On Distribution of Superconductivity in Metal Hydrides

•Highest-TC hydrides are formed by metals in the “lability belt” of the Periodic Table, roughly between 2 and 3 groups.•~0.3 electrons should be transferred to H-atom in XH10±2 hydrides to make it the most effective superconductors.•TC decreases with increasing number of d- and f-electrons and fully...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in solid state & materials science Vol. 24; no. 2; p. 100808
Main Authors Semenok, Dmitrii V., Kruglov, Ivan A., Savkin, Igor A., Kvashnin, Alexander G., Oganov, Artem R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Highest-TC hydrides are formed by metals in the “lability belt” of the Periodic Table, roughly between 2 and 3 groups.•~0.3 electrons should be transferred to H-atom in XH10±2 hydrides to make it the most effective superconductors.•TC decreases with increasing number of d- and f-electrons and fully disappears when magnetic order sets in. Using the data on the superconducting critical temperature (TC) for a number of metal hydrides, we found a rule that makes it possible to predict the maximum TC based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems at high pressures, and calculated their TC. The highest-temperature superconducting hydrides are formed by metals in the “lability belt” roughly between 2nd and 3rd groups of the Periodic Table. Results of the study of actinoids and lanthanoids show that they form highly symmetric superhydrides XH7-XH9, but the increasing number of d- and especially f-electrons affects superconducitivity adversely. Hydrides of late transition metals (e.g. platinoids) and all but early lanthanoids and actinoids are not promising for high-Tc superconductivity. Designed neural network allowing the prediction of TC of various hydrides shows high accuracy and was used to estimate upper limit for TC of hydrides for which no date are avilable. The developed rule, based on regular behavior of the maximum achievable critical temperature as a function of number of d + f electrons, enables targeted predictions about the existence of new high-TC superconductors.
AbstractList •Highest-TC hydrides are formed by metals in the “lability belt” of the Periodic Table, roughly between 2 and 3 groups.•~0.3 electrons should be transferred to H-atom in XH10±2 hydrides to make it the most effective superconductors.•TC decreases with increasing number of d- and f-electrons and fully disappears when magnetic order sets in. Using the data on the superconducting critical temperature (TC) for a number of metal hydrides, we found a rule that makes it possible to predict the maximum TC based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems at high pressures, and calculated their TC. The highest-temperature superconducting hydrides are formed by metals in the “lability belt” roughly between 2nd and 3rd groups of the Periodic Table. Results of the study of actinoids and lanthanoids show that they form highly symmetric superhydrides XH7-XH9, but the increasing number of d- and especially f-electrons affects superconducitivity adversely. Hydrides of late transition metals (e.g. platinoids) and all but early lanthanoids and actinoids are not promising for high-Tc superconductivity. Designed neural network allowing the prediction of TC of various hydrides shows high accuracy and was used to estimate upper limit for TC of hydrides for which no date are avilable. The developed rule, based on regular behavior of the maximum achievable critical temperature as a function of number of d + f electrons, enables targeted predictions about the existence of new high-TC superconductors.
ArticleNumber 100808
Author Savkin, Igor A.
Semenok, Dmitrii V.
Kruglov, Ivan A.
Kvashnin, Alexander G.
Oganov, Artem R.
Author_xml – sequence: 1
  givenname: Dmitrii V.
  surname: Semenok
  fullname: Semenok, Dmitrii V.
  email: dmitrii.semenok@skoltech.ru
  organization: Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia
– sequence: 2
  givenname: Ivan A.
  surname: Kruglov
  fullname: Kruglov, Ivan A.
  organization: Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia
– sequence: 3
  givenname: Igor A.
  surname: Savkin
  fullname: Savkin, Igor A.
  organization: Research Computer Center of Lomonosov Moscow State University, Moscow, Russia
– sequence: 4
  givenname: Alexander G.
  surname: Kvashnin
  fullname: Kvashnin, Alexander G.
  email: A.Kvashnin@skoltech.ru
  organization: Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia
– sequence: 5
  givenname: Artem R.
  surname: Oganov
  fullname: Oganov, Artem R.
  organization: Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia
BookMark eNqFz81KAzEQwPEcKthW38DDvsDWSXbzUQ-CVG2FSg_qOWSTLExpsyVJC317u6wnD3oaGPgP85uQUeiCJ-SOwowCFffbme1S2qcZA9avQIEakTGt-LwEpsQ1maS0BYBaCDEmYhOKZ0w5YnPM2IWia4uP48FH2wV3tBlPmM8FhuLdZ7MrVmcX0fl0Q65as0v-9mdOydfry-diVa43y7fF07q0lWS59FS4hrWukUxKQ7nikgGt26aCqoZK2jmnghnOKWsUOEpdYxVvlZNu7pj31ZQ8DHdtvKiib7XFbPpHczS40xR0r9ZbPah1r9aD-hLXv-JDxL2J5_-yxyHzF9gJfdTJog_WO4zeZu06_PvAN7RSd4M
CitedBy_id crossref_primary_10_1038_s41467_022_33743_6
crossref_primary_10_1103_PhysRevB_104_134501
crossref_primary_10_1021_acs_jpca_2c06998
crossref_primary_10_1021_acs_jpcc_3c02968
crossref_primary_10_1063_5_0159590
crossref_primary_10_1103_PhysRevB_106_134509
crossref_primary_10_1021_acs_inorgchem_4c00520
crossref_primary_10_1103_PhysRevB_107_134509
crossref_primary_10_3367_UFNe_2021_05_039187
crossref_primary_10_1088_1361_648X_ac4eaf
crossref_primary_10_1103_PhysRevB_104_054501
crossref_primary_10_1016_j_mtphys_2024_101499
crossref_primary_10_1039_D3CP03134A
crossref_primary_10_1021_acs_jpclett_4c02134
crossref_primary_10_1002_adma_202204038
crossref_primary_10_1021_acs_jpclett_0c02299
crossref_primary_10_1103_PhysRevMaterials_7_054806
crossref_primary_10_1063_5_0088235
crossref_primary_10_1103_PhysRevB_108_L020102
crossref_primary_10_1021_acs_jpclett_1c00994
crossref_primary_10_1088_0256_307X_38_10_107401
crossref_primary_10_1016_j_physb_2022_414603
crossref_primary_10_1103_PhysRevB_108_L020506
crossref_primary_10_1088_0256_307X_40_5_057404
crossref_primary_10_1039_D3CP01053H
crossref_primary_10_1088_1361_648X_ac2864
crossref_primary_10_1093_nsr_nwad270
crossref_primary_10_1016_j_mtphys_2023_101300
crossref_primary_10_1016_j_physc_2021_1353916
crossref_primary_10_1360_SSPMA_2021_0359
crossref_primary_10_1088_0256_307X_37_10_107401
crossref_primary_10_1038_s41598_023_44632_3
crossref_primary_10_1103_PhysRevB_109_054522
crossref_primary_10_1007_s10948_024_06720_x
crossref_primary_10_1021_acs_jpcc_1c00645
crossref_primary_10_1103_RevModPhys_95_021001
crossref_primary_10_1093_nsr_nwad307
crossref_primary_10_1103_PhysRevB_104_214511
crossref_primary_10_1103_PhysRevB_111_054505
crossref_primary_10_1063_5_0091404
crossref_primary_10_1038_s41467_020_20103_5
crossref_primary_10_1038_s41524_021_00691_6
crossref_primary_10_1016_j_mtphys_2021_100546
crossref_primary_10_1103_PhysRevB_109_094106
crossref_primary_10_3389_femat_2022_837651
crossref_primary_10_1039_D3CP03952H
crossref_primary_10_1103_PhysRevB_106_174104
crossref_primary_10_1103_PhysRevB_105_245420
crossref_primary_10_1103_PhysRevB_106_024515
crossref_primary_10_1103_PhysRevB_103_035131
crossref_primary_10_1039_D0CC07661A
crossref_primary_10_1103_PhysRevB_107_L020504
crossref_primary_10_1039_D4TC03145H
crossref_primary_10_1103_PhysRevB_108_014511
crossref_primary_10_1088_0256_307X_40_9_097402
crossref_primary_10_1103_PhysRevB_107_214511
crossref_primary_10_1088_2053_1591_ac5e22
crossref_primary_10_1103_PhysRevMaterials_7_L101801
crossref_primary_10_1002_adts_202100364
crossref_primary_10_1063_5_0065879
crossref_primary_10_1088_1361_648X_ad68b3
crossref_primary_10_1021_acsomega_2c02447
crossref_primary_10_1063_10_0027919
crossref_primary_10_3390_ijms251810218
crossref_primary_10_1016_j_chemphys_2023_112108
crossref_primary_10_1007_s10948_022_06365_8
crossref_primary_10_1038_s41524_024_01490_5
crossref_primary_10_1039_D3TA04418A
crossref_primary_10_1016_j_scib_2022_03_001
crossref_primary_10_1103_PhysRevB_107_064102
crossref_primary_10_1021_acs_jpcc_1c08743
crossref_primary_10_1039_D2TC02842E
crossref_primary_10_1002_adfm_202423680
crossref_primary_10_1016_j_tsf_2024_140546
crossref_primary_10_1021_acs_inorgchem_2c02686
crossref_primary_10_1016_j_mtphys_2023_101298
crossref_primary_10_1039_D3CP05086F
crossref_primary_10_1016_j_mtphys_2025_101695
crossref_primary_10_1103_PhysRevB_109_224511
crossref_primary_10_1016_j_jmmm_2021_168758
crossref_primary_10_1103_PhysRevB_105_064516
crossref_primary_10_1007_s10948_020_05557_4
crossref_primary_10_1021_acs_jpcc_0c08904
crossref_primary_10_1002_wcms_1582
crossref_primary_10_1073_pnas_2218405120
crossref_primary_10_1016_j_rinp_2023_106479
crossref_primary_10_1016_j_ssc_2021_114295
crossref_primary_10_1016_j_jmst_2023_08_001
crossref_primary_10_1103_PhysRevB_107_024501
crossref_primary_10_3390_met12040568
crossref_primary_10_1021_acs_jpclett_0c03331
crossref_primary_10_1016_j_ijhydene_2020_09_260
crossref_primary_10_1016_j_mtphys_2022_100873
crossref_primary_10_1103_PhysRevB_104_104509
crossref_primary_10_1088_1402_4896_ad86fa
crossref_primary_10_1021_acs_jpcc_4c02467
crossref_primary_10_1088_1402_4896_ad4066
crossref_primary_10_1103_PhysRevLett_127_117001
crossref_primary_10_1103_PhysRevB_102_144524
crossref_primary_10_1002_advs_202303622
crossref_primary_10_1103_PhysRevB_101_144505
crossref_primary_10_1088_1367_2630_ac1df3
crossref_primary_10_1038_s41467_021_25687_0
crossref_primary_10_1016_j_chempr_2022_10_015
crossref_primary_10_1039_D1TC00634G
crossref_primary_10_1016_j_mtphys_2022_100826
crossref_primary_10_1038_s41467_022_30454_w
crossref_primary_10_1021_acs_jpclett_4c01223
crossref_primary_10_1002_chem_202102679
crossref_primary_10_1016_j_fmre_2023_05_001
crossref_primary_10_1021_acsomega_4c07199
crossref_primary_10_1107_S205225252300951X
crossref_primary_10_1103_PhysRevB_102_014516
crossref_primary_10_1016_j_jallcom_2021_163524
crossref_primary_10_1103_PhysRevMaterials_8_084805
crossref_primary_10_1007_s00894_024_06034_8
crossref_primary_10_1088_1361_6668_ad637e
crossref_primary_10_1007_s10948_022_06162_3
crossref_primary_10_1039_D3TC01089A
crossref_primary_10_1002_advs_202405561
crossref_primary_10_1063_5_0065287
crossref_primary_10_1209_0295_5075_ad2af6
crossref_primary_10_1038_s41598_021_94000_2
crossref_primary_10_1088_1742_6596_2036_1_012014
crossref_primary_10_1002_pssb_202200452
crossref_primary_10_1093_nsr_nwad241
crossref_primary_10_1007_s11433_023_2101_9
crossref_primary_10_1063_5_0071158
Cites_doi 10.1038/s41467-019-11330-6
10.1103/PhysRevB.101.144505
10.1063/1.5053650
10.1073/pnas.1704505114
10.1039/C6CP05702K
10.1016/j.cpc.2018.09.016
10.1021/acs.inorgchem.8b03165
10.1126/science.aan0961
10.1038/s41586-019-1201-8
10.1021/acs.jpcc.8b05030
10.1021/acs.inorgchem.6b02822
10.1103/PhysRevB.101.134108
10.1016/j.physb.2017.10.107
10.1038/s41467-019-12326-y
10.1021/acsami.8b17100
10.1103/PhysRevB.98.134103
10.1103/PhysRevB.76.134512
10.1103/PhysRevB.50.17953
10.1021/ar1001318
10.1038/srep17764
10.1103/PhysRevLett.96.047003
10.1103/PhysRevB.54.11169
10.1088/1367-2630/ab5a9a
10.1021/acs.inorgchem.7b01686
10.1103/PhysRevB.88.184104
10.1038/340369a0
10.1103/PhysRevB.86.014118
10.1021/jp303024h
10.1063/1.2210932
10.1103/PhysRevB.59.1758
10.1103/PhysRevLett.125.217001
10.1038/nature14964
10.1002/chem.201103205
10.1103/PhysRevB.99.224504
10.1038/srep28102
10.1021/jp311571n
10.1103/PhysRevB.96.201107
10.1093/nsr/nww029
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.96.144108
10.1103/PhysRev.140.A1133
10.1126/sciadv.aat9776
10.1038/363056a0
10.1002/anie.201709970
10.1103/PhysRevB.12.905
10.1021/acs.jpcc.7b12124
10.1088/1361-648X/ab1d03
10.1103/PhysRevB.49.14251
10.1039/C6CP08036G
10.1143/JPSJ.75.083703
10.1103/PhysRevB.96.100502
10.1021/acs.jpclett.8b00615
10.1103/PhysRevB.47.558
10.1103/PhysRevLett.78.118
10.1016/j.cpc.2012.12.009
10.1103/PhysRevB.73.094522
10.1038/ncomms12267
10.1088/0953-8984/21/39/395502
10.1073/pnas.1118168109
10.1021/acs.jpclett.9b03632
10.1021/ic301045v
10.1103/PhysRevLett.119.107001
10.1107/S2053229613028337
10.1103/PhysRevLett.122.027001
10.1103/PhysRev.136.B864
10.1103/RevModPhys.73.515
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cossms.2020.100808
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_cossms_2020_100808
S135902862030005X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-e16db2fdb7277a158572014fb3034037c95162a5512b80d11dbc85f8d7d9d2ee3
IEDL.DBID .~1
ISSN 1359-0286
IngestDate Tue Jul 01 01:27:22 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Fri Feb 23 02:47:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Periodic Table
Superconducting hydrides
DFT
Neural network
USPEX, High-pressure
Evolutionary algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-e16db2fdb7277a158572014fb3034037c95162a5512b80d11dbc85f8d7d9d2ee3
ParticipantIDs crossref_citationtrail_10_1016_j_cossms_2020_100808
crossref_primary_10_1016_j_cossms_2020_100808
elsevier_sciencedirect_doi_10_1016_j_cossms_2020_100808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Current opinion in solid state & materials science
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Drozdov, Kong, Minkov, Besedin, Kuzovnikov, Mozaffari, Balicas, Balakirev, Graf, Prakapenka (b0030) 2019; 569
Kresse, Hafner (b0180) 1994; 49
Yu, Jia, Frapper, Li, Oganov, Zeng, Zhang (b0210) 2015; 5
Zhou, Jin, Meng, Bao, Ma, Liu, Cui (b0195) 2012; 86
Hooper, Zurek (b0250) 2012; 18
Li, Huang, Duan, Pickard, Zhou, Xie, Zhuang, Huang, Zhou, Liu (b0055) 2019; 10
Hooper, Zurek (b0220) 2012; 116
M.J. Hutcheon, A.M. Shipley, R.J. Needs, Predicting Novel Superconducting Hydrides Using Machine Learning Approaches, ArXiv200109852 Cond-Mat, 2020.
H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S.A.T. Redfern, V.Z. Kresin, C.J. Pickard, et al., Hydrogen “Penta-Graphene-like” Structure Stabilized via Hafnium: A High-Temperature Conventional Superconductor, ArXiv200104076 Cond-Mat, 2020.
Gao, Hoffmann, Ashcroft, Liu, Bergara, Ma (b0095) 2013; 88
Abe (b0265) 2018; 98
Pépin, Geneste, Dewaele, Mezouar, Loubeyre (b0040) 2017; 357
Baroni, de Gironcoli, Dal Corso, Giannozzi (b0185) 2001; 73
Lyakhov, Oganov, Stokes, Zhu (b0135) 2013; 184
Semenok, Kvashnin, Ivanova, Svitlyk, Fominski, Sadakov, Sobolevskiy, Pudalov, Troyan, Oganov (b0065) 2019
Li, Peng (b0105) 2017; 56
Ye, Zarifi, Zurek, Hoffmann, Ashcroft (b0200) 2018; 122
Duda, Szewczyk, Jarosik, Szcześniak, Sowińska, Szcześniak (b0295) 2018; 536
Kong, Drozdov, Eroke, Eremets (b0020) 2017
Salke, Esfahani, Zhang, Kruglov, Zhou, Wang, Greenberg, Prakapenka, Liu, Oganov (b0060) 2019; 10
N.P. Salke, M.M.D. Esfahani, Y. Zhang, I.A. Kruglov, J. Zhou, Y. Wang, E. Greenberg, V.B. Prakapenka, A.R. Oganov, J.-F. Lin, Synthesis of Clathrate Cerium Superhydride CeH9 at 80 GPa with Anomalously Short H-H Distance, arXiv:1805.02060, 2018
Zhuang, Jin, Cui, Ma, Lv, Li, Zhang, Meng, Bao (b0300) 2017; 56
Kruglov, Semenok, Song, Szczęśniak, Wrona, Akashi, Esfahani, Duan, Cui, Kvashnin (b0345) 2019
Mishra, Muramatsu, Liu, Geballe, Somayazulu, Ahart, Baldini, Meng, Zurek, Hemley (b0225) 2018; 122
Bushlanov, Blatov, Oganov (b0140) 2019; 236
Zhou, Semenok, Xie, Huang, Duan, Aperis, Oppeneer, Galasso, Kartsev, Kvashnin (b0075) 2020
Majumdar, Tse, Wu, Yao (b0045) 2017; 96
Shanavas, Lindsay, Parker (b0205) 2016; 6
Richardson, Ashcroft (b0375) 1997; 78
Hooper, Altintas, Shamp, Zurek (b0215) 2013; 117
.
Liu, Naumov, Hoffmann, Ashcroft, Hemley (b0110) 2017; 114
Kvashnin, Semenok, Kruglov, Wrona, Oganov (b0115) 2018; 10
Kohn, Sham (b0150) 1965; 140
Oganov, Lyakhov, Valle (b0130) 2011; 44
Kresse, Hafner (b0175) 1993; 47
Zhou, Semenok, Duan, Xie, Huang, Chen, Li, Liu, Oganov, Cui (b0070) 2020
Hohenberg, Kohn (b0145) 1964; 136
Mishra, Somayazulu, Ahart, Karandikar, Hemley, Struzhkin (b0015) 2018
Profeta, Franchini, Lathiotakis, Floris, Sanna, Marques, Lüders, Massidda, Gross, Continenza (b0360) 2006; 96
Tanaka, Tse, Liu (b0090) 2017; 96
Geballe, Liu, Mishra, Ahart, Somayazulu, Meng, Baldini, Hemley (b0025) 2017; 57
Hamlin, Tissen, Schilling (b0350) 2006; 73
Schilling, Cantoni, Guo, Ott (b0370) 1993; 363
Abe (b0100) 2017; 96
Giannozzi, Baroni, Bonini, Calandra, Car, Cavazzoni, Ceresoli, Chiarotti, Cococcioni, Dabo (b0190) 2009; 21
Shao, Duan, Ma, Yu, Song, Xie, Li, Tian, Liu, Cui (b0230) 2019; 58
APS-APS March Meeting 2020 - Event - Superconductivity at 262 K in Yttrium Superhydride at High Pressures, in: Bulletin of the American Physical Society, American Physical Society, 2020.
Allen, Dynes (b0335) 1975; 12
Drozdov, Eremets, Troyan, Ksenofontov, Shylin (b0005) 2015; 525
Xie, Zhang, Duan, Huang, Huang, Song, Feng, Yao, Pickard, Cui (b0270) 2020; 11
Wang, Tse, Tanaka, Iitaka, Ma (b0085) 2012; 109
Semenok, Kvashnin, Kruglov, Oganov (b0120) 2018; 9
Perdew, Burke, Ernzerhof (b0155) 1996; 77
J. Zhang, J.M. McMahon, A.R. Oganov, X. Li, X. Dong, H. Dong, S. Wang, High-Temperature Superconductivity in the Ti--H System at High Pressures, ArXiv191109293 Cond-Mat, 2019.
Shamp, Hooper, Zurek (b0290) 2012; 51
Ying, Li, Greenberg, Prakapenka, Liu, Struzhkin (b0305) 2019; 99
Wu, Huang, Xie, Li, Liu, Liang, Huang, Duan, Li, Liu (b0260) 2019; 150
Struzhkin, Kim, Stavrou, Muramatsu, Mao, Pickard, Needs, Prakapenka, Goncharov (b0340) 2016; 7
Li, Hu, Huang (b0245) 2017; 19
Duan, Liu, Ma, Shao, Liu, Cui (b0010) 2017; 4
Kruglov, Kvashnin, Goncharov, Oganov, Lobanov, Holtgrewe, Jiang, Prakapenka, Greenberg, Yanilkin (b0050) 2018; 4
Yabuuchi, Matsuoka, Nakamoto, Shimizu (b0355) 2006; 75
Xe, Li, Oganov, Wang (b0080) 2014; 70
Xiao, Duan, Xie, Shao, Li, Tian, Song, Yu, Bao, Cui (b0330) 2019; 31
Somayazulu, Ahart, Mishra, Geballe, Baldini, Meng, Struzhkin, Hemley (b0035) 2019; 122
Personal Information from Huang’s Group, Jilin University.
Blöchl (b0160) 1994; 50
Li, Liu, Peng (b0240) 2016; 18
Kong, Minkov, Kuzovnikov, Besedin, Drozdov, Mozaffari, Balicas, Balakirev, Prakapenka, Greenberg (b0280) 2019
Kresse, Joubert (b0165) 1999; 59
Kresse, Furthmüller (b0170) 1996; 54
Nixon, Papaconstantopoulos, Mehl (b0365) 2007; 76
Barbee, García, Cohen (b0380) 1989; 340
Peng, Sun, Pickard, Needs, Wu, Ma (b0320) 2017; 119
Li, Li, Wang, Liu, Li, Liu (b0315) 2019; 21
Oganov, Glass (b0125) 2006; 124
Yabuuchi (10.1016/j.cossms.2020.100808_b0355) 2006; 75
Tanaka (10.1016/j.cossms.2020.100808_b0090) 2017; 96
Kong (10.1016/j.cossms.2020.100808_b0020) 2017
Perdew (10.1016/j.cossms.2020.100808_b0155) 1996; 77
Peng (10.1016/j.cossms.2020.100808_b0320) 2017; 119
Drozdov (10.1016/j.cossms.2020.100808_b0005) 2015; 525
Wang (10.1016/j.cossms.2020.100808_b0085) 2012; 109
Oganov (10.1016/j.cossms.2020.100808_b0130) 2011; 44
Li (10.1016/j.cossms.2020.100808_b0315) 2019; 21
Hamlin (10.1016/j.cossms.2020.100808_b0350) 2006; 73
Mishra (10.1016/j.cossms.2020.100808_b0225) 2018; 122
Li (10.1016/j.cossms.2020.100808_b0245) 2017; 19
Kruglov (10.1016/j.cossms.2020.100808_b0345) 2019
Kong (10.1016/j.cossms.2020.100808_b0280) 2019
Lyakhov (10.1016/j.cossms.2020.100808_b0135) 2013; 184
Kresse (10.1016/j.cossms.2020.100808_b0165) 1999; 59
Geballe (10.1016/j.cossms.2020.100808_b0025) 2017; 57
Hooper (10.1016/j.cossms.2020.100808_b0250) 2012; 18
Liu (10.1016/j.cossms.2020.100808_b0110) 2017; 114
Zhuang (10.1016/j.cossms.2020.100808_b0300) 2017; 56
Salke (10.1016/j.cossms.2020.100808_b0060) 2019; 10
Baroni (10.1016/j.cossms.2020.100808_b0185) 2001; 73
10.1016/j.cossms.2020.100808_b0255
Oganov (10.1016/j.cossms.2020.100808_b0125) 2006; 124
Abe (10.1016/j.cossms.2020.100808_b0100) 2017; 96
Hohenberg (10.1016/j.cossms.2020.100808_b0145) 1964; 136
Zhou (10.1016/j.cossms.2020.100808_b0075) 2020
Struzhkin (10.1016/j.cossms.2020.100808_b0340) 2016; 7
Ye (10.1016/j.cossms.2020.100808_b0200) 2018; 122
Nixon (10.1016/j.cossms.2020.100808_b0365) 2007; 76
Kruglov (10.1016/j.cossms.2020.100808_b0050) 2018; 4
Wu (10.1016/j.cossms.2020.100808_b0260) 2019; 150
Shamp (10.1016/j.cossms.2020.100808_b0290) 2012; 51
Semenok (10.1016/j.cossms.2020.100808_b0065) 2019
Abe (10.1016/j.cossms.2020.100808_b0265) 2018; 98
10.1016/j.cossms.2020.100808_b0325
Kresse (10.1016/j.cossms.2020.100808_b0180) 1994; 49
Giannozzi (10.1016/j.cossms.2020.100808_b0190) 2009; 21
Kohn (10.1016/j.cossms.2020.100808_b0150) 1965; 140
Xiao (10.1016/j.cossms.2020.100808_b0330) 2019; 31
10.1016/j.cossms.2020.100808_b0285
Drozdov (10.1016/j.cossms.2020.100808_b0030) 2019; 569
Xie (10.1016/j.cossms.2020.100808_b0270) 2020; 11
Majumdar (10.1016/j.cossms.2020.100808_b0045) 2017; 96
Semenok (10.1016/j.cossms.2020.100808_b0120) 2018; 9
Mishra (10.1016/j.cossms.2020.100808_b0015) 2018
Schilling (10.1016/j.cossms.2020.100808_b0370) 1993; 363
Profeta (10.1016/j.cossms.2020.100808_b0360) 2006; 96
Duan (10.1016/j.cossms.2020.100808_b0010) 2017; 4
Yu (10.1016/j.cossms.2020.100808_b0210) 2015; 5
Hooper (10.1016/j.cossms.2020.100808_b0215) 2013; 117
Barbee (10.1016/j.cossms.2020.100808_b0380) 1989; 340
Shao (10.1016/j.cossms.2020.100808_b0230) 2019; 58
Li (10.1016/j.cossms.2020.100808_b0105) 2017; 56
Li (10.1016/j.cossms.2020.100808_b0240) 2016; 18
Zhou (10.1016/j.cossms.2020.100808_b0195) 2012; 86
Shanavas (10.1016/j.cossms.2020.100808_b0205) 2016; 6
10.1016/j.cossms.2020.100808_b0235
Xe (10.1016/j.cossms.2020.100808_b0080) 2014; 70
Kvashnin (10.1016/j.cossms.2020.100808_b0115) 2018; 10
Bushlanov (10.1016/j.cossms.2020.100808_b0140) 2019; 236
Somayazulu (10.1016/j.cossms.2020.100808_b0035) 2019; 122
10.1016/j.cossms.2020.100808_b0275
10.1016/j.cossms.2020.100808_b0310
Duda (10.1016/j.cossms.2020.100808_b0295) 2018; 536
Kresse (10.1016/j.cossms.2020.100808_b0170) 1996; 54
Blöchl (10.1016/j.cossms.2020.100808_b0160) 1994; 50
Pépin (10.1016/j.cossms.2020.100808_b0040) 2017; 357
Gao (10.1016/j.cossms.2020.100808_b0095) 2013; 88
Ying (10.1016/j.cossms.2020.100808_b0305) 2019; 99
Li (10.1016/j.cossms.2020.100808_b0055) 2019; 10
Zhou (10.1016/j.cossms.2020.100808_b0070) 2020
Hooper (10.1016/j.cossms.2020.100808_b0220) 2012; 116
Allen (10.1016/j.cossms.2020.100808_b0335) 1975; 12
Richardson (10.1016/j.cossms.2020.100808_b0375) 1997; 78
Kresse (10.1016/j.cossms.2020.100808_b0175) 1993; 47
References_xml – volume: 76
  start-page: 134512
  year: 2007
  ident: b0365
  article-title: Calculations of the superconducting properties of scandium under high pressure
  publication-title: Phys. Rev. B
– volume: 119
  start-page: 107001
  year: 2017
  end-page: 107007
  ident: b0320
  article-title: Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 5013
  year: 2012
  end-page: 5021
  ident: b0250
  article-title: rubidium polyhydrides under pressure: emergence of the linear H
  publication-title: Chem. Eur. J.
– volume: 5
  start-page: 17764
  year: 2015
  ident: b0210
  article-title: Pressure-driven formation and stabilization of superconductive chromium hydrides
  publication-title: Sci. Rep.
– volume: 56
  start-page: 3901
  year: 2017
  end-page: 3908
  ident: b0300
  article-title: Pressure-stabilized superconductive ionic tantalum hydrides
  publication-title: Inorg. Chem.
– volume: 569
  start-page: 528
  year: 2019
  ident: b0030
  article-title: Superconductivity at 250 K in lanthanum hydride under high pressures
  publication-title: Nature
– volume: 11
  start-page: 646
  year: 2020
  end-page: 651
  ident: b0270
  article-title: Superconducting zirconium polyhydrides at moderate pressures
  publication-title: J. Phys. Chem. Lett.
– reference: M.J. Hutcheon, A.M. Shipley, R.J. Needs, Predicting Novel Superconducting Hydrides Using Machine Learning Approaches, ArXiv200109852 Cond-Mat, 2020.
– volume: 4
  start-page: 121
  year: 2017
  end-page: 135
  ident: b0010
  article-title: Structure and superconductivity of hydrides at high pressures
  publication-title: Natl. Sci. Rev.
– volume: 114
  start-page: 6990
  year: 2017
  end-page: 6995
  ident: b0110
  article-title: Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure
  publication-title: Proc. Natl. Acad. Sci.
– reference: J. Zhang, J.M. McMahon, A.R. Oganov, X. Li, X. Dong, H. Dong, S. Wang, High-Temperature Superconductivity in the Ti--H System at High Pressures, ArXiv191109293 Cond-Mat, 2019.
– volume: 96
  start-page: 047003
  year: 2006
  ident: b0360
  article-title: Superconductivity in lithium, potassium, and aluminum under extreme pressure: A first-principles study
  publication-title: Phys. Rev. Lett.
– volume: 525
  start-page: 73
  year: 2015
  end-page: 76
  ident: b0005
  article-title: Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system
  publication-title: Nature
– volume: 122
  start-page: 6298
  year: 2018
  end-page: 6309
  ident: b0200
  article-title: High hydrides of scandium under pressure: potential superconductors
  publication-title: J. Phys. Chem. C
– volume: 109
  start-page: 6463
  year: 2012
  end-page: 6466
  ident: b0085
  article-title: Superconductive sodalite-like clathrate calcium hydride at high pressures
  publication-title: Proc. Natl. Acad. Sci.
– volume: 31
  start-page: 315403
  year: 2019
  ident: b0330
  article-title: Structure and superconductivity of protactinium hydrides under high pressure
  publication-title: J. Phys. Condens. Matter
– volume: 96
  start-page: 201107
  year: 2017
  ident: b0045
  article-title: Superconductivity in FeH
  publication-title: Phys. Rev. B
– volume: 136
  start-page: B864
  year: 1964
  end-page: B871
  ident: b0145
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
– volume: 56
  start-page: 13759
  year: 2017
  end-page: 13765
  ident: b0105
  article-title: Superconductivity of pressure-stabilized vanadium hydrides
  publication-title: Inorg. Chem.
– reference: N.P. Salke, M.M.D. Esfahani, Y. Zhang, I.A. Kruglov, J. Zhou, Y. Wang, E. Greenberg, V.B. Prakapenka, A.R. Oganov, J.-F. Lin, Synthesis of Clathrate Cerium Superhydride CeH9 at 80 GPa with Anomalously Short H-H Distance, arXiv:1805.02060, 2018,
– year: 2019
  ident: b0065
  article-title: Superconductivity at 161 K in thorium hydride ThH
  publication-title: Mater. Today
– volume: 88
  start-page: 184104
  year: 2013
  ident: b0095
  article-title: Theoretical study of the ground-state structures and properties of niobium hydrides under pressure
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 3461
  year: 2019
  ident: b0055
  article-title: Polyhydride CeH
  publication-title: Nat. Commun.
– volume: 99
  start-page: 224504
  year: 2019
  ident: b0305
  article-title: Synthesis and stability of tantalum hydride at high pressures
  publication-title: Phys. Rev. B
– year: 2019
  ident: b0345
  article-title: Superconductivity of LaH
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 1920
  year: 2018
  end-page: 1926
  ident: b0120
  article-title: Actinium hydrides AcH
  publication-title: J. Phys. Chem. Lett.
– volume: 75
  start-page: 083703
  year: 2006
  ident: b0355
  article-title: Superconductivity of Ca exceeding 25 K at megabar pressures
  publication-title: J. Phys. Soc. Jpn.
– volume: 96
  start-page: 100502
  year: 2017
  ident: b0090
  article-title: Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure
  publication-title: Phys. Rev. B
– volume: 122
  start-page: 19370
  year: 2018
  end-page: 19378
  ident: b0225
  article-title: New calcium hydrides with mixed atomic and molecular hydrogen
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 28791
  year: 2016
  end-page: 28796
  ident: b0240
  article-title: Crystal structures and superconductivity of technetium hydrides under pressure
  publication-title: Phys. Chem. Chem. Phys.
– volume: 21
  start-page: 123009
  year: 2019
  ident: b0315
  article-title: Superconducting TaH
  publication-title: New J. Phys.
– volume: 78
  start-page: 118
  year: 1997
  end-page: 121
  ident: b0375
  article-title: High temperature superconductivity in metallic hydrogen: electron-electron enhancements
  publication-title: Phys. Rev. Lett.
– volume: 140
  start-page: A1133
  year: 1965
  end-page: A1138
  ident: b0150
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
– volume: 4
  year: 2018
  ident: b0050
  article-title: Uranium polyhydrides at moderate pressures: prediction, synthesis, and expected superconductivity
  publication-title: Sci. Adv.
– volume: 96
  start-page: 144108
  year: 2017
  ident: b0100
  article-title: Hydrogen-rich scandium compounds at high pressures
  publication-title: Phys. Rev. B
– year: 2020
  ident: b0070
  article-title: Superconducting praseodymium superhydrides
  publication-title: Sci. Adv.
– volume: 73
  start-page: 094522
  year: 2006
  ident: b0350
  article-title: Superconductivity at 17 K in yttrium metal under nearly hydrostatic pressures up to 89GPa
  publication-title: Phys. Rev. B
– start-page: 347
  year: 2017
  ident: b0020
  article-title: Pressure-induced superconductivity above 79 K in Si2H6
  publication-title: Book of abstracts of AIRAPT 26 joint with ACHPR 8 & CHPC 19; Biijing, China
– volume: 236
  start-page: 1
  year: 2019
  end-page: 7
  ident: b0140
  article-title: Topology-based crystal structure generator
  publication-title: Comput. Phys. Commun.
– volume: 124
  start-page: 244704
  year: 2006
  ident: b0125
  article-title: Crystal structure prediction using ab initio evolutionary techniques: principles and applications
  publication-title: J. Chem. Phys.
– volume: 116
  start-page: 13322
  year: 2012
  end-page: 13328
  ident: b0220
  article-title: High pressure potassium polyhydrides: A chemical perspective
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 43809
  year: 2018
  end-page: 43816
  ident: b0115
  article-title: High-temperature superconductivity in Th-H system at pressure conditions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 28102
  year: 2016
  ident: b0205
  article-title: Electronic structure and electron-phonon coupling in TiH
  publication-title: Sci. Rep.
– volume: 184
  start-page: 1172
  year: 2013
  end-page: 1182
  ident: b0135
  article-title: New developments in evolutionary structure prediction algorithm USPEX
  publication-title: Comput. Phys. Commun.
– year: 2018
  ident: b0015
  article-title: Novel synthesis route and observation of superconductivity in the Se-H system at extreme conditions
  publication-title: Bulletin of the American Physical Society
– reference: Personal Information from Huang’s Group, Jilin University.
– reference: H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S.A.T. Redfern, V.Z. Kresin, C.J. Pickard, et al., Hydrogen “Penta-Graphene-like” Structure Stabilized via Hafnium: A High-Temperature Conventional Superconductor, ArXiv200104076 Cond-Mat, 2020.
– volume: 51
  start-page: 9333
  year: 2012
  end-page: 9342
  ident: b0290
  article-title: Compressed cesium polyhydrides: Cs+ sublattices and H
  publication-title: Inorg. Chem.
– volume: 21
  start-page: 395502
  year: 2009
  ident: b0190
  article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter
– volume: 70
  start-page: 104
  year: 2014
  end-page: 111
  ident: b0080
  article-title: superconductivity of lithium-doped hydrogen under high pressure
  publication-title: Acta Cryst. C
– volume: 98
  start-page: 134103
  year: 2018
  ident: b0265
  article-title: High-pressure properties of dense metallic zirconium hydrides studied by ab initio calculations
  publication-title: Phys. Rev. B
– volume: 536
  start-page: 275
  year: 2018
  end-page: 279
  ident: b0295
  article-title: Characterization of the superconducting state in hafnium hydride under high pressure
  publication-title: Phys. B Condens. Matter
– volume: 122
  start-page: 027001
  year: 2019
  ident: b0035
  article-title: Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures
  publication-title: Phys. Rev. Lett.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: b0160
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 688
  year: 2017
  end-page: 692
  ident: b0025
  article-title: Synthesis and stability of lanthanum superhydrides
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 14251
  year: 1994
  end-page: 14269
  ident: b0180
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B
– volume: 363
  start-page: 56
  year: 1993
  end-page: 58
  ident: b0370
  article-title: Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O System
  publication-title: Nature
– volume: 357
  start-page: 382
  year: 2017
  end-page: 385
  ident: b0040
  article-title: Synthesis of FeH
  publication-title: Science
– volume: 44
  start-page: 227
  year: 2011
  end-page: 237
  ident: b0130
  article-title: How evolutionary crystal structure prediction works—and why
  publication-title: Acc. Chem. Res.
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: b0175
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
– volume: 73
  start-page: 515
  year: 2001
  end-page: 562
  ident: b0185
  article-title: Phonons and related crystal properties from density-functional perturbation theory
  publication-title: Rev. Mod. Phys.
– reference: APS-APS March Meeting 2020 - Event - Superconductivity at 262 K in Yttrium Superhydride at High Pressures, in: Bulletin of the American Physical Society, American Physical Society, 2020.
– reference: .
– volume: 12
  start-page: 905
  year: 1975
  end-page: 922
  ident: b0335
  article-title: Transition temperature of strong-coupled superconductors reanalyzed
  publication-title: Phys. Rev. B
– year: 2020
  ident: b0075
  article-title: High-pressure synthesis of magnetic neodymium polyhydrides
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 3538
  year: 2017
  end-page: 3543
  ident: b0245
  article-title: Phase diagram and superconductivity of compressed zirconium hydrides
  publication-title: Phys. Chem. Chem. Phys.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0155
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– year: 2019
  ident: b0280
  article-title: Superconductivity up to 243 K in yttrium hydrides under high pressure
  publication-title: ArXiv190910482 Cond.-Mat.
– volume: 7
  start-page: 12267
  year: 2016
  ident: b0340
  article-title: Synthesis of sodium polyhydrides at high pressures
  publication-title: Nat. Commun.
– volume: 340
  start-page: 369
  year: 1989
  ident: b0380
  article-title: First-principles prediction of high-temperature superconductivity in metallic hydrogen
  publication-title: Nature
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0165
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: b0170
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 86
  start-page: 14118
  year: 2012
  ident: b0195
  article-title: Ab initio study revealing a layered structure in hydrogen-rich KH
  publication-title: Phys. Rev. B
– volume: 58
  start-page: 2558
  year: 2019
  end-page: 2564
  ident: b0230
  article-title: Unique phase diagram and superconductivity of calcium hydrides at high pressures
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 4453
  year: 2019
  ident: b0060
  article-title: Synthesis of clathrate cerium superhydride CeH
  publication-title: Nat. Commun.
– volume: 150
  start-page: 44507
  year: 2019
  ident: b0260
  article-title: Unexpected calcium polyhydride CaH
  publication-title: J. Chem. Phys.
– volume: 117
  start-page: 2982
  year: 2013
  end-page: 2992
  ident: b0215
  article-title: Polyhydrides of the alkaline earth metals: A look at the extremes under pressure
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 3461
  issue: 1
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0055
  article-title: Polyhydride CeH9 with an atomic-like hydrogen clathrate structure
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11330-6
– ident: 10.1016/j.cossms.2020.100808_b0255
  doi: 10.1103/PhysRevB.101.144505
– start-page: 347
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0020
  article-title: Pressure-induced superconductivity above 79 K in Si2H6
– volume: 150
  start-page: 44507
  issue: 4
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0260
  article-title: Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5053650
– volume: 114
  start-page: 6990
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0110
  article-title: Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1704505114
– volume: 18
  start-page: 28791
  issue: 41
  year: 2016
  ident: 10.1016/j.cossms.2020.100808_b0240
  article-title: Crystal structures and superconductivity of technetium hydrides under pressure
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05702K
– volume: 236
  start-page: 1
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0140
  article-title: Topology-based crystal structure generator
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.09.016
– volume: 58
  start-page: 2558
  issue: 4
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0230
  article-title: Unique phase diagram and superconductivity of calcium hydrides at high pressures
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b03165
– volume: 357
  start-page: 382
  issue: 6349
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0040
  article-title: Synthesis of FeH5: A layered structure with atomic hydrogen slabs
  publication-title: Science
  doi: 10.1126/science.aan0961
– volume: 569
  start-page: 528
  issue: 7757
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0030
  article-title: Superconductivity at 250 K in lanthanum hydride under high pressures
  publication-title: Nature
  doi: 10.1038/s41586-019-1201-8
– volume: 122
  start-page: 19370
  issue: 34
  year: 2018
  ident: 10.1016/j.cossms.2020.100808_b0225
  article-title: New calcium hydrides with mixed atomic and molecular hydrogen
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b05030
– volume: 56
  start-page: 3901
  issue: 7
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0300
  article-title: Pressure-stabilized superconductive ionic tantalum hydrides
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02822
– ident: 10.1016/j.cossms.2020.100808_b0235
  doi: 10.1103/PhysRevB.101.134108
– volume: 536
  start-page: 275
  year: 2018
  ident: 10.1016/j.cossms.2020.100808_b0295
  article-title: Characterization of the superconducting state in hafnium hydride under high pressure
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2017.10.107
– volume: 10
  start-page: 4453
  issue: 1
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0060
  article-title: Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12326-y
– year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0065
  article-title: Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties
  publication-title: Mater. Today
– volume: 10
  start-page: 43809
  issue: 50
  year: 2018
  ident: 10.1016/j.cossms.2020.100808_b0115
  article-title: High-temperature superconductivity in Th-H system at pressure conditions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17100
– volume: 98
  start-page: 134103
  issue: 13
  year: 2018
  ident: 10.1016/j.cossms.2020.100808_b0265
  article-title: High-pressure properties of dense metallic zirconium hydrides studied by ab initio calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.134103
– volume: 76
  start-page: 134512
  issue: 13
  year: 2007
  ident: 10.1016/j.cossms.2020.100808_b0365
  article-title: Calculations of the superconducting properties of scandium under high pressure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.134512
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  ident: 10.1016/j.cossms.2020.100808_b0160
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 44
  start-page: 227
  year: 2011
  ident: 10.1016/j.cossms.2020.100808_b0130
  article-title: How evolutionary crystal structure prediction works—and why
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar1001318
– volume: 5
  start-page: 17764
  year: 2015
  ident: 10.1016/j.cossms.2020.100808_b0210
  article-title: Pressure-driven formation and stabilization of superconductive chromium hydrides
  publication-title: Sci. Rep.
  doi: 10.1038/srep17764
– volume: 96
  start-page: 047003
  issue: 4
  year: 2006
  ident: 10.1016/j.cossms.2020.100808_b0360
  article-title: Superconductivity in lithium, potassium, and aluminum under extreme pressure: A first-principles study
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.047003
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.cossms.2020.100808_b0170
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 21
  start-page: 123009
  issue: 12
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0315
  article-title: Superconducting TaH5 at high pressure
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab5a9a
– volume: 56
  start-page: 13759
  issue: 22
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0105
  article-title: Superconductivity of pressure-stabilized vanadium hydrides
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b01686
– volume: 88
  start-page: 184104
  issue: 18
  year: 2013
  ident: 10.1016/j.cossms.2020.100808_b0095
  article-title: Theoretical study of the ground-state structures and properties of niobium hydrides under pressure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.184104
– year: 2020
  ident: 10.1016/j.cossms.2020.100808_b0070
  article-title: Superconducting praseodymium superhydrides
  publication-title: Sci. Adv.
– year: 2020
  ident: 10.1016/j.cossms.2020.100808_b0075
  article-title: High-pressure synthesis of magnetic neodymium polyhydrides
  publication-title: J. Am. Chem. Soc.
– volume: 340
  start-page: 369
  issue: 6232
  year: 1989
  ident: 10.1016/j.cossms.2020.100808_b0380
  article-title: First-principles prediction of high-temperature superconductivity in metallic hydrogen
  publication-title: Nature
  doi: 10.1038/340369a0
– volume: 86
  start-page: 14118
  issue: 1
  year: 2012
  ident: 10.1016/j.cossms.2020.100808_b0195
  article-title: Ab initio study revealing a layered structure in hydrogen-rich KH6 under high pressure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.014118
– volume: 116
  start-page: 13322
  issue: 24
  year: 2012
  ident: 10.1016/j.cossms.2020.100808_b0220
  article-title: High pressure potassium polyhydrides: A chemical perspective
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp303024h
– year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0280
  article-title: Superconductivity up to 243 K in yttrium hydrides under high pressure
  publication-title: ArXiv190910482 Cond.-Mat.
– volume: 124
  start-page: 244704
  year: 2006
  ident: 10.1016/j.cossms.2020.100808_b0125
  article-title: Crystal structure prediction using ab initio evolutionary techniques: principles and applications
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2210932
– volume: 59
  start-page: 1758
  issue: 3
  year: 1999
  ident: 10.1016/j.cossms.2020.100808_b0165
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– ident: 10.1016/j.cossms.2020.100808_b0275
  doi: 10.1103/PhysRevLett.125.217001
– volume: 525
  start-page: 73
  issue: 7567
  year: 2015
  ident: 10.1016/j.cossms.2020.100808_b0005
  article-title: Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system
  publication-title: Nature
  doi: 10.1038/nature14964
– volume: 18
  start-page: 5013
  year: 2012
  ident: 10.1016/j.cossms.2020.100808_b0250
  article-title: rubidium polyhydrides under pressure: emergence of the linear H3− species - hooper - 2012 - chemistry 8211; A European journal - wiley online library
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201103205
– volume: 99
  start-page: 224504
  issue: 22
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0305
  article-title: Synthesis and stability of tantalum hydride at high pressures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.224504
– volume: 6
  start-page: 28102
  year: 2016
  ident: 10.1016/j.cossms.2020.100808_b0205
  article-title: Electronic structure and electron-phonon coupling in TiH2
  publication-title: Sci. Rep.
  doi: 10.1038/srep28102
– volume: 117
  start-page: 2982
  issue: 6
  year: 2013
  ident: 10.1016/j.cossms.2020.100808_b0215
  article-title: Polyhydrides of the alkaline earth metals: A look at the extremes under pressure
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp311571n
– volume: 96
  start-page: 201107
  issue: 20
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0045
  article-title: Superconductivity in FeH5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.201107
– volume: 4
  start-page: 121
  issue: 1
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0010
  article-title: Structure and superconductivity of hydrides at high pressures
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nww029
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 10.1016/j.cossms.2020.100808_b0155
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 96
  start-page: 144108
  issue: 14
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0100
  article-title: Hydrogen-rich scandium compounds at high pressures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.144108
– volume: 140
  start-page: A1133
  issue: 4
  year: 1965
  ident: 10.1016/j.cossms.2020.100808_b0150
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– ident: 10.1016/j.cossms.2020.100808_b0285
– volume: 4
  issue: 10
  year: 2018
  ident: 10.1016/j.cossms.2020.100808_b0050
  article-title: Uranium polyhydrides at moderate pressures: prediction, synthesis, and expected superconductivity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat9776
– year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0345
  article-title: Superconductivity of LaH10 and LaH16 Polyhydrides
  publication-title: Phys. Rev. B
– ident: 10.1016/j.cossms.2020.100808_b0325
  doi: 10.1038/s41467-019-12326-y
– volume: 363
  start-page: 56
  issue: 6424
  year: 1993
  ident: 10.1016/j.cossms.2020.100808_b0370
  article-title: Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O System
  publication-title: Nature
  doi: 10.1038/363056a0
– volume: 57
  start-page: 688
  issue: 3
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0025
  article-title: Synthesis and stability of lanthanum superhydrides
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709970
– volume: 12
  start-page: 905
  issue: 3
  year: 1975
  ident: 10.1016/j.cossms.2020.100808_b0335
  article-title: Transition temperature of strong-coupled superconductors reanalyzed
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.12.905
– volume: 122
  start-page: 6298
  issue: 11
  year: 2018
  ident: 10.1016/j.cossms.2020.100808_b0200
  article-title: High hydrides of scandium under pressure: potential superconductors
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b12124
– volume: 31
  start-page: 315403
  issue: 31
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0330
  article-title: Structure and superconductivity of protactinium hydrides under high pressure
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ab1d03
– ident: 10.1016/j.cossms.2020.100808_b0310
– volume: 49
  start-page: 14251
  year: 1994
  ident: 10.1016/j.cossms.2020.100808_b0180
  article-title: Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 19
  start-page: 3538
  issue: 5
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0245
  article-title: Phase diagram and superconductivity of compressed zirconium hydrides
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP08036G
– year: 2018
  ident: 10.1016/j.cossms.2020.100808_b0015
  article-title: Novel synthesis route and observation of superconductivity in the Se-H system at extreme conditions
– volume: 75
  start-page: 083703
  issue: 8
  year: 2006
  ident: 10.1016/j.cossms.2020.100808_b0355
  article-title: Superconductivity of Ca exceeding 25 K at megabar pressures
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.75.083703
– volume: 96
  start-page: 100502
  issue: 10
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0090
  article-title: Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.100502
– volume: 9
  start-page: 1920
  issue: 8
  year: 2018
  ident: 10.1016/j.cossms.2020.100808_b0120
  article-title: Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00615
– volume: 47
  start-page: 558
  year: 1993
  ident: 10.1016/j.cossms.2020.100808_b0175
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 78
  start-page: 118
  issue: 1
  year: 1997
  ident: 10.1016/j.cossms.2020.100808_b0375
  article-title: High temperature superconductivity in metallic hydrogen: electron-electron enhancements
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.118
– volume: 184
  start-page: 1172
  year: 2013
  ident: 10.1016/j.cossms.2020.100808_b0135
  article-title: New developments in evolutionary structure prediction algorithm USPEX
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.12.009
– volume: 73
  start-page: 094522
  issue: 9
  year: 2006
  ident: 10.1016/j.cossms.2020.100808_b0350
  article-title: Superconductivity at 17 K in yttrium metal under nearly hydrostatic pressures up to 89GPa
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.094522
– volume: 7
  start-page: 12267
  year: 2016
  ident: 10.1016/j.cossms.2020.100808_b0340
  article-title: Synthesis of sodium polyhydrides at high pressures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12267
– volume: 21
  start-page: 395502
  year: 2009
  ident: 10.1016/j.cossms.2020.100808_b0190
  article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 109
  start-page: 6463
  issue: 17
  year: 2012
  ident: 10.1016/j.cossms.2020.100808_b0085
  article-title: Superconductive sodalite-like clathrate calcium hydride at high pressures
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1118168109
– volume: 11
  start-page: 646
  issue: 3
  year: 2020
  ident: 10.1016/j.cossms.2020.100808_b0270
  article-title: Superconducting zirconium polyhydrides at moderate pressures
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03632
– volume: 51
  start-page: 9333
  issue: 17
  year: 2012
  ident: 10.1016/j.cossms.2020.100808_b0290
  article-title: Compressed cesium polyhydrides: Cs+ sublattices and H3– three-connected nets - inorganic chemistry (ACS Publications)
  publication-title: Inorg. Chem.
  doi: 10.1021/ic301045v
– volume: 119
  start-page: 107001
  year: 2017
  ident: 10.1016/j.cossms.2020.100808_b0320
  article-title: Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.107001
– volume: 70
  start-page: 104
  year: 2014
  ident: 10.1016/j.cossms.2020.100808_b0080
  article-title: superconductivity of lithium-doped hydrogen under high pressure
  publication-title: Acta Cryst. C
  doi: 10.1107/S2053229613028337
– volume: 122
  start-page: 027001
  issue: 2
  year: 2019
  ident: 10.1016/j.cossms.2020.100808_b0035
  article-title: Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.027001
– volume: 136
  start-page: B864
  issue: 3B
  year: 1964
  ident: 10.1016/j.cossms.2020.100808_b0145
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 73
  start-page: 515
  issue: 2
  year: 2001
  ident: 10.1016/j.cossms.2020.100808_b0185
  article-title: Phonons and related crystal properties from density-functional perturbation theory
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.515
SSID ssj0004666
Score 2.609635
Snippet •Highest-TC hydrides are formed by metals in the “lability belt” of the Periodic Table, roughly between 2 and 3 groups.•~0.3 electrons should be transferred to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100808
SubjectTerms DFT
Evolutionary algorithm
Neural network
Periodic Table
Superconducting hydrides
USPEX, High-pressure
Title On Distribution of Superconductivity in Metal Hydrides
URI https://dx.doi.org/10.1016/j.cossms.2020.100808
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KRdCDaFWsH2UPXmO7m02yOZaqxI9WsRZ6C9nsBiqaln4cvPjbndkkUkEUPIWEXQgvk5nXZuY9Qs5FBiw89ITDZcId4aPNC8_gvQozX6PupG_wr4H-wI9G4nbsjWukV83CYFtlmfuLnG6zdXmlXaLZnk0m7SFzrfSIzyFOIZbGOMEuAozyiw-2Nhtpv1fiYgdXV-NztscrhUL0hqLd3LYLSDSZ_Kk8rZWc612yU3JF2i1uZ4_UTN4g22sKgg2yaTs408U-8R9yeokquKWBFZ1mdLiamTn84EVNV2sSQSc57Rvg2zR6R191szggo-ur517klKYITuoGfOkYhg5QmVZAPIKEAdsPoIaLTEEtEh03SIEy-TwBIsSV7GjGtEqll0kd6FBzY9xDUs-nuTkiNBQSUNYZT5QCHqXDVBqXCa2k8ZhrdJO4FRZxWiqGo3HFa1y1hr3EBYIxIhgXCDaJ87VrVihm_LE-qGCOvz35GJL6rzuP_73zhGzhWdGBc0rqy_nKnAG5WKqWjZ4W2ej2nu4f8XhzFw0-AYhRzuc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qi6gH0apYnzl4DW02m9exVEtqHx7aQm9Lkt1ARdPSx8F_70yykQqi4DXZgfBlMvMlmf0-gAeeIgsPHG4yP2Imd8nmhaX4XAWpK0l30lX0aWA4csMpf545swp0yr0wNFapa39R0_NqrY80NZrN5XzeHFt2Lj3iMsxTzKXZHtRIncqpQq3d64ejne2R-S9LWm9SQLmDLh_zSrAXvZNuN8snBnzymfypQ-10ne4JHGu6aLSLKzqFisrqcLQjIliH_XyIM1mfgfuSGY8khKs9rIxFaoy3S7XCd16Sdc19Iox5ZgwVUm4j_CBrdbU-h2n3adIJTe2LYCa2xzamssgEKpUxcg8vspDwe9jGeRpjO-It20uQNbksQi7EYr8lLUvGie-kvvRkIJlS9gVUs0WmLsEIuI9Ay5RFcYxUSgaJr2yLy9hXjmUr2QC7xEIkWjScvCveRDkd9ioKBAUhKAoEG2B-RS0L0Yw_1nslzOLbzRdY13-NvPp35D0chJPhQAx6o_41HNKZYiDnBqqb1VbdItfYxHc6lz4BNBXQAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Distribution+of+Superconductivity+in+Metal+Hydrides&rft.jtitle=Current+opinion+in+solid+state+%26+materials+science&rft.au=Semenok%2C+Dmitrii+V.&rft.au=Kruglov%2C+Ivan+A.&rft.au=Savkin%2C+Igor+A.&rft.au=Kvashnin%2C+Alexander+G.&rft.date=2020-04-01&rft.issn=1359-0286&rft.volume=24&rft.issue=2&rft.spage=100808&rft_id=info:doi/10.1016%2Fj.cossms.2020.100808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cossms_2020_100808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0286&client=summon