On Distribution of Superconductivity in Metal Hydrides
•Highest-TC hydrides are formed by metals in the “lability belt” of the Periodic Table, roughly between 2 and 3 groups.•~0.3 electrons should be transferred to H-atom in XH10±2 hydrides to make it the most effective superconductors.•TC decreases with increasing number of d- and f-electrons and fully...
Saved in:
Published in | Current opinion in solid state & materials science Vol. 24; no. 2; p. 100808 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Highest-TC hydrides are formed by metals in the “lability belt” of the Periodic Table, roughly between 2 and 3 groups.•~0.3 electrons should be transferred to H-atom in XH10±2 hydrides to make it the most effective superconductors.•TC decreases with increasing number of d- and f-electrons and fully disappears when magnetic order sets in.
Using the data on the superconducting critical temperature (TC) for a number of metal hydrides, we found a rule that makes it possible to predict the maximum TC based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems at high pressures, and calculated their TC. The highest-temperature superconducting hydrides are formed by metals in the “lability belt” roughly between 2nd and 3rd groups of the Periodic Table. Results of the study of actinoids and lanthanoids show that they form highly symmetric superhydrides XH7-XH9, but the increasing number of d- and especially f-electrons affects superconducitivity adversely. Hydrides of late transition metals (e.g. platinoids) and all but early lanthanoids and actinoids are not promising for high-Tc superconductivity. Designed neural network allowing the prediction of TC of various hydrides shows high accuracy and was used to estimate upper limit for TC of hydrides for which no date are avilable. The developed rule, based on regular behavior of the maximum achievable critical temperature as a function of number of d + f electrons, enables targeted predictions about the existence of new high-TC superconductors. |
---|---|
AbstractList | •Highest-TC hydrides are formed by metals in the “lability belt” of the Periodic Table, roughly between 2 and 3 groups.•~0.3 electrons should be transferred to H-atom in XH10±2 hydrides to make it the most effective superconductors.•TC decreases with increasing number of d- and f-electrons and fully disappears when magnetic order sets in.
Using the data on the superconducting critical temperature (TC) for a number of metal hydrides, we found a rule that makes it possible to predict the maximum TC based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems at high pressures, and calculated their TC. The highest-temperature superconducting hydrides are formed by metals in the “lability belt” roughly between 2nd and 3rd groups of the Periodic Table. Results of the study of actinoids and lanthanoids show that they form highly symmetric superhydrides XH7-XH9, but the increasing number of d- and especially f-electrons affects superconducitivity adversely. Hydrides of late transition metals (e.g. platinoids) and all but early lanthanoids and actinoids are not promising for high-Tc superconductivity. Designed neural network allowing the prediction of TC of various hydrides shows high accuracy and was used to estimate upper limit for TC of hydrides for which no date are avilable. The developed rule, based on regular behavior of the maximum achievable critical temperature as a function of number of d + f electrons, enables targeted predictions about the existence of new high-TC superconductors. |
ArticleNumber | 100808 |
Author | Savkin, Igor A. Semenok, Dmitrii V. Kruglov, Ivan A. Kvashnin, Alexander G. Oganov, Artem R. |
Author_xml | – sequence: 1 givenname: Dmitrii V. surname: Semenok fullname: Semenok, Dmitrii V. email: dmitrii.semenok@skoltech.ru organization: Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia – sequence: 2 givenname: Ivan A. surname: Kruglov fullname: Kruglov, Ivan A. organization: Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700, Russia – sequence: 3 givenname: Igor A. surname: Savkin fullname: Savkin, Igor A. organization: Research Computer Center of Lomonosov Moscow State University, Moscow, Russia – sequence: 4 givenname: Alexander G. surname: Kvashnin fullname: Kvashnin, Alexander G. email: A.Kvashnin@skoltech.ru organization: Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia – sequence: 5 givenname: Artem R. surname: Oganov fullname: Oganov, Artem R. organization: Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel Street, Moscow 121205, Russia |
BookMark | eNqFz81KAzEQwPEcKthW38DDvsDWSXbzUQ-CVG2FSg_qOWSTLExpsyVJC317u6wnD3oaGPgP85uQUeiCJ-SOwowCFffbme1S2qcZA9avQIEakTGt-LwEpsQ1maS0BYBaCDEmYhOKZ0w5YnPM2IWia4uP48FH2wV3tBlPmM8FhuLdZ7MrVmcX0fl0Q65as0v-9mdOydfry-diVa43y7fF07q0lWS59FS4hrWukUxKQ7nikgGt26aCqoZK2jmnghnOKWsUOEpdYxVvlZNu7pj31ZQ8DHdtvKiib7XFbPpHczS40xR0r9ZbPah1r9aD-hLXv-JDxL2J5_-yxyHzF9gJfdTJog_WO4zeZu06_PvAN7RSd4M |
CitedBy_id | crossref_primary_10_1038_s41467_022_33743_6 crossref_primary_10_1103_PhysRevB_104_134501 crossref_primary_10_1021_acs_jpca_2c06998 crossref_primary_10_1021_acs_jpcc_3c02968 crossref_primary_10_1063_5_0159590 crossref_primary_10_1103_PhysRevB_106_134509 crossref_primary_10_1021_acs_inorgchem_4c00520 crossref_primary_10_1103_PhysRevB_107_134509 crossref_primary_10_3367_UFNe_2021_05_039187 crossref_primary_10_1088_1361_648X_ac4eaf crossref_primary_10_1103_PhysRevB_104_054501 crossref_primary_10_1016_j_mtphys_2024_101499 crossref_primary_10_1039_D3CP03134A crossref_primary_10_1021_acs_jpclett_4c02134 crossref_primary_10_1002_adma_202204038 crossref_primary_10_1021_acs_jpclett_0c02299 crossref_primary_10_1103_PhysRevMaterials_7_054806 crossref_primary_10_1063_5_0088235 crossref_primary_10_1103_PhysRevB_108_L020102 crossref_primary_10_1021_acs_jpclett_1c00994 crossref_primary_10_1088_0256_307X_38_10_107401 crossref_primary_10_1016_j_physb_2022_414603 crossref_primary_10_1103_PhysRevB_108_L020506 crossref_primary_10_1088_0256_307X_40_5_057404 crossref_primary_10_1039_D3CP01053H crossref_primary_10_1088_1361_648X_ac2864 crossref_primary_10_1093_nsr_nwad270 crossref_primary_10_1016_j_mtphys_2023_101300 crossref_primary_10_1016_j_physc_2021_1353916 crossref_primary_10_1360_SSPMA_2021_0359 crossref_primary_10_1088_0256_307X_37_10_107401 crossref_primary_10_1038_s41598_023_44632_3 crossref_primary_10_1103_PhysRevB_109_054522 crossref_primary_10_1007_s10948_024_06720_x crossref_primary_10_1021_acs_jpcc_1c00645 crossref_primary_10_1103_RevModPhys_95_021001 crossref_primary_10_1093_nsr_nwad307 crossref_primary_10_1103_PhysRevB_104_214511 crossref_primary_10_1103_PhysRevB_111_054505 crossref_primary_10_1063_5_0091404 crossref_primary_10_1038_s41467_020_20103_5 crossref_primary_10_1038_s41524_021_00691_6 crossref_primary_10_1016_j_mtphys_2021_100546 crossref_primary_10_1103_PhysRevB_109_094106 crossref_primary_10_3389_femat_2022_837651 crossref_primary_10_1039_D3CP03952H crossref_primary_10_1103_PhysRevB_106_174104 crossref_primary_10_1103_PhysRevB_105_245420 crossref_primary_10_1103_PhysRevB_106_024515 crossref_primary_10_1103_PhysRevB_103_035131 crossref_primary_10_1039_D0CC07661A crossref_primary_10_1103_PhysRevB_107_L020504 crossref_primary_10_1039_D4TC03145H crossref_primary_10_1103_PhysRevB_108_014511 crossref_primary_10_1088_0256_307X_40_9_097402 crossref_primary_10_1103_PhysRevB_107_214511 crossref_primary_10_1088_2053_1591_ac5e22 crossref_primary_10_1103_PhysRevMaterials_7_L101801 crossref_primary_10_1002_adts_202100364 crossref_primary_10_1063_5_0065879 crossref_primary_10_1088_1361_648X_ad68b3 crossref_primary_10_1021_acsomega_2c02447 crossref_primary_10_1063_10_0027919 crossref_primary_10_3390_ijms251810218 crossref_primary_10_1016_j_chemphys_2023_112108 crossref_primary_10_1007_s10948_022_06365_8 crossref_primary_10_1038_s41524_024_01490_5 crossref_primary_10_1039_D3TA04418A crossref_primary_10_1016_j_scib_2022_03_001 crossref_primary_10_1103_PhysRevB_107_064102 crossref_primary_10_1021_acs_jpcc_1c08743 crossref_primary_10_1039_D2TC02842E crossref_primary_10_1002_adfm_202423680 crossref_primary_10_1016_j_tsf_2024_140546 crossref_primary_10_1021_acs_inorgchem_2c02686 crossref_primary_10_1016_j_mtphys_2023_101298 crossref_primary_10_1039_D3CP05086F crossref_primary_10_1016_j_mtphys_2025_101695 crossref_primary_10_1103_PhysRevB_109_224511 crossref_primary_10_1016_j_jmmm_2021_168758 crossref_primary_10_1103_PhysRevB_105_064516 crossref_primary_10_1007_s10948_020_05557_4 crossref_primary_10_1021_acs_jpcc_0c08904 crossref_primary_10_1002_wcms_1582 crossref_primary_10_1073_pnas_2218405120 crossref_primary_10_1016_j_rinp_2023_106479 crossref_primary_10_1016_j_ssc_2021_114295 crossref_primary_10_1016_j_jmst_2023_08_001 crossref_primary_10_1103_PhysRevB_107_024501 crossref_primary_10_3390_met12040568 crossref_primary_10_1021_acs_jpclett_0c03331 crossref_primary_10_1016_j_ijhydene_2020_09_260 crossref_primary_10_1016_j_mtphys_2022_100873 crossref_primary_10_1103_PhysRevB_104_104509 crossref_primary_10_1088_1402_4896_ad86fa crossref_primary_10_1021_acs_jpcc_4c02467 crossref_primary_10_1088_1402_4896_ad4066 crossref_primary_10_1103_PhysRevLett_127_117001 crossref_primary_10_1103_PhysRevB_102_144524 crossref_primary_10_1002_advs_202303622 crossref_primary_10_1103_PhysRevB_101_144505 crossref_primary_10_1088_1367_2630_ac1df3 crossref_primary_10_1038_s41467_021_25687_0 crossref_primary_10_1016_j_chempr_2022_10_015 crossref_primary_10_1039_D1TC00634G crossref_primary_10_1016_j_mtphys_2022_100826 crossref_primary_10_1038_s41467_022_30454_w crossref_primary_10_1021_acs_jpclett_4c01223 crossref_primary_10_1002_chem_202102679 crossref_primary_10_1016_j_fmre_2023_05_001 crossref_primary_10_1021_acsomega_4c07199 crossref_primary_10_1107_S205225252300951X crossref_primary_10_1103_PhysRevB_102_014516 crossref_primary_10_1016_j_jallcom_2021_163524 crossref_primary_10_1103_PhysRevMaterials_8_084805 crossref_primary_10_1007_s00894_024_06034_8 crossref_primary_10_1088_1361_6668_ad637e crossref_primary_10_1007_s10948_022_06162_3 crossref_primary_10_1039_D3TC01089A crossref_primary_10_1002_advs_202405561 crossref_primary_10_1063_5_0065287 crossref_primary_10_1209_0295_5075_ad2af6 crossref_primary_10_1038_s41598_021_94000_2 crossref_primary_10_1088_1742_6596_2036_1_012014 crossref_primary_10_1002_pssb_202200452 crossref_primary_10_1093_nsr_nwad241 crossref_primary_10_1007_s11433_023_2101_9 crossref_primary_10_1063_5_0071158 |
Cites_doi | 10.1038/s41467-019-11330-6 10.1103/PhysRevB.101.144505 10.1063/1.5053650 10.1073/pnas.1704505114 10.1039/C6CP05702K 10.1016/j.cpc.2018.09.016 10.1021/acs.inorgchem.8b03165 10.1126/science.aan0961 10.1038/s41586-019-1201-8 10.1021/acs.jpcc.8b05030 10.1021/acs.inorgchem.6b02822 10.1103/PhysRevB.101.134108 10.1016/j.physb.2017.10.107 10.1038/s41467-019-12326-y 10.1021/acsami.8b17100 10.1103/PhysRevB.98.134103 10.1103/PhysRevB.76.134512 10.1103/PhysRevB.50.17953 10.1021/ar1001318 10.1038/srep17764 10.1103/PhysRevLett.96.047003 10.1103/PhysRevB.54.11169 10.1088/1367-2630/ab5a9a 10.1021/acs.inorgchem.7b01686 10.1103/PhysRevB.88.184104 10.1038/340369a0 10.1103/PhysRevB.86.014118 10.1021/jp303024h 10.1063/1.2210932 10.1103/PhysRevB.59.1758 10.1103/PhysRevLett.125.217001 10.1038/nature14964 10.1002/chem.201103205 10.1103/PhysRevB.99.224504 10.1038/srep28102 10.1021/jp311571n 10.1103/PhysRevB.96.201107 10.1093/nsr/nww029 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.96.144108 10.1103/PhysRev.140.A1133 10.1126/sciadv.aat9776 10.1038/363056a0 10.1002/anie.201709970 10.1103/PhysRevB.12.905 10.1021/acs.jpcc.7b12124 10.1088/1361-648X/ab1d03 10.1103/PhysRevB.49.14251 10.1039/C6CP08036G 10.1143/JPSJ.75.083703 10.1103/PhysRevB.96.100502 10.1021/acs.jpclett.8b00615 10.1103/PhysRevB.47.558 10.1103/PhysRevLett.78.118 10.1016/j.cpc.2012.12.009 10.1103/PhysRevB.73.094522 10.1038/ncomms12267 10.1088/0953-8984/21/39/395502 10.1073/pnas.1118168109 10.1021/acs.jpclett.9b03632 10.1021/ic301045v 10.1103/PhysRevLett.119.107001 10.1107/S2053229613028337 10.1103/PhysRevLett.122.027001 10.1103/PhysRev.136.B864 10.1103/RevModPhys.73.515 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cossms.2020.100808 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
ExternalDocumentID | 10_1016_j_cossms_2020_100808 S135902862030005X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-e16db2fdb7277a158572014fb3034037c95162a5512b80d11dbc85f8d7d9d2ee3 |
IEDL.DBID | .~1 |
ISSN | 1359-0286 |
IngestDate | Tue Jul 01 01:27:22 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Fri Feb 23 02:47:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Periodic Table Superconducting hydrides DFT Neural network USPEX, High-pressure Evolutionary algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-e16db2fdb7277a158572014fb3034037c95162a5512b80d11dbc85f8d7d9d2ee3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cossms_2020_100808 crossref_primary_10_1016_j_cossms_2020_100808 elsevier_sciencedirect_doi_10_1016_j_cossms_2020_100808 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Current opinion in solid state & materials science |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Drozdov, Kong, Minkov, Besedin, Kuzovnikov, Mozaffari, Balicas, Balakirev, Graf, Prakapenka (b0030) 2019; 569 Kresse, Hafner (b0180) 1994; 49 Yu, Jia, Frapper, Li, Oganov, Zeng, Zhang (b0210) 2015; 5 Zhou, Jin, Meng, Bao, Ma, Liu, Cui (b0195) 2012; 86 Hooper, Zurek (b0250) 2012; 18 Li, Huang, Duan, Pickard, Zhou, Xie, Zhuang, Huang, Zhou, Liu (b0055) 2019; 10 Hooper, Zurek (b0220) 2012; 116 M.J. Hutcheon, A.M. Shipley, R.J. Needs, Predicting Novel Superconducting Hydrides Using Machine Learning Approaches, ArXiv200109852 Cond-Mat, 2020. H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S.A.T. Redfern, V.Z. Kresin, C.J. Pickard, et al., Hydrogen “Penta-Graphene-like” Structure Stabilized via Hafnium: A High-Temperature Conventional Superconductor, ArXiv200104076 Cond-Mat, 2020. Gao, Hoffmann, Ashcroft, Liu, Bergara, Ma (b0095) 2013; 88 Abe (b0265) 2018; 98 Pépin, Geneste, Dewaele, Mezouar, Loubeyre (b0040) 2017; 357 Baroni, de Gironcoli, Dal Corso, Giannozzi (b0185) 2001; 73 Lyakhov, Oganov, Stokes, Zhu (b0135) 2013; 184 Semenok, Kvashnin, Ivanova, Svitlyk, Fominski, Sadakov, Sobolevskiy, Pudalov, Troyan, Oganov (b0065) 2019 Li, Peng (b0105) 2017; 56 Ye, Zarifi, Zurek, Hoffmann, Ashcroft (b0200) 2018; 122 Duda, Szewczyk, Jarosik, Szcześniak, Sowińska, Szcześniak (b0295) 2018; 536 Kong, Drozdov, Eroke, Eremets (b0020) 2017 Salke, Esfahani, Zhang, Kruglov, Zhou, Wang, Greenberg, Prakapenka, Liu, Oganov (b0060) 2019; 10 N.P. Salke, M.M.D. Esfahani, Y. Zhang, I.A. Kruglov, J. Zhou, Y. Wang, E. Greenberg, V.B. Prakapenka, A.R. Oganov, J.-F. Lin, Synthesis of Clathrate Cerium Superhydride CeH9 at 80 GPa with Anomalously Short H-H Distance, arXiv:1805.02060, 2018 Zhuang, Jin, Cui, Ma, Lv, Li, Zhang, Meng, Bao (b0300) 2017; 56 Kruglov, Semenok, Song, Szczęśniak, Wrona, Akashi, Esfahani, Duan, Cui, Kvashnin (b0345) 2019 Mishra, Muramatsu, Liu, Geballe, Somayazulu, Ahart, Baldini, Meng, Zurek, Hemley (b0225) 2018; 122 Bushlanov, Blatov, Oganov (b0140) 2019; 236 Zhou, Semenok, Xie, Huang, Duan, Aperis, Oppeneer, Galasso, Kartsev, Kvashnin (b0075) 2020 Majumdar, Tse, Wu, Yao (b0045) 2017; 96 Shanavas, Lindsay, Parker (b0205) 2016; 6 Richardson, Ashcroft (b0375) 1997; 78 Hooper, Altintas, Shamp, Zurek (b0215) 2013; 117 . Liu, Naumov, Hoffmann, Ashcroft, Hemley (b0110) 2017; 114 Kvashnin, Semenok, Kruglov, Wrona, Oganov (b0115) 2018; 10 Kohn, Sham (b0150) 1965; 140 Oganov, Lyakhov, Valle (b0130) 2011; 44 Kresse, Hafner (b0175) 1993; 47 Zhou, Semenok, Duan, Xie, Huang, Chen, Li, Liu, Oganov, Cui (b0070) 2020 Hohenberg, Kohn (b0145) 1964; 136 Mishra, Somayazulu, Ahart, Karandikar, Hemley, Struzhkin (b0015) 2018 Profeta, Franchini, Lathiotakis, Floris, Sanna, Marques, Lüders, Massidda, Gross, Continenza (b0360) 2006; 96 Tanaka, Tse, Liu (b0090) 2017; 96 Geballe, Liu, Mishra, Ahart, Somayazulu, Meng, Baldini, Hemley (b0025) 2017; 57 Hamlin, Tissen, Schilling (b0350) 2006; 73 Schilling, Cantoni, Guo, Ott (b0370) 1993; 363 Abe (b0100) 2017; 96 Giannozzi, Baroni, Bonini, Calandra, Car, Cavazzoni, Ceresoli, Chiarotti, Cococcioni, Dabo (b0190) 2009; 21 Shao, Duan, Ma, Yu, Song, Xie, Li, Tian, Liu, Cui (b0230) 2019; 58 APS-APS March Meeting 2020 - Event - Superconductivity at 262 K in Yttrium Superhydride at High Pressures, in: Bulletin of the American Physical Society, American Physical Society, 2020. Allen, Dynes (b0335) 1975; 12 Drozdov, Eremets, Troyan, Ksenofontov, Shylin (b0005) 2015; 525 Xie, Zhang, Duan, Huang, Huang, Song, Feng, Yao, Pickard, Cui (b0270) 2020; 11 Wang, Tse, Tanaka, Iitaka, Ma (b0085) 2012; 109 Semenok, Kvashnin, Kruglov, Oganov (b0120) 2018; 9 Perdew, Burke, Ernzerhof (b0155) 1996; 77 J. Zhang, J.M. McMahon, A.R. Oganov, X. Li, X. Dong, H. Dong, S. Wang, High-Temperature Superconductivity in the Ti--H System at High Pressures, ArXiv191109293 Cond-Mat, 2019. Shamp, Hooper, Zurek (b0290) 2012; 51 Ying, Li, Greenberg, Prakapenka, Liu, Struzhkin (b0305) 2019; 99 Wu, Huang, Xie, Li, Liu, Liang, Huang, Duan, Li, Liu (b0260) 2019; 150 Struzhkin, Kim, Stavrou, Muramatsu, Mao, Pickard, Needs, Prakapenka, Goncharov (b0340) 2016; 7 Li, Hu, Huang (b0245) 2017; 19 Duan, Liu, Ma, Shao, Liu, Cui (b0010) 2017; 4 Kruglov, Kvashnin, Goncharov, Oganov, Lobanov, Holtgrewe, Jiang, Prakapenka, Greenberg, Yanilkin (b0050) 2018; 4 Yabuuchi, Matsuoka, Nakamoto, Shimizu (b0355) 2006; 75 Xe, Li, Oganov, Wang (b0080) 2014; 70 Xiao, Duan, Xie, Shao, Li, Tian, Song, Yu, Bao, Cui (b0330) 2019; 31 Somayazulu, Ahart, Mishra, Geballe, Baldini, Meng, Struzhkin, Hemley (b0035) 2019; 122 Personal Information from Huang’s Group, Jilin University. Blöchl (b0160) 1994; 50 Li, Liu, Peng (b0240) 2016; 18 Kong, Minkov, Kuzovnikov, Besedin, Drozdov, Mozaffari, Balicas, Balakirev, Prakapenka, Greenberg (b0280) 2019 Kresse, Joubert (b0165) 1999; 59 Kresse, Furthmüller (b0170) 1996; 54 Nixon, Papaconstantopoulos, Mehl (b0365) 2007; 76 Barbee, García, Cohen (b0380) 1989; 340 Peng, Sun, Pickard, Needs, Wu, Ma (b0320) 2017; 119 Li, Li, Wang, Liu, Li, Liu (b0315) 2019; 21 Oganov, Glass (b0125) 2006; 124 Yabuuchi (10.1016/j.cossms.2020.100808_b0355) 2006; 75 Tanaka (10.1016/j.cossms.2020.100808_b0090) 2017; 96 Kong (10.1016/j.cossms.2020.100808_b0020) 2017 Perdew (10.1016/j.cossms.2020.100808_b0155) 1996; 77 Peng (10.1016/j.cossms.2020.100808_b0320) 2017; 119 Drozdov (10.1016/j.cossms.2020.100808_b0005) 2015; 525 Wang (10.1016/j.cossms.2020.100808_b0085) 2012; 109 Oganov (10.1016/j.cossms.2020.100808_b0130) 2011; 44 Li (10.1016/j.cossms.2020.100808_b0315) 2019; 21 Hamlin (10.1016/j.cossms.2020.100808_b0350) 2006; 73 Mishra (10.1016/j.cossms.2020.100808_b0225) 2018; 122 Li (10.1016/j.cossms.2020.100808_b0245) 2017; 19 Kruglov (10.1016/j.cossms.2020.100808_b0345) 2019 Kong (10.1016/j.cossms.2020.100808_b0280) 2019 Lyakhov (10.1016/j.cossms.2020.100808_b0135) 2013; 184 Kresse (10.1016/j.cossms.2020.100808_b0165) 1999; 59 Geballe (10.1016/j.cossms.2020.100808_b0025) 2017; 57 Hooper (10.1016/j.cossms.2020.100808_b0250) 2012; 18 Liu (10.1016/j.cossms.2020.100808_b0110) 2017; 114 Zhuang (10.1016/j.cossms.2020.100808_b0300) 2017; 56 Salke (10.1016/j.cossms.2020.100808_b0060) 2019; 10 Baroni (10.1016/j.cossms.2020.100808_b0185) 2001; 73 10.1016/j.cossms.2020.100808_b0255 Oganov (10.1016/j.cossms.2020.100808_b0125) 2006; 124 Abe (10.1016/j.cossms.2020.100808_b0100) 2017; 96 Hohenberg (10.1016/j.cossms.2020.100808_b0145) 1964; 136 Zhou (10.1016/j.cossms.2020.100808_b0075) 2020 Struzhkin (10.1016/j.cossms.2020.100808_b0340) 2016; 7 Ye (10.1016/j.cossms.2020.100808_b0200) 2018; 122 Nixon (10.1016/j.cossms.2020.100808_b0365) 2007; 76 Kruglov (10.1016/j.cossms.2020.100808_b0050) 2018; 4 Wu (10.1016/j.cossms.2020.100808_b0260) 2019; 150 Shamp (10.1016/j.cossms.2020.100808_b0290) 2012; 51 Semenok (10.1016/j.cossms.2020.100808_b0065) 2019 Abe (10.1016/j.cossms.2020.100808_b0265) 2018; 98 10.1016/j.cossms.2020.100808_b0325 Kresse (10.1016/j.cossms.2020.100808_b0180) 1994; 49 Giannozzi (10.1016/j.cossms.2020.100808_b0190) 2009; 21 Kohn (10.1016/j.cossms.2020.100808_b0150) 1965; 140 Xiao (10.1016/j.cossms.2020.100808_b0330) 2019; 31 10.1016/j.cossms.2020.100808_b0285 Drozdov (10.1016/j.cossms.2020.100808_b0030) 2019; 569 Xie (10.1016/j.cossms.2020.100808_b0270) 2020; 11 Majumdar (10.1016/j.cossms.2020.100808_b0045) 2017; 96 Semenok (10.1016/j.cossms.2020.100808_b0120) 2018; 9 Mishra (10.1016/j.cossms.2020.100808_b0015) 2018 Schilling (10.1016/j.cossms.2020.100808_b0370) 1993; 363 Profeta (10.1016/j.cossms.2020.100808_b0360) 2006; 96 Duan (10.1016/j.cossms.2020.100808_b0010) 2017; 4 Yu (10.1016/j.cossms.2020.100808_b0210) 2015; 5 Hooper (10.1016/j.cossms.2020.100808_b0215) 2013; 117 Barbee (10.1016/j.cossms.2020.100808_b0380) 1989; 340 Shao (10.1016/j.cossms.2020.100808_b0230) 2019; 58 Li (10.1016/j.cossms.2020.100808_b0105) 2017; 56 Li (10.1016/j.cossms.2020.100808_b0240) 2016; 18 Zhou (10.1016/j.cossms.2020.100808_b0195) 2012; 86 Shanavas (10.1016/j.cossms.2020.100808_b0205) 2016; 6 10.1016/j.cossms.2020.100808_b0235 Xe (10.1016/j.cossms.2020.100808_b0080) 2014; 70 Kvashnin (10.1016/j.cossms.2020.100808_b0115) 2018; 10 Bushlanov (10.1016/j.cossms.2020.100808_b0140) 2019; 236 Somayazulu (10.1016/j.cossms.2020.100808_b0035) 2019; 122 10.1016/j.cossms.2020.100808_b0275 10.1016/j.cossms.2020.100808_b0310 Duda (10.1016/j.cossms.2020.100808_b0295) 2018; 536 Kresse (10.1016/j.cossms.2020.100808_b0170) 1996; 54 Blöchl (10.1016/j.cossms.2020.100808_b0160) 1994; 50 Pépin (10.1016/j.cossms.2020.100808_b0040) 2017; 357 Gao (10.1016/j.cossms.2020.100808_b0095) 2013; 88 Ying (10.1016/j.cossms.2020.100808_b0305) 2019; 99 Li (10.1016/j.cossms.2020.100808_b0055) 2019; 10 Zhou (10.1016/j.cossms.2020.100808_b0070) 2020 Hooper (10.1016/j.cossms.2020.100808_b0220) 2012; 116 Allen (10.1016/j.cossms.2020.100808_b0335) 1975; 12 Richardson (10.1016/j.cossms.2020.100808_b0375) 1997; 78 Kresse (10.1016/j.cossms.2020.100808_b0175) 1993; 47 |
References_xml | – volume: 76 start-page: 134512 year: 2007 ident: b0365 article-title: Calculations of the superconducting properties of scandium under high pressure publication-title: Phys. Rev. B – volume: 119 start-page: 107001 year: 2017 end-page: 107007 ident: b0320 article-title: Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity publication-title: Phys. Rev. Lett. – volume: 18 start-page: 5013 year: 2012 end-page: 5021 ident: b0250 article-title: rubidium polyhydrides under pressure: emergence of the linear H publication-title: Chem. Eur. J. – volume: 5 start-page: 17764 year: 2015 ident: b0210 article-title: Pressure-driven formation and stabilization of superconductive chromium hydrides publication-title: Sci. Rep. – volume: 56 start-page: 3901 year: 2017 end-page: 3908 ident: b0300 article-title: Pressure-stabilized superconductive ionic tantalum hydrides publication-title: Inorg. Chem. – volume: 569 start-page: 528 year: 2019 ident: b0030 article-title: Superconductivity at 250 K in lanthanum hydride under high pressures publication-title: Nature – volume: 11 start-page: 646 year: 2020 end-page: 651 ident: b0270 article-title: Superconducting zirconium polyhydrides at moderate pressures publication-title: J. Phys. Chem. Lett. – reference: M.J. Hutcheon, A.M. Shipley, R.J. Needs, Predicting Novel Superconducting Hydrides Using Machine Learning Approaches, ArXiv200109852 Cond-Mat, 2020. – volume: 4 start-page: 121 year: 2017 end-page: 135 ident: b0010 article-title: Structure and superconductivity of hydrides at high pressures publication-title: Natl. Sci. Rev. – volume: 114 start-page: 6990 year: 2017 end-page: 6995 ident: b0110 article-title: Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure publication-title: Proc. Natl. Acad. Sci. – reference: J. Zhang, J.M. McMahon, A.R. Oganov, X. Li, X. Dong, H. Dong, S. Wang, High-Temperature Superconductivity in the Ti--H System at High Pressures, ArXiv191109293 Cond-Mat, 2019. – volume: 96 start-page: 047003 year: 2006 ident: b0360 article-title: Superconductivity in lithium, potassium, and aluminum under extreme pressure: A first-principles study publication-title: Phys. Rev. Lett. – volume: 525 start-page: 73 year: 2015 end-page: 76 ident: b0005 article-title: Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system publication-title: Nature – volume: 122 start-page: 6298 year: 2018 end-page: 6309 ident: b0200 article-title: High hydrides of scandium under pressure: potential superconductors publication-title: J. Phys. Chem. C – volume: 109 start-page: 6463 year: 2012 end-page: 6466 ident: b0085 article-title: Superconductive sodalite-like clathrate calcium hydride at high pressures publication-title: Proc. Natl. Acad. Sci. – volume: 31 start-page: 315403 year: 2019 ident: b0330 article-title: Structure and superconductivity of protactinium hydrides under high pressure publication-title: J. Phys. Condens. Matter – volume: 96 start-page: 201107 year: 2017 ident: b0045 article-title: Superconductivity in FeH publication-title: Phys. Rev. B – volume: 136 start-page: B864 year: 1964 end-page: B871 ident: b0145 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. – volume: 56 start-page: 13759 year: 2017 end-page: 13765 ident: b0105 article-title: Superconductivity of pressure-stabilized vanadium hydrides publication-title: Inorg. Chem. – reference: N.P. Salke, M.M.D. Esfahani, Y. Zhang, I.A. Kruglov, J. Zhou, Y. Wang, E. Greenberg, V.B. Prakapenka, A.R. Oganov, J.-F. Lin, Synthesis of Clathrate Cerium Superhydride CeH9 at 80 GPa with Anomalously Short H-H Distance, arXiv:1805.02060, 2018, – year: 2019 ident: b0065 article-title: Superconductivity at 161 K in thorium hydride ThH publication-title: Mater. Today – volume: 88 start-page: 184104 year: 2013 ident: b0095 article-title: Theoretical study of the ground-state structures and properties of niobium hydrides under pressure publication-title: Phys. Rev. B – volume: 10 start-page: 3461 year: 2019 ident: b0055 article-title: Polyhydride CeH publication-title: Nat. Commun. – volume: 99 start-page: 224504 year: 2019 ident: b0305 article-title: Synthesis and stability of tantalum hydride at high pressures publication-title: Phys. Rev. B – year: 2019 ident: b0345 article-title: Superconductivity of LaH publication-title: Phys. Rev. B – volume: 9 start-page: 1920 year: 2018 end-page: 1926 ident: b0120 article-title: Actinium hydrides AcH publication-title: J. Phys. Chem. Lett. – volume: 75 start-page: 083703 year: 2006 ident: b0355 article-title: Superconductivity of Ca exceeding 25 K at megabar pressures publication-title: J. Phys. Soc. Jpn. – volume: 96 start-page: 100502 year: 2017 ident: b0090 article-title: Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure publication-title: Phys. Rev. B – volume: 122 start-page: 19370 year: 2018 end-page: 19378 ident: b0225 article-title: New calcium hydrides with mixed atomic and molecular hydrogen publication-title: J. Phys. Chem. C – volume: 18 start-page: 28791 year: 2016 end-page: 28796 ident: b0240 article-title: Crystal structures and superconductivity of technetium hydrides under pressure publication-title: Phys. Chem. Chem. Phys. – volume: 21 start-page: 123009 year: 2019 ident: b0315 article-title: Superconducting TaH publication-title: New J. Phys. – volume: 78 start-page: 118 year: 1997 end-page: 121 ident: b0375 article-title: High temperature superconductivity in metallic hydrogen: electron-electron enhancements publication-title: Phys. Rev. Lett. – volume: 140 start-page: A1133 year: 1965 end-page: A1138 ident: b0150 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. – volume: 4 year: 2018 ident: b0050 article-title: Uranium polyhydrides at moderate pressures: prediction, synthesis, and expected superconductivity publication-title: Sci. Adv. – volume: 96 start-page: 144108 year: 2017 ident: b0100 article-title: Hydrogen-rich scandium compounds at high pressures publication-title: Phys. Rev. B – year: 2020 ident: b0070 article-title: Superconducting praseodymium superhydrides publication-title: Sci. Adv. – volume: 73 start-page: 094522 year: 2006 ident: b0350 article-title: Superconductivity at 17 K in yttrium metal under nearly hydrostatic pressures up to 89GPa publication-title: Phys. Rev. B – start-page: 347 year: 2017 ident: b0020 article-title: Pressure-induced superconductivity above 79 K in Si2H6 publication-title: Book of abstracts of AIRAPT 26 joint with ACHPR 8 & CHPC 19; Biijing, China – volume: 236 start-page: 1 year: 2019 end-page: 7 ident: b0140 article-title: Topology-based crystal structure generator publication-title: Comput. Phys. Commun. – volume: 124 start-page: 244704 year: 2006 ident: b0125 article-title: Crystal structure prediction using ab initio evolutionary techniques: principles and applications publication-title: J. Chem. Phys. – volume: 116 start-page: 13322 year: 2012 end-page: 13328 ident: b0220 article-title: High pressure potassium polyhydrides: A chemical perspective publication-title: J. Phys. Chem. C – volume: 10 start-page: 43809 year: 2018 end-page: 43816 ident: b0115 article-title: High-temperature superconductivity in Th-H system at pressure conditions publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 28102 year: 2016 ident: b0205 article-title: Electronic structure and electron-phonon coupling in TiH publication-title: Sci. Rep. – volume: 184 start-page: 1172 year: 2013 end-page: 1182 ident: b0135 article-title: New developments in evolutionary structure prediction algorithm USPEX publication-title: Comput. Phys. Commun. – year: 2018 ident: b0015 article-title: Novel synthesis route and observation of superconductivity in the Se-H system at extreme conditions publication-title: Bulletin of the American Physical Society – reference: Personal Information from Huang’s Group, Jilin University. – reference: H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S.A.T. Redfern, V.Z. Kresin, C.J. Pickard, et al., Hydrogen “Penta-Graphene-like” Structure Stabilized via Hafnium: A High-Temperature Conventional Superconductor, ArXiv200104076 Cond-Mat, 2020. – volume: 51 start-page: 9333 year: 2012 end-page: 9342 ident: b0290 article-title: Compressed cesium polyhydrides: Cs+ sublattices and H publication-title: Inorg. Chem. – volume: 21 start-page: 395502 year: 2009 ident: b0190 article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter – volume: 70 start-page: 104 year: 2014 end-page: 111 ident: b0080 article-title: superconductivity of lithium-doped hydrogen under high pressure publication-title: Acta Cryst. C – volume: 98 start-page: 134103 year: 2018 ident: b0265 article-title: High-pressure properties of dense metallic zirconium hydrides studied by ab initio calculations publication-title: Phys. Rev. B – volume: 536 start-page: 275 year: 2018 end-page: 279 ident: b0295 article-title: Characterization of the superconducting state in hafnium hydride under high pressure publication-title: Phys. B Condens. Matter – volume: 122 start-page: 027001 year: 2019 ident: b0035 article-title: Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures publication-title: Phys. Rev. Lett. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: b0160 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 57 start-page: 688 year: 2017 end-page: 692 ident: b0025 article-title: Synthesis and stability of lanthanum superhydrides publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 14251 year: 1994 end-page: 14269 ident: b0180 article-title: Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B – volume: 363 start-page: 56 year: 1993 end-page: 58 ident: b0370 article-title: Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O System publication-title: Nature – volume: 357 start-page: 382 year: 2017 end-page: 385 ident: b0040 article-title: Synthesis of FeH publication-title: Science – volume: 44 start-page: 227 year: 2011 end-page: 237 ident: b0130 article-title: How evolutionary crystal structure prediction works—and why publication-title: Acc. Chem. Res. – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: b0175 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B – volume: 73 start-page: 515 year: 2001 end-page: 562 ident: b0185 article-title: Phonons and related crystal properties from density-functional perturbation theory publication-title: Rev. Mod. Phys. – reference: APS-APS March Meeting 2020 - Event - Superconductivity at 262 K in Yttrium Superhydride at High Pressures, in: Bulletin of the American Physical Society, American Physical Society, 2020. – reference: . – volume: 12 start-page: 905 year: 1975 end-page: 922 ident: b0335 article-title: Transition temperature of strong-coupled superconductors reanalyzed publication-title: Phys. Rev. B – year: 2020 ident: b0075 article-title: High-pressure synthesis of magnetic neodymium polyhydrides publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 3538 year: 2017 end-page: 3543 ident: b0245 article-title: Phase diagram and superconductivity of compressed zirconium hydrides publication-title: Phys. Chem. Chem. Phys. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0155 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – year: 2019 ident: b0280 article-title: Superconductivity up to 243 K in yttrium hydrides under high pressure publication-title: ArXiv190910482 Cond.-Mat. – volume: 7 start-page: 12267 year: 2016 ident: b0340 article-title: Synthesis of sodium polyhydrides at high pressures publication-title: Nat. Commun. – volume: 340 start-page: 369 year: 1989 ident: b0380 article-title: First-principles prediction of high-temperature superconductivity in metallic hydrogen publication-title: Nature – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: b0165 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: b0170 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 86 start-page: 14118 year: 2012 ident: b0195 article-title: Ab initio study revealing a layered structure in hydrogen-rich KH publication-title: Phys. Rev. B – volume: 58 start-page: 2558 year: 2019 end-page: 2564 ident: b0230 article-title: Unique phase diagram and superconductivity of calcium hydrides at high pressures publication-title: Inorg. Chem. – volume: 10 start-page: 4453 year: 2019 ident: b0060 article-title: Synthesis of clathrate cerium superhydride CeH publication-title: Nat. Commun. – volume: 150 start-page: 44507 year: 2019 ident: b0260 article-title: Unexpected calcium polyhydride CaH publication-title: J. Chem. Phys. – volume: 117 start-page: 2982 year: 2013 end-page: 2992 ident: b0215 article-title: Polyhydrides of the alkaline earth metals: A look at the extremes under pressure publication-title: J. Phys. Chem. C – volume: 10 start-page: 3461 issue: 1 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0055 article-title: Polyhydride CeH9 with an atomic-like hydrogen clathrate structure publication-title: Nat. Commun. doi: 10.1038/s41467-019-11330-6 – ident: 10.1016/j.cossms.2020.100808_b0255 doi: 10.1103/PhysRevB.101.144505 – start-page: 347 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0020 article-title: Pressure-induced superconductivity above 79 K in Si2H6 – volume: 150 start-page: 44507 issue: 4 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0260 article-title: Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules publication-title: J. Chem. Phys. doi: 10.1063/1.5053650 – volume: 114 start-page: 6990 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0110 article-title: Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1704505114 – volume: 18 start-page: 28791 issue: 41 year: 2016 ident: 10.1016/j.cossms.2020.100808_b0240 article-title: Crystal structures and superconductivity of technetium hydrides under pressure publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05702K – volume: 236 start-page: 1 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0140 article-title: Topology-based crystal structure generator publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.09.016 – volume: 58 start-page: 2558 issue: 4 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0230 article-title: Unique phase diagram and superconductivity of calcium hydrides at high pressures publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b03165 – volume: 357 start-page: 382 issue: 6349 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0040 article-title: Synthesis of FeH5: A layered structure with atomic hydrogen slabs publication-title: Science doi: 10.1126/science.aan0961 – volume: 569 start-page: 528 issue: 7757 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0030 article-title: Superconductivity at 250 K in lanthanum hydride under high pressures publication-title: Nature doi: 10.1038/s41586-019-1201-8 – volume: 122 start-page: 19370 issue: 34 year: 2018 ident: 10.1016/j.cossms.2020.100808_b0225 article-title: New calcium hydrides with mixed atomic and molecular hydrogen publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b05030 – volume: 56 start-page: 3901 issue: 7 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0300 article-title: Pressure-stabilized superconductive ionic tantalum hydrides publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02822 – ident: 10.1016/j.cossms.2020.100808_b0235 doi: 10.1103/PhysRevB.101.134108 – volume: 536 start-page: 275 year: 2018 ident: 10.1016/j.cossms.2020.100808_b0295 article-title: Characterization of the superconducting state in hafnium hydride under high pressure publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2017.10.107 – volume: 10 start-page: 4453 issue: 1 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0060 article-title: Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice publication-title: Nat. Commun. doi: 10.1038/s41467-019-12326-y – year: 2019 ident: 10.1016/j.cossms.2020.100808_b0065 article-title: Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties publication-title: Mater. Today – volume: 10 start-page: 43809 issue: 50 year: 2018 ident: 10.1016/j.cossms.2020.100808_b0115 article-title: High-temperature superconductivity in Th-H system at pressure conditions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17100 – volume: 98 start-page: 134103 issue: 13 year: 2018 ident: 10.1016/j.cossms.2020.100808_b0265 article-title: High-pressure properties of dense metallic zirconium hydrides studied by ab initio calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.134103 – volume: 76 start-page: 134512 issue: 13 year: 2007 ident: 10.1016/j.cossms.2020.100808_b0365 article-title: Calculations of the superconducting properties of scandium under high pressure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.134512 – volume: 50 start-page: 17953 issue: 24 year: 1994 ident: 10.1016/j.cossms.2020.100808_b0160 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 44 start-page: 227 year: 2011 ident: 10.1016/j.cossms.2020.100808_b0130 article-title: How evolutionary crystal structure prediction works—and why publication-title: Acc. Chem. Res. doi: 10.1021/ar1001318 – volume: 5 start-page: 17764 year: 2015 ident: 10.1016/j.cossms.2020.100808_b0210 article-title: Pressure-driven formation and stabilization of superconductive chromium hydrides publication-title: Sci. Rep. doi: 10.1038/srep17764 – volume: 96 start-page: 047003 issue: 4 year: 2006 ident: 10.1016/j.cossms.2020.100808_b0360 article-title: Superconductivity in lithium, potassium, and aluminum under extreme pressure: A first-principles study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.047003 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.cossms.2020.100808_b0170 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 21 start-page: 123009 issue: 12 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0315 article-title: Superconducting TaH5 at high pressure publication-title: New J. Phys. doi: 10.1088/1367-2630/ab5a9a – volume: 56 start-page: 13759 issue: 22 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0105 article-title: Superconductivity of pressure-stabilized vanadium hydrides publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01686 – volume: 88 start-page: 184104 issue: 18 year: 2013 ident: 10.1016/j.cossms.2020.100808_b0095 article-title: Theoretical study of the ground-state structures and properties of niobium hydrides under pressure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.184104 – year: 2020 ident: 10.1016/j.cossms.2020.100808_b0070 article-title: Superconducting praseodymium superhydrides publication-title: Sci. Adv. – year: 2020 ident: 10.1016/j.cossms.2020.100808_b0075 article-title: High-pressure synthesis of magnetic neodymium polyhydrides publication-title: J. Am. Chem. Soc. – volume: 340 start-page: 369 issue: 6232 year: 1989 ident: 10.1016/j.cossms.2020.100808_b0380 article-title: First-principles prediction of high-temperature superconductivity in metallic hydrogen publication-title: Nature doi: 10.1038/340369a0 – volume: 86 start-page: 14118 issue: 1 year: 2012 ident: 10.1016/j.cossms.2020.100808_b0195 article-title: Ab initio study revealing a layered structure in hydrogen-rich KH6 under high pressure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.014118 – volume: 116 start-page: 13322 issue: 24 year: 2012 ident: 10.1016/j.cossms.2020.100808_b0220 article-title: High pressure potassium polyhydrides: A chemical perspective publication-title: J. Phys. Chem. C doi: 10.1021/jp303024h – year: 2019 ident: 10.1016/j.cossms.2020.100808_b0280 article-title: Superconductivity up to 243 K in yttrium hydrides under high pressure publication-title: ArXiv190910482 Cond.-Mat. – volume: 124 start-page: 244704 year: 2006 ident: 10.1016/j.cossms.2020.100808_b0125 article-title: Crystal structure prediction using ab initio evolutionary techniques: principles and applications publication-title: J. Chem. Phys. doi: 10.1063/1.2210932 – volume: 59 start-page: 1758 issue: 3 year: 1999 ident: 10.1016/j.cossms.2020.100808_b0165 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – ident: 10.1016/j.cossms.2020.100808_b0275 doi: 10.1103/PhysRevLett.125.217001 – volume: 525 start-page: 73 issue: 7567 year: 2015 ident: 10.1016/j.cossms.2020.100808_b0005 article-title: Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system publication-title: Nature doi: 10.1038/nature14964 – volume: 18 start-page: 5013 year: 2012 ident: 10.1016/j.cossms.2020.100808_b0250 article-title: rubidium polyhydrides under pressure: emergence of the linear H3− species - hooper - 2012 - chemistry 8211; A European journal - wiley online library publication-title: Chem. Eur. J. doi: 10.1002/chem.201103205 – volume: 99 start-page: 224504 issue: 22 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0305 article-title: Synthesis and stability of tantalum hydride at high pressures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.224504 – volume: 6 start-page: 28102 year: 2016 ident: 10.1016/j.cossms.2020.100808_b0205 article-title: Electronic structure and electron-phonon coupling in TiH2 publication-title: Sci. Rep. doi: 10.1038/srep28102 – volume: 117 start-page: 2982 issue: 6 year: 2013 ident: 10.1016/j.cossms.2020.100808_b0215 article-title: Polyhydrides of the alkaline earth metals: A look at the extremes under pressure publication-title: J. Phys. Chem. C doi: 10.1021/jp311571n – volume: 96 start-page: 201107 issue: 20 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0045 article-title: Superconductivity in FeH5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.201107 – volume: 4 start-page: 121 issue: 1 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0010 article-title: Structure and superconductivity of hydrides at high pressures publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nww029 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 10.1016/j.cossms.2020.100808_b0155 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 96 start-page: 144108 issue: 14 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0100 article-title: Hydrogen-rich scandium compounds at high pressures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.144108 – volume: 140 start-page: A1133 issue: 4 year: 1965 ident: 10.1016/j.cossms.2020.100808_b0150 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – ident: 10.1016/j.cossms.2020.100808_b0285 – volume: 4 issue: 10 year: 2018 ident: 10.1016/j.cossms.2020.100808_b0050 article-title: Uranium polyhydrides at moderate pressures: prediction, synthesis, and expected superconductivity publication-title: Sci. Adv. doi: 10.1126/sciadv.aat9776 – year: 2019 ident: 10.1016/j.cossms.2020.100808_b0345 article-title: Superconductivity of LaH10 and LaH16 Polyhydrides publication-title: Phys. Rev. B – ident: 10.1016/j.cossms.2020.100808_b0325 doi: 10.1038/s41467-019-12326-y – volume: 363 start-page: 56 issue: 6424 year: 1993 ident: 10.1016/j.cossms.2020.100808_b0370 article-title: Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O System publication-title: Nature doi: 10.1038/363056a0 – volume: 57 start-page: 688 issue: 3 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0025 article-title: Synthesis and stability of lanthanum superhydrides publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709970 – volume: 12 start-page: 905 issue: 3 year: 1975 ident: 10.1016/j.cossms.2020.100808_b0335 article-title: Transition temperature of strong-coupled superconductors reanalyzed publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.12.905 – volume: 122 start-page: 6298 issue: 11 year: 2018 ident: 10.1016/j.cossms.2020.100808_b0200 article-title: High hydrides of scandium under pressure: potential superconductors publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b12124 – volume: 31 start-page: 315403 issue: 31 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0330 article-title: Structure and superconductivity of protactinium hydrides under high pressure publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab1d03 – ident: 10.1016/j.cossms.2020.100808_b0310 – volume: 49 start-page: 14251 year: 1994 ident: 10.1016/j.cossms.2020.100808_b0180 article-title: Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 19 start-page: 3538 issue: 5 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0245 article-title: Phase diagram and superconductivity of compressed zirconium hydrides publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP08036G – year: 2018 ident: 10.1016/j.cossms.2020.100808_b0015 article-title: Novel synthesis route and observation of superconductivity in the Se-H system at extreme conditions – volume: 75 start-page: 083703 issue: 8 year: 2006 ident: 10.1016/j.cossms.2020.100808_b0355 article-title: Superconductivity of Ca exceeding 25 K at megabar pressures publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.75.083703 – volume: 96 start-page: 100502 issue: 10 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0090 article-title: Electron-phonon coupling mechanisms for hydrogen-rich metals at high pressure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.100502 – volume: 9 start-page: 1920 issue: 8 year: 2018 ident: 10.1016/j.cossms.2020.100808_b0120 article-title: Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00615 – volume: 47 start-page: 558 year: 1993 ident: 10.1016/j.cossms.2020.100808_b0175 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 78 start-page: 118 issue: 1 year: 1997 ident: 10.1016/j.cossms.2020.100808_b0375 article-title: High temperature superconductivity in metallic hydrogen: electron-electron enhancements publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.118 – volume: 184 start-page: 1172 year: 2013 ident: 10.1016/j.cossms.2020.100808_b0135 article-title: New developments in evolutionary structure prediction algorithm USPEX publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.12.009 – volume: 73 start-page: 094522 issue: 9 year: 2006 ident: 10.1016/j.cossms.2020.100808_b0350 article-title: Superconductivity at 17 K in yttrium metal under nearly hydrostatic pressures up to 89GPa publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.094522 – volume: 7 start-page: 12267 year: 2016 ident: 10.1016/j.cossms.2020.100808_b0340 article-title: Synthesis of sodium polyhydrides at high pressures publication-title: Nat. Commun. doi: 10.1038/ncomms12267 – volume: 21 start-page: 395502 year: 2009 ident: 10.1016/j.cossms.2020.100808_b0190 article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 109 start-page: 6463 issue: 17 year: 2012 ident: 10.1016/j.cossms.2020.100808_b0085 article-title: Superconductive sodalite-like clathrate calcium hydride at high pressures publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1118168109 – volume: 11 start-page: 646 issue: 3 year: 2020 ident: 10.1016/j.cossms.2020.100808_b0270 article-title: Superconducting zirconium polyhydrides at moderate pressures publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03632 – volume: 51 start-page: 9333 issue: 17 year: 2012 ident: 10.1016/j.cossms.2020.100808_b0290 article-title: Compressed cesium polyhydrides: Cs+ sublattices and H3– three-connected nets - inorganic chemistry (ACS Publications) publication-title: Inorg. Chem. doi: 10.1021/ic301045v – volume: 119 start-page: 107001 year: 2017 ident: 10.1016/j.cossms.2020.100808_b0320 article-title: Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.107001 – volume: 70 start-page: 104 year: 2014 ident: 10.1016/j.cossms.2020.100808_b0080 article-title: superconductivity of lithium-doped hydrogen under high pressure publication-title: Acta Cryst. C doi: 10.1107/S2053229613028337 – volume: 122 start-page: 027001 issue: 2 year: 2019 ident: 10.1016/j.cossms.2020.100808_b0035 article-title: Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.027001 – volume: 136 start-page: B864 issue: 3B year: 1964 ident: 10.1016/j.cossms.2020.100808_b0145 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 73 start-page: 515 issue: 2 year: 2001 ident: 10.1016/j.cossms.2020.100808_b0185 article-title: Phonons and related crystal properties from density-functional perturbation theory publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.515 |
SSID | ssj0004666 |
Score | 2.609635 |
Snippet | •Highest-TC hydrides are formed by metals in the “lability belt” of the Periodic Table, roughly between 2 and 3 groups.•~0.3 electrons should be transferred to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100808 |
SubjectTerms | DFT Evolutionary algorithm Neural network Periodic Table Superconducting hydrides USPEX, High-pressure |
Title | On Distribution of Superconductivity in Metal Hydrides |
URI | https://dx.doi.org/10.1016/j.cossms.2020.100808 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KRdCDaFWsH2UPXmO7m02yOZaqxI9WsRZ6C9nsBiqaln4cvPjbndkkUkEUPIWEXQgvk5nXZuY9Qs5FBiw89ITDZcId4aPNC8_gvQozX6PupG_wr4H-wI9G4nbsjWukV83CYFtlmfuLnG6zdXmlXaLZnk0m7SFzrfSIzyFOIZbGOMEuAozyiw-2Nhtpv1fiYgdXV-NztscrhUL0hqLd3LYLSDSZ_Kk8rZWc612yU3JF2i1uZ4_UTN4g22sKgg2yaTs408U-8R9yeokquKWBFZ1mdLiamTn84EVNV2sSQSc57Rvg2zR6R191szggo-ur517klKYITuoGfOkYhg5QmVZAPIKEAdsPoIaLTEEtEh03SIEy-TwBIsSV7GjGtEqll0kd6FBzY9xDUs-nuTkiNBQSUNYZT5QCHqXDVBqXCa2k8ZhrdJO4FRZxWiqGo3HFa1y1hr3EBYIxIhgXCDaJ87VrVihm_LE-qGCOvz35GJL6rzuP_73zhGzhWdGBc0rqy_nKnAG5WKqWjZ4W2ej2nu4f8XhzFw0-AYhRzuc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qi6gH0apYnzl4DW02m9exVEtqHx7aQm9Lkt1ARdPSx8F_70yykQqi4DXZgfBlMvMlmf0-gAeeIgsPHG4yP2Imd8nmhaX4XAWpK0l30lX0aWA4csMpf545swp0yr0wNFapa39R0_NqrY80NZrN5XzeHFt2Lj3iMsxTzKXZHtRIncqpQq3d64ejne2R-S9LWm9SQLmDLh_zSrAXvZNuN8snBnzymfypQ-10ne4JHGu6aLSLKzqFisrqcLQjIliH_XyIM1mfgfuSGY8khKs9rIxFaoy3S7XCd16Sdc19Iox5ZgwVUm4j_CBrdbU-h2n3adIJTe2LYCa2xzamssgEKpUxcg8vspDwe9jGeRpjO-It20uQNbksQi7EYr8lLUvGie-kvvRkIJlS9gVUs0WmLsEIuI9Ay5RFcYxUSgaJr2yLy9hXjmUr2QC7xEIkWjScvCveRDkd9ioKBAUhKAoEG2B-RS0L0Yw_1nslzOLbzRdY13-NvPp35D0chJPhQAx6o_41HNKZYiDnBqqb1VbdItfYxHc6lz4BNBXQAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Distribution+of+Superconductivity+in+Metal+Hydrides&rft.jtitle=Current+opinion+in+solid+state+%26+materials+science&rft.au=Semenok%2C+Dmitrii+V.&rft.au=Kruglov%2C+Ivan+A.&rft.au=Savkin%2C+Igor+A.&rft.au=Kvashnin%2C+Alexander+G.&rft.date=2020-04-01&rft.issn=1359-0286&rft.volume=24&rft.issue=2&rft.spage=100808&rft_id=info:doi/10.1016%2Fj.cossms.2020.100808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cossms_2020_100808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-0286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-0286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-0286&client=summon |