Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics
The electrocaloric effect of ferroelectric materials, which occurs significantly near the first-order paraelectric/ferroelectric transition (FOPFT) Curie temperature, has tremendous prospect in solid-state cooling devices. In the present work, thermodynamics analysis and phase field simulations were...
Saved in:
Published in | Nano energy Vol. 16; pp. 419 - 427 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrocaloric effect of ferroelectric materials, which occurs significantly near the first-order paraelectric/ferroelectric transition (FOPFT) Curie temperature, has tremendous prospect in solid-state cooling devices. In the present work, thermodynamics analysis and phase field simulations were conducted to demonstrate the mechanical compression-induced two types of pseudo-first-order phase transition, which could occur at a temperature below the Curie temperature. Thus, in one material there may coexist ultrahigh positive and negative electrocaloric effects, which are associated with the two pseudo-first-order phase transitions and tunable by the magnitude of the compression. The mechanical compression-induced pseudo-first-order phase transition and the coexistence of positive and negative electrocaloric effects will facilitate the development of a novel technology to design and manufacture next generation of solid-state cooling devices.
Two types of pseudo-first-order phase transition (PFOPT) coexist in ferroelectric materials, which occur at temperatures lower than the paraelectric/ferroelectric transition Curie temperature. Ultrahigh positive and negative electrocaloric effects are associated with the PFOPTs which could fully utilized an applied electric field during its loading and unloading. [Display omitted]
•Compression induced two types of pseudo-first-order phase transitions.•Drop/jump of macroscopic polarization along the direction of applied electric field.•Coexistence of positive and negative electrocaloric effects in a ferroelectrics. |
---|---|
AbstractList | The electrocaloric effect of ferroelectric materials, which occurs significantly near the first-order paraelectric/ferroelectric transition (FOPFT) Curie temperature, has tremendous prospect in solid-state cooling devices. In the present work, thermodynamics analysis and phase field simulations were conducted to demonstrate the mechanical compression-induced two types of pseudo-first-order phase transition, which could occur at a temperature below the Curie temperature. Thus, in one material there may coexist ultrahigh positive and negative electrocaloric effects, which are associated with the two pseudo-first-order phase transitions and tunable by the magnitude of the compression. The mechanical compression-induced pseudo-first-order phase transition and the coexistence of positive and negative electrocaloric effects will facilitate the development of a novel technology to design and manufacture next generation of solid-state cooling devices.
Two types of pseudo-first-order phase transition (PFOPT) coexist in ferroelectric materials, which occur at temperatures lower than the paraelectric/ferroelectric transition Curie temperature. Ultrahigh positive and negative electrocaloric effects are associated with the PFOPTs which could fully utilized an applied electric field during its loading and unloading. [Display omitted]
•Compression induced two types of pseudo-first-order phase transitions.•Drop/jump of macroscopic polarization along the direction of applied electric field.•Coexistence of positive and negative electrocaloric effects in a ferroelectrics. |
Author | Wu, Hong-Hui Zhang, Tong-Yi Zhu, Jiaming |
Author_xml | – sequence: 1 givenname: Hong-Hui surname: Wu fullname: Wu, Hong-Hui organization: Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China – sequence: 2 givenname: Jiaming surname: Zhu fullname: Zhu, Jiaming organization: Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China – sequence: 3 givenname: Tong-Yi surname: Zhang fullname: Zhang, Tong-Yi email: zhangty@shu.edu.cn organization: Shanghai University Materials Genome Institute and Shanghai Materials Genome Institute, Shanghai University, 99 Shangda Road, Shanghai 200444, China |
BookMark | eNqFkE1OwzAQhb0oEqX0Bix8gaS2EzsJCyRU8SdVggWsLdcZty7Bjuy0iNvjKKxYwGxm5mneSO-7QDPnHSB0RUlOCRWrQ-6U8-ByRijPichJQWZozhilGas5P0fLGA8kleC0omyOPl8iHFufGRvikPnQQsD9XkXAQ1Au2sF6h40P-NglYW93e9z7UT7BysFOjQOGDvQQvFadD1ZjMCbtEVuHewj-FN_tANhACH66tDpeojOjugjLn75Ab_d3r-vHbPP88LS-3WS6qNiQtVBBKbRQXJSagBDMGAENr4st1dumabe8bBkIolUJhDMKjWpoReoSDOOmLhaonP7q4GMMYGQf7IcKX5ISOTKTBzkxkyMzSYRMzJLt-pdN20GNMBIF2_1nvpnMkIKdLAQZtQWnobUhxZett38_-AZP7ZLi |
CitedBy_id | crossref_primary_10_1016_j_piutam_2017_03_037 crossref_primary_10_1016_j_commatsci_2023_112036 crossref_primary_10_1103_PhysRevB_96_144110 crossref_primary_10_1063_5_0094473 crossref_primary_10_1016_j_physleta_2019_06_033 crossref_primary_10_1109_TNS_2024_3383160 crossref_primary_10_1109_TED_2020_2976163 crossref_primary_10_1016_j_matchemphys_2019_122494 crossref_primary_10_15541_jim20210420 crossref_primary_10_1063_1_5020584 crossref_primary_10_1016_j_ijsolstr_2021_01_020 crossref_primary_10_1063_1_5097127 crossref_primary_10_1063_5_0228865 crossref_primary_10_3390_cryst14050458 crossref_primary_10_1111_jace_15304 crossref_primary_10_1016_j_commatsci_2022_111607 crossref_primary_10_35848_1882_0786_ac5ce9 crossref_primary_10_1016_j_ceramint_2019_12_072 crossref_primary_10_1002_ente_201600456 crossref_primary_10_1007_s11708_023_0884_6 crossref_primary_10_1111_jace_18370 crossref_primary_10_1016_j_jallcom_2019_152794 crossref_primary_10_15407_fm26_04_807 crossref_primary_10_1088_1361_648X_ac8513 crossref_primary_10_1039_C5CP02765A crossref_primary_10_1063_5_0047020 crossref_primary_10_20517_microstructures_2024_50 crossref_primary_10_1016_j_matlet_2016_11_006 crossref_primary_10_1063_1_4941816 crossref_primary_10_1088_1361_6463_ace1fe crossref_primary_10_1039_D4TA04971C crossref_primary_10_1088_1361_648X_ab3d6e crossref_primary_10_1088_1361_6463_abd5e3 crossref_primary_10_1039_D2MH00905F crossref_primary_10_1063_1_4983029 crossref_primary_10_1016_j_ceramint_2022_12_087 crossref_primary_10_1002_eem2_12237 crossref_primary_10_1016_j_cclet_2020_11_070 crossref_primary_10_1021_acs_nanolett_5b04113 crossref_primary_10_1016_j_ijsolstr_2022_111808 crossref_primary_10_1088_1361_648X_ab119b crossref_primary_10_1016_j_matlet_2017_03_037 crossref_primary_10_1021_acsami_8b00744 crossref_primary_10_1016_j_actamat_2020_03_020 crossref_primary_10_1088_0022_3727_49_6_065305 crossref_primary_10_1039_D4TA02319F crossref_primary_10_1063_1_4940205 crossref_primary_10_1088_1361_648X_aa94db crossref_primary_10_1209_0295_5075_117_57002 crossref_primary_10_1002_adfm_202108182 crossref_primary_10_1016_j_actamat_2019_09_044 crossref_primary_10_1002_pssr_202100251 crossref_primary_10_1016_j_jmat_2021_11_001 crossref_primary_10_1039_C8TC03965H crossref_primary_10_1016_j_colsurfa_2025_136138 crossref_primary_10_1063_5_0205338 crossref_primary_10_1039_D2MH01296K crossref_primary_10_7498_aps_69_20201195 crossref_primary_10_1016_j_actamat_2019_01_009 crossref_primary_10_1016_j_actamat_2024_120264 crossref_primary_10_1021_acsami_9b13143 crossref_primary_10_1209_0295_5075_115_47006 crossref_primary_10_1016_j_jallcom_2018_01_371 crossref_primary_10_1007_s41779_017_0170_3 crossref_primary_10_1038_s41524_018_0126_3 crossref_primary_10_1016_j_actamat_2023_118989 crossref_primary_10_1007_s12598_023_02562_z crossref_primary_10_1016_j_mechmat_2024_105183 crossref_primary_10_1016_j_ceramint_2022_09_314 crossref_primary_10_1088_1361_648X_aae602 crossref_primary_10_1016_j_coco_2021_100672 crossref_primary_10_1016_j_jallcom_2015_11_028 crossref_primary_10_1002_admi_201900291 crossref_primary_10_1016_j_scriptamat_2022_114763 crossref_primary_10_1016_j_actamat_2024_120152 crossref_primary_10_1016_j_matre_2021_100050 crossref_primary_10_1039_C7CP01762F crossref_primary_10_3390_math9222878 crossref_primary_10_1103_PhysRevB_96_054116 crossref_primary_10_1016_j_actamat_2022_117784 crossref_primary_10_1016_j_scriptamat_2017_08_045 crossref_primary_10_1038_s41524_024_01334_2 crossref_primary_10_1002_adfm_202101176 crossref_primary_10_1039_C6RA14776C crossref_primary_10_1063_1_4967531 crossref_primary_10_1063_1_5093697 crossref_primary_10_1063_1_5018790 crossref_primary_10_1016_j_ceramint_2018_08_035 crossref_primary_10_1063_1_4986849 crossref_primary_10_3389_fenrg_2023_1257567 crossref_primary_10_1016_j_ceramint_2019_02_098 crossref_primary_10_1063_1_4997068 crossref_primary_10_1146_annurev_matsci_070218_121843 crossref_primary_10_1007_s11431_016_6080_8 crossref_primary_10_1103_PhysRevB_94_184108 crossref_primary_10_1016_j_jcis_2022_07_118 crossref_primary_10_1063_5_0205522 crossref_primary_10_1021_acsami_1c03079 crossref_primary_10_1016_j_jmat_2023_09_001 crossref_primary_10_1002_pssa_201700971 crossref_primary_10_1039_C8MH01141A crossref_primary_10_1063_1_4991994 crossref_primary_10_1088_1361_6633_aa5e03 crossref_primary_10_1039_C6CP05462E crossref_primary_10_1016_j_mseb_2017_10_014 crossref_primary_10_1007_s12598_020_01579_y crossref_primary_10_1021_acsami_0c13734 crossref_primary_10_1088_1402_4896_ad2cd7 crossref_primary_10_1103_PhysRevApplied_15_054019 crossref_primary_10_1063_1_5123717 crossref_primary_10_1016_j_nanoen_2019_104203 crossref_primary_10_1039_D4TC05060F |
Cites_doi | 10.1103/PhysRevLett.109.187604 10.1103/PhysRevLett.45.1436 10.1002/adma.201203823 10.1063/1.2750546 10.1016/j.materresbull.2011.07.038 10.1063/1.4732146 10.1126/science.1123811 10.1039/C5RA05008A 10.1063/1.4756697 10.1063/1.4745902 10.1063/1.3257695 10.1063/1.4794543 10.1126/science.1159655 10.1063/1.4809945 10.1016/j.apenergy.2005.01.002 10.1016/j.apenergy.2011.12.002 10.1063/1.3077189 10.1103/PhysRevB.82.134119 10.1063/1.4873112 10.1063/1.4730338 10.1063/1.2905296 10.1063/1.3614453 10.1007/978-1-4757-9047-4_222 10.1016/j.tsf.2011.02.069 10.1063/1.3123817 10.1038/srep02895 10.1002/adma.201300606 10.1103/PhysRevLett.108.167604 10.1016/j.ijrefrig.2013.09.027 10.1209/0295-5075/102/47004 10.1002/er.991 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2015.06.030 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 427 |
ExternalDocumentID | 10_1016_j_nanoen_2015_06_030 S2211285515002840 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-de7e46c6a564c0e662ff6e9583b1cb99db54d2e60ca4e0521e9a917084ef25f83 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 01:55:48 EDT 2025 Thu Apr 24 22:54:09 EDT 2025 Fri Feb 23 02:30:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Positive/negative electrocaloric effects Solid-state cooling devices Phase field simulations Pseudo-first-order phase transition Thermodynamics analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-de7e46c6a564c0e662ff6e9583b1cb99db54d2e60ca4e0521e9a917084ef25f83 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2015_06_030 crossref_citationtrail_10_1016_j_nanoen_2015_06_030 elsevier_sciencedirect_doi_10_1016_j_nanoen_2015_06_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2015 2015-09-00 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationTitle | Nano energy |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, Wang, Cao, Zhang (bib23) 2013; 102 Olsen, Butler, Payne, Tuttle, Held (bib3) 1980; 45 Hagberg, Uusimaki, Jantunen (bib6) 2008; 92 Moya, Stern-Taulats, Crossley, González-Alonso, Kar-Narayan, Planes, Mañosa, Mathur (bib8) 2013; 25 Axelsson, Goupil, Dunne, Manos, Valant, Alford (bib21) 2013; 102 Li, Wang, Zhong, Wang, Zeng, Zhou (bib22) 2013; 102 Gao, Rowe (bib26) 2006; 83 Defay, Crossley, Kar-Narayan, Moya, Mathur (bib30) 2013; 25 Zimm, Jastrab, Sternberg, Pecharsky, Gschneidner, Osborne, Anderson (bib29) 1998; 43 Karthik, Martin (bib25) 2011; 99 Wang, Liu, Zhang, Shimada, Shi, Kitamura (bib11) 2014; 115 Feng, Shi, Zeng, Dou (bib9) 2011; 519 Peräntie, Hagberg, Uusimäki, Jantunen (bib16) 2010; 82 Neese, Chu, Lu, Wang, Furman, Zhang (bib2) 2008; 321 Ponomareva, Lisenkov (bib18) 2012; 108 Silva, Bordalo, Pereira, Ventura, Araújo (bib28) 2012; 93 Correia, Young, Whatmore, Scott, Mathur, Zhang (bib7) 2009; 95 Bai, Ding, Zheng, Shi, Cao, Qiao (bib15) 2012; 2 Mischenko, Zhang, Scott, Whatmore, Mathur (bib1) 2006; 311 Bai, Han, Zheng, Qiao (bib12) 2013; 3 Bai, Zheng, Shi (bib17) 2011; 46 Goupil, Berenov, Axelsson, Valant, Alford (bib20) 2012; 111 Rose, Cohen (bib13) 2012; 109 Sari, Balli (bib31) 2014; 37 Akcay, Alpay, Mantese, Rossetti (bib10) 2007; 90 Neese, Lu, Chu, Zhang (bib4) 2009; 94 Per€antie, Hagberg, Uusim€aki, Tian, Han (bib19) 2012; 112 Chen, Ren, Wu, Yang, Liu (bib5) 2009; 94 Li, Qian, Gu, Chen, Lu, Lin, Bateman, Zhang (bib14) 2012; 101 Wu, Zhu, Zhang (bib24) 2015; 5 Riffatn, Ma (bib27) 2004; 28 Zimm (10.1016/j.nanoen.2015.06.030_bib29) 1998; 43 Defay (10.1016/j.nanoen.2015.06.030_bib30) 2013; 25 Wu (10.1016/j.nanoen.2015.06.030_bib24) 2015; 5 Li (10.1016/j.nanoen.2015.06.030_bib22) 2013; 102 Sari (10.1016/j.nanoen.2015.06.030_bib31) 2014; 37 Chen (10.1016/j.nanoen.2015.06.030_bib5) 2009; 94 Mischenko (10.1016/j.nanoen.2015.06.030_bib1) 2006; 311 Ponomareva (10.1016/j.nanoen.2015.06.030_bib18) 2012; 108 Li (10.1016/j.nanoen.2015.06.030_bib14) 2012; 101 Bai (10.1016/j.nanoen.2015.06.030_bib17) 2011; 46 Neese (10.1016/j.nanoen.2015.06.030_bib2) 2008; 321 Moya (10.1016/j.nanoen.2015.06.030_bib8) 2013; 25 Gao (10.1016/j.nanoen.2015.06.030_bib26) 2006; 83 Silva (10.1016/j.nanoen.2015.06.030_bib28) 2012; 93 Riffatn (10.1016/j.nanoen.2015.06.030_bib27) 2004; 28 Neese (10.1016/j.nanoen.2015.06.030_bib4) 2009; 94 Wu (10.1016/j.nanoen.2015.06.030_bib23) 2013; 102 Per€antie (10.1016/j.nanoen.2015.06.030_bib19) 2012; 112 Goupil (10.1016/j.nanoen.2015.06.030_bib20) 2012; 111 Wang (10.1016/j.nanoen.2015.06.030_bib11) 2014; 115 Karthik (10.1016/j.nanoen.2015.06.030_bib25) 2011; 99 Bai (10.1016/j.nanoen.2015.06.030_bib12) 2013; 3 Akcay (10.1016/j.nanoen.2015.06.030_bib10) 2007; 90 Feng (10.1016/j.nanoen.2015.06.030_bib9) 2011; 519 Bai (10.1016/j.nanoen.2015.06.030_bib15) 2012; 2 Axelsson (10.1016/j.nanoen.2015.06.030_bib21) 2013; 102 Olsen (10.1016/j.nanoen.2015.06.030_bib3) 1980; 45 Hagberg (10.1016/j.nanoen.2015.06.030_bib6) 2008; 92 Correia (10.1016/j.nanoen.2015.06.030_bib7) 2009; 95 Rose (10.1016/j.nanoen.2015.06.030_bib13) 2012; 109 Peräntie (10.1016/j.nanoen.2015.06.030_bib16) 2010; 82 |
References_xml | – volume: 37 start-page: 8 year: 2014 end-page: 15 ident: bib31 publication-title: Int. J. Refrig. – volume: 95 start-page: 182904 year: 2009 ident: bib7 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 753 year: 2004 end-page: 768 ident: bib27 publication-title: Int. J. Energy Res. – volume: 311 start-page: 1270 year: 2006 end-page: 1271 ident: bib1 publication-title: Science – volume: 2 start-page: 022162 year: 2012 ident: bib15 publication-title: AIP. Adv. – volume: 102 start-page: 102902 year: 2013 ident: bib21 publication-title: Appl. Phys. Lett. – volume: 82 start-page: 134119 year: 2010 ident: bib16 publication-title: Phys. Rev. B – volume: 83 start-page: 133 year: 2006 end-page: 152 ident: bib26 publication-title: Appl. Energy – volume: 43 start-page: 1759 year: 1998 ident: bib29 publication-title: Adv. Cryog. Eng. – volume: 108 start-page: 167604 year: 2012 ident: bib18 publication-title: Phys. Rev. Lett. – volume: 46 start-page: 1866 year: 2011 ident: bib17 publication-title: Mater. Res. Bull. – volume: 90 start-page: 252909 year: 2007 ident: bib10 publication-title: Appl. Phys. Lett. – volume: 99 start-page: 032904 year: 2011 ident: bib25 publication-title: Appl. Phys. Lett. – volume: 111 start-page: 124109 year: 2012 ident: bib20 publication-title: J. Appl. Phys. – volume: 115 start-page: 164102 year: 2014 ident: bib11 publication-title: J. Appl. Phys. – volume: 94 start-page: 042910 year: 2009 ident: bib4 publication-title: Appl. Phys. Lett. – volume: 321 start-page: 821 year: 2008 end-page: 823 ident: bib2 publication-title: Science – volume: 102 start-page: 232904 year: 2013 ident: bib23 publication-title: Appl. Phys. Lett. – volume: 112 start-page: 034117 year: 2012 ident: bib19 publication-title: J. Appl. Phys. – volume: 94 start-page: 182902 year: 2009 ident: bib5 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 37476 year: 2015 end-page: 37484 ident: bib24 publication-title: RSC Adv. – volume: 519 start-page: 5433 year: 2011 ident: bib9 publication-title: Thin Solid Films – volume: 3 start-page: 2895 year: 2013 ident: bib12 publication-title: Sci. Rep. – volume: 93 start-page: 570 year: 2012 end-page: 574 ident: bib28 publication-title: Appl. Energy – volume: 45 start-page: 1436 year: 1980 ident: bib3 publication-title: Phys. Rev. Lett. – volume: 92 start-page: 132909 year: 2008 ident: bib6 publication-title: Appl. Phys. Lett. – volume: 102 start-page: 47004 year: 2013 ident: bib22 publication-title: Europhys. Lett. – volume: 25 start-page: 1360 year: 2013 ident: bib8 publication-title: Adv. Mater. – volume: 101 start-page: 132903 year: 2012 ident: bib14 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 3337 year: 2013 end-page: 3342 ident: bib30 publication-title: Adv. Mater. – volume: 109 start-page: 187604 year: 2012 ident: bib13 publication-title: Phys. Rev. Lett. – volume: 109 start-page: 187604 year: 2012 ident: 10.1016/j.nanoen.2015.06.030_bib13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.187604 – volume: 45 start-page: 1436 year: 1980 ident: 10.1016/j.nanoen.2015.06.030_bib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.1436 – volume: 25 start-page: 1360 year: 2013 ident: 10.1016/j.nanoen.2015.06.030_bib8 publication-title: Adv. Mater. doi: 10.1002/adma.201203823 – volume: 90 start-page: 252909 year: 2007 ident: 10.1016/j.nanoen.2015.06.030_bib10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2750546 – volume: 46 start-page: 1866 year: 2011 ident: 10.1016/j.nanoen.2015.06.030_bib17 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2011.07.038 – volume: 2 start-page: 022162 year: 2012 ident: 10.1016/j.nanoen.2015.06.030_bib15 publication-title: AIP. Adv. doi: 10.1063/1.4732146 – volume: 311 start-page: 1270 year: 2006 ident: 10.1016/j.nanoen.2015.06.030_bib1 publication-title: Science doi: 10.1126/science.1123811 – volume: 5 start-page: 37476 year: 2015 ident: 10.1016/j.nanoen.2015.06.030_bib24 publication-title: RSC Adv. doi: 10.1039/C5RA05008A – volume: 101 start-page: 132903 year: 2012 ident: 10.1016/j.nanoen.2015.06.030_bib14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4756697 – volume: 112 start-page: 034117 year: 2012 ident: 10.1016/j.nanoen.2015.06.030_bib19 publication-title: J. Appl. Phys. doi: 10.1063/1.4745902 – volume: 95 start-page: 182904 year: 2009 ident: 10.1016/j.nanoen.2015.06.030_bib7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3257695 – volume: 102 start-page: 102902 year: 2013 ident: 10.1016/j.nanoen.2015.06.030_bib21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4794543 – volume: 321 start-page: 821 year: 2008 ident: 10.1016/j.nanoen.2015.06.030_bib2 publication-title: Science doi: 10.1126/science.1159655 – volume: 102 start-page: 232904 year: 2013 ident: 10.1016/j.nanoen.2015.06.030_bib23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4809945 – volume: 83 start-page: 133 year: 2006 ident: 10.1016/j.nanoen.2015.06.030_bib26 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2005.01.002 – volume: 93 start-page: 570 year: 2012 ident: 10.1016/j.nanoen.2015.06.030_bib28 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.12.002 – volume: 94 start-page: 042910 year: 2009 ident: 10.1016/j.nanoen.2015.06.030_bib4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3077189 – volume: 82 start-page: 134119 year: 2010 ident: 10.1016/j.nanoen.2015.06.030_bib16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.134119 – volume: 115 start-page: 164102 year: 2014 ident: 10.1016/j.nanoen.2015.06.030_bib11 publication-title: J. Appl. Phys. doi: 10.1063/1.4873112 – volume: 111 start-page: 124109 year: 2012 ident: 10.1016/j.nanoen.2015.06.030_bib20 publication-title: J. Appl. Phys. doi: 10.1063/1.4730338 – volume: 92 start-page: 132909 year: 2008 ident: 10.1016/j.nanoen.2015.06.030_bib6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2905296 – volume: 99 start-page: 032904 year: 2011 ident: 10.1016/j.nanoen.2015.06.030_bib25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3614453 – volume: 43 start-page: 1759 year: 1998 ident: 10.1016/j.nanoen.2015.06.030_bib29 publication-title: Adv. Cryog. Eng. doi: 10.1007/978-1-4757-9047-4_222 – volume: 519 start-page: 5433 year: 2011 ident: 10.1016/j.nanoen.2015.06.030_bib9 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.02.069 – volume: 94 start-page: 182902 year: 2009 ident: 10.1016/j.nanoen.2015.06.030_bib5 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3123817 – volume: 3 start-page: 2895 year: 2013 ident: 10.1016/j.nanoen.2015.06.030_bib12 publication-title: Sci. Rep. doi: 10.1038/srep02895 – volume: 25 start-page: 3337 year: 2013 ident: 10.1016/j.nanoen.2015.06.030_bib30 publication-title: Adv. Mater. doi: 10.1002/adma.201300606 – volume: 108 start-page: 167604 year: 2012 ident: 10.1016/j.nanoen.2015.06.030_bib18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.167604 – volume: 37 start-page: 8 year: 2014 ident: 10.1016/j.nanoen.2015.06.030_bib31 publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2013.09.027 – volume: 102 start-page: 47004 year: 2013 ident: 10.1016/j.nanoen.2015.06.030_bib22 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/102/47004 – volume: 28 start-page: 753 year: 2004 ident: 10.1016/j.nanoen.2015.06.030_bib27 publication-title: Int. J. Energy Res. doi: 10.1002/er.991 |
SSID | ssj0000651712 |
Score | 2.4625704 |
Snippet | The electrocaloric effect of ferroelectric materials, which occurs significantly near the first-order paraelectric/ferroelectric transition (FOPFT) Curie... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 419 |
SubjectTerms | Phase field simulations Positive/negative electrocaloric effects Pseudo-first-order phase transition Solid-state cooling devices Thermodynamics analysis |
Title | Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics |
URI | https://dx.doi.org/10.1016/j.nanoen.2015.06.030 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvQgPvG55OA1btOmaXoUUVbFRdAFbyVNJ1pZuss-9OZvN5O2soIoeGzIQJgM882kX74QcmqlSgsVgct-JmAiDjVTlitWmAJ4niQQeMWbu4HsD8XNU_y0Qi7auzBIq2xyf53TfbZuRnqNN3uTsuw9hK53CZVD_BgbB4F9uxAJRvnZB_86Z3EQyxP_0xPnMzRob9B5mlelqzGgECqPvZAn0qF_Qqgl1LnaJBtNuUjP6xVtkRWotsn6kojgDnm_n8GiGDNbukKOeSlNOnlx4ETniEOekkVdaUoXIzeA8sS0Zmq9Qa-CZy_8TZvXcNyGoWYIbVgetKwoCom_zfCMl1qYTsf1zNLMdsnw6vLxos-a5xSYiZJwzgpIQEgjdSyFCUDK0FoJaayinJs8TYs8FkUIMjBaAN7phVS7Zi5QAmwYWxXtkU41rmCfUG6DSFmT6kgWgnOjlE5zI5UOhYtMow9I1LowM43WOD55McpaUtlrVjs-Q8dnyK2LggPCvqwmtdbGH_OTdneybzGTOTj41fLw35ZHZA2_apbZMenMpws4cWXJPO_6uOuS1fPr2_7gExlV5k8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MS3OXgN20eSpsdlUdbXIqjgraTpRCtLd9mH_n0zbSoKouA1zUCYDPPNpF--EHJmpUoLFYPLfiZgXESaKRsqVpgCwjxJIKgVb26HcvDIr57E0xLpt3dhkFbpc3-T0-ts7Ue63pvdSVl27yPXu0TKIb7AxoG7vn0Z1alEhyz3Lq8Hw8-jFoeyYVL_90QThjbtJbqa6VXpagyohRqKWssTGdE_gdQX4LnYIOu-YqS9ZlGbZAmqLbL2RUdwm7zfzWBRjJktXS3HajVNOnlx-ETnCEU1K4u66pQuRm4AFYppQ9Z6g24Fz7X2N_UP4rg9Q9kQ6oketKwoaom_zfCYl1qYTsfNzNLMdsjjxflDf8D8iwrMxEk0ZwUkwKWRWkhuApAyslZCKlSchyZP0yIXvIhABkZzwGu9kGrXzwWKg42EVfEu6VTjCvYIDW0QK2tSHcuCh6FRSqe5kUpH3AWn0fskbl2YGS83jq9ejLKWV_aaNY7P0PEZ0uviYJ-wT6tJI7fxx_yk3Z3sW9hkDhF-tTz4t-UpWRk83N5kN5fD60Oyil8a0tkR6cynCzh2Vco8P_FR-AH51ukA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo-first-order+phase+transition+for+ultrahigh+positive%2Fnegative+electrocaloric+effects+in+perovskite+ferroelectrics&rft.jtitle=Nano+energy&rft.au=Wu%2C+Hong-Hui&rft.au=Zhu%2C+Jiaming&rft.au=Zhang%2C+Tong-Yi&rft.date=2015-09-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=16&rft.spage=419&rft.epage=427&rft_id=info:doi/10.1016%2Fj.nanoen.2015.06.030&rft.externalDocID=S2211285515002840 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |