Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation

Harvesting energy from natural or daily mechanical movements is an economic and environment-friendly way to alleviate energy shortage. Here we demonstrate a two-dimensional (2D) electrokinetic energy conversion device based on ultrathin laminated Ti3C2Tx membrane (TCM) driven by pressure gradients....

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 75; p. 104954
Main Authors Yang, Guoliang, Lei, Weiwei, Chen, Cheng, Qin, Si, Zhang, Liangzhu, Su, Yuyu, Wang, Jiemin, Chen, Zhiqiang, Sun, Lu, Wang, Xungai, Liu, Dan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Harvesting energy from natural or daily mechanical movements is an economic and environment-friendly way to alleviate energy shortage. Here we demonstrate a two-dimensional (2D) electrokinetic energy conversion device based on ultrathin laminated Ti3C2Tx membrane (TCM) driven by pressure gradients. The applied pressure, pH, lateral size of Ti3C2Tx nanosheets and membrane thickness were investigated. The results revealed that these parameters could remarkably regulate the electricity generation with TCMs. The TCMs with abundant negatively charged 2D nanocapillaries produced high streaming current density of 1.3 mA m−2 and output power density of 0.29 μW m−2 under 5 kPa in 0.01 M aqueous solution of sodium chloride. The MXene membrane generators present good solution compatibility for electrolytes in different alkali metal ions and wide pH range (4–10). This work extends the application of MXenes providing a new platform for energy conversion from natural and daily-life environment. Based on the principle of electrokinetic energy conversion, we reported a two-dimensional Ti3C2Tx (MXene) membrane device for harvesting energy from natural or daily mechanical movements. Streaming current is generated continuously under pressure gradients. The devices can be operated in various electrolytes and wide pH range. [Display omitted] •A pressure-driven electric generator based on stacked Ti3C2Tx nanosheets.•Electricity generation from mechanical forces.•Negatively charged surface and ultrathin structure for high streaming current.•Good solution compatibility in various electrolytes and wide pH range.
AbstractList Harvesting energy from natural or daily mechanical movements is an economic and environment-friendly way to alleviate energy shortage. Here we demonstrate a two-dimensional (2D) electrokinetic energy conversion device based on ultrathin laminated Ti3C2Tx membrane (TCM) driven by pressure gradients. The applied pressure, pH, lateral size of Ti3C2Tx nanosheets and membrane thickness were investigated. The results revealed that these parameters could remarkably regulate the electricity generation with TCMs. The TCMs with abundant negatively charged 2D nanocapillaries produced high streaming current density of 1.3 mA m−2 and output power density of 0.29 μW m−2 under 5 kPa in 0.01 M aqueous solution of sodium chloride. The MXene membrane generators present good solution compatibility for electrolytes in different alkali metal ions and wide pH range (4–10). This work extends the application of MXenes providing a new platform for energy conversion from natural and daily-life environment. Based on the principle of electrokinetic energy conversion, we reported a two-dimensional Ti3C2Tx (MXene) membrane device for harvesting energy from natural or daily mechanical movements. Streaming current is generated continuously under pressure gradients. The devices can be operated in various electrolytes and wide pH range. [Display omitted] •A pressure-driven electric generator based on stacked Ti3C2Tx nanosheets.•Electricity generation from mechanical forces.•Negatively charged surface and ultrathin structure for high streaming current.•Good solution compatibility in various electrolytes and wide pH range.
ArticleNumber 104954
Author Yang, Guoliang
Su, Yuyu
Wang, Jiemin
Lei, Weiwei
Chen, Cheng
Sun, Lu
Qin, Si
Wang, Xungai
Chen, Zhiqiang
Zhang, Liangzhu
Liu, Dan
Author_xml – sequence: 1
  givenname: Guoliang
  surname: Yang
  fullname: Yang, Guoliang
– sequence: 2
  givenname: Weiwei
  surname: Lei
  fullname: Lei, Weiwei
  email: weiwei.lei@deakin.edu.au
– sequence: 3
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
– sequence: 4
  givenname: Si
  surname: Qin
  fullname: Qin, Si
– sequence: 5
  givenname: Liangzhu
  surname: Zhang
  fullname: Zhang, Liangzhu
– sequence: 6
  givenname: Yuyu
  surname: Su
  fullname: Su, Yuyu
– sequence: 7
  givenname: Jiemin
  surname: Wang
  fullname: Wang, Jiemin
– sequence: 8
  givenname: Zhiqiang
  surname: Chen
  fullname: Chen, Zhiqiang
– sequence: 9
  givenname: Lu
  surname: Sun
  fullname: Sun, Lu
– sequence: 10
  givenname: Xungai
  surname: Wang
  fullname: Wang, Xungai
  email: xungai.wang@deakin.edu.au
– sequence: 11
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
  email: dan.liu@deakin.edu.au
BookMark eNqFkD1PwzAQhj0UiVL6Dxg8wpDij7hxGJBQRQGpiKVFbFbinMEltSs7FPj3uISJAW456aTn1b3PERo47wChE0omlNDp-XriKufBTRhh-1NeinyAhoxRmjEpxCEax7gmaaaCFpQN0eOq7ULVvViHl5bP2PIDn94_gYMzvIFNHSoH2PiAtwFifAuQNcHuwGFoQXfBv1oHndV4698h4OfEpTDr3TE6MFUbYfyzR2g1v17ObrPFw83d7GqRaV6wLgNSlkLK3FSslDUQ0MDFlAOXham40AXPBZOS54RpKGrSpEYaaKO5KQwTNR-hvM_VwccYwKhtsJsqfCpK1F6JWqteidorUb2ShF38wrTtvh9PMmz7H3zZw5CK7SwEFbUFp6GxIUlRjbd_B3wBVlaDqA
CitedBy_id crossref_primary_10_1002_elps_202100394
crossref_primary_10_1021_acsami_2c05247
crossref_primary_10_1016_j_colsurfa_2023_132002
crossref_primary_10_1039_D3CS00367A
crossref_primary_10_1063_5_0241150
crossref_primary_10_1016_j_cej_2024_156762
crossref_primary_10_1039_D3SE01582C
crossref_primary_10_1039_D3TA04741E
crossref_primary_10_1016_j_cej_2024_155952
crossref_primary_10_1016_j_nanoen_2022_107548
crossref_primary_10_1002_smtd_202301225
crossref_primary_10_3390_polym15061330
crossref_primary_10_1021_acsnano_0c09845
crossref_primary_10_1039_D4TA01350F
crossref_primary_10_1039_D1TA10083A
crossref_primary_10_1002_anie_202218321
crossref_primary_10_1016_j_mtphys_2022_100715
crossref_primary_10_1002_smsc_202100013
crossref_primary_10_1016_j_memsci_2023_121403
crossref_primary_10_1002_adsr_202200099
crossref_primary_10_1002_sstr_202300090
crossref_primary_10_1039_D0MH00979B
crossref_primary_10_1016_j_electacta_2024_145456
crossref_primary_10_1002_cben_202000026
crossref_primary_10_1007_s12274_024_6959_9
crossref_primary_10_1002_adfm_202109210
crossref_primary_10_1002_ange_202218321
crossref_primary_10_1016_j_seppur_2023_125640
crossref_primary_10_1038_s41598_022_21069_8
crossref_primary_10_1016_j_cej_2023_144082
crossref_primary_10_1039_D2TA09564E
crossref_primary_10_1002_adma_202103056
crossref_primary_10_1002_smtd_202301558
crossref_primary_10_1016_j_carbon_2022_12_047
crossref_primary_10_1016_j_electacta_2024_144594
crossref_primary_10_1002_sus2_169
crossref_primary_10_1016_j_cej_2024_151600
crossref_primary_10_1016_j_nanoen_2021_106709
crossref_primary_10_1002_ange_202302938
crossref_primary_10_1016_j_esci_2022_08_001
crossref_primary_10_1002_adfm_202306834
crossref_primary_10_1038_s41467_024_47040_x
crossref_primary_10_1016_j_nancom_2024_100550
crossref_primary_10_1002_gch2_202200154
crossref_primary_10_1039_D1TA07530F
crossref_primary_10_3390_e22060692
crossref_primary_10_1002_adma_202108560
crossref_primary_10_1039_D1MA00256B
crossref_primary_10_1002_adfm_202308176
crossref_primary_10_1016_j_memsci_2022_121203
crossref_primary_10_1016_j_cej_2023_146649
crossref_primary_10_1002_anie_202302938
crossref_primary_10_1016_j_memsci_2022_120280
crossref_primary_10_1002_adfm_202313914
crossref_primary_10_1016_j_desal_2024_117518
crossref_primary_10_1002_adfm_202208959
crossref_primary_10_1039_D3CS00382E
crossref_primary_10_1016_j_matt_2024_07_006
crossref_primary_10_1016_j_nanoen_2023_108860
crossref_primary_10_1007_s40964_023_00424_9
Cites_doi 10.1039/B909366B
10.1002/adma.201700177
10.1002/anie.201609306
10.1002/anie.201814349
10.1021/acsnano.5b07229
10.1002/adfm.201806351
10.1021/acsnano.5b07333
10.1038/nmat5025
10.1002/adfm.201701264
10.1038/natrevmats.2016.98
10.1021/acs.chemmater.7b02847
10.1038/s41467-017-02529-6
10.1002/adma.201304138
10.1002/smll.201702691
10.1021/jacs.6b11100
10.1016/j.nanoen.2018.03.030
10.1002/ange.201804299
10.1016/j.nanoen.2016.10.058
10.1016/j.nantod.2018.04.007
10.1016/S0302-4598(96)05097-0
10.1021/ja308463r
10.1038/s41467-020-15368-9
10.1088/0957-4484/19/19/195707
10.1016/j.bios.2018.08.076
10.1021/acsnano.9b02579
10.1021/acs.jpcc.5b03038
10.1016/j.nanoen.2016.06.005
10.1002/adma.201704561
10.1038/srep27971
10.1002/adfm.201202601
10.1039/C8EE03006E
10.1126/science.aag2421
10.1016/j.memsci.2018.06.031
10.1038/s41467-019-10885-8
10.1038/s41467-018-07882-8
10.1103/PhysRevLett.95.116104
10.1002/adma.201102306
10.1021/nl061524l
10.1126/science.1250247
10.1016/j.nanoen.2018.12.038
10.1016/j.memsci.2017.11.065
10.1002/adma.201804779
10.1021/acsnano.8b06708
10.1002/adma.201302441
10.1002/adfm.201902014
10.1038/ncomms8602
10.1126/science.1241488
10.1021/nl070194h
10.1002/adma.201502477
10.1016/j.nanoen.2020.104452
10.1021/acs.jpclett.5b01895
10.1038/nature11876
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2020.104954
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2020_104954
S2211285520305115
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-e0995884fa298be0ece3563e387fa35c73452883402ce7b0d049ce1dc3f7f25b3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:38 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Fri Feb 23 02:49:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pressure-driven
Nanofluidic
Electricity generation
Ti3C2Tx membrane
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-e0995884fa298be0ece3563e387fa35c73452883402ce7b0d049ce1dc3f7f25b3
ParticipantIDs crossref_primary_10_1016_j_nanoen_2020_104954
crossref_citationtrail_10_1016_j_nanoen_2020_104954
elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_104954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shepelin, Glushenkov, Lussini, Fox, Dicinoski, Shapter, Ellis (bib3) 2019; 12
Van der Heyden, Bonthuis, Stein, Meyer, Dekker (bib1) 2006; 6
Zhang, Wang, Yeh, Pan, Lin, Yu, Zhang, Zheng, Jiao, Wang (bib52) 2015; 27
Ding, Wei, Li, Zhang, Wang, Xue, Ding, Wang, Caro, Gogotsi (bib41) 2018; 9
Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (bib57) 2017; 29
Gogoi, Konch, Raidongia, Reddy (bib47) 2018; 563
Lukatskaya, Mashtalir, Ren, Dall'Agnese, Rozier, Taberna, Naguib, Simon, Barsoum, Gogotsi (bib51) 2013; 341
Shahzad, Alhabeb, Hatter, Anasori, Hong, Koo, Gogotsi (bib49) 2016; 353
Zha, Huang, He, He, Zhai, Francisco, Du (bib27) 2016; 6
Kumar, Lei, Alshareef, Quevedo-Lopez, Salama (bib42) 2018; 121
Zhu, Hao, Bao, Zhou, Zhang, Pang, Jiang, Jiang (bib24) 2018; 4
Liu, Shen, Liu, Liu, Xiong, Yang, Jin (bib37) 2018; 548
Luo, Tao, Zhang, Xia, Huang, Zhang, Gan, Liang, Zhang (bib50) 2016; 10
Macha, Marion, Nandigana, Radenovic (bib20) 2019
Haldrup, Catalano, Hinge, Jensen, Pedersen, Bentien (bib10) 2016; 10
Yan, Ren, Maleski, Hatter, Anasori, Urbankowski, Sarycheva, Gogotsi (bib33) 2017; 27
Ding, Wei, Li, Zhang, Wang, Xue, Ding, Wang, Caro, Gogotsi (bib38) 2018; 9
Nie, Chen, Wang (bib6) 2019; 29
Han, Xu, Gao (bib39) 2013; 23
Harris, Bugnet, Naguib, Barsoum, Goward (bib55) 2015; 119
Yeh, Chen, Chiou, Su (bib56) 2017; 13
van der Heyden, Bonthuis, Stein, Meyer, Dekker (bib11) 2007; 7
Siria, Poncharal, Biance, Fulcrand, Blase, Purcell, Bocquet (bib25) 2013; 494
Ren, Hatzell, Alhabeb, Ling, Mahmoud, Gogotsi (bib40) 2015; 6
Wang, Liu, Hu, He, Yang, Ling, Xi, Wang, Liu, Hu (bib5) 2020
Liu, Liu, Wang, He, Tang, Xi, Wang, Guo, Hu (bib4) 2020; 11
Yang, Su, Chi, Cherian, Huang, Kravets, Wang, Zhang, Pratt, Grigorenko (bib15) 2017; 16
Bocquet, Charlaix (bib8) 2010; 39
van der Heyden, Stein, Dekker (bib12) 2005; 95
Kang, Xia, Wang, Zhang (bib17) 2019
Xiao, Giusto, Wen, Jiang, Antonietti (bib46) 2018; 130
Kim, Wang, Lee (bib14) 2019; 58
Naguib, Mochalin, Barsoum, Gogotsi (bib48) 2014; 26
Ren, Stein (bib9) 2008; 19
Jella, Ippili, Eom, Pammi, Jung, Tran, Nguyen, Kirakosyan, Yun, Kim (bib2) 2019; 57
Zhang, Yang, Zhang, Zhang, Chen, Feng (bib35) 2019; 10
Qin, Liu, Chen, Chen, Wang, Wang, Razal, Lei (bib23) 2018; 47
Tang, Zhou, Shen (bib29) 2012; 134
Cheng, Zhou, Feng, Geng, Liu, Guo, Jiang (bib22) 2017; 29
Qin, Liu, Wang, Portehault, Garvey, Gogotsi, Lei, Chen (bib45) 2017; 139
Ding, Wei, Wang, Chen, Caro, Wang (bib32) 2017; 56
Guo, Cheng, Wu, Jiang, Gao, Li, Jiang (bib21) 2013; 25
Brown, Abbas, Kleibert, Green, Goel, May, Squires (bib54) 2016; 6
Xie, Zhao, Anasori, Maleski, Ren, Li, Byles, Pomerantseva, Wang, Gogotsi (bib31) 2016; 26
Lao, Lv, Gao, Wang, Wu, Luo (bib44) 2018; 12
Sun, Li (bib19) 2018; 20
Hantanasirisakul, Gogotsi (bib30) 2018; 30
Liu, Ding, Mo, Chen, Yang, Li, Xie, Zhou, Zhou (bib13) 2016; 30
Mi (bib16) 2014; 343
Hong, Ming, Shi, Li, Kim, Tang, Alshareef, Wang (bib34) 2019; 13
Shao, Raidongia, Koltonow, Huang (bib43) 2015; 6
Volkov, Paula, Deamer (bib53) 1997; 42
Liu, Wang, Wang, Liu, Chen, Pu, Xi, Wang, Guo, Hu (bib7) 2019; 10
Wang, Wu, Yuan, Zeng, Zhou, Wang, Chew (bib28) 2018; 30
Rasool, Pandey, Rasheed, Buczek, Gogotsi, Mahmoud (bib18) 2019
Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (bib26) 2011; 23
Anasori, Lukatskaya, Gogotsi (bib36) 2017; 2
Wang (10.1016/j.nanoen.2020.104954_bib5) 2020
Mi (10.1016/j.nanoen.2020.104954_bib16) 2014; 343
Kang (10.1016/j.nanoen.2020.104954_bib17) 2019
Qin (10.1016/j.nanoen.2020.104954_bib45) 2017; 139
Liu (10.1016/j.nanoen.2020.104954_bib4) 2020; 11
Ding (10.1016/j.nanoen.2020.104954_bib32) 2017; 56
Ren (10.1016/j.nanoen.2020.104954_bib9) 2008; 19
Bocquet (10.1016/j.nanoen.2020.104954_bib8) 2010; 39
Liu (10.1016/j.nanoen.2020.104954_bib13) 2016; 30
Tang (10.1016/j.nanoen.2020.104954_bib29) 2012; 134
Xiao (10.1016/j.nanoen.2020.104954_bib46) 2018; 130
Rasool (10.1016/j.nanoen.2020.104954_bib18) 2019
Naguib (10.1016/j.nanoen.2020.104954_bib26) 2011; 23
Yang (10.1016/j.nanoen.2020.104954_bib15) 2017; 16
Hantanasirisakul (10.1016/j.nanoen.2020.104954_bib30) 2018; 30
Shao (10.1016/j.nanoen.2020.104954_bib43) 2015; 6
Brown (10.1016/j.nanoen.2020.104954_bib54) 2016; 6
Alhabeb (10.1016/j.nanoen.2020.104954_bib57) 2017; 29
Ren (10.1016/j.nanoen.2020.104954_bib40) 2015; 6
Liu (10.1016/j.nanoen.2020.104954_bib37) 2018; 548
Guo (10.1016/j.nanoen.2020.104954_bib21) 2013; 25
Anasori (10.1016/j.nanoen.2020.104954_bib36) 2017; 2
Kumar (10.1016/j.nanoen.2020.104954_bib42) 2018; 121
Hong (10.1016/j.nanoen.2020.104954_bib34) 2019; 13
Liu (10.1016/j.nanoen.2020.104954_bib7) 2019; 10
Xie (10.1016/j.nanoen.2020.104954_bib31) 2016; 26
Gogoi (10.1016/j.nanoen.2020.104954_bib47) 2018; 563
Jella (10.1016/j.nanoen.2020.104954_bib2) 2019; 57
Yeh (10.1016/j.nanoen.2020.104954_bib56) 2017; 13
Sun (10.1016/j.nanoen.2020.104954_bib19) 2018; 20
Ding (10.1016/j.nanoen.2020.104954_bib38) 2018; 9
Macha (10.1016/j.nanoen.2020.104954_bib20) 2019
Luo (10.1016/j.nanoen.2020.104954_bib50) 2016; 10
Han (10.1016/j.nanoen.2020.104954_bib39) 2013; 23
Zhang (10.1016/j.nanoen.2020.104954_bib52) 2015; 27
Zha (10.1016/j.nanoen.2020.104954_bib27) 2016; 6
Qin (10.1016/j.nanoen.2020.104954_bib23) 2018; 47
Nie (10.1016/j.nanoen.2020.104954_bib6) 2019; 29
Cheng (10.1016/j.nanoen.2020.104954_bib22) 2017; 29
Yan (10.1016/j.nanoen.2020.104954_bib33) 2017; 27
Kim (10.1016/j.nanoen.2020.104954_bib14) 2019; 58
Zhu (10.1016/j.nanoen.2020.104954_bib24) 2018; 4
Ding (10.1016/j.nanoen.2020.104954_bib41) 2018; 9
Shepelin (10.1016/j.nanoen.2020.104954_bib3) 2019; 12
Siria (10.1016/j.nanoen.2020.104954_bib25) 2013; 494
Wang (10.1016/j.nanoen.2020.104954_bib28) 2018; 30
Naguib (10.1016/j.nanoen.2020.104954_bib48) 2014; 26
Volkov (10.1016/j.nanoen.2020.104954_bib53) 1997; 42
Van der Heyden (10.1016/j.nanoen.2020.104954_bib1) 2006; 6
Haldrup (10.1016/j.nanoen.2020.104954_bib10) 2016; 10
Lao (10.1016/j.nanoen.2020.104954_bib44) 2018; 12
Shahzad (10.1016/j.nanoen.2020.104954_bib49) 2016; 353
Lukatskaya (10.1016/j.nanoen.2020.104954_bib51) 2013; 341
van der Heyden (10.1016/j.nanoen.2020.104954_bib11) 2007; 7
Harris (10.1016/j.nanoen.2020.104954_bib55) 2015; 119
Zhang (10.1016/j.nanoen.2020.104954_bib35) 2019; 10
van der Heyden (10.1016/j.nanoen.2020.104954_bib12) 2005; 95
References_xml – start-page: 104452
  year: 2020
  ident: bib5
  publication-title: Nano Energy
– volume: 13
  start-page: 8917
  year: 2019
  end-page: 8925
  ident: bib34
  publication-title: ACS Nano
– volume: 30
  start-page: 684
  year: 2016
  end-page: 690
  ident: bib13
  publication-title: Nano Energy
– volume: 343
  start-page: 740
  year: 2014
  end-page: 742
  ident: bib16
  publication-title: Science
– volume: 9
  year: 2018
  ident: bib41
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2415
  year: 2016
  end-page: 2423
  ident: bib10
  publication-title: ACS Nano
– volume: 494
  start-page: 455
  year: 2013
  ident: bib25
  publication-title: Nature
– volume: 9
  start-page: 155
  year: 2018
  ident: bib38
  publication-title: Nat. Commun.
– volume: 42
  start-page: 153
  year: 1997
  end-page: 160
  ident: bib53
  publication-title: Bioelectrochem. Bioenerg.
– volume: 57
  start-page: 74
  year: 2019
  end-page: 93
  ident: bib2
  publication-title: Nano Energy
– volume: 27
  start-page: 6482
  year: 2015
  end-page: 6487
  ident: bib52
  publication-title: Adv. Mater.
– year: 2019
  ident: bib18
  article-title: Materials Today
– volume: 353
  start-page: 1137
  year: 2016
  end-page: 1140
  ident: bib49
  publication-title: Science
– volume: 13
  start-page: 1702691
  year: 2017
  ident: bib56
  publication-title: Small
– volume: 6
  start-page: 4026
  year: 2015
  end-page: 4031
  ident: bib40
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 2232
  year: 2006
  end-page: 2237
  ident: bib1
  publication-title: Nano Lett.
– volume: 16
  start-page: 1198
  year: 2017
  ident: bib15
  publication-title: Nat. Mater.
– volume: 39
  start-page: 1073
  year: 2010
  end-page: 1095
  ident: bib8
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 6314
  year: 2017
  end-page: 6320
  ident: bib45
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 121
  year: 2018
  end-page: 137
  ident: bib19
  publication-title: Nano Today
– volume: 6
  start-page: 27971
  year: 2016
  ident: bib27
  publication-title: Sci Rep-Uk
– volume: 23
  start-page: 4248
  year: 2011
  end-page: 4253
  ident: bib26
  publication-title: Adv. Mater.
– volume: 26
  start-page: 992
  year: 2014
  end-page: 1005
  ident: bib48
  publication-title: Adv. Mater.
– volume: 134
  start-page: 16909
  year: 2012
  end-page: 16916
  ident: bib29
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 243
  year: 2018
  end-page: 249
  ident: bib42
  publication-title: Biosens. Bioelectron.
– volume: 58
  start-page: 17512
  year: 2019
  end-page: 17527
  ident: bib14
  publication-title: Angew. Chem. Int. Ed.
– start-page: 1902014
  year: 2019
  ident: bib17
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1700177
  year: 2017
  ident: bib22
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6064
  year: 2013
  end-page: 6068
  ident: bib21
  publication-title: Adv. Mater.
– volume: 130
  start-page: 10280
  year: 2018
  end-page: 10283
  ident: bib46
  publication-title: Angew. Chem.
– volume: 29
  start-page: 1806351
  year: 2019
  ident: bib6
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1804779
  year: 2018
  ident: bib30
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1599
  year: 2020
  ident: bib4
  publication-title: Nat. Commun.
– volume: 2
  start-page: 16098
  year: 2017
  ident: bib36
  publication-title: Nat. Rev. Mater.
– volume: 56
  start-page: 1825
  year: 2017
  end-page: 1829
  ident: bib32
  publication-title: Angew. Chem. Int. Ed.
– volume: 563
  start-page: 785
  year: 2018
  end-page: 793
  ident: bib47
  publication-title: J. Membr. Sci.
– volume: 6
  start-page: 7602
  year: 2015
  ident: bib43
  publication-title: Nat. Commun.
– volume: 4
  year: 2018
  ident: bib24
  publication-title: Sci. Adv.
– volume: 47
  start-page: 368
  year: 2018
  end-page: 373
  ident: bib23
  publication-title: Nano Energy
– volume: 23
  start-page: 3693
  year: 2013
  end-page: 3700
  ident: bib39
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 2491
  year: 2016
  end-page: 2499
  ident: bib50
  publication-title: ACS Nano
– volume: 12
  start-page: 12464
  year: 2018
  end-page: 12471
  ident: bib44
  publication-title: ACS Nano
– volume: 30
  start-page: 1704561
  year: 2018
  ident: bib28
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  ident: bib54
  publication-title: Phys. Rev. X
– volume: 12
  start-page: 1143
  year: 2019
  end-page: 1176
  ident: bib3
  publication-title: Energy Environ. Sci.
– volume: 548
  start-page: 548
  year: 2018
  end-page: 558
  ident: bib37
  publication-title: J. Membr. Sci.
– start-page: 1
  year: 2019
  ident: bib20
  publication-title: Nat. Rev. Mater.
– volume: 10
  start-page: 2920
  year: 2019
  ident: bib35
  publication-title: Nat. Commun.
– volume: 119
  start-page: 13713
  year: 2015
  end-page: 13720
  ident: bib55
  publication-title: J. Phys. Chem. C
– volume: 29
  start-page: 7633
  year: 2017
  end-page: 7644
  ident: bib57
  publication-title: Chem. Mater.
– volume: 341
  start-page: 1502
  year: 2013
  end-page: 1505
  ident: bib51
  publication-title: Science
– volume: 95
  start-page: 116104
  year: 2005
  ident: bib12
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 513
  year: 2016
  end-page: 523
  ident: bib31
  publication-title: Nano Energy
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib7
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1022
  year: 2007
  end-page: 1025
  ident: bib11
  publication-title: Nano Lett.
– volume: 27
  start-page: 1701264
  year: 2017
  ident: bib33
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 195707
  year: 2008
  ident: bib9
  publication-title: Nanotechnology
– volume: 39
  start-page: 1073
  year: 2010
  ident: 10.1016/j.nanoen.2020.104954_bib8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B909366B
– volume: 29
  start-page: 1700177
  year: 2017
  ident: 10.1016/j.nanoen.2020.104954_bib22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700177
– volume: 56
  start-page: 1825
  year: 2017
  ident: 10.1016/j.nanoen.2020.104954_bib32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201609306
– volume: 58
  start-page: 17512
  year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814349
– volume: 10
  start-page: 2415
  year: 2016
  ident: 10.1016/j.nanoen.2020.104954_bib10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07229
– volume: 29
  start-page: 1806351
  year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib6
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806351
– volume: 10
  start-page: 2491
  year: 2016
  ident: 10.1016/j.nanoen.2020.104954_bib50
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07333
– volume: 16
  start-page: 1198
  year: 2017
  ident: 10.1016/j.nanoen.2020.104954_bib15
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5025
– volume: 6
  year: 2016
  ident: 10.1016/j.nanoen.2020.104954_bib54
  publication-title: Phys. Rev. X
– volume: 27
  start-page: 1701264
  year: 2017
  ident: 10.1016/j.nanoen.2020.104954_bib33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701264
– volume: 2
  start-page: 16098
  year: 2017
  ident: 10.1016/j.nanoen.2020.104954_bib36
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib18
– volume: 29
  start-page: 7633
  year: 2017
  ident: 10.1016/j.nanoen.2020.104954_bib57
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 9
  start-page: 155
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02529-6
– volume: 9
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib41
  publication-title: Nat. Commun.
– volume: 26
  start-page: 992
  year: 2014
  ident: 10.1016/j.nanoen.2020.104954_bib48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304138
– volume: 13
  start-page: 1702691
  year: 2017
  ident: 10.1016/j.nanoen.2020.104954_bib56
  publication-title: Small
  doi: 10.1002/smll.201702691
– volume: 139
  start-page: 6314
  year: 2017
  ident: 10.1016/j.nanoen.2020.104954_bib45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11100
– volume: 47
  start-page: 368
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib23
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.030
– volume: 130
  start-page: 10280
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib46
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201804299
– volume: 30
  start-page: 684
  year: 2016
  ident: 10.1016/j.nanoen.2020.104954_bib13
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.058
– volume: 20
  start-page: 121
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib19
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2018.04.007
– volume: 42
  start-page: 153
  year: 1997
  ident: 10.1016/j.nanoen.2020.104954_bib53
  publication-title: Bioelectrochem. Bioenerg.
  doi: 10.1016/S0302-4598(96)05097-0
– volume: 134
  start-page: 16909
  year: 2012
  ident: 10.1016/j.nanoen.2020.104954_bib29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308463r
– volume: 11
  start-page: 1599
  year: 2020
  ident: 10.1016/j.nanoen.2020.104954_bib4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15368-9
– volume: 19
  start-page: 195707
  year: 2008
  ident: 10.1016/j.nanoen.2020.104954_bib9
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/19/195707
– volume: 121
  start-page: 243
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib42
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.08.076
– volume: 13
  start-page: 8917
  year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02579
– volume: 119
  start-page: 13713
  year: 2015
  ident: 10.1016/j.nanoen.2020.104954_bib55
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03038
– start-page: 1
  year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib20
  publication-title: Nat. Rev. Mater.
– volume: 26
  start-page: 513
  year: 2016
  ident: 10.1016/j.nanoen.2020.104954_bib31
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.005
– volume: 30
  start-page: 1704561
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704561
– volume: 6
  start-page: 27971
  year: 2016
  ident: 10.1016/j.nanoen.2020.104954_bib27
  publication-title: Sci Rep-Uk
  doi: 10.1038/srep27971
– volume: 23
  start-page: 3693
  year: 2013
  ident: 10.1016/j.nanoen.2020.104954_bib39
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202601
– volume: 12
  start-page: 1143
  year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib3
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03006E
– volume: 353
  start-page: 1137
  year: 2016
  ident: 10.1016/j.nanoen.2020.104954_bib49
  publication-title: Science
  doi: 10.1126/science.aag2421
– volume: 563
  start-page: 785
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib47
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.06.031
– volume: 4
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib24
  publication-title: Sci. Adv.
– volume: 10
  start-page: 2920
  year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10885-8
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 95
  start-page: 116104
  year: 2005
  ident: 10.1016/j.nanoen.2020.104954_bib12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.116104
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.nanoen.2020.104954_bib26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 6
  start-page: 2232
  year: 2006
  ident: 10.1016/j.nanoen.2020.104954_bib1
  publication-title: Nano Lett.
  doi: 10.1021/nl061524l
– volume: 343
  start-page: 740
  year: 2014
  ident: 10.1016/j.nanoen.2020.104954_bib16
  publication-title: Science
  doi: 10.1126/science.1250247
– volume: 57
  start-page: 74
  year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib2
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.038
– volume: 548
  start-page: 548
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib37
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.11.065
– volume: 30
  start-page: 1804779
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804779
– volume: 12
  start-page: 12464
  year: 2018
  ident: 10.1016/j.nanoen.2020.104954_bib44
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06708
– volume: 25
  start-page: 6064
  year: 2013
  ident: 10.1016/j.nanoen.2020.104954_bib21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302441
– start-page: 1902014
  year: 2019
  ident: 10.1016/j.nanoen.2020.104954_bib17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902014
– volume: 6
  start-page: 7602
  year: 2015
  ident: 10.1016/j.nanoen.2020.104954_bib43
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8602
– volume: 341
  start-page: 1502
  year: 2013
  ident: 10.1016/j.nanoen.2020.104954_bib51
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 7
  start-page: 1022
  year: 2007
  ident: 10.1016/j.nanoen.2020.104954_bib11
  publication-title: Nano Lett.
  doi: 10.1021/nl070194h
– volume: 27
  start-page: 6482
  year: 2015
  ident: 10.1016/j.nanoen.2020.104954_bib52
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502477
– start-page: 104452
  year: 2020
  ident: 10.1016/j.nanoen.2020.104954_bib5
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104452
– volume: 6
  start-page: 4026
  year: 2015
  ident: 10.1016/j.nanoen.2020.104954_bib40
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01895
– volume: 494
  start-page: 455
  year: 2013
  ident: 10.1016/j.nanoen.2020.104954_bib25
  publication-title: Nature
  doi: 10.1038/nature11876
SSID ssj0000651712
Score 2.5007684
Snippet Harvesting energy from natural or daily mechanical movements is an economic and environment-friendly way to alleviate energy shortage. Here we demonstrate a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104954
SubjectTerms Electricity generation
Nanofluidic
Pressure-driven
Ti3C2Tx membrane
Title Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation
URI https://dx.doi.org/10.1016/j.nanoen.2020.104954
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MGDHtY2u9lscizFUpX2Yiu9hX1MNNqmpbTgyd_ubh6lgih4TNhZki_DNzPZeSB0JSOgTGlDwtCPiG9pmChJBRFK68j4QWCkK07uD4LeyH8Y83ENdapaGJdWWXJ_wek5W5d3miWazXmaNp-ojV1oyDl1Ouvlhea-L5yW33566_8s1sR6Ij_0dOuJE6gq6PI0r0xmM3CNUGl-3hlx_2cLtWF1untot3QXcbt4on1Ug-wA7Ww0ETxEz6OJ6zD7mmZ4mLIOHX7g6_7YUtgNnsLUBsMZYOuZ4jzjdbUAYhaO4XA5AOfd7mQ3x3M3Lg2_5F2o3cc6QqPu3bDTI-W0BKKZoEsC1tdzVaeJpFGooAUaGA8YsFAkknEtmM_daGEbMGoQqmXsy2rwjGaJSChX7BjVs1kGJwhHhupQsURLsAY_ktJENngNtRJcgJHiFLEKoViXrcTdRItJXOWMvcUFrrHDNS5wPUVkLTUvWmn8sV5U4MffVCK2bP-r5Nm_Jc_RtrsqksguUH25WMGl9TqWqpGrVQNtte8fe4MvrP7X5g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROLQcUHmpvPcAUntYQna9WfvQA6Kg8AiXJig3s49xmwImCkHApX-qf7CzfiCQUCshcbW9q9Xn0Tff2PMA2DQJCmmd53EcJTwiGubWCM21dS7xUavlTShO7py22r3oqK_6E_CnroUJaZUV95ecXrB1daVRodkYDgaN74JiFxErJYLNkrCpMiuP8eGO4rabr4ff6CVvCXGw391r82q0AHdSizFHEkahRDMzIokt7qBDqVoSZawzI5XTMlJhDi9FVw613fEkpB02vZOZzoSykvZ9B1MR0UUYm7D9u_n4YYd8elMXf1nDAXk4YV2yV-SV5Sa_xtB5VRQ_WBMVvewSn7i5g48wU-lTtltCMAsTmM_B9JOuhfNw1rsMLW1_DnLWHcg90b1nnzt94swv7AqvKPrOkZEUZkWK7e0IuR8FSmXVxJ0L2ok2Z8Mwn439KNpeB-tYgN6bYLgIk_l1jp-AJV642MrMGSSFkRjjE4qWY2e10uiNXgJZI5S6qnd5GKFxmdZJar_SEtc04JqWuC4Bf1w1LHt3_Od5XYOfPrPBlNzLP1cuv3rlBrxvdzsn6cnh6fEKfAh3ygy2VZgcj25xjSTP2K4XJsbg_K1t-i9tERMf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+Ti3C2Tx+%28MXene%29+membrane+for+pressure-driven+electrokinetic+power+generation&rft.jtitle=Nano+energy&rft.au=Yang%2C+Guoliang&rft.au=Lei%2C+Weiwei&rft.au=Chen%2C+Cheng&rft.au=Qin%2C+Si&rft.date=2020-09-01&rft.issn=2211-2855&rft.volume=75&rft.spage=104954&rft_id=info:doi/10.1016%2Fj.nanoen.2020.104954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2020_104954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon