Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation
Harvesting energy from natural or daily mechanical movements is an economic and environment-friendly way to alleviate energy shortage. Here we demonstrate a two-dimensional (2D) electrokinetic energy conversion device based on ultrathin laminated Ti3C2Tx membrane (TCM) driven by pressure gradients....
Saved in:
Published in | Nano energy Vol. 75; p. 104954 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Harvesting energy from natural or daily mechanical movements is an economic and environment-friendly way to alleviate energy shortage. Here we demonstrate a two-dimensional (2D) electrokinetic energy conversion device based on ultrathin laminated Ti3C2Tx membrane (TCM) driven by pressure gradients. The applied pressure, pH, lateral size of Ti3C2Tx nanosheets and membrane thickness were investigated. The results revealed that these parameters could remarkably regulate the electricity generation with TCMs. The TCMs with abundant negatively charged 2D nanocapillaries produced high streaming current density of 1.3 mA m−2 and output power density of 0.29 μW m−2 under 5 kPa in 0.01 M aqueous solution of sodium chloride. The MXene membrane generators present good solution compatibility for electrolytes in different alkali metal ions and wide pH range (4–10). This work extends the application of MXenes providing a new platform for energy conversion from natural and daily-life environment.
Based on the principle of electrokinetic energy conversion, we reported a two-dimensional Ti3C2Tx (MXene) membrane device for harvesting energy from natural or daily mechanical movements. Streaming current is generated continuously under pressure gradients. The devices can be operated in various electrolytes and wide pH range. [Display omitted]
•A pressure-driven electric generator based on stacked Ti3C2Tx nanosheets.•Electricity generation from mechanical forces.•Negatively charged surface and ultrathin structure for high streaming current.•Good solution compatibility in various electrolytes and wide pH range. |
---|---|
AbstractList | Harvesting energy from natural or daily mechanical movements is an economic and environment-friendly way to alleviate energy shortage. Here we demonstrate a two-dimensional (2D) electrokinetic energy conversion device based on ultrathin laminated Ti3C2Tx membrane (TCM) driven by pressure gradients. The applied pressure, pH, lateral size of Ti3C2Tx nanosheets and membrane thickness were investigated. The results revealed that these parameters could remarkably regulate the electricity generation with TCMs. The TCMs with abundant negatively charged 2D nanocapillaries produced high streaming current density of 1.3 mA m−2 and output power density of 0.29 μW m−2 under 5 kPa in 0.01 M aqueous solution of sodium chloride. The MXene membrane generators present good solution compatibility for electrolytes in different alkali metal ions and wide pH range (4–10). This work extends the application of MXenes providing a new platform for energy conversion from natural and daily-life environment.
Based on the principle of electrokinetic energy conversion, we reported a two-dimensional Ti3C2Tx (MXene) membrane device for harvesting energy from natural or daily mechanical movements. Streaming current is generated continuously under pressure gradients. The devices can be operated in various electrolytes and wide pH range. [Display omitted]
•A pressure-driven electric generator based on stacked Ti3C2Tx nanosheets.•Electricity generation from mechanical forces.•Negatively charged surface and ultrathin structure for high streaming current.•Good solution compatibility in various electrolytes and wide pH range. |
ArticleNumber | 104954 |
Author | Yang, Guoliang Su, Yuyu Wang, Jiemin Lei, Weiwei Chen, Cheng Sun, Lu Qin, Si Wang, Xungai Chen, Zhiqiang Zhang, Liangzhu Liu, Dan |
Author_xml | – sequence: 1 givenname: Guoliang surname: Yang fullname: Yang, Guoliang – sequence: 2 givenname: Weiwei surname: Lei fullname: Lei, Weiwei email: weiwei.lei@deakin.edu.au – sequence: 3 givenname: Cheng surname: Chen fullname: Chen, Cheng – sequence: 4 givenname: Si surname: Qin fullname: Qin, Si – sequence: 5 givenname: Liangzhu surname: Zhang fullname: Zhang, Liangzhu – sequence: 6 givenname: Yuyu surname: Su fullname: Su, Yuyu – sequence: 7 givenname: Jiemin surname: Wang fullname: Wang, Jiemin – sequence: 8 givenname: Zhiqiang surname: Chen fullname: Chen, Zhiqiang – sequence: 9 givenname: Lu surname: Sun fullname: Sun, Lu – sequence: 10 givenname: Xungai surname: Wang fullname: Wang, Xungai email: xungai.wang@deakin.edu.au – sequence: 11 givenname: Dan surname: Liu fullname: Liu, Dan email: dan.liu@deakin.edu.au |
BookMark | eNqFkD1PwzAQhj0UiVL6Dxg8wpDij7hxGJBQRQGpiKVFbFbinMEltSs7FPj3uISJAW456aTn1b3PERo47wChE0omlNDp-XriKufBTRhh-1NeinyAhoxRmjEpxCEax7gmaaaCFpQN0eOq7ULVvViHl5bP2PIDn94_gYMzvIFNHSoH2PiAtwFifAuQNcHuwGFoQXfBv1oHndV4698h4OfEpTDr3TE6MFUbYfyzR2g1v17ObrPFw83d7GqRaV6wLgNSlkLK3FSslDUQ0MDFlAOXham40AXPBZOS54RpKGrSpEYaaKO5KQwTNR-hvM_VwccYwKhtsJsqfCpK1F6JWqteidorUb2ShF38wrTtvh9PMmz7H3zZw5CK7SwEFbUFp6GxIUlRjbd_B3wBVlaDqA |
CitedBy_id | crossref_primary_10_1002_elps_202100394 crossref_primary_10_1021_acsami_2c05247 crossref_primary_10_1016_j_colsurfa_2023_132002 crossref_primary_10_1039_D3CS00367A crossref_primary_10_1063_5_0241150 crossref_primary_10_1016_j_cej_2024_156762 crossref_primary_10_1039_D3SE01582C crossref_primary_10_1039_D3TA04741E crossref_primary_10_1016_j_cej_2024_155952 crossref_primary_10_1016_j_nanoen_2022_107548 crossref_primary_10_1002_smtd_202301225 crossref_primary_10_3390_polym15061330 crossref_primary_10_1021_acsnano_0c09845 crossref_primary_10_1039_D4TA01350F crossref_primary_10_1039_D1TA10083A crossref_primary_10_1002_anie_202218321 crossref_primary_10_1016_j_mtphys_2022_100715 crossref_primary_10_1002_smsc_202100013 crossref_primary_10_1016_j_memsci_2023_121403 crossref_primary_10_1002_adsr_202200099 crossref_primary_10_1002_sstr_202300090 crossref_primary_10_1039_D0MH00979B crossref_primary_10_1016_j_electacta_2024_145456 crossref_primary_10_1002_cben_202000026 crossref_primary_10_1007_s12274_024_6959_9 crossref_primary_10_1002_adfm_202109210 crossref_primary_10_1002_ange_202218321 crossref_primary_10_1016_j_seppur_2023_125640 crossref_primary_10_1038_s41598_022_21069_8 crossref_primary_10_1016_j_cej_2023_144082 crossref_primary_10_1039_D2TA09564E crossref_primary_10_1002_adma_202103056 crossref_primary_10_1002_smtd_202301558 crossref_primary_10_1016_j_carbon_2022_12_047 crossref_primary_10_1016_j_electacta_2024_144594 crossref_primary_10_1002_sus2_169 crossref_primary_10_1016_j_cej_2024_151600 crossref_primary_10_1016_j_nanoen_2021_106709 crossref_primary_10_1002_ange_202302938 crossref_primary_10_1016_j_esci_2022_08_001 crossref_primary_10_1002_adfm_202306834 crossref_primary_10_1038_s41467_024_47040_x crossref_primary_10_1016_j_nancom_2024_100550 crossref_primary_10_1002_gch2_202200154 crossref_primary_10_1039_D1TA07530F crossref_primary_10_3390_e22060692 crossref_primary_10_1002_adma_202108560 crossref_primary_10_1039_D1MA00256B crossref_primary_10_1002_adfm_202308176 crossref_primary_10_1016_j_memsci_2022_121203 crossref_primary_10_1016_j_cej_2023_146649 crossref_primary_10_1002_anie_202302938 crossref_primary_10_1016_j_memsci_2022_120280 crossref_primary_10_1002_adfm_202313914 crossref_primary_10_1016_j_desal_2024_117518 crossref_primary_10_1002_adfm_202208959 crossref_primary_10_1039_D3CS00382E crossref_primary_10_1016_j_matt_2024_07_006 crossref_primary_10_1016_j_nanoen_2023_108860 crossref_primary_10_1007_s40964_023_00424_9 |
Cites_doi | 10.1039/B909366B 10.1002/adma.201700177 10.1002/anie.201609306 10.1002/anie.201814349 10.1021/acsnano.5b07229 10.1002/adfm.201806351 10.1021/acsnano.5b07333 10.1038/nmat5025 10.1002/adfm.201701264 10.1038/natrevmats.2016.98 10.1021/acs.chemmater.7b02847 10.1038/s41467-017-02529-6 10.1002/adma.201304138 10.1002/smll.201702691 10.1021/jacs.6b11100 10.1016/j.nanoen.2018.03.030 10.1002/ange.201804299 10.1016/j.nanoen.2016.10.058 10.1016/j.nantod.2018.04.007 10.1016/S0302-4598(96)05097-0 10.1021/ja308463r 10.1038/s41467-020-15368-9 10.1088/0957-4484/19/19/195707 10.1016/j.bios.2018.08.076 10.1021/acsnano.9b02579 10.1021/acs.jpcc.5b03038 10.1016/j.nanoen.2016.06.005 10.1002/adma.201704561 10.1038/srep27971 10.1002/adfm.201202601 10.1039/C8EE03006E 10.1126/science.aag2421 10.1016/j.memsci.2018.06.031 10.1038/s41467-019-10885-8 10.1038/s41467-018-07882-8 10.1103/PhysRevLett.95.116104 10.1002/adma.201102306 10.1021/nl061524l 10.1126/science.1250247 10.1016/j.nanoen.2018.12.038 10.1016/j.memsci.2017.11.065 10.1002/adma.201804779 10.1021/acsnano.8b06708 10.1002/adma.201302441 10.1002/adfm.201902014 10.1038/ncomms8602 10.1126/science.1241488 10.1021/nl070194h 10.1002/adma.201502477 10.1016/j.nanoen.2020.104452 10.1021/acs.jpclett.5b01895 10.1038/nature11876 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2020.104954 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2020_104954 S2211285520305115 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-e0995884fa298be0ece3563e387fa35c73452883402ce7b0d049ce1dc3f7f25b3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:56:38 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Fri Feb 23 02:49:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pressure-driven Nanofluidic Electricity generation Ti3C2Tx membrane |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-e0995884fa298be0ece3563e387fa35c73452883402ce7b0d049ce1dc3f7f25b3 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2020_104954 crossref_citationtrail_10_1016_j_nanoen_2020_104954 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_104954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shepelin, Glushenkov, Lussini, Fox, Dicinoski, Shapter, Ellis (bib3) 2019; 12 Van der Heyden, Bonthuis, Stein, Meyer, Dekker (bib1) 2006; 6 Zhang, Wang, Yeh, Pan, Lin, Yu, Zhang, Zheng, Jiao, Wang (bib52) 2015; 27 Ding, Wei, Li, Zhang, Wang, Xue, Ding, Wang, Caro, Gogotsi (bib41) 2018; 9 Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (bib57) 2017; 29 Gogoi, Konch, Raidongia, Reddy (bib47) 2018; 563 Lukatskaya, Mashtalir, Ren, Dall'Agnese, Rozier, Taberna, Naguib, Simon, Barsoum, Gogotsi (bib51) 2013; 341 Shahzad, Alhabeb, Hatter, Anasori, Hong, Koo, Gogotsi (bib49) 2016; 353 Zha, Huang, He, He, Zhai, Francisco, Du (bib27) 2016; 6 Kumar, Lei, Alshareef, Quevedo-Lopez, Salama (bib42) 2018; 121 Zhu, Hao, Bao, Zhou, Zhang, Pang, Jiang, Jiang (bib24) 2018; 4 Liu, Shen, Liu, Liu, Xiong, Yang, Jin (bib37) 2018; 548 Luo, Tao, Zhang, Xia, Huang, Zhang, Gan, Liang, Zhang (bib50) 2016; 10 Macha, Marion, Nandigana, Radenovic (bib20) 2019 Haldrup, Catalano, Hinge, Jensen, Pedersen, Bentien (bib10) 2016; 10 Yan, Ren, Maleski, Hatter, Anasori, Urbankowski, Sarycheva, Gogotsi (bib33) 2017; 27 Ding, Wei, Li, Zhang, Wang, Xue, Ding, Wang, Caro, Gogotsi (bib38) 2018; 9 Nie, Chen, Wang (bib6) 2019; 29 Han, Xu, Gao (bib39) 2013; 23 Harris, Bugnet, Naguib, Barsoum, Goward (bib55) 2015; 119 Yeh, Chen, Chiou, Su (bib56) 2017; 13 van der Heyden, Bonthuis, Stein, Meyer, Dekker (bib11) 2007; 7 Siria, Poncharal, Biance, Fulcrand, Blase, Purcell, Bocquet (bib25) 2013; 494 Ren, Hatzell, Alhabeb, Ling, Mahmoud, Gogotsi (bib40) 2015; 6 Wang, Liu, Hu, He, Yang, Ling, Xi, Wang, Liu, Hu (bib5) 2020 Liu, Liu, Wang, He, Tang, Xi, Wang, Guo, Hu (bib4) 2020; 11 Yang, Su, Chi, Cherian, Huang, Kravets, Wang, Zhang, Pratt, Grigorenko (bib15) 2017; 16 Bocquet, Charlaix (bib8) 2010; 39 van der Heyden, Stein, Dekker (bib12) 2005; 95 Kang, Xia, Wang, Zhang (bib17) 2019 Xiao, Giusto, Wen, Jiang, Antonietti (bib46) 2018; 130 Kim, Wang, Lee (bib14) 2019; 58 Naguib, Mochalin, Barsoum, Gogotsi (bib48) 2014; 26 Ren, Stein (bib9) 2008; 19 Jella, Ippili, Eom, Pammi, Jung, Tran, Nguyen, Kirakosyan, Yun, Kim (bib2) 2019; 57 Zhang, Yang, Zhang, Zhang, Chen, Feng (bib35) 2019; 10 Qin, Liu, Chen, Chen, Wang, Wang, Razal, Lei (bib23) 2018; 47 Tang, Zhou, Shen (bib29) 2012; 134 Cheng, Zhou, Feng, Geng, Liu, Guo, Jiang (bib22) 2017; 29 Qin, Liu, Wang, Portehault, Garvey, Gogotsi, Lei, Chen (bib45) 2017; 139 Ding, Wei, Wang, Chen, Caro, Wang (bib32) 2017; 56 Guo, Cheng, Wu, Jiang, Gao, Li, Jiang (bib21) 2013; 25 Brown, Abbas, Kleibert, Green, Goel, May, Squires (bib54) 2016; 6 Xie, Zhao, Anasori, Maleski, Ren, Li, Byles, Pomerantseva, Wang, Gogotsi (bib31) 2016; 26 Lao, Lv, Gao, Wang, Wu, Luo (bib44) 2018; 12 Sun, Li (bib19) 2018; 20 Hantanasirisakul, Gogotsi (bib30) 2018; 30 Liu, Ding, Mo, Chen, Yang, Li, Xie, Zhou, Zhou (bib13) 2016; 30 Mi (bib16) 2014; 343 Hong, Ming, Shi, Li, Kim, Tang, Alshareef, Wang (bib34) 2019; 13 Shao, Raidongia, Koltonow, Huang (bib43) 2015; 6 Volkov, Paula, Deamer (bib53) 1997; 42 Liu, Wang, Wang, Liu, Chen, Pu, Xi, Wang, Guo, Hu (bib7) 2019; 10 Wang, Wu, Yuan, Zeng, Zhou, Wang, Chew (bib28) 2018; 30 Rasool, Pandey, Rasheed, Buczek, Gogotsi, Mahmoud (bib18) 2019 Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (bib26) 2011; 23 Anasori, Lukatskaya, Gogotsi (bib36) 2017; 2 Wang (10.1016/j.nanoen.2020.104954_bib5) 2020 Mi (10.1016/j.nanoen.2020.104954_bib16) 2014; 343 Kang (10.1016/j.nanoen.2020.104954_bib17) 2019 Qin (10.1016/j.nanoen.2020.104954_bib45) 2017; 139 Liu (10.1016/j.nanoen.2020.104954_bib4) 2020; 11 Ding (10.1016/j.nanoen.2020.104954_bib32) 2017; 56 Ren (10.1016/j.nanoen.2020.104954_bib9) 2008; 19 Bocquet (10.1016/j.nanoen.2020.104954_bib8) 2010; 39 Liu (10.1016/j.nanoen.2020.104954_bib13) 2016; 30 Tang (10.1016/j.nanoen.2020.104954_bib29) 2012; 134 Xiao (10.1016/j.nanoen.2020.104954_bib46) 2018; 130 Rasool (10.1016/j.nanoen.2020.104954_bib18) 2019 Naguib (10.1016/j.nanoen.2020.104954_bib26) 2011; 23 Yang (10.1016/j.nanoen.2020.104954_bib15) 2017; 16 Hantanasirisakul (10.1016/j.nanoen.2020.104954_bib30) 2018; 30 Shao (10.1016/j.nanoen.2020.104954_bib43) 2015; 6 Brown (10.1016/j.nanoen.2020.104954_bib54) 2016; 6 Alhabeb (10.1016/j.nanoen.2020.104954_bib57) 2017; 29 Ren (10.1016/j.nanoen.2020.104954_bib40) 2015; 6 Liu (10.1016/j.nanoen.2020.104954_bib37) 2018; 548 Guo (10.1016/j.nanoen.2020.104954_bib21) 2013; 25 Anasori (10.1016/j.nanoen.2020.104954_bib36) 2017; 2 Kumar (10.1016/j.nanoen.2020.104954_bib42) 2018; 121 Hong (10.1016/j.nanoen.2020.104954_bib34) 2019; 13 Liu (10.1016/j.nanoen.2020.104954_bib7) 2019; 10 Xie (10.1016/j.nanoen.2020.104954_bib31) 2016; 26 Gogoi (10.1016/j.nanoen.2020.104954_bib47) 2018; 563 Jella (10.1016/j.nanoen.2020.104954_bib2) 2019; 57 Yeh (10.1016/j.nanoen.2020.104954_bib56) 2017; 13 Sun (10.1016/j.nanoen.2020.104954_bib19) 2018; 20 Ding (10.1016/j.nanoen.2020.104954_bib38) 2018; 9 Macha (10.1016/j.nanoen.2020.104954_bib20) 2019 Luo (10.1016/j.nanoen.2020.104954_bib50) 2016; 10 Han (10.1016/j.nanoen.2020.104954_bib39) 2013; 23 Zhang (10.1016/j.nanoen.2020.104954_bib52) 2015; 27 Zha (10.1016/j.nanoen.2020.104954_bib27) 2016; 6 Qin (10.1016/j.nanoen.2020.104954_bib23) 2018; 47 Nie (10.1016/j.nanoen.2020.104954_bib6) 2019; 29 Cheng (10.1016/j.nanoen.2020.104954_bib22) 2017; 29 Yan (10.1016/j.nanoen.2020.104954_bib33) 2017; 27 Kim (10.1016/j.nanoen.2020.104954_bib14) 2019; 58 Zhu (10.1016/j.nanoen.2020.104954_bib24) 2018; 4 Ding (10.1016/j.nanoen.2020.104954_bib41) 2018; 9 Shepelin (10.1016/j.nanoen.2020.104954_bib3) 2019; 12 Siria (10.1016/j.nanoen.2020.104954_bib25) 2013; 494 Wang (10.1016/j.nanoen.2020.104954_bib28) 2018; 30 Naguib (10.1016/j.nanoen.2020.104954_bib48) 2014; 26 Volkov (10.1016/j.nanoen.2020.104954_bib53) 1997; 42 Van der Heyden (10.1016/j.nanoen.2020.104954_bib1) 2006; 6 Haldrup (10.1016/j.nanoen.2020.104954_bib10) 2016; 10 Lao (10.1016/j.nanoen.2020.104954_bib44) 2018; 12 Shahzad (10.1016/j.nanoen.2020.104954_bib49) 2016; 353 Lukatskaya (10.1016/j.nanoen.2020.104954_bib51) 2013; 341 van der Heyden (10.1016/j.nanoen.2020.104954_bib11) 2007; 7 Harris (10.1016/j.nanoen.2020.104954_bib55) 2015; 119 Zhang (10.1016/j.nanoen.2020.104954_bib35) 2019; 10 van der Heyden (10.1016/j.nanoen.2020.104954_bib12) 2005; 95 |
References_xml | – start-page: 104452 year: 2020 ident: bib5 publication-title: Nano Energy – volume: 13 start-page: 8917 year: 2019 end-page: 8925 ident: bib34 publication-title: ACS Nano – volume: 30 start-page: 684 year: 2016 end-page: 690 ident: bib13 publication-title: Nano Energy – volume: 343 start-page: 740 year: 2014 end-page: 742 ident: bib16 publication-title: Science – volume: 9 year: 2018 ident: bib41 publication-title: Nat. Commun. – volume: 10 start-page: 2415 year: 2016 end-page: 2423 ident: bib10 publication-title: ACS Nano – volume: 494 start-page: 455 year: 2013 ident: bib25 publication-title: Nature – volume: 9 start-page: 155 year: 2018 ident: bib38 publication-title: Nat. Commun. – volume: 42 start-page: 153 year: 1997 end-page: 160 ident: bib53 publication-title: Bioelectrochem. Bioenerg. – volume: 57 start-page: 74 year: 2019 end-page: 93 ident: bib2 publication-title: Nano Energy – volume: 27 start-page: 6482 year: 2015 end-page: 6487 ident: bib52 publication-title: Adv. Mater. – year: 2019 ident: bib18 article-title: Materials Today – volume: 353 start-page: 1137 year: 2016 end-page: 1140 ident: bib49 publication-title: Science – volume: 13 start-page: 1702691 year: 2017 ident: bib56 publication-title: Small – volume: 6 start-page: 4026 year: 2015 end-page: 4031 ident: bib40 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 2232 year: 2006 end-page: 2237 ident: bib1 publication-title: Nano Lett. – volume: 16 start-page: 1198 year: 2017 ident: bib15 publication-title: Nat. Mater. – volume: 39 start-page: 1073 year: 2010 end-page: 1095 ident: bib8 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 6314 year: 2017 end-page: 6320 ident: bib45 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 121 year: 2018 end-page: 137 ident: bib19 publication-title: Nano Today – volume: 6 start-page: 27971 year: 2016 ident: bib27 publication-title: Sci Rep-Uk – volume: 23 start-page: 4248 year: 2011 end-page: 4253 ident: bib26 publication-title: Adv. Mater. – volume: 26 start-page: 992 year: 2014 end-page: 1005 ident: bib48 publication-title: Adv. Mater. – volume: 134 start-page: 16909 year: 2012 end-page: 16916 ident: bib29 publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 243 year: 2018 end-page: 249 ident: bib42 publication-title: Biosens. Bioelectron. – volume: 58 start-page: 17512 year: 2019 end-page: 17527 ident: bib14 publication-title: Angew. Chem. Int. Ed. – start-page: 1902014 year: 2019 ident: bib17 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1700177 year: 2017 ident: bib22 publication-title: Adv. Mater. – volume: 25 start-page: 6064 year: 2013 end-page: 6068 ident: bib21 publication-title: Adv. Mater. – volume: 130 start-page: 10280 year: 2018 end-page: 10283 ident: bib46 publication-title: Angew. Chem. – volume: 29 start-page: 1806351 year: 2019 ident: bib6 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1804779 year: 2018 ident: bib30 publication-title: Adv. Mater. – volume: 11 start-page: 1599 year: 2020 ident: bib4 publication-title: Nat. Commun. – volume: 2 start-page: 16098 year: 2017 ident: bib36 publication-title: Nat. Rev. Mater. – volume: 56 start-page: 1825 year: 2017 end-page: 1829 ident: bib32 publication-title: Angew. Chem. Int. Ed. – volume: 563 start-page: 785 year: 2018 end-page: 793 ident: bib47 publication-title: J. Membr. Sci. – volume: 6 start-page: 7602 year: 2015 ident: bib43 publication-title: Nat. Commun. – volume: 4 year: 2018 ident: bib24 publication-title: Sci. Adv. – volume: 47 start-page: 368 year: 2018 end-page: 373 ident: bib23 publication-title: Nano Energy – volume: 23 start-page: 3693 year: 2013 end-page: 3700 ident: bib39 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 2491 year: 2016 end-page: 2499 ident: bib50 publication-title: ACS Nano – volume: 12 start-page: 12464 year: 2018 end-page: 12471 ident: bib44 publication-title: ACS Nano – volume: 30 start-page: 1704561 year: 2018 ident: bib28 publication-title: Adv. Mater. – volume: 6 year: 2016 ident: bib54 publication-title: Phys. Rev. X – volume: 12 start-page: 1143 year: 2019 end-page: 1176 ident: bib3 publication-title: Energy Environ. Sci. – volume: 548 start-page: 548 year: 2018 end-page: 558 ident: bib37 publication-title: J. Membr. Sci. – start-page: 1 year: 2019 ident: bib20 publication-title: Nat. Rev. Mater. – volume: 10 start-page: 2920 year: 2019 ident: bib35 publication-title: Nat. Commun. – volume: 119 start-page: 13713 year: 2015 end-page: 13720 ident: bib55 publication-title: J. Phys. Chem. C – volume: 29 start-page: 7633 year: 2017 end-page: 7644 ident: bib57 publication-title: Chem. Mater. – volume: 341 start-page: 1502 year: 2013 end-page: 1505 ident: bib51 publication-title: Science – volume: 95 start-page: 116104 year: 2005 ident: bib12 publication-title: Phys. Rev. Lett. – volume: 26 start-page: 513 year: 2016 end-page: 523 ident: bib31 publication-title: Nano Energy – volume: 10 start-page: 1 year: 2019 end-page: 9 ident: bib7 publication-title: Nat. Commun. – volume: 7 start-page: 1022 year: 2007 end-page: 1025 ident: bib11 publication-title: Nano Lett. – volume: 27 start-page: 1701264 year: 2017 ident: bib33 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 195707 year: 2008 ident: bib9 publication-title: Nanotechnology – volume: 39 start-page: 1073 year: 2010 ident: 10.1016/j.nanoen.2020.104954_bib8 publication-title: Chem. Soc. Rev. doi: 10.1039/B909366B – volume: 29 start-page: 1700177 year: 2017 ident: 10.1016/j.nanoen.2020.104954_bib22 publication-title: Adv. Mater. doi: 10.1002/adma.201700177 – volume: 56 start-page: 1825 year: 2017 ident: 10.1016/j.nanoen.2020.104954_bib32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201609306 – volume: 58 start-page: 17512 year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814349 – volume: 10 start-page: 2415 year: 2016 ident: 10.1016/j.nanoen.2020.104954_bib10 publication-title: ACS Nano doi: 10.1021/acsnano.5b07229 – volume: 29 start-page: 1806351 year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806351 – volume: 10 start-page: 2491 year: 2016 ident: 10.1016/j.nanoen.2020.104954_bib50 publication-title: ACS Nano doi: 10.1021/acsnano.5b07333 – volume: 16 start-page: 1198 year: 2017 ident: 10.1016/j.nanoen.2020.104954_bib15 publication-title: Nat. Mater. doi: 10.1038/nmat5025 – volume: 6 year: 2016 ident: 10.1016/j.nanoen.2020.104954_bib54 publication-title: Phys. Rev. X – volume: 27 start-page: 1701264 year: 2017 ident: 10.1016/j.nanoen.2020.104954_bib33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701264 – volume: 2 start-page: 16098 year: 2017 ident: 10.1016/j.nanoen.2020.104954_bib36 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib18 – volume: 29 start-page: 7633 year: 2017 ident: 10.1016/j.nanoen.2020.104954_bib57 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 9 start-page: 155 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib38 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02529-6 – volume: 9 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib41 publication-title: Nat. Commun. – volume: 26 start-page: 992 year: 2014 ident: 10.1016/j.nanoen.2020.104954_bib48 publication-title: Adv. Mater. doi: 10.1002/adma.201304138 – volume: 13 start-page: 1702691 year: 2017 ident: 10.1016/j.nanoen.2020.104954_bib56 publication-title: Small doi: 10.1002/smll.201702691 – volume: 139 start-page: 6314 year: 2017 ident: 10.1016/j.nanoen.2020.104954_bib45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11100 – volume: 47 start-page: 368 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib23 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.030 – volume: 130 start-page: 10280 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib46 publication-title: Angew. Chem. doi: 10.1002/ange.201804299 – volume: 30 start-page: 684 year: 2016 ident: 10.1016/j.nanoen.2020.104954_bib13 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.058 – volume: 20 start-page: 121 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib19 publication-title: Nano Today doi: 10.1016/j.nantod.2018.04.007 – volume: 42 start-page: 153 year: 1997 ident: 10.1016/j.nanoen.2020.104954_bib53 publication-title: Bioelectrochem. Bioenerg. doi: 10.1016/S0302-4598(96)05097-0 – volume: 134 start-page: 16909 year: 2012 ident: 10.1016/j.nanoen.2020.104954_bib29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308463r – volume: 11 start-page: 1599 year: 2020 ident: 10.1016/j.nanoen.2020.104954_bib4 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15368-9 – volume: 19 start-page: 195707 year: 2008 ident: 10.1016/j.nanoen.2020.104954_bib9 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/19/195707 – volume: 121 start-page: 243 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib42 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.08.076 – volume: 13 start-page: 8917 year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib34 publication-title: ACS Nano doi: 10.1021/acsnano.9b02579 – volume: 119 start-page: 13713 year: 2015 ident: 10.1016/j.nanoen.2020.104954_bib55 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03038 – start-page: 1 year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib20 publication-title: Nat. Rev. Mater. – volume: 26 start-page: 513 year: 2016 ident: 10.1016/j.nanoen.2020.104954_bib31 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.005 – volume: 30 start-page: 1704561 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib28 publication-title: Adv. Mater. doi: 10.1002/adma.201704561 – volume: 6 start-page: 27971 year: 2016 ident: 10.1016/j.nanoen.2020.104954_bib27 publication-title: Sci Rep-Uk doi: 10.1038/srep27971 – volume: 23 start-page: 3693 year: 2013 ident: 10.1016/j.nanoen.2020.104954_bib39 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202601 – volume: 12 start-page: 1143 year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib3 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03006E – volume: 353 start-page: 1137 year: 2016 ident: 10.1016/j.nanoen.2020.104954_bib49 publication-title: Science doi: 10.1126/science.aag2421 – volume: 563 start-page: 785 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib47 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.06.031 – volume: 4 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib24 publication-title: Sci. Adv. – volume: 10 start-page: 2920 year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib35 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10885-8 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib7 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 95 start-page: 116104 year: 2005 ident: 10.1016/j.nanoen.2020.104954_bib12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.116104 – volume: 23 start-page: 4248 year: 2011 ident: 10.1016/j.nanoen.2020.104954_bib26 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 6 start-page: 2232 year: 2006 ident: 10.1016/j.nanoen.2020.104954_bib1 publication-title: Nano Lett. doi: 10.1021/nl061524l – volume: 343 start-page: 740 year: 2014 ident: 10.1016/j.nanoen.2020.104954_bib16 publication-title: Science doi: 10.1126/science.1250247 – volume: 57 start-page: 74 year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib2 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.038 – volume: 548 start-page: 548 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib37 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.11.065 – volume: 30 start-page: 1804779 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib30 publication-title: Adv. Mater. doi: 10.1002/adma.201804779 – volume: 12 start-page: 12464 year: 2018 ident: 10.1016/j.nanoen.2020.104954_bib44 publication-title: ACS Nano doi: 10.1021/acsnano.8b06708 – volume: 25 start-page: 6064 year: 2013 ident: 10.1016/j.nanoen.2020.104954_bib21 publication-title: Adv. Mater. doi: 10.1002/adma.201302441 – start-page: 1902014 year: 2019 ident: 10.1016/j.nanoen.2020.104954_bib17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902014 – volume: 6 start-page: 7602 year: 2015 ident: 10.1016/j.nanoen.2020.104954_bib43 publication-title: Nat. Commun. doi: 10.1038/ncomms8602 – volume: 341 start-page: 1502 year: 2013 ident: 10.1016/j.nanoen.2020.104954_bib51 publication-title: Science doi: 10.1126/science.1241488 – volume: 7 start-page: 1022 year: 2007 ident: 10.1016/j.nanoen.2020.104954_bib11 publication-title: Nano Lett. doi: 10.1021/nl070194h – volume: 27 start-page: 6482 year: 2015 ident: 10.1016/j.nanoen.2020.104954_bib52 publication-title: Adv. Mater. doi: 10.1002/adma.201502477 – start-page: 104452 year: 2020 ident: 10.1016/j.nanoen.2020.104954_bib5 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104452 – volume: 6 start-page: 4026 year: 2015 ident: 10.1016/j.nanoen.2020.104954_bib40 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01895 – volume: 494 start-page: 455 year: 2013 ident: 10.1016/j.nanoen.2020.104954_bib25 publication-title: Nature doi: 10.1038/nature11876 |
SSID | ssj0000651712 |
Score | 2.5007684 |
Snippet | Harvesting energy from natural or daily mechanical movements is an economic and environment-friendly way to alleviate energy shortage. Here we demonstrate a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104954 |
SubjectTerms | Electricity generation Nanofluidic Pressure-driven Ti3C2Tx membrane |
Title | Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.104954 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGDHtY2u9lscizFUpX2Yiu9hX1MNNqmpbTgyd_ubh6lgih4TNhZki_DNzPZeSB0JSOgTGlDwtCPiG9pmChJBRFK68j4QWCkK07uD4LeyH8Y83ENdapaGJdWWXJ_wek5W5d3miWazXmaNp-ojV1oyDl1Ouvlhea-L5yW33566_8s1sR6Ij_0dOuJE6gq6PI0r0xmM3CNUGl-3hlx_2cLtWF1untot3QXcbt4on1Ug-wA7Ww0ETxEz6OJ6zD7mmZ4mLIOHX7g6_7YUtgNnsLUBsMZYOuZ4jzjdbUAYhaO4XA5AOfd7mQ3x3M3Lg2_5F2o3cc6QqPu3bDTI-W0BKKZoEsC1tdzVaeJpFGooAUaGA8YsFAkknEtmM_daGEbMGoQqmXsy2rwjGaJSChX7BjVs1kGJwhHhupQsURLsAY_ktJENngNtRJcgJHiFLEKoViXrcTdRItJXOWMvcUFrrHDNS5wPUVkLTUvWmn8sV5U4MffVCK2bP-r5Nm_Jc_RtrsqksguUH25WMGl9TqWqpGrVQNtte8fe4MvrP7X5g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcUHmpvPcAUntYQna9WfvQA6Kg8AiXJig3s49xmwImCkHApX-qf7CzfiCQUCshcbW9q9Xn0Tff2PMA2DQJCmmd53EcJTwiGubWCM21dS7xUavlTShO7py22r3oqK_6E_CnroUJaZUV95ecXrB1daVRodkYDgaN74JiFxErJYLNkrCpMiuP8eGO4rabr4ff6CVvCXGw391r82q0AHdSizFHEkahRDMzIokt7qBDqVoSZawzI5XTMlJhDi9FVw613fEkpB02vZOZzoSykvZ9B1MR0UUYm7D9u_n4YYd8elMXf1nDAXk4YV2yV-SV5Sa_xtB5VRQ_WBMVvewSn7i5g48wU-lTtltCMAsTmM_B9JOuhfNw1rsMLW1_DnLWHcg90b1nnzt94swv7AqvKPrOkZEUZkWK7e0IuR8FSmXVxJ0L2ok2Z8Mwn439KNpeB-tYgN6bYLgIk_l1jp-AJV642MrMGSSFkRjjE4qWY2e10uiNXgJZI5S6qnd5GKFxmdZJar_SEtc04JqWuC4Bf1w1LHt3_Od5XYOfPrPBlNzLP1cuv3rlBrxvdzsn6cnh6fEKfAh3ygy2VZgcj25xjSTP2K4XJsbg_K1t-i9tERMf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+Ti3C2Tx+%28MXene%29+membrane+for+pressure-driven+electrokinetic+power+generation&rft.jtitle=Nano+energy&rft.au=Yang%2C+Guoliang&rft.au=Lei%2C+Weiwei&rft.au=Chen%2C+Cheng&rft.au=Qin%2C+Si&rft.date=2020-09-01&rft.issn=2211-2855&rft.volume=75&rft.spage=104954&rft_id=info:doi/10.1016%2Fj.nanoen.2020.104954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2020_104954 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |