Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals
[Display omitted] •TEMPO-oxidized wood cellulose fibers can be converted to diverse nanocelluloses.•Cellulose nanonetworks, nanofibers, and nanocrystals dispersed in water are obtained.•Cellulose nanofibers and nanocrystals have homogeneous widths of ∼3 nm.•Cellulose nanocrystals have needle-like mo...
Saved in:
Published in | Current opinion in solid state & materials science Vol. 23; no. 2; pp. 101 - 106 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•TEMPO-oxidized wood cellulose fibers can be converted to diverse nanocelluloses.•Cellulose nanonetworks, nanofibers, and nanocrystals dispersed in water are obtained.•Cellulose nanofibers and nanocrystals have homogeneous widths of ∼3 nm.•Cellulose nanocrystals have needle-like morphologies with aspect ratios of ∼50.•Cellulose nanofibers have aspect ratios of > 150.
When wood cellulose fibers are oxidized with NaClO and catalytic amounts of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and NaBr in water at pH 10, significant amounts of sodium carboxylate groups (≤1.7 mmol/g) are introduced into the oxidized celluloses. The original fibrous morphologies and cellulose I crystal structures are unchanged by oxidation. The TEMPO-oxidized cellulose fibers can be converted to partially fibrillated nanonetworks, completely individualized cellulose nanofibers with high aspect ratios, and needle-like cellulose nanocrystals with low aspect ratios by controlling the conditions of mechanical disintegration in water. It is therefore possible to prepare diverse nanocelluloses with different morphologies and properties from the same TEMPO-oxidized cellulose fibers, for various end uses and applications. All TEMPO-oxidized nanocelluloses contain large amounts of carboxylate groups. These provide scaffolds for versatile surface modification of nanocelluloses by simple ion exchange of sodium for other metal ions and alkylammonium ions. |
---|---|
AbstractList | [Display omitted]
•TEMPO-oxidized wood cellulose fibers can be converted to diverse nanocelluloses.•Cellulose nanonetworks, nanofibers, and nanocrystals dispersed in water are obtained.•Cellulose nanofibers and nanocrystals have homogeneous widths of ∼3 nm.•Cellulose nanocrystals have needle-like morphologies with aspect ratios of ∼50.•Cellulose nanofibers have aspect ratios of > 150.
When wood cellulose fibers are oxidized with NaClO and catalytic amounts of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and NaBr in water at pH 10, significant amounts of sodium carboxylate groups (≤1.7 mmol/g) are introduced into the oxidized celluloses. The original fibrous morphologies and cellulose I crystal structures are unchanged by oxidation. The TEMPO-oxidized cellulose fibers can be converted to partially fibrillated nanonetworks, completely individualized cellulose nanofibers with high aspect ratios, and needle-like cellulose nanocrystals with low aspect ratios by controlling the conditions of mechanical disintegration in water. It is therefore possible to prepare diverse nanocelluloses with different morphologies and properties from the same TEMPO-oxidized cellulose fibers, for various end uses and applications. All TEMPO-oxidized nanocelluloses contain large amounts of carboxylate groups. These provide scaffolds for versatile surface modification of nanocelluloses by simple ion exchange of sodium for other metal ions and alkylammonium ions. |
Author | Isogai, Akira Zhou, Yaxin |
Author_xml | – sequence: 1 givenname: Akira surname: Isogai fullname: Isogai, Akira email: aisogai@mail.ecc.u-tokyo.ac.jp – sequence: 2 givenname: Yaxin surname: Zhou fullname: Zhou, Yaxin |
BookMark | eNqFkMtOwzAQRb0oEm3hD1j4A5pgJ6nrdIGESnlIhbIoa8u1x5JLGld2-uLrcQliwQJWV5qZe2fm9FCndjUgdEVJSgll16tUuRDWIc0ILVNCU0JoB3VpPiwTknF2jnohrAghBWOsi7Z3dgc-AK5l7RRU1bZyAQLeeNhIDxob79Z4MX1-nSfuYLX9iLW9cxr_DGNjlzFijF_k6ZZm7_x7GHwFtp0BlrVuF_hjaGQVLtCZiQKX39pHb_fTxeQxmc0fnia3s0Tlo6xJgBrOJdcFN6xkTI54kS25NGCGlGqjRpBTI03BJShOyiXQYR4hkEzyrFBc5X1UtLnKRygejNh4u5b-KCgRJ1xiJVpc4oRLECoirmgb_7Ip28jGurrx0lb_mW9aM8THdha8CMpCrUBbD6oR2tm_Az4BnNaQwA |
CitedBy_id | crossref_primary_10_1016_j_biortech_2024_130401 crossref_primary_10_1007_s10570_023_05374_7 crossref_primary_10_1016_j_ccr_2020_213482 crossref_primary_10_1016_j_cej_2025_161190 crossref_primary_10_3390_polym14204257 crossref_primary_10_1016_j_carpta_2025_100714 crossref_primary_10_1016_j_microc_2021_106393 crossref_primary_10_1016_j_jclepro_2021_128673 crossref_primary_10_1007_s10570_020_03543_6 crossref_primary_10_1016_j_apt_2023_104241 crossref_primary_10_1016_j_cej_2024_155872 crossref_primary_10_1016_j_carbpol_2022_119945 crossref_primary_10_6023_A23120542 crossref_primary_10_1021_acsapm_4c01033 crossref_primary_10_1177_08927057231205451 crossref_primary_10_3390_polym16192774 crossref_primary_10_3390_polym16071016 crossref_primary_10_1039_D3FO05219B crossref_primary_10_1007_s10570_024_06019_z crossref_primary_10_1016_j_progpolymsci_2021_101418 crossref_primary_10_1007_s10570_023_05215_7 crossref_primary_10_1038_s41598_021_91420_y crossref_primary_10_1016_j_carbpol_2024_122395 crossref_primary_10_1016_j_heliyon_2025_e41646 crossref_primary_10_2139_ssrn_4194362 crossref_primary_10_1021_acs_biomac_0c00281 crossref_primary_10_1007_s10965_021_02693_w crossref_primary_10_1016_j_aca_2024_342211 crossref_primary_10_3390_biomimetics9100624 crossref_primary_10_1007_s10570_024_05743_w crossref_primary_10_3390_ma16083104 crossref_primary_10_3390_nano12050790 crossref_primary_10_1039_D1RA08086E crossref_primary_10_1088_2053_1591_ab3b49 crossref_primary_10_1021_acsapm_2c00276 crossref_primary_10_3390_nano13152258 crossref_primary_10_1016_j_trac_2020_115884 crossref_primary_10_1021_acs_chemrev_2c00611 crossref_primary_10_1021_acs_biomac_0c01406 crossref_primary_10_1021_acs_biomac_4c01838 crossref_primary_10_1155_2021_5545409 crossref_primary_10_1016_j_indcrop_2022_114555 crossref_primary_10_1016_j_scitotenv_2022_156903 crossref_primary_10_3390_polym13193241 crossref_primary_10_1016_j_ijbiomac_2023_127997 crossref_primary_10_1021_acsabm_4c00213 crossref_primary_10_1016_j_ijbiomac_2024_129612 crossref_primary_10_1007_s10570_019_02849_4 crossref_primary_10_1016_j_foodhyd_2021_106771 crossref_primary_10_1016_j_measurement_2024_115499 crossref_primary_10_1016_j_carbpol_2020_116180 crossref_primary_10_1016_j_carbpol_2024_122103 crossref_primary_10_1039_D2MH01125E crossref_primary_10_1021_acsanm_4c02590 crossref_primary_10_1016_j_cej_2024_157595 crossref_primary_10_1016_j_carbpol_2022_119406 crossref_primary_10_1002_pc_29690 crossref_primary_10_1016_j_carbpol_2021_117981 crossref_primary_10_1016_j_carbpol_2022_120129 crossref_primary_10_1016_j_ijbiomac_2023_124557 crossref_primary_10_1021_acs_iecr_2c03563 crossref_primary_10_1080_10408398_2022_2097638 crossref_primary_10_1021_acsagscitech_4c00593 crossref_primary_10_1007_s10570_022_04713_4 crossref_primary_10_1007_s10924_022_02609_9 crossref_primary_10_1016_j_ijbiomac_2022_02_151 crossref_primary_10_3389_fchem_2020_00037 crossref_primary_10_1007_s10570_024_05978_7 crossref_primary_10_1039_D2TA05277F crossref_primary_10_1016_j_cossms_2019_100773 crossref_primary_10_1063_5_0123058 crossref_primary_10_1016_j_compscitech_2022_109725 crossref_primary_10_1002_adfm_202302785 crossref_primary_10_1016_j_compscitech_2021_108734 crossref_primary_10_1016_j_ijbiomac_2024_139409 crossref_primary_10_1016_j_carbpol_2020_116745 crossref_primary_10_1007_s11223_023_00569_6 crossref_primary_10_1016_j_lwt_2024_116563 crossref_primary_10_1016_j_carbpol_2019_115215 crossref_primary_10_1038_s41428_021_00580_1 crossref_primary_10_1002_slct_202402065 crossref_primary_10_1016_j_ijbiomac_2023_126287 crossref_primary_10_1016_j_jcis_2022_09_152 crossref_primary_10_1016_j_carbpol_2024_122362 crossref_primary_10_1016_j_nanoen_2024_110159 crossref_primary_10_1051_epjap_2025005 crossref_primary_10_2166_wst_2020_434 crossref_primary_10_1039_D2NR01967A crossref_primary_10_1515_npprj_2024_0001 crossref_primary_10_1007_s10570_023_05662_2 crossref_primary_10_1007_s10570_024_06261_5 crossref_primary_10_1007_s10570_022_04938_3 crossref_primary_10_3390_ma15145076 crossref_primary_10_1007_s10570_023_05462_8 crossref_primary_10_1007_s10570_020_03176_9 crossref_primary_10_1016_j_carbpol_2020_115942 crossref_primary_10_1039_D2GC00393G crossref_primary_10_1021_acsami_4c14188 crossref_primary_10_1021_acsanm_5c00293 crossref_primary_10_1002_ppsc_201900382 crossref_primary_10_1007_s10570_024_05824_w crossref_primary_10_1016_j_jallcom_2022_165868 crossref_primary_10_3390_ma13225062 crossref_primary_10_1002_eem2_12651 crossref_primary_10_1021_acs_macromol_1c00903 crossref_primary_10_1016_j_carpta_2024_100500 crossref_primary_10_1016_j_carbpol_2023_121325 crossref_primary_10_1016_j_jconrel_2021_06_004 crossref_primary_10_1016_j_scp_2023_101399 crossref_primary_10_1021_acs_chemrev_0c01333 crossref_primary_10_1021_acssuschemeng_3c04750 crossref_primary_10_1039_D0NA00408A crossref_primary_10_1016_j_jechem_2022_05_006 crossref_primary_10_1021_acs_jafc_0c00538 crossref_primary_10_1016_j_cej_2025_161285 crossref_primary_10_1016_j_carbpol_2023_121097 crossref_primary_10_3390_chemosensors10090352 crossref_primary_10_1007_s11356_023_25679_1 crossref_primary_10_1016_j_jcis_2023_11_132 crossref_primary_10_1016_j_ijbiomac_2023_125415 crossref_primary_10_1007_s12221_020_9859_y crossref_primary_10_1007_s10570_023_05600_2 crossref_primary_10_1016_j_biotechadv_2021_107856 crossref_primary_10_1016_j_carbpol_2025_123516 crossref_primary_10_1021_acs_biomac_2c00234 crossref_primary_10_1021_acsomega_1c00359 crossref_primary_10_3390_nano11082077 crossref_primary_10_1021_acsomega_9b04326 crossref_primary_10_1177_20412479221122271 crossref_primary_10_1016_j_eurpolymj_2021_110789 crossref_primary_10_3390_pharmaceutics15030981 crossref_primary_10_1007_s10570_024_06262_4 crossref_primary_10_3390_f14122339 crossref_primary_10_18321_cpc22_4_343_362 crossref_primary_10_1016_j_cej_2024_152660 crossref_primary_10_1039_D3QM00856H crossref_primary_10_1016_j_ijbiomac_2020_08_074 crossref_primary_10_1016_j_ijbiomac_2022_11_010 crossref_primary_10_1016_j_indcrop_2021_113877 crossref_primary_10_1016_j_carbpol_2022_119442 crossref_primary_10_3390_polym15030757 crossref_primary_10_1016_j_cej_2020_125070 crossref_primary_10_1007_s10570_025_06477_z crossref_primary_10_1016_j_compscitech_2020_108005 crossref_primary_10_1016_j_indcrop_2024_118326 crossref_primary_10_1016_j_indcrop_2024_119137 crossref_primary_10_1002_adma_202000630 crossref_primary_10_1021_acssuschemeng_2c01354 crossref_primary_10_1016_j_ijbiomac_2024_135925 crossref_primary_10_1039_D1GC02657G crossref_primary_10_3390_nano11102593 crossref_primary_10_1039_D2RA04125A crossref_primary_10_1016_j_carpta_2024_100525 crossref_primary_10_1016_j_rechem_2022_100540 crossref_primary_10_1021_acs_nanolett_4c02223 crossref_primary_10_1007_s10570_022_04580_z crossref_primary_10_1007_s10570_024_06201_3 crossref_primary_10_1016_j_ijbiomac_2024_135883 crossref_primary_10_1177_0021998320951602 crossref_primary_10_1007_s10853_023_08803_x crossref_primary_10_61186_jcc_5_1_7 crossref_primary_10_1007_s10570_020_03572_1 crossref_primary_10_1007_s42765_024_00454_0 crossref_primary_10_1007_s10570_023_05241_5 crossref_primary_10_1007_s10570_025_06445_7 crossref_primary_10_1016_j_ijbiomac_2023_127054 crossref_primary_10_1016_j_mtcomm_2025_111744 crossref_primary_10_1016_j_carbpol_2022_119730 crossref_primary_10_1016_j_polymdegradstab_2024_111158 crossref_primary_10_1039_D1GC02292J crossref_primary_10_1039_D4TA03808H |
Cites_doi | 10.1038/nature09540 10.1007/s10570-012-9794-1 10.1021/bm2017542 10.1039/C0NR00583E 10.1021/bm061215p 10.1021/bm100214b 10.1002/anie.201001273 10.1016/j.pbi.2004.09.008 10.1016/j.reactfunctpolym.2014.06.011 10.1007/s10570-015-0853-2 10.1016/j.eurpolymj.2007.05.038 10.1021/bm800038n 10.1021/bm900414t 10.1021/acs.biomac.7b01730 10.1021/bm1002575 10.1007/s10570-010-9484-9 10.1016/j.ijbiomac.2012.05.016 10.1021/bm0703970 10.1073/pnas.73.1.143 10.1021/acs.biomac.5b00539 10.1007/s10570-018-1675-9 10.1021/acs.biomac.5b01117 10.1016/j.compscitech.2011.07.003 10.1039/c0cs00108b 10.1007/s10570-010-9405-y 10.1023/A:1009208603673 10.1021/bm060154s 10.1016/j.progpolymsci.2018.07.007 10.1002/smll.201001715 10.1021/ar400243m 10.1002/adma.201304966 10.1021/bm0497769 10.1021/la702481v 10.1023/A:1009260511939 10.1021/acs.langmuir.7b03920 10.1007/s10570-014-0308-1 10.1039/c1sm06050c 10.1038/ncomms11515 10.1016/0008-6215(94)00343-E 10.1021/bm2008907 10.1021/cr900339w 10.1007/s10570-017-1191-3 10.1016/j.carbpol.2009.04.012 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cossms.2019.01.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EndPage | 106 |
ExternalDocumentID | 10_1016_j_cossms_2019_01_001 S1359028618301207 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-e1f88a8d48f6966a7842b8afef511dfc7e31faf48aec809be15310102a824c8c3 |
IEDL.DBID | .~1 |
ISSN | 1359-0286 |
IngestDate | Thu Apr 24 22:51:42 EDT 2025 Tue Jul 01 01:27:21 EDT 2025 Fri Feb 23 02:26:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Wood cellulose Microfibril Nanonetwork Nanofiber CNC CNF TEMPO Nanocrystal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-e1f88a8d48f6966a7842b8afef511dfc7e31faf48aec809be15310102a824c8c3 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_cossms_2019_01_001 crossref_citationtrail_10_1016_j_cossms_2019_01_001 elsevier_sciencedirect_doi_10_1016_j_cossms_2019_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationTitle | Current opinion in solid state & materials science |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tanaka, Saito, Hondo, Isogai (b0210) 2015; 16 Pääkkö, Ankerfors, Kosonen, Nykanen, Ahola, Osterberg, Ruokolainen, Laine, Larsson, Ikkala, Lindström (b0030) 2007; 8 Wasteneys (b0025) 2004; 7 Khan, Hamad, MacLachlan (b0100) 2014; 26 Isogai, Hänninen, Fujisawa, Saito (b0015) 2018; 86 Isogai, Saito, Fukuzumi (b0005) 2011; 3 Zhou, Saito, Bergström, Isogai (b0195) 2018; 19 Shopsowitz, Qi, Hamad, MacLachlan (b0090) 2010; 468 Tanaka, Saito, Isogai (b0155) 2012; 51 Saito, Hirota, Tamura, Kimura, Fukuzumi, Heux, Isogai (b0150) 2009; 10 Okita, Saito, Isogai (b0185) 2010; 11 Daicho, Saito, Isogai (b0205) 2019 Noguchi, Homma, Matsubara (b0135) 2017; 24 Isogai, Saito, Isogai (b0165) 2011; 18 Brown, Montezinos (b0020) 1976; 73 Klemm, Kramer, Moritz, Lindström, Ankerfors, Gray, Dorris (b0050) 2011; 50 Varanashi, Batchelor (b0055) 2013; 20 Dong, Revol, Gray (b0075) 1998; 5 Tran, Hamad, MacLachlan (b0110) 2018; 34 Saito, Isogai (b0180) 2004; 5 Henriksson, Henriksson, Berglund, Lindström (b0035) 2007; 43 Wang, Hamad, MacLachlan (b0105) 2016; 7 Sehaqui, Zhou, Berglund (b0070) 2011; 71 Saito, Uematsu, Kimura, Enomae, Isogai (b0140) 2011; 7 Kuramae, Saito, Isogai (b0190) 2015; 85 Sehaqui, Zhou, Ikkala, Berglund (b0065) 2011; 12 Ghanadpour, Carosio, Larsson, Wågberg (b0130) 2015; 16 Mascheroni, Rampazzo, Ortenzi, Piva, Bonetti, Piergiovanni (b0230) 2016; 23 Zhou, Fujisawa, Saito, Isogai (b0200) 2019 Castro-Guerrero, Gray (b0225) 2014; 21 Isogai, Kato (b0170) 1998; 5 Hirota, Tamura, Saito, Isogai (b0175) 2009; 78 Wågberg, Decher, Norgren, Lindström, Ankerfors, Axnas (b0040) 2008; 24 Isogai, Bergström (b0010) 2018; 12 Hiraoki, Tanaka, Ono, Nakamura, Isogai, Saito, Isogai (b0215) 2018; 25 Isogai, Saito, Isogai (b0160) 2010; 11 de Nooy, Besemer, van Bekkum (b0145) 1995; 269 Habibi, Lucian, Rojas (b0080) 2010; 110 Leung, Hrapovic, Lam, Liu, Male, Mahmoud, Luong (b0220) 2011; 7 Henriksson, Berglund, Isaksson, Lindström, Nishino (b0060) 2008; 9 Saito, Kimura, Nishiyama, Isogai (b0120) 2007; 8 Moon, Martini, Nairn, Simonsen, Yungblood (b0085) 2011; 40 Kelly, Giese, Shopsowitz, Hamad, MacLachlan (b0095) 2014; 47 Saito, Nishiyama, Putaux, Vignon, Isogai (b0115) 2006; 7 Shinoda, Saito, Okita, Isogai (b0125) 2012; 13 Siró, Plackett (b0045) 2010; 17 Shinoda (10.1016/j.cossms.2019.01.001_b0125) 2012; 13 Daicho (10.1016/j.cossms.2019.01.001_b0205) 2019 Klemm (10.1016/j.cossms.2019.01.001_b0050) 2011; 50 Brown (10.1016/j.cossms.2019.01.001_b0020) 1976; 73 Dong (10.1016/j.cossms.2019.01.001_b0075) 1998; 5 Isogai (10.1016/j.cossms.2019.01.001_b0165) 2011; 18 Castro-Guerrero (10.1016/j.cossms.2019.01.001_b0225) 2014; 21 Varanashi (10.1016/j.cossms.2019.01.001_b0055) 2013; 20 Sehaqui (10.1016/j.cossms.2019.01.001_b0065) 2011; 12 Isogai (10.1016/j.cossms.2019.01.001_b0160) 2010; 11 Henriksson (10.1016/j.cossms.2019.01.001_b0035) 2007; 43 Leung (10.1016/j.cossms.2019.01.001_b0220) 2011; 7 Saito (10.1016/j.cossms.2019.01.001_b0150) 2009; 10 Isogai (10.1016/j.cossms.2019.01.001_b0170) 1998; 5 Kelly (10.1016/j.cossms.2019.01.001_b0095) 2014; 47 Isogai (10.1016/j.cossms.2019.01.001_b0010) 2018; 12 Saito (10.1016/j.cossms.2019.01.001_b0180) 2004; 5 Noguchi (10.1016/j.cossms.2019.01.001_b0135) 2017; 24 Saito (10.1016/j.cossms.2019.01.001_b0120) 2007; 8 Khan (10.1016/j.cossms.2019.01.001_b0100) 2014; 26 Wågberg (10.1016/j.cossms.2019.01.001_b0040) 2008; 24 Isogai (10.1016/j.cossms.2019.01.001_b0015) 2018; 86 Shopsowitz (10.1016/j.cossms.2019.01.001_b0090) 2010; 468 Hirota (10.1016/j.cossms.2019.01.001_b0175) 2009; 78 Okita (10.1016/j.cossms.2019.01.001_b0185) 2010; 11 Kuramae (10.1016/j.cossms.2019.01.001_b0190) 2015; 85 Saito (10.1016/j.cossms.2019.01.001_b0115) 2006; 7 Sehaqui (10.1016/j.cossms.2019.01.001_b0070) 2011; 71 Habibi (10.1016/j.cossms.2019.01.001_b0080) 2010; 110 de Nooy (10.1016/j.cossms.2019.01.001_b0145) 1995; 269 Ghanadpour (10.1016/j.cossms.2019.01.001_b0130) 2015; 16 Hiraoki (10.1016/j.cossms.2019.01.001_b0215) 2018; 25 Zhou (10.1016/j.cossms.2019.01.001_b0200) 2019 Siró (10.1016/j.cossms.2019.01.001_b0045) 2010; 17 Henriksson (10.1016/j.cossms.2019.01.001_b0060) 2008; 9 Zhou (10.1016/j.cossms.2019.01.001_b0195) 2018; 19 Tran (10.1016/j.cossms.2019.01.001_b0110) 2018; 34 Tanaka (10.1016/j.cossms.2019.01.001_b0155) 2012; 51 Moon (10.1016/j.cossms.2019.01.001_b0085) 2011; 40 Wang (10.1016/j.cossms.2019.01.001_b0105) 2016; 7 Wasteneys (10.1016/j.cossms.2019.01.001_b0025) 2004; 7 Pääkkö (10.1016/j.cossms.2019.01.001_b0030) 2007; 8 Mascheroni (10.1016/j.cossms.2019.01.001_b0230) 2016; 23 Saito (10.1016/j.cossms.2019.01.001_b0140) 2011; 7 Isogai (10.1016/j.cossms.2019.01.001_b0005) 2011; 3 Tanaka (10.1016/j.cossms.2019.01.001_b0210) 2015; 16 |
References_xml | – volume: 7 start-page: 1687 year: 2006 end-page: 1691 ident: b0115 article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose publication-title: Biomacromolecules – volume: 34 start-page: 646 year: 2018 end-page: 652 ident: b0110 article-title: Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures publication-title: Langmuir – volume: 24 start-page: 1296 year: 2017 end-page: 1305 ident: b0135 article-title: Complete nanofibrillation of cellulose prepared by phosphorylation publication-title: Cellulose – volume: 5 start-page: 1983 year: 2004 end-page: 1989 ident: b0180 article-title: TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions publication-title: Biomacromolecules – volume: 23 start-page: 779 year: 2016 end-page: 793 ident: b0230 article-title: Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials publication-title: Cellulose – volume: 5 start-page: 153 year: 1998 end-page: 164 ident: b0170 article-title: Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation publication-title: Cellulose – year: 2019 ident: b0205 article-title: The dispersion-induced disordering of the fibril interfaces in biologically-structured cellulose determines the crystallinity of cellulose nanofibers publication-title: ACS Appl. Nano Mater. – volume: 50 start-page: 5438 year: 2011 end-page: 5466 ident: b0050 article-title: Nanocelluloses: A new family of nature-based materials publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 2323 year: 2014 end-page: 2328 ident: b0100 article-title: Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties publication-title: Adv. Mater. – volume: 11 start-page: 1593 year: 2010 end-page: 1599 ident: b0160 article-title: TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber publication-title: Biomacromolecules – volume: 73 start-page: 143 year: 1976 end-page: 147 ident: b0020 article-title: Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma membrane publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 7 start-page: 8804 year: 2011 end-page: 8809 ident: b0140 article-title: Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials publication-title: Soft Matter – volume: 12 start-page: 3638 year: 2011 end-page: 3644 ident: b0065 article-title: Strong and tough cellulose nanopaper with high specific surface area and porosity publication-title: Biomacromolecules – volume: 40 start-page: 3941 year: 2011 end-page: 3994 ident: b0085 article-title: Cellulose nanomaterials review: Structure, properties and nanocomposites publication-title: Chem. Soc. Rev. – volume: 51 start-page: 228 year: 2012 end-page: 234 ident: b0155 article-title: Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO publication-title: Int. J. Biol. Macromol. – volume: 85 start-page: 126 year: 2015 end-page: 133 ident: b0190 article-title: TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses publication-title: React. Funct. Polym. – volume: 86 start-page: 122 year: 2018 end-page: 148 ident: b0015 article-title: Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions publication-title: Prog. Polym. Sci. – volume: 269 start-page: 89 year: 1995 end-page: 98 ident: b0145 article-title: Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans publication-title: Carbohydr. Res. – volume: 21 start-page: 2567 year: 2014 end-page: 2577 ident: b0225 article-title: Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate publication-title: Cellulose – volume: 9 start-page: 1579 year: 2008 end-page: 1585 ident: b0060 article-title: Cellulose nanopaper structures of high toughness publication-title: Biomacromolecules – volume: 110 start-page: 3479 year: 2010 end-page: 3500 ident: b0080 article-title: Cellulose nanocrystals: Chemistry, self-assembly, and applications publication-title: Chem. Rev. – volume: 7 start-page: 11515 year: 2016 ident: b0105 article-title: Structure and transformation of tactoids in cellulose nanocrystal suspensions publication-title: Nat. Commun. – volume: 7 start-page: 302 year: 2011 end-page: 305 ident: b0220 article-title: Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure publication-title: Small – volume: 20 start-page: 211 year: 2013 end-page: 215 ident: b0055 article-title: Rapid preparation of cellulose nanofiber sheet publication-title: Cellulose – volume: 13 start-page: 842 year: 2012 end-page: 849 ident: b0125 article-title: Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils publication-title: Biomacromolecules – volume: 3 start-page: 71 year: 2011 end-page: 85 ident: b0005 article-title: TEMPO-oxidized cellulose nanofibers publication-title: Nanoscale – volume: 24 start-page: 784 year: 2008 end-page: 795 ident: b0040 article-title: The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes publication-title: Langmuir – volume: 16 start-page: 3399 year: 2015 end-page: 3410 ident: b0130 article-title: Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials publication-title: Biomacromolecules – volume: 18 start-page: 421 year: 2011 end-page: 431 ident: b0165 article-title: Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation publication-title: Cellulose – volume: 7 start-page: 651 year: 2004 end-page: 660 ident: b0025 article-title: Progress in understanding the role of microtubules in plant cells publication-title: Curr. Opin. Plant Biol. – volume: 5 start-page: 19 year: 1998 end-page: 32 ident: b0075 article-title: Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose publication-title: Cellulose – volume: 47 start-page: 1088 year: 2014 end-page: 1096 ident: b0095 article-title: The development of chiral nematic mesoporous materials publication-title: Acc. Chem. Res. – volume: 8 start-page: 2485 year: 2007 end-page: 2491 ident: b0120 article-title: Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose publication-title: Biomacromolecules – volume: 16 start-page: 2127 year: 2015 end-page: 2131 ident: b0210 article-title: Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions publication-title: Biomacromolecules – volume: 25 start-page: 1599 year: 2018 end-page: 1606 ident: b0215 article-title: Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser light scattering analysis publication-title: Cellulose – volume: 78 start-page: 330 year: 2009 end-page: 335 ident: b0175 article-title: Oxidation of regenerated cellulose with NaClO publication-title: Carbohydr. Polym. – volume: 17 start-page: 459 year: 2010 end-page: 494 ident: b0045 article-title: Microfibrillated cellulose and new nanocomposite materials: a review publication-title: Cellulose – volume: 19 start-page: 633 year: 2018 end-page: 639 ident: b0195 article-title: Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation publication-title: Biomacromolecules – year: 2019 ident: b0200 article-title: Characterization of concentration-dependent gelation behavior of aqueous 2,2,6,6-tetramethylpiperidine-1-oxyl−cellulose nanocrystal dispersions using dynamic light scattering publication-title: Biomacromolecules – volume: 43 start-page: 3434 year: 2007 end-page: 3441 ident: b0035 article-title: An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers publication-title: Eur. Polym. J. – volume: 8 start-page: 1934 year: 2007 end-page: 1941 ident: b0030 article-title: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels publication-title: Biomacromolecules – volume: 12 start-page: 15 year: 2018 end-page: 21 ident: b0010 article-title: Preparation of cellulose nanofibers using green and sustainable chemistry publication-title: Curr. Opin. Green Sust. Chem. – volume: 10 start-page: 1992 year: 2009 end-page: 1996 ident: b0150 article-title: Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions publication-title: Biomacromolecules – volume: 11 start-page: 1696 year: 2010 end-page: 1700 ident: b0185 article-title: Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation publication-title: Biomacromolecules – volume: 468 start-page: 422 year: 2010 end-page: U246 ident: b0090 article-title: Free-standing mesoporous silica films with tunable chiral nematic structures publication-title: Nature – volume: 71 start-page: 1593 year: 2011 end-page: 1599 ident: b0070 article-title: High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC) publication-title: Comp. Sci. Technol. – volume: 468 start-page: 422 year: 2010 ident: 10.1016/j.cossms.2019.01.001_b0090 article-title: Free-standing mesoporous silica films with tunable chiral nematic structures publication-title: Nature doi: 10.1038/nature09540 – volume: 20 start-page: 211 year: 2013 ident: 10.1016/j.cossms.2019.01.001_b0055 article-title: Rapid preparation of cellulose nanofiber sheet publication-title: Cellulose doi: 10.1007/s10570-012-9794-1 – volume: 13 start-page: 842 year: 2012 ident: 10.1016/j.cossms.2019.01.001_b0125 article-title: Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils publication-title: Biomacromolecules doi: 10.1021/bm2017542 – volume: 3 start-page: 71 year: 2011 ident: 10.1016/j.cossms.2019.01.001_b0005 article-title: TEMPO-oxidized cellulose nanofibers publication-title: Nanoscale doi: 10.1039/C0NR00583E – volume: 8 start-page: 1934 year: 2007 ident: 10.1016/j.cossms.2019.01.001_b0030 article-title: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels publication-title: Biomacromolecules doi: 10.1021/bm061215p – volume: 11 start-page: 1696 year: 2010 ident: 10.1016/j.cossms.2019.01.001_b0185 article-title: Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation publication-title: Biomacromolecules doi: 10.1021/bm100214b – volume: 50 start-page: 5438 year: 2011 ident: 10.1016/j.cossms.2019.01.001_b0050 article-title: Nanocelluloses: A new family of nature-based materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001273 – volume: 7 start-page: 651 year: 2004 ident: 10.1016/j.cossms.2019.01.001_b0025 article-title: Progress in understanding the role of microtubules in plant cells publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2004.09.008 – year: 2019 ident: 10.1016/j.cossms.2019.01.001_b0200 article-title: Characterization of concentration-dependent gelation behavior of aqueous 2,2,6,6-tetramethylpiperidine-1-oxyl−cellulose nanocrystal dispersions using dynamic light scattering publication-title: Biomacromolecules – volume: 85 start-page: 126 year: 2015 ident: 10.1016/j.cossms.2019.01.001_b0190 article-title: TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2014.06.011 – volume: 23 start-page: 779 year: 2016 ident: 10.1016/j.cossms.2019.01.001_b0230 article-title: Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials publication-title: Cellulose doi: 10.1007/s10570-015-0853-2 – volume: 12 start-page: 15 year: 2018 ident: 10.1016/j.cossms.2019.01.001_b0010 article-title: Preparation of cellulose nanofibers using green and sustainable chemistry publication-title: Curr. Opin. Green Sust. Chem. – volume: 43 start-page: 3434 year: 2007 ident: 10.1016/j.cossms.2019.01.001_b0035 article-title: An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2007.05.038 – volume: 9 start-page: 1579 year: 2008 ident: 10.1016/j.cossms.2019.01.001_b0060 article-title: Cellulose nanopaper structures of high toughness publication-title: Biomacromolecules doi: 10.1021/bm800038n – volume: 10 start-page: 1992 year: 2009 ident: 10.1016/j.cossms.2019.01.001_b0150 article-title: Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions publication-title: Biomacromolecules doi: 10.1021/bm900414t – volume: 19 start-page: 633 year: 2018 ident: 10.1016/j.cossms.2019.01.001_b0195 article-title: Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01730 – volume: 11 start-page: 1593 year: 2010 ident: 10.1016/j.cossms.2019.01.001_b0160 article-title: TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber publication-title: Biomacromolecules doi: 10.1021/bm1002575 – volume: 18 start-page: 421 year: 2011 ident: 10.1016/j.cossms.2019.01.001_b0165 article-title: Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation publication-title: Cellulose doi: 10.1007/s10570-010-9484-9 – volume: 51 start-page: 228 year: 2012 ident: 10.1016/j.cossms.2019.01.001_b0155 article-title: Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2012.05.016 – volume: 8 start-page: 2485 year: 2007 ident: 10.1016/j.cossms.2019.01.001_b0120 article-title: Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose publication-title: Biomacromolecules doi: 10.1021/bm0703970 – volume: 73 start-page: 143 year: 1976 ident: 10.1016/j.cossms.2019.01.001_b0020 article-title: Cellulose microfibrils: Visualization of biosynthetic and orienting complexes in association with the plasma membrane publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.73.1.143 – volume: 16 start-page: 2127 year: 2015 ident: 10.1016/j.cossms.2019.01.001_b0210 article-title: Influence of flexibility and dimensions of nanocelluloses on the flow properties of their aqueous dispersions publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00539 – volume: 25 start-page: 1599 year: 2018 ident: 10.1016/j.cossms.2019.01.001_b0215 article-title: Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser light scattering analysis publication-title: Cellulose doi: 10.1007/s10570-018-1675-9 – volume: 16 start-page: 3399 year: 2015 ident: 10.1016/j.cossms.2019.01.001_b0130 article-title: Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01117 – volume: 71 start-page: 1593 year: 2011 ident: 10.1016/j.cossms.2019.01.001_b0070 article-title: High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC) publication-title: Comp. Sci. Technol. doi: 10.1016/j.compscitech.2011.07.003 – volume: 40 start-page: 3941 year: 2011 ident: 10.1016/j.cossms.2019.01.001_b0085 article-title: Cellulose nanomaterials review: Structure, properties and nanocomposites publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00108b – year: 2019 ident: 10.1016/j.cossms.2019.01.001_b0205 article-title: The dispersion-induced disordering of the fibril interfaces in biologically-structured cellulose determines the crystallinity of cellulose nanofibers publication-title: ACS Appl. Nano Mater. – volume: 17 start-page: 459 year: 2010 ident: 10.1016/j.cossms.2019.01.001_b0045 article-title: Microfibrillated cellulose and new nanocomposite materials: a review publication-title: Cellulose doi: 10.1007/s10570-010-9405-y – volume: 5 start-page: 153 year: 1998 ident: 10.1016/j.cossms.2019.01.001_b0170 article-title: Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation publication-title: Cellulose doi: 10.1023/A:1009208603673 – volume: 7 start-page: 1687 year: 2006 ident: 10.1016/j.cossms.2019.01.001_b0115 article-title: Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose publication-title: Biomacromolecules doi: 10.1021/bm060154s – volume: 86 start-page: 122 year: 2018 ident: 10.1016/j.cossms.2019.01.001_b0015 article-title: Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2018.07.007 – volume: 7 start-page: 302 year: 2011 ident: 10.1016/j.cossms.2019.01.001_b0220 article-title: Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure publication-title: Small doi: 10.1002/smll.201001715 – volume: 47 start-page: 1088 year: 2014 ident: 10.1016/j.cossms.2019.01.001_b0095 article-title: The development of chiral nematic mesoporous materials publication-title: Acc. Chem. Res. doi: 10.1021/ar400243m – volume: 26 start-page: 2323 year: 2014 ident: 10.1016/j.cossms.2019.01.001_b0100 article-title: Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties publication-title: Adv. Mater. doi: 10.1002/adma.201304966 – volume: 5 start-page: 1983 year: 2004 ident: 10.1016/j.cossms.2019.01.001_b0180 article-title: TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions publication-title: Biomacromolecules doi: 10.1021/bm0497769 – volume: 24 start-page: 784 year: 2008 ident: 10.1016/j.cossms.2019.01.001_b0040 article-title: The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes publication-title: Langmuir doi: 10.1021/la702481v – volume: 5 start-page: 19 year: 1998 ident: 10.1016/j.cossms.2019.01.001_b0075 article-title: Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose publication-title: Cellulose doi: 10.1023/A:1009260511939 – volume: 34 start-page: 646 year: 2018 ident: 10.1016/j.cossms.2019.01.001_b0110 article-title: Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures publication-title: Langmuir doi: 10.1021/acs.langmuir.7b03920 – volume: 21 start-page: 2567 year: 2014 ident: 10.1016/j.cossms.2019.01.001_b0225 article-title: Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate publication-title: Cellulose doi: 10.1007/s10570-014-0308-1 – volume: 7 start-page: 8804 year: 2011 ident: 10.1016/j.cossms.2019.01.001_b0140 article-title: Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials publication-title: Soft Matter doi: 10.1039/c1sm06050c – volume: 7 start-page: 11515 year: 2016 ident: 10.1016/j.cossms.2019.01.001_b0105 article-title: Structure and transformation of tactoids in cellulose nanocrystal suspensions publication-title: Nat. Commun. doi: 10.1038/ncomms11515 – volume: 269 start-page: 89 year: 1995 ident: 10.1016/j.cossms.2019.01.001_b0145 article-title: Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(94)00343-E – volume: 12 start-page: 3638 year: 2011 ident: 10.1016/j.cossms.2019.01.001_b0065 article-title: Strong and tough cellulose nanopaper with high specific surface area and porosity publication-title: Biomacromolecules doi: 10.1021/bm2008907 – volume: 110 start-page: 3479 year: 2010 ident: 10.1016/j.cossms.2019.01.001_b0080 article-title: Cellulose nanocrystals: Chemistry, self-assembly, and applications publication-title: Chem. Rev. doi: 10.1021/cr900339w – volume: 24 start-page: 1296 year: 2017 ident: 10.1016/j.cossms.2019.01.001_b0135 article-title: Complete nanofibrillation of cellulose prepared by phosphorylation publication-title: Cellulose doi: 10.1007/s10570-017-1191-3 – volume: 78 start-page: 330 year: 2009 ident: 10.1016/j.cossms.2019.01.001_b0175 article-title: Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2009.04.012 |
SSID | ssj0004666 |
Score | 2.6054394 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•TEMPO-oxidized wood cellulose fibers can be converted to diverse nanocelluloses.•Cellulose nanonetworks, nanofibers, and nanocrystals... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101 |
SubjectTerms | Microfibril Nanocrystal Nanofiber Nanonetwork TEMPO Wood cellulose |
Title | Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals |
URI | https://dx.doi.org/10.1016/j.cossms.2019.01.001 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jIuiD6FT8HHnwcXFNm7WZbzI35rf4Ab6VNE2gMtuxbqA--LebS9sxERR8Kk0vbcgdd5f0d78gdOR7vpTUU4SJSBPmxopEXAQkimITLpgMHAlbA9c3_vCJXTx3nmuoV9XCAKyy9P2FT7feumxpl7PZHidJ-4F6lnrEN0YJFaBQUc5YAFZ-_EkXaiPt_0oQJiBdlc9ZjJc0gegVSLtp15J3lkfD_AhPCyFnsI7WylwRnxbD2UA1lTbQ6gKDYAMtWwSnzDfR7MwiLBRORZrBdvxslOUqx-OJsiBzDIUk-LF_fXdLsrckTj5MGwBu8FwYa4CP5CfYuNwsLfDhecu-sHjSwiKNiw9M3k1aOcq30NOg_9gbkvJMBSK9wJ0SRTXngseMa9-sdETAmWuUo5U2mVesZaA8qoVmXCjJnW6kjEekwDsnuMskl942qsMQdhCOqSNMBtEVugOLbB2ZcKjdjhtHQgVMsV3kVVMZypJwHM69GIUVsuwlLBQQggJChwLAbheRea9xQbjxh3xQaSn8ZjihiQm_9tz7d899tAJ3BYDnANWnk5k6NLnJNGpa42uipdPe_dUdXM8vhzdfUEfouQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mRNQH8RPnZx58NGxtszbzbUxlc24KTvCtpGkCk9mNdQP1rzeXtmMiKPia5NqQC3eX5He_A7jwPV9Kx1OUiUhT5saKRlwENIpi4y6YDGoSrwZ6fb_9zO5e6i8laBW5MAirzG1_ZtOttc5bqvlqVifDYfXJ8Sz1iG82JWaABiuwiuxU9TKsNjvddn8pPdI-WeJ4igJFBp2FeUnji96Qt9tpWP7OvDrMDw-15HVut2ErDxdJM5vRDpRUsgubSySCu7BmQZwy3YP5tQVZKJKIZIw38vPROFUpmUyVxZkTzCUhg5ve4wMdvw_j4adpQ8wNWQwmGhEk6RUxVnecZBDx9NJ-MOu5JCKJsx9MP0xkOUr34fn2ZtBq07ysApVe4M6ocjTngseMa98cdkTAmWv0o5U2wVesZaA8RwvNuFCS1xqRMkbRQeo5wV0mufQOoIxTOAQSOzVhgoiG0HU8Z-vIeETt1t04EipgilXAK5YylDnnOJa-GIUFuOw1zBQQogLCmoMYuwrQhdQk49z4Y3xQaCn8tndC4xZ-lTz6t-Q5rLcHvfvwvtPvHsMG9mR4nhMoz6ZzdWpClVl0lm_FL_ww6dU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+nanocelluloses+prepared+from+TEMPO-oxidized+wood+cellulose+fibers%3A+Nanonetworks%2C+nanofibers%2C+and+nanocrystals&rft.jtitle=Current+opinion+in+solid+state+%26+materials+science&rft.au=Isogai%2C+Akira&rft.au=Zhou%2C+Yaxin&rft.date=2019-04-01&rft.issn=1359-0286&rft.volume=23&rft.issue=2&rft.spage=101&rft.epage=106&rft_id=info:doi/10.1016%2Fj.cossms.2019.01.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cossms_2019_01_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0286&client=summon |