Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics

The electrocaloric effect of ferroelectric materials, which occurs significantly near the first-order paraelectric/ferroelectric transition (FOPFT) Curie temperature, has tremendous prospect in solid-state cooling devices. In the present work, thermodynamics analysis and phase field simulations were...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 16; pp. 419 - 427
Main Authors Wu, Hong-Hui, Zhu, Jiaming, Zhang, Tong-Yi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocaloric effect of ferroelectric materials, which occurs significantly near the first-order paraelectric/ferroelectric transition (FOPFT) Curie temperature, has tremendous prospect in solid-state cooling devices. In the present work, thermodynamics analysis and phase field simulations were conducted to demonstrate the mechanical compression-induced two types of pseudo-first-order phase transition, which could occur at a temperature below the Curie temperature. Thus, in one material there may coexist ultrahigh positive and negative electrocaloric effects, which are associated with the two pseudo-first-order phase transitions and tunable by the magnitude of the compression. The mechanical compression-induced pseudo-first-order phase transition and the coexistence of positive and negative electrocaloric effects will facilitate the development of a novel technology to design and manufacture next generation of solid-state cooling devices. Two types of pseudo-first-order phase transition (PFOPT) coexist in ferroelectric materials, which occur at temperatures lower than the paraelectric/ferroelectric transition Curie temperature. Ultrahigh positive and negative electrocaloric effects are associated with the PFOPTs which could fully utilized an applied electric field during its loading and unloading. [Display omitted] •Compression induced two types of pseudo-first-order phase transitions.•Drop/jump of macroscopic polarization along the direction of applied electric field.•Coexistence of positive and negative electrocaloric effects in a ferroelectrics.
AbstractList The electrocaloric effect of ferroelectric materials, which occurs significantly near the first-order paraelectric/ferroelectric transition (FOPFT) Curie temperature, has tremendous prospect in solid-state cooling devices. In the present work, thermodynamics analysis and phase field simulations were conducted to demonstrate the mechanical compression-induced two types of pseudo-first-order phase transition, which could occur at a temperature below the Curie temperature. Thus, in one material there may coexist ultrahigh positive and negative electrocaloric effects, which are associated with the two pseudo-first-order phase transitions and tunable by the magnitude of the compression. The mechanical compression-induced pseudo-first-order phase transition and the coexistence of positive and negative electrocaloric effects will facilitate the development of a novel technology to design and manufacture next generation of solid-state cooling devices. Two types of pseudo-first-order phase transition (PFOPT) coexist in ferroelectric materials, which occur at temperatures lower than the paraelectric/ferroelectric transition Curie temperature. Ultrahigh positive and negative electrocaloric effects are associated with the PFOPTs which could fully utilized an applied electric field during its loading and unloading. [Display omitted] •Compression induced two types of pseudo-first-order phase transitions.•Drop/jump of macroscopic polarization along the direction of applied electric field.•Coexistence of positive and negative electrocaloric effects in a ferroelectrics.
Author Wu, Hong-Hui
Zhang, Tong-Yi
Zhu, Jiaming
Author_xml – sequence: 1
  givenname: Hong-Hui
  surname: Wu
  fullname: Wu, Hong-Hui
  organization: Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
– sequence: 2
  givenname: Jiaming
  surname: Zhu
  fullname: Zhu, Jiaming
  organization: Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
– sequence: 3
  givenname: Tong-Yi
  surname: Zhang
  fullname: Zhang, Tong-Yi
  email: zhangty@shu.edu.cn
  organization: Shanghai University Materials Genome Institute and Shanghai Materials Genome Institute, Shanghai University, 99 Shangda Road, Shanghai 200444, China
BookMark eNqFkE1OwzAQhb0oEqX0Bix8gaS2EzsJCyRU8SdVggWsLdcZty7Bjuy0iNvjKKxYwGxm5mneSO-7QDPnHSB0RUlOCRWrQ-6U8-ByRijPichJQWZozhilGas5P0fLGA8kleC0omyOPl8iHFufGRvikPnQQsD9XkXAQ1Au2sF6h40P-NglYW93e9z7UT7BysFOjQOGDvQQvFadD1ZjMCbtEVuHewj-FN_tANhACH66tDpeojOjugjLn75Ab_d3r-vHbPP88LS-3WS6qNiQtVBBKbRQXJSagBDMGAENr4st1dumabe8bBkIolUJhDMKjWpoReoSDOOmLhaonP7q4GMMYGQf7IcKX5ISOTKTBzkxkyMzSYRMzJLt-pdN20GNMBIF2_1nvpnMkIKdLAQZtQWnobUhxZett38_-AZP7ZLi
CitedBy_id crossref_primary_10_1016_j_piutam_2017_03_037
crossref_primary_10_1016_j_commatsci_2023_112036
crossref_primary_10_1103_PhysRevB_96_144110
crossref_primary_10_1063_5_0094473
crossref_primary_10_1016_j_physleta_2019_06_033
crossref_primary_10_1109_TNS_2024_3383160
crossref_primary_10_1109_TED_2020_2976163
crossref_primary_10_1016_j_matchemphys_2019_122494
crossref_primary_10_15541_jim20210420
crossref_primary_10_1063_1_5020584
crossref_primary_10_1016_j_ijsolstr_2021_01_020
crossref_primary_10_1063_1_5097127
crossref_primary_10_1063_5_0228865
crossref_primary_10_3390_cryst14050458
crossref_primary_10_1111_jace_15304
crossref_primary_10_1016_j_commatsci_2022_111607
crossref_primary_10_35848_1882_0786_ac5ce9
crossref_primary_10_1016_j_ceramint_2019_12_072
crossref_primary_10_1002_ente_201600456
crossref_primary_10_1007_s11708_023_0884_6
crossref_primary_10_1111_jace_18370
crossref_primary_10_1016_j_jallcom_2019_152794
crossref_primary_10_15407_fm26_04_807
crossref_primary_10_1088_1361_648X_ac8513
crossref_primary_10_1039_C5CP02765A
crossref_primary_10_1063_5_0047020
crossref_primary_10_20517_microstructures_2024_50
crossref_primary_10_1016_j_matlet_2016_11_006
crossref_primary_10_1063_1_4941816
crossref_primary_10_1088_1361_6463_ace1fe
crossref_primary_10_1039_D4TA04971C
crossref_primary_10_1088_1361_648X_ab3d6e
crossref_primary_10_1088_1361_6463_abd5e3
crossref_primary_10_1039_D2MH00905F
crossref_primary_10_1063_1_4983029
crossref_primary_10_1016_j_ceramint_2022_12_087
crossref_primary_10_1002_eem2_12237
crossref_primary_10_1016_j_cclet_2020_11_070
crossref_primary_10_1021_acs_nanolett_5b04113
crossref_primary_10_1016_j_ijsolstr_2022_111808
crossref_primary_10_1088_1361_648X_ab119b
crossref_primary_10_1016_j_matlet_2017_03_037
crossref_primary_10_1021_acsami_8b00744
crossref_primary_10_1016_j_actamat_2020_03_020
crossref_primary_10_1088_0022_3727_49_6_065305
crossref_primary_10_1039_D4TA02319F
crossref_primary_10_1063_1_4940205
crossref_primary_10_1088_1361_648X_aa94db
crossref_primary_10_1209_0295_5075_117_57002
crossref_primary_10_1002_adfm_202108182
crossref_primary_10_1016_j_actamat_2019_09_044
crossref_primary_10_1002_pssr_202100251
crossref_primary_10_1016_j_jmat_2021_11_001
crossref_primary_10_1039_C8TC03965H
crossref_primary_10_1016_j_colsurfa_2025_136138
crossref_primary_10_1063_5_0205338
crossref_primary_10_1039_D2MH01296K
crossref_primary_10_7498_aps_69_20201195
crossref_primary_10_1016_j_actamat_2019_01_009
crossref_primary_10_1016_j_actamat_2024_120264
crossref_primary_10_1021_acsami_9b13143
crossref_primary_10_1209_0295_5075_115_47006
crossref_primary_10_1016_j_jallcom_2018_01_371
crossref_primary_10_1007_s41779_017_0170_3
crossref_primary_10_1038_s41524_018_0126_3
crossref_primary_10_1016_j_actamat_2023_118989
crossref_primary_10_1007_s12598_023_02562_z
crossref_primary_10_1016_j_mechmat_2024_105183
crossref_primary_10_1016_j_ceramint_2022_09_314
crossref_primary_10_1088_1361_648X_aae602
crossref_primary_10_1016_j_coco_2021_100672
crossref_primary_10_1016_j_jallcom_2015_11_028
crossref_primary_10_1002_admi_201900291
crossref_primary_10_1016_j_scriptamat_2022_114763
crossref_primary_10_1016_j_actamat_2024_120152
crossref_primary_10_1016_j_matre_2021_100050
crossref_primary_10_1039_C7CP01762F
crossref_primary_10_3390_math9222878
crossref_primary_10_1103_PhysRevB_96_054116
crossref_primary_10_1016_j_actamat_2022_117784
crossref_primary_10_1016_j_scriptamat_2017_08_045
crossref_primary_10_1038_s41524_024_01334_2
crossref_primary_10_1002_adfm_202101176
crossref_primary_10_1039_C6RA14776C
crossref_primary_10_1063_1_4967531
crossref_primary_10_1063_1_5093697
crossref_primary_10_1063_1_5018790
crossref_primary_10_1016_j_ceramint_2018_08_035
crossref_primary_10_1063_1_4986849
crossref_primary_10_3389_fenrg_2023_1257567
crossref_primary_10_1016_j_ceramint_2019_02_098
crossref_primary_10_1063_1_4997068
crossref_primary_10_1146_annurev_matsci_070218_121843
crossref_primary_10_1007_s11431_016_6080_8
crossref_primary_10_1103_PhysRevB_94_184108
crossref_primary_10_1016_j_jcis_2022_07_118
crossref_primary_10_1063_5_0205522
crossref_primary_10_1021_acsami_1c03079
crossref_primary_10_1016_j_jmat_2023_09_001
crossref_primary_10_1002_pssa_201700971
crossref_primary_10_1039_C8MH01141A
crossref_primary_10_1063_1_4991994
crossref_primary_10_1088_1361_6633_aa5e03
crossref_primary_10_1039_C6CP05462E
crossref_primary_10_1016_j_mseb_2017_10_014
crossref_primary_10_1007_s12598_020_01579_y
crossref_primary_10_1021_acsami_0c13734
crossref_primary_10_1088_1402_4896_ad2cd7
crossref_primary_10_1103_PhysRevApplied_15_054019
crossref_primary_10_1063_1_5123717
crossref_primary_10_1016_j_nanoen_2019_104203
crossref_primary_10_1039_D4TC05060F
Cites_doi 10.1103/PhysRevLett.109.187604
10.1103/PhysRevLett.45.1436
10.1002/adma.201203823
10.1063/1.2750546
10.1016/j.materresbull.2011.07.038
10.1063/1.4732146
10.1126/science.1123811
10.1039/C5RA05008A
10.1063/1.4756697
10.1063/1.4745902
10.1063/1.3257695
10.1063/1.4794543
10.1126/science.1159655
10.1063/1.4809945
10.1016/j.apenergy.2005.01.002
10.1016/j.apenergy.2011.12.002
10.1063/1.3077189
10.1103/PhysRevB.82.134119
10.1063/1.4873112
10.1063/1.4730338
10.1063/1.2905296
10.1063/1.3614453
10.1007/978-1-4757-9047-4_222
10.1016/j.tsf.2011.02.069
10.1063/1.3123817
10.1038/srep02895
10.1002/adma.201300606
10.1103/PhysRevLett.108.167604
10.1016/j.ijrefrig.2013.09.027
10.1209/0295-5075/102/47004
10.1002/er.991
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2015.06.030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 427
ExternalDocumentID 10_1016_j_nanoen_2015_06_030
S2211285515002840
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-de7e46c6a564c0e662ff6e9583b1cb99db54d2e60ca4e0521e9a917084ef25f83
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 01:55:48 EDT 2025
Thu Apr 24 22:54:09 EDT 2025
Fri Feb 23 02:30:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Positive/negative electrocaloric effects
Solid-state cooling devices
Phase field simulations
Pseudo-first-order phase transition
Thermodynamics analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-de7e46c6a564c0e662ff6e9583b1cb99db54d2e60ca4e0521e9a917084ef25f83
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_nanoen_2015_06_030
crossref_citationtrail_10_1016_j_nanoen_2015_06_030
elsevier_sciencedirect_doi_10_1016_j_nanoen_2015_06_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2015
2015-09-00
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationTitle Nano energy
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Wang, Cao, Zhang (bib23) 2013; 102
Olsen, Butler, Payne, Tuttle, Held (bib3) 1980; 45
Hagberg, Uusimaki, Jantunen (bib6) 2008; 92
Moya, Stern-Taulats, Crossley, González-Alonso, Kar-Narayan, Planes, Mañosa, Mathur (bib8) 2013; 25
Axelsson, Goupil, Dunne, Manos, Valant, Alford (bib21) 2013; 102
Li, Wang, Zhong, Wang, Zeng, Zhou (bib22) 2013; 102
Gao, Rowe (bib26) 2006; 83
Defay, Crossley, Kar-Narayan, Moya, Mathur (bib30) 2013; 25
Zimm, Jastrab, Sternberg, Pecharsky, Gschneidner, Osborne, Anderson (bib29) 1998; 43
Karthik, Martin (bib25) 2011; 99
Wang, Liu, Zhang, Shimada, Shi, Kitamura (bib11) 2014; 115
Feng, Shi, Zeng, Dou (bib9) 2011; 519
Peräntie, Hagberg, Uusimäki, Jantunen (bib16) 2010; 82
Neese, Chu, Lu, Wang, Furman, Zhang (bib2) 2008; 321
Ponomareva, Lisenkov (bib18) 2012; 108
Silva, Bordalo, Pereira, Ventura, Araújo (bib28) 2012; 93
Correia, Young, Whatmore, Scott, Mathur, Zhang (bib7) 2009; 95
Bai, Ding, Zheng, Shi, Cao, Qiao (bib15) 2012; 2
Mischenko, Zhang, Scott, Whatmore, Mathur (bib1) 2006; 311
Bai, Han, Zheng, Qiao (bib12) 2013; 3
Bai, Zheng, Shi (bib17) 2011; 46
Goupil, Berenov, Axelsson, Valant, Alford (bib20) 2012; 111
Rose, Cohen (bib13) 2012; 109
Sari, Balli (bib31) 2014; 37
Akcay, Alpay, Mantese, Rossetti (bib10) 2007; 90
Neese, Lu, Chu, Zhang (bib4) 2009; 94
Per€antie, Hagberg, Uusim€aki, Tian, Han (bib19) 2012; 112
Chen, Ren, Wu, Yang, Liu (bib5) 2009; 94
Li, Qian, Gu, Chen, Lu, Lin, Bateman, Zhang (bib14) 2012; 101
Wu, Zhu, Zhang (bib24) 2015; 5
Riffatn, Ma (bib27) 2004; 28
Zimm (10.1016/j.nanoen.2015.06.030_bib29) 1998; 43
Defay (10.1016/j.nanoen.2015.06.030_bib30) 2013; 25
Wu (10.1016/j.nanoen.2015.06.030_bib24) 2015; 5
Li (10.1016/j.nanoen.2015.06.030_bib22) 2013; 102
Sari (10.1016/j.nanoen.2015.06.030_bib31) 2014; 37
Chen (10.1016/j.nanoen.2015.06.030_bib5) 2009; 94
Mischenko (10.1016/j.nanoen.2015.06.030_bib1) 2006; 311
Ponomareva (10.1016/j.nanoen.2015.06.030_bib18) 2012; 108
Li (10.1016/j.nanoen.2015.06.030_bib14) 2012; 101
Bai (10.1016/j.nanoen.2015.06.030_bib17) 2011; 46
Neese (10.1016/j.nanoen.2015.06.030_bib2) 2008; 321
Moya (10.1016/j.nanoen.2015.06.030_bib8) 2013; 25
Gao (10.1016/j.nanoen.2015.06.030_bib26) 2006; 83
Silva (10.1016/j.nanoen.2015.06.030_bib28) 2012; 93
Riffatn (10.1016/j.nanoen.2015.06.030_bib27) 2004; 28
Neese (10.1016/j.nanoen.2015.06.030_bib4) 2009; 94
Wu (10.1016/j.nanoen.2015.06.030_bib23) 2013; 102
Per€antie (10.1016/j.nanoen.2015.06.030_bib19) 2012; 112
Goupil (10.1016/j.nanoen.2015.06.030_bib20) 2012; 111
Wang (10.1016/j.nanoen.2015.06.030_bib11) 2014; 115
Karthik (10.1016/j.nanoen.2015.06.030_bib25) 2011; 99
Bai (10.1016/j.nanoen.2015.06.030_bib12) 2013; 3
Akcay (10.1016/j.nanoen.2015.06.030_bib10) 2007; 90
Feng (10.1016/j.nanoen.2015.06.030_bib9) 2011; 519
Bai (10.1016/j.nanoen.2015.06.030_bib15) 2012; 2
Axelsson (10.1016/j.nanoen.2015.06.030_bib21) 2013; 102
Olsen (10.1016/j.nanoen.2015.06.030_bib3) 1980; 45
Hagberg (10.1016/j.nanoen.2015.06.030_bib6) 2008; 92
Correia (10.1016/j.nanoen.2015.06.030_bib7) 2009; 95
Rose (10.1016/j.nanoen.2015.06.030_bib13) 2012; 109
Peräntie (10.1016/j.nanoen.2015.06.030_bib16) 2010; 82
References_xml – volume: 37
  start-page: 8
  year: 2014
  end-page: 15
  ident: bib31
  publication-title: Int. J. Refrig.
– volume: 95
  start-page: 182904
  year: 2009
  ident: bib7
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 753
  year: 2004
  end-page: 768
  ident: bib27
  publication-title: Int. J. Energy Res.
– volume: 311
  start-page: 1270
  year: 2006
  end-page: 1271
  ident: bib1
  publication-title: Science
– volume: 2
  start-page: 022162
  year: 2012
  ident: bib15
  publication-title: AIP. Adv.
– volume: 102
  start-page: 102902
  year: 2013
  ident: bib21
  publication-title: Appl. Phys. Lett.
– volume: 82
  start-page: 134119
  year: 2010
  ident: bib16
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 133
  year: 2006
  end-page: 152
  ident: bib26
  publication-title: Appl. Energy
– volume: 43
  start-page: 1759
  year: 1998
  ident: bib29
  publication-title: Adv. Cryog. Eng.
– volume: 108
  start-page: 167604
  year: 2012
  ident: bib18
  publication-title: Phys. Rev. Lett.
– volume: 46
  start-page: 1866
  year: 2011
  ident: bib17
  publication-title: Mater. Res. Bull.
– volume: 90
  start-page: 252909
  year: 2007
  ident: bib10
  publication-title: Appl. Phys. Lett.
– volume: 99
  start-page: 032904
  year: 2011
  ident: bib25
  publication-title: Appl. Phys. Lett.
– volume: 111
  start-page: 124109
  year: 2012
  ident: bib20
  publication-title: J. Appl. Phys.
– volume: 115
  start-page: 164102
  year: 2014
  ident: bib11
  publication-title: J. Appl. Phys.
– volume: 94
  start-page: 042910
  year: 2009
  ident: bib4
  publication-title: Appl. Phys. Lett.
– volume: 321
  start-page: 821
  year: 2008
  end-page: 823
  ident: bib2
  publication-title: Science
– volume: 102
  start-page: 232904
  year: 2013
  ident: bib23
  publication-title: Appl. Phys. Lett.
– volume: 112
  start-page: 034117
  year: 2012
  ident: bib19
  publication-title: J. Appl. Phys.
– volume: 94
  start-page: 182902
  year: 2009
  ident: bib5
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 37476
  year: 2015
  end-page: 37484
  ident: bib24
  publication-title: RSC Adv.
– volume: 519
  start-page: 5433
  year: 2011
  ident: bib9
  publication-title: Thin Solid Films
– volume: 3
  start-page: 2895
  year: 2013
  ident: bib12
  publication-title: Sci. Rep.
– volume: 93
  start-page: 570
  year: 2012
  end-page: 574
  ident: bib28
  publication-title: Appl. Energy
– volume: 45
  start-page: 1436
  year: 1980
  ident: bib3
  publication-title: Phys. Rev. Lett.
– volume: 92
  start-page: 132909
  year: 2008
  ident: bib6
  publication-title: Appl. Phys. Lett.
– volume: 102
  start-page: 47004
  year: 2013
  ident: bib22
  publication-title: Europhys. Lett.
– volume: 25
  start-page: 1360
  year: 2013
  ident: bib8
  publication-title: Adv. Mater.
– volume: 101
  start-page: 132903
  year: 2012
  ident: bib14
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 3337
  year: 2013
  end-page: 3342
  ident: bib30
  publication-title: Adv. Mater.
– volume: 109
  start-page: 187604
  year: 2012
  ident: bib13
  publication-title: Phys. Rev. Lett.
– volume: 109
  start-page: 187604
  year: 2012
  ident: 10.1016/j.nanoen.2015.06.030_bib13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.187604
– volume: 45
  start-page: 1436
  year: 1980
  ident: 10.1016/j.nanoen.2015.06.030_bib3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.1436
– volume: 25
  start-page: 1360
  year: 2013
  ident: 10.1016/j.nanoen.2015.06.030_bib8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203823
– volume: 90
  start-page: 252909
  year: 2007
  ident: 10.1016/j.nanoen.2015.06.030_bib10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2750546
– volume: 46
  start-page: 1866
  year: 2011
  ident: 10.1016/j.nanoen.2015.06.030_bib17
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2011.07.038
– volume: 2
  start-page: 022162
  year: 2012
  ident: 10.1016/j.nanoen.2015.06.030_bib15
  publication-title: AIP. Adv.
  doi: 10.1063/1.4732146
– volume: 311
  start-page: 1270
  year: 2006
  ident: 10.1016/j.nanoen.2015.06.030_bib1
  publication-title: Science
  doi: 10.1126/science.1123811
– volume: 5
  start-page: 37476
  year: 2015
  ident: 10.1016/j.nanoen.2015.06.030_bib24
  publication-title: RSC Adv.
  doi: 10.1039/C5RA05008A
– volume: 101
  start-page: 132903
  year: 2012
  ident: 10.1016/j.nanoen.2015.06.030_bib14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4756697
– volume: 112
  start-page: 034117
  year: 2012
  ident: 10.1016/j.nanoen.2015.06.030_bib19
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4745902
– volume: 95
  start-page: 182904
  year: 2009
  ident: 10.1016/j.nanoen.2015.06.030_bib7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3257695
– volume: 102
  start-page: 102902
  year: 2013
  ident: 10.1016/j.nanoen.2015.06.030_bib21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4794543
– volume: 321
  start-page: 821
  year: 2008
  ident: 10.1016/j.nanoen.2015.06.030_bib2
  publication-title: Science
  doi: 10.1126/science.1159655
– volume: 102
  start-page: 232904
  year: 2013
  ident: 10.1016/j.nanoen.2015.06.030_bib23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4809945
– volume: 83
  start-page: 133
  year: 2006
  ident: 10.1016/j.nanoen.2015.06.030_bib26
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2005.01.002
– volume: 93
  start-page: 570
  year: 2012
  ident: 10.1016/j.nanoen.2015.06.030_bib28
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.12.002
– volume: 94
  start-page: 042910
  year: 2009
  ident: 10.1016/j.nanoen.2015.06.030_bib4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3077189
– volume: 82
  start-page: 134119
  year: 2010
  ident: 10.1016/j.nanoen.2015.06.030_bib16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.134119
– volume: 115
  start-page: 164102
  year: 2014
  ident: 10.1016/j.nanoen.2015.06.030_bib11
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4873112
– volume: 111
  start-page: 124109
  year: 2012
  ident: 10.1016/j.nanoen.2015.06.030_bib20
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4730338
– volume: 92
  start-page: 132909
  year: 2008
  ident: 10.1016/j.nanoen.2015.06.030_bib6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2905296
– volume: 99
  start-page: 032904
  year: 2011
  ident: 10.1016/j.nanoen.2015.06.030_bib25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3614453
– volume: 43
  start-page: 1759
  year: 1998
  ident: 10.1016/j.nanoen.2015.06.030_bib29
  publication-title: Adv. Cryog. Eng.
  doi: 10.1007/978-1-4757-9047-4_222
– volume: 519
  start-page: 5433
  year: 2011
  ident: 10.1016/j.nanoen.2015.06.030_bib9
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.02.069
– volume: 94
  start-page: 182902
  year: 2009
  ident: 10.1016/j.nanoen.2015.06.030_bib5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3123817
– volume: 3
  start-page: 2895
  year: 2013
  ident: 10.1016/j.nanoen.2015.06.030_bib12
  publication-title: Sci. Rep.
  doi: 10.1038/srep02895
– volume: 25
  start-page: 3337
  year: 2013
  ident: 10.1016/j.nanoen.2015.06.030_bib30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300606
– volume: 108
  start-page: 167604
  year: 2012
  ident: 10.1016/j.nanoen.2015.06.030_bib18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.167604
– volume: 37
  start-page: 8
  year: 2014
  ident: 10.1016/j.nanoen.2015.06.030_bib31
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2013.09.027
– volume: 102
  start-page: 47004
  year: 2013
  ident: 10.1016/j.nanoen.2015.06.030_bib22
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/102/47004
– volume: 28
  start-page: 753
  year: 2004
  ident: 10.1016/j.nanoen.2015.06.030_bib27
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.991
SSID ssj0000651712
Score 2.4625704
Snippet The electrocaloric effect of ferroelectric materials, which occurs significantly near the first-order paraelectric/ferroelectric transition (FOPFT) Curie...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 419
SubjectTerms Phase field simulations
Positive/negative electrocaloric effects
Pseudo-first-order phase transition
Solid-state cooling devices
Thermodynamics analysis
Title Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics
URI https://dx.doi.org/10.1016/j.nanoen.2015.06.030
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvQgPvG55OA1btOmaXoUUVbFRdAFbyVNJ1pZuss-9OZvN5O2soIoeGzIQJgM882kX74QcmqlSgsVgct-JmAiDjVTlitWmAJ4niQQeMWbu4HsD8XNU_y0Qi7auzBIq2xyf53TfbZuRnqNN3uTsuw9hK53CZVD_BgbB4F9uxAJRvnZB_86Z3EQyxP_0xPnMzRob9B5mlelqzGgECqPvZAn0qF_Qqgl1LnaJBtNuUjP6xVtkRWotsn6kojgDnm_n8GiGDNbukKOeSlNOnlx4ETniEOekkVdaUoXIzeA8sS0Zmq9Qa-CZy_8TZvXcNyGoWYIbVgetKwoCom_zfCMl1qYTsf1zNLMdsnw6vLxos-a5xSYiZJwzgpIQEgjdSyFCUDK0FoJaayinJs8TYs8FkUIMjBaAN7phVS7Zi5QAmwYWxXtkU41rmCfUG6DSFmT6kgWgnOjlE5zI5UOhYtMow9I1LowM43WOD55McpaUtlrVjs-Q8dnyK2LggPCvqwmtdbGH_OTdneybzGTOTj41fLw35ZHZA2_apbZMenMpws4cWXJPO_6uOuS1fPr2_7gExlV5k8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yHtSD-MS3OXgN20eSpsdlUdbXIqjgraTpRCtLd9mH_n0zbSoKouA1zUCYDPPNpF--EHJmpUoLFYPLfiZgXESaKRsqVpgCwjxJIKgVb26HcvDIr57E0xLpt3dhkFbpc3-T0-ts7Ue63pvdSVl27yPXu0TKIb7AxoG7vn0Z1alEhyz3Lq8Hw8-jFoeyYVL_90QThjbtJbqa6VXpagyohRqKWssTGdE_gdQX4LnYIOu-YqS9ZlGbZAmqLbL2RUdwm7zfzWBRjJktXS3HajVNOnlx-ETnCEU1K4u66pQuRm4AFYppQ9Z6g24Fz7X2N_UP4rg9Q9kQ6oketKwoaom_zfCYl1qYTsfNzNLMdsjjxflDf8D8iwrMxEk0ZwUkwKWRWkhuApAyslZCKlSchyZP0yIXvIhABkZzwGu9kGrXzwWKg42EVfEu6VTjCvYIDW0QK2tSHcuCh6FRSqe5kUpH3AWn0fskbl2YGS83jq9ejLKWV_aaNY7P0PEZ0uviYJ-wT6tJI7fxx_yk3Z3sW9hkDhF-tTz4t-UpWRk83N5kN5fD60Oyil8a0tkR6cynCzh2Vco8P_FR-AH51ukA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo-first-order+phase+transition+for+ultrahigh+positive%2Fnegative+electrocaloric+effects+in+perovskite+ferroelectrics&rft.jtitle=Nano+energy&rft.au=Wu%2C+Hong-Hui&rft.au=Zhu%2C+Jiaming&rft.au=Zhang%2C+Tong-Yi&rft.date=2015-09-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=16&rft.spage=419&rft.epage=427&rft_id=info:doi/10.1016%2Fj.nanoen.2015.06.030&rft.externalDocID=S2211285515002840
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon