title: Characterization of concentration-dependent gelation behavior of aqueous 2,2,6,6-tetramethylpiperidine-1-oxyl−cellulose nanocrystal dispersions using dynamic light scattering
  publication-title: Biomacromolecules
– volume: 85
  start-page: 126
  year: 2015
  ident: 10.1016/j.cossms.2019.01.001_b0190
  article-title: TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2014.06.011
– volume: 23
  start-page: 779
  year: 2016
  ident: 10.1016/j.cossms.2019.01.001_b0230
  article-title: Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0853-2
– volume: 12
  start-page: 15
  year: 2018
  ident: 10.1016/j.cossms.2019.01.001_b0010
  article-title: Preparation of cellulose nanofibers using green and sustainable chemistry
  publication-title: Curr. Opin. Green Sust. Chem.
– volume: 43
  start-page: 3434
  year: 2007
  ident: 10.1016/j.cossms.2019.01.001_b0035
  article-title: An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2007.05.038
– volume: 9
  start-page: 1579
  year: 2008
  ident: 10.1016/j.cossms.2019.01.001_b0060
  article-title: Cellulose nanopaper structures of high toughness
  publication-title: Biomacromolecules
  doi: 10.1021/bm800038n
– volume: 10
  start-page: 1992
  year: 2009
  ident: 10.1016/j.cossms.2019.01.001_b0150
  article-title: Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions
  publication-title: Biomacromolecules
  doi: 10.1021/bm900414t
– volume: 19
  start-page: 633
  year: 2018
  ident: 10.1016/j.cossms.2019.01.001_b0195
  article-title: Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01730
– volume: 11
  start-page: 1593
  year: 2010
  ident: 10.1016/j.cossms.2019.01.001_b0160
  article-title: TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber
  publication-title: Biomacromolecules
  doi: 10.1021/bm1002575
– volume: 18
  start-page: 421
  year: 2011
  ident: 10.1016/j.cossms.2019.01.001_b0165
  article-title: Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation
  publication-title: Cellulose
  doi: 10.1007/s10570-010-9484-9
– volume: 51
  start-page: 228
  year: 2012
  ident: 10.1016/j.cossms.2019.01.001_b0155
  article-title: Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2012.05.016
– volume: 8
  start-page: 2485
  year: 2007
  ident: 10.1016/j.cossms.2019.01.001_b0120
  article-title: Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose
  publication-title: Biomacromolecules
  doi: 10.1021/bm0703970
– volume: 73
  start-page: 143
  year: 1976
  ident: 10.1016/j.cossms.2019.01.001_b0020
  article-title: Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma membrane
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.73.1.143
– volume: 16
  start-page: 2127
  year: 2015
  ident: 10.1016/j.cossms.2019.01.001_b0210
  article-title: Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00539
– volume: 25
  start-page: 1599
  year: 2018
  ident: 10.1016/j.cossms.2019.01.001_b0215
  article-title: Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser light scattering analysis
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1675-9
– volume: 16
  start-page: 3399
  year: 2015
  ident: 10.1016/j.cossms.2019.01.001_b0130
  article-title: Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b01117
– volume: 71
  start-page: 1593
  year: 2011
  ident: 10.1016/j.cossms.2019.01.001_b0070
  article-title: High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC)
  publication-title: Comp. Sci. Technol.
  doi: 10.1016/j.compscitech.2011.07.003
– volume: 40
  start-page: 3941
  year: 2011
  ident: 10.1016/j.cossms.2019.01.001_b0085
  article-title: Cellulose nanomaterials review: Structure, properties and nanocomposites
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00108b
– year: 2019
  ident: 10.1016/j.cossms.2019.01.001_b0205
  article-title: The dispersion-induced disordering of the fibril interfaces in biologically-structured cellulose determines the crystallinity of cellulose nanofibers
  publication-title: ACS Appl. Nano Mater.
– volume: 17
  start-page: 459
  year: 2010
  ident: 10.1016/j.cossms.2019.01.001_b0045
  article-title: Microfibrillated cellulose and new nanocomposite materials: a review
  publication-title: Cellulose
  doi: 10.1007/s10570-010-9405-y
– volume: 5
  start-page: 153
  year: 1998
  ident: 10.1016/j.cossms.2019.01.001_b0170
  article-title: Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation
  publication-title: Cellulose
  doi: 10.1023/A:1009208603673
– volume: 7
  start-page: 1687
  year: 2006
  ident: 10.1016/j.cossms.2019.01.001_b0115
  article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose
  publication-title: Biomacromolecules
  doi: 10.1021/bm060154s
– volume: 86
  start-page: 122
  year: 2018
  ident: 10.1016/j.cossms.2019.01.001_b0015
  article-title: Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2018.07.007
– volume: 7
  start-page: 302
  year: 2011
  ident: 10.1016/j.cossms.2019.01.001_b0220
  article-title: Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure
  publication-title: Small
  doi: 10.1002/smll.201001715
– volume: 47
  start-page: 1088
  year: 2014
  ident: 10.1016/j.cossms.2019.01.001_b0095
  article-title: The development of chiral nematic mesoporous materials
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400243m
– volume: 26
  start-page: 2323
  year: 2014
  ident: 10.1016/j.cossms.2019.01.001_b0100
  article-title: Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304966
– volume: 5
  start-page: 1983
  year: 2004
  ident: 10.1016/j.cossms.2019.01.001_b0180
  article-title: TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions
  publication-title: Biomacromolecules
  doi: 10.1021/bm0497769
– volume: 24
  start-page: 784
  year: 2008
  ident: 10.1016/j.cossms.2019.01.001_b0040
  article-title: The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes
  publication-title: Langmuir
  doi: 10.1021/la702481v
– volume: 5
  start-page: 19
  year: 1998
  ident: 10.1016/j.cossms.2019.01.001_b0075
  article-title: Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose
  publication-title: Cellulose
  doi: 10.1023/A:1009260511939
– volume: 34
  start-page: 646
  year: 2018
  ident: 10.1016/j.cossms.2019.01.001_b0110
  article-title: Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b03920
– volume: 21
  start-page: 2567
  year: 2014
  ident: 10.1016/j.cossms.2019.01.001_b0225
  article-title: Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate
  publication-title: Cellulose
  doi: 10.1007/s10570-014-0308-1
– volume: 7
  start-page: 8804
  year: 2011
  ident: 10.1016/j.cossms.2019.01.001_b0140
  article-title: Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials
  publication-title: Soft Matter
  doi: 10.1039/c1sm06050c
– volume: 7
  start-page: 11515
  year: 2016
  ident: 10.1016/j.cossms.2019.01.001_b0105
  article-title: Structure and transformation of tactoids in cellulose nanocrystal suspensions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11515
– volume: 269
  start-page: 89
  year: 1995
  ident: 10.1016/j.cossms.2019.01.001_b0145
  article-title: Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(94)00343-E
– volume: 12
  start-page: 3638
  year: 2011
  ident: 10.1016/j.cossms.2019.01.001_b0065
  article-title: Strong and tough cellulose nanopaper with high specific surface area and porosity
  publication-title: Biomacromolecules
  doi: 10.1021/bm2008907
– volume: 110
  start-page: 3479
  year: 2010
  ident: 10.1016/j.cossms.2019.01.001_b0080
  article-title: Cellulose nanocrystals: Chemistry, self-assembly, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr900339w
– volume: 24
  start-page: 1296
  year: 2017
  ident: 10.1016/j.cossms.2019.01.001_b0135
  article-title: Complete nanofibrillation of cellulose prepared by phosphorylation
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1191-3
– volume: 78
  start-page: 330
  year: 2009
  ident: 10.1016/j.cossms.2019.01.001_b0175
  article-title: Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.04.012
SSID ssj0004666
Score 2.6054394
SecondaryResourceType review_article
Snippet [Display omitted] •TEMPO-oxidized wood cellulose fibers can be converted to diverse nanocelluloses.•Cellulose nanonetworks, nanofibers, and nanocrystals...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Microfibril
Nanocrystal
Nanofiber
Nanonetwork
TEMPO
Wood cellulose
Title Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals
URI https://dx.doi.org/10.1016/j.cossms.2019.01.001
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIuiD6FT8HHnwcXFNm7WZbzI35rf4Ab6VNE2gMtuxbqA--LebS9sxERR8Kk0vbcgdd5f0d78gdOR7vpTUU4SJSBPmxopEXAQkimITLpgMHAlbA9c3_vCJXTx3nmuoV9XCAKyy9P2FT7feumxpl7PZHidJ-4F6lnrEN0YJFaBQUc5YAFZ-_EkXaiPt_0oQJiBdlc9ZjJc0gegVSLtp15J3lkfD_AhPCyFnsI7WylwRnxbD2UA1lTbQ6gKDYAMtWwSnzDfR7MwiLBRORZrBdvxslOUqx-OJsiBzDIUk-LF_fXdLsrckTj5MGwBu8FwYa4CP5CfYuNwsLfDhecu-sHjSwiKNiw9M3k1aOcq30NOg_9gbkvJMBSK9wJ0SRTXngseMa9-sdETAmWuUo5U2mVesZaA8qoVmXCjJnW6kjEekwDsnuMskl942qsMQdhCOqSNMBtEVugOLbB2ZcKjdjhtHQgVMsV3kVVMZypJwHM69GIUVsuwlLBQQggJChwLAbheRea9xQbjxh3xQaSn8ZjihiQm_9tz7d899tAJ3BYDnANWnk5k6NLnJNGpa42uipdPe_dUdXM8vhzdfUEfouQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mRNQH8RPnZx58NGxtszbzbUxlc24KTvCtpGkCk9mNdQP1rzeXtmMiKPia5NqQC3eX5He_A7jwPV9Kx1OUiUhT5saKRlwENIpi4y6YDGoSrwZ6fb_9zO5e6i8laBW5MAirzG1_ZtOttc5bqvlqVifDYfXJ8Sz1iG82JWaABiuwiuxU9TKsNjvddn8pPdI-WeJ4igJFBp2FeUnji96Qt9tpWP7OvDrMDw-15HVut2ErDxdJM5vRDpRUsgubSySCu7BmQZwy3YP5tQVZKJKIZIw38vPROFUpmUyVxZkTzCUhg5ve4wMdvw_j4adpQ8wNWQwmGhEk6RUxVnecZBDx9NJ-MOu5JCKJsx9MP0xkOUr34fn2ZtBq07ysApVe4M6ocjTngseMa98cdkTAmWv0o5U2wVesZaA8RwvNuFCS1xqRMkbRQeo5wV0mufQOoIxTOAQSOzVhgoiG0HU8Z-vIeETt1t04EipgilXAK5YylDnnOJa-GIUFuOw1zBQQogLCmoMYuwrQhdQk49z4Y3xQaCn8tndC4xZ-lTz6t-Q5rLcHvfvwvtPvHsMG9mR4nhMoz6ZzdWpClVl0lm_FL_ww6dU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+nanocelluloses+prepared+from+TEMPO-oxidized+wood+cellulose+fibers%3A+Nanonetworks%2C+nanofibers%2C+and+nanocrystals&rft.jtitle=Current+opinion+in+solid+state+%26+materials+science&rft.au=Isogai%2C+Akira&rft.au=Zhou%2C+Yaxin&rft.date=2019-04-01&rft.issn=1359-0286&rft.volume=23&rft.issue=2&rft.spage=101&rft.epage=106&rft_id=info:doi/10.1016%2Fj.cossms.2019.01.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cossms_2019_01_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0286&client=summon