Design of Morlet wavelet neural network to solve the non-linear influenza disease system

In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programmi...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and nonlinear sciences Vol. 8; no. 1; pp. 2033 - 2048
Main Authors Sabir, Zulqurnain, Umar, Muhammad, Raja, Muhammad Asif Zahoor, Fathurrochman, Irwan, Shorman, Samer M.
Format Journal Article
LanguageEnglish
Published Beirut Sciendo 01.01.2023
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programming (SQP), that is, GA-SQP, are executed as the global and local search techniques. The mathematical form of the NIDS depends upon four groups: susceptible ), infected ), recovered ) and cross-immune individuals ). To solve the NIDS, an error function is designed using NIDS and its leading initial conditions (ICs). This error function is optimised with a combination of MWNNs and GA-SQP to solve for all the groups of NIDS. The comparison of the obtained solutions and Runge–Kutta results is presented to authenticate the correctness of the designed MWNNs along with the GA-SQP for solving NIDS. Moreover, the statistical operators using different measures are presented to check the reliability and constancy of the MWNNs along with the GA-SQP to solve the NIDS.
AbstractList In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programming (SQP), that is, GA-SQP, are executed as the global and local search techniques. The mathematical form of the NIDS depends upon four groups: susceptible S ( y ), infected I ( y ), recovered R ( y ) and cross-immune individuals C ( y ). To solve the NIDS, an error function is designed using NIDS and its leading initial conditions (ICs). This error function is optimised with a combination of MWNNs and GA-SQP to solve for all the groups of NIDS. The comparison of the obtained solutions and Runge–Kutta results is presented to authenticate the correctness of the designed MWNNs along with the GA-SQP for solving NIDS. Moreover, the statistical operators using different measures are presented to check the reliability and constancy of the MWNNs along with the GA-SQP to solve the NIDS.
In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programming (SQP), that is, GA-SQP, are executed as the global and local search techniques. The mathematical form of the NIDS depends upon four groups: susceptible S(y), infected I(y), recovered R(y) and cross-immune individuals C(y). To solve the NIDS, an error function is designed using NIDS and its leading initial conditions (ICs). This error function is optimised with a combination of MWNNs and GA-SQP to solve for all the groups of NIDS. The comparison of the obtained solutions and Runge–Kutta results is presented to authenticate the correctness of the designed MWNNs along with the GA-SQP for solving NIDS. Moreover, the statistical operators using different measures are presented to check the reliability and constancy of the MWNNs along with the GA-SQP to solve the NIDS.
In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programming (SQP), that is, GA-SQP, are executed as the global and local search techniques. The mathematical form of the NIDS depends upon four groups: susceptible ), infected ), recovered ) and cross-immune individuals ). To solve the NIDS, an error function is designed using NIDS and its leading initial conditions (ICs). This error function is optimised with a combination of MWNNs and GA-SQP to solve for all the groups of NIDS. The comparison of the obtained solutions and Runge–Kutta results is presented to authenticate the correctness of the designed MWNNs along with the GA-SQP for solving NIDS. Moreover, the statistical operators using different measures are presented to check the reliability and constancy of the MWNNs along with the GA-SQP to solve the NIDS.
Author Sabir, Zulqurnain
Raja, Muhammad Asif Zahoor
Shorman, Samer M.
Fathurrochman, Irwan
Umar, Muhammad
Author_xml – sequence: 1
  givenname: Zulqurnain
  surname: Sabir
  fullname: Sabir, Zulqurnain
  email: zulqurnain_maths@hu.edu.pk
  organization: Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan
– sequence: 2
  givenname: Muhammad
  surname: Umar
  fullname: Umar, Muhammad
  organization: Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan
– sequence: 3
  givenname: Muhammad Asif Zahoor
  surname: Raja
  fullname: Raja, Muhammad Asif Zahoor
  organization: Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, R.O.C
– sequence: 4
  givenname: Irwan
  surname: Fathurrochman
  fullname: Fathurrochman, Irwan
  organization: Department of Islamic Educational Management, Institute of Agama Islam Negeri Curup, Rejang Lebong, Indonesia
– sequence: 5
  givenname: Samer M.
  surname: Shorman
  fullname: Shorman, Samer M.
  organization: Department of Accounting and Finance, Faculty of Administrative Sciences, Applied Science University, Al Eker, Kingdom of Bahrain
BookMark eNp9kEtPwzAQhC1UJErpD-BmiXOKX4mTE0LlKYG4gMTNcuNNSUntYjutyq8noUggJDjNHPbb2Z1DNLDOAkLHlEyYkPmpXtowYYTRCZsQQhnZQ0MmhEjyLM0GP_wBGoewIIQwTnmWsSF6voBQzy12Fb53voGIN3oNvVpovW46iRvnX3F0OLhmDTi-AO7yk6a2oD2ubdW0YN81NnUAHQCHbYiwPEL7lW4CjL90hJ6uLh-nN8ndw_Xt9PwuKblkMTGGC8kEN6IodZkRw8pcFsxQyaSYzaCgUnNTGZ4aatJUFqkWsiiMIDCjLOV8hE52e1fevbUQolq41tsuUnFa0O51mpJuiu6mSu9C8FCpla-X2m8VJarvUPUdqr5DxdRnhx0jfzFlHXWsnY1e182_5NmO3Ogmgjcw9-22M9-n_cnmPc_5B7aDjfI
CitedBy_id crossref_primary_10_1063_5_0085737
crossref_primary_10_1016_j_bspc_2022_103888
crossref_primary_10_3390_pr11030722
crossref_primary_10_1140_epjp_s13360_022_02869_3
crossref_primary_10_1007_s11071_023_08381_2
crossref_primary_10_1016_j_cnsns_2024_108121
crossref_primary_10_1088_1402_4896_ad0581
crossref_primary_10_1007_s00500_022_07359_3
crossref_primary_10_3390_cancers15051591
Cites_doi 10.1016/j.orhc.2015.05.003
10.1155/2020/7359242
10.1007/s40314-020-01330-4
10.1016/j.jtbi.2004.11.032
10.1016/j.ymssp.2020.106708
10.1016/j.eswa.2017.03.021
10.1016/j.asoc.2018.01.009
10.1016/j.cor.2013.12.001
10.1140/epjp/s13360-020-00417-5
10.21042/AMNS.2018.1.00005
10.1155/2020/5063271
10.1155/2020/5984095
10.1016/j.rinp.2020.103585
10.3390/sym12101628
10.1063/1.5117285
10.1016/j.taml.2020.01.049
10.1016/j.mbs.2005.12.029
10.1016/j.eswa.2017.09.013
10.1155/2019/9860471
10.1016/j.matcom.2020.06.021
10.1007/s00158-017-1869-z
10.1007/s00521-017-3110-9
10.1016/j.petrol.2018.06.063
10.1016/j.vaccine.2009.02.027
10.1016/j.rinp.2021.104235
10.1016/j.matcom.2008.04.008
10.1186/1471-2458-11-S1-S5
10.1002/etep.2768
10.1088/1757-899X/546/5/052013
10.3390/app9020280
10.1016/j.matcom.2020.01.005
10.1016/j.aej.2021.01.043
10.1002/spy2.36
10.1016/j.aej.2021.01.004
10.1142/S0218348X2140017X
10.1016/j.asoc.2019.04.022
10.1016/j.jocs.2017.08.004
10.2478/AMNS.2018.2.00038
10.1007/s11538-017-0301-6
10.1109/ACCESS.2021.3072952
10.2478/AMNS.2019.1.00009
10.1002/num.22692
10.1007/978-3-030-17795-9_35
10.2478/AMNS.2019.1.00005
10.1016/j.endm.2018.01.008
10.1140/epjp/s13360-020-00557-8
10.1140/epjp/s13360-020-00424-6
10.1061/(ASCE)AS.1943-5525.0001021
10.1155/2020/5251804
10.21042/AMNS.2018.1.00003
10.1007/s13204-020-01581-x
10.1016/j.cie.2019.106030
10.1007/s40314-020-01350-0
10.1016/j.asoc.2021.107105
10.1140/epjp/i2018-12153-4
10.1140/epjp/s13360-020-00183-4
10.1002/mma.2968
ContentType Journal Article
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.2478/amns.2021.2.00120
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
EndPage 2048
ExternalDocumentID 10_2478_amns_2021_2_00120
10_2478_amns_2021_2_00120812033
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c372t-dd347243d49cac60d2c8792d17274bbe917a3dfd35d1d55795a4799d40eb12533
IEDL.DBID BENPR
ISSN 2444-8656
IngestDate Mon Jun 30 11:41:54 EDT 2025
Thu Apr 24 22:58:14 EDT 2025
Tue Jul 01 03:14:27 EDT 2025
Thu Jul 10 10:32:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-dd347243d49cac60d2c8792d17274bbe917a3dfd35d1d55795a4799d40eb12533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3191244150?pq-origsite=%requestingapplication%
PQID 3191244150
PQPubID 6761185
PageCount 16
ParticipantIDs proquest_journals_3191244150
crossref_primary_10_2478_amns_2021_2_00120
crossref_citationtrail_10_2478_amns_2021_2_00120
walterdegruyter_journals_10_2478_amns_2021_2_00120812033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2023
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2024042712233599191_j_amns.2021.2.00120_ref_050
2024042712233599191_j_amns.2021.2.00120_ref_013
2024042712233599191_j_amns.2021.2.00120_ref_057
2024042712233599191_j_amns.2021.2.00120_ref_014
2024042712233599191_j_amns.2021.2.00120_ref_058
2024042712233599191_j_amns.2021.2.00120_ref_011
2024042712233599191_j_amns.2021.2.00120_ref_055
2024042712233599191_j_amns.2021.2.00120_ref_012
2024042712233599191_j_amns.2021.2.00120_ref_056
2024042712233599191_j_amns.2021.2.00120_ref_053
2024042712233599191_j_amns.2021.2.00120_ref_010
2024042712233599191_j_amns.2021.2.00120_ref_054
2024042712233599191_j_amns.2021.2.00120_ref_051
2024042712233599191_j_amns.2021.2.00120_ref_052
2024042712233599191_j_amns.2021.2.00120_ref_019
2024042712233599191_j_amns.2021.2.00120_ref_017
2024042712233599191_j_amns.2021.2.00120_ref_018
2024042712233599191_j_amns.2021.2.00120_ref_015
2024042712233599191_j_amns.2021.2.00120_ref_016
2024042712233599191_j_amns.2021.2.00120_ref_002
2024042712233599191_j_amns.2021.2.00120_ref_046
2024042712233599191_j_amns.2021.2.00120_ref_003
2024042712233599191_j_amns.2021.2.00120_ref_047
2024042712233599191_j_amns.2021.2.00120_ref_044
2024042712233599191_j_amns.2021.2.00120_ref_001
2024042712233599191_j_amns.2021.2.00120_ref_045
2024042712233599191_j_amns.2021.2.00120_ref_042
2024042712233599191_j_amns.2021.2.00120_ref_043
2024042712233599191_j_amns.2021.2.00120_ref_040
2024042712233599191_j_amns.2021.2.00120_ref_041
2024042712233599191_j_amns.2021.2.00120_ref_008
2024042712233599191_j_amns.2021.2.00120_ref_009
2024042712233599191_j_amns.2021.2.00120_ref_006
2024042712233599191_j_amns.2021.2.00120_ref_007
2024042712233599191_j_amns.2021.2.00120_ref_004
2024042712233599191_j_amns.2021.2.00120_ref_048
2024042712233599191_j_amns.2021.2.00120_ref_005
2024042712233599191_j_amns.2021.2.00120_ref_049
2024042712233599191_j_amns.2021.2.00120_ref_035
2024042712233599191_j_amns.2021.2.00120_ref_036
2024042712233599191_j_amns.2021.2.00120_ref_033
2024042712233599191_j_amns.2021.2.00120_ref_034
2024042712233599191_j_amns.2021.2.00120_ref_031
2024042712233599191_j_amns.2021.2.00120_ref_032
2024042712233599191_j_amns.2021.2.00120_ref_030
2024042712233599191_j_amns.2021.2.00120_ref_039
2024042712233599191_j_amns.2021.2.00120_ref_037
2024042712233599191_j_amns.2021.2.00120_ref_038
2024042712233599191_j_amns.2021.2.00120_ref_024
2024042712233599191_j_amns.2021.2.00120_ref_025
2024042712233599191_j_amns.2021.2.00120_ref_022
2024042712233599191_j_amns.2021.2.00120_ref_023
2024042712233599191_j_amns.2021.2.00120_ref_020
2024042712233599191_j_amns.2021.2.00120_ref_021
2024042712233599191_j_amns.2021.2.00120_ref_028
2024042712233599191_j_amns.2021.2.00120_ref_029
2024042712233599191_j_amns.2021.2.00120_ref_026
2024042712233599191_j_amns.2021.2.00120_ref_027
References_xml – ident: 2024042712233599191_j_amns.2021.2.00120_ref_010
  doi: 10.1016/j.orhc.2015.05.003
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_021
  doi: 10.1155/2020/7359242
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_024
  doi: 10.1007/s40314-020-01330-4
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_011
  doi: 10.1016/j.jtbi.2004.11.032
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_033
  doi: 10.1016/j.ymssp.2020.106708
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_034
  doi: 10.1016/j.eswa.2017.03.021
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_040
  doi: 10.1016/j.asoc.2018.01.009
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_005
  doi: 10.1016/j.cor.2013.12.001
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_041
  doi: 10.1140/epjp/s13360-020-00417-5
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_053
  doi: 10.21042/AMNS.2018.1.00005
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_051
  doi: 10.1155/2020/5063271
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_012
  doi: 10.1155/2020/5984095
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_022
  doi: 10.1016/j.rinp.2020.103585
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_016
  doi: 10.3390/sym12101628
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_007
  doi: 10.1063/1.5117285
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_050
  doi: 10.1016/j.taml.2020.01.049
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_014
  doi: 10.1016/j.mbs.2005.12.029
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_032
  doi: 10.1016/j.eswa.2017.09.013
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_054
  doi: 10.1155/2019/9860471
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_001
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_023
  doi: 10.1016/j.matcom.2020.06.021
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_048
  doi: 10.1007/s00158-017-1869-z
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_027
  doi: 10.1007/s00521-017-3110-9
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_046
  doi: 10.1016/j.petrol.2018.06.063
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_009
  doi: 10.1016/j.vaccine.2009.02.027
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_030
  doi: 10.1016/j.rinp.2021.104235
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_013
  doi: 10.1016/j.matcom.2008.04.008
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_008
  doi: 10.1186/1471-2458-11-S1-S5
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_043
  doi: 10.1002/etep.2768
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_002
  doi: 10.1088/1757-899X/546/5/052013
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_042
  doi: 10.3390/app9020280
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_031
  doi: 10.1016/j.matcom.2020.01.005
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_015
  doi: 10.1016/j.aej.2021.01.043
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_036
  doi: 10.1002/spy2.36
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_018
  doi: 10.1016/j.aej.2021.01.004
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_017
  doi: 10.1142/S0218348X2140017X
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_019
  doi: 10.1016/j.asoc.2019.04.022
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_039
  doi: 10.1016/j.jocs.2017.08.004
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_055
  doi: 10.2478/AMNS.2018.2.00038
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_004
  doi: 10.1007/s11538-017-0301-6
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_029
  doi: 10.1109/ACCESS.2021.3072952
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_052
  doi: 10.2478/AMNS.2019.1.00009
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_047
  doi: 10.1002/num.22692
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_045
  doi: 10.1007/978-3-030-17795-9_35
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_049
  doi: 10.2478/AMNS.2019.1.00005
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_035
  doi: 10.1016/j.endm.2018.01.008
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_026
  doi: 10.1140/epjp/s13360-020-00557-8
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_025
  doi: 10.1140/epjp/s13360-020-00424-6
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_044
  doi: 10.1061/(ASCE)AS.1943-5525.0001021
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_058
  doi: 10.1155/2020/5251804
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_057
  doi: 10.21042/AMNS.2018.1.00003
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_056
  doi: 10.1007/s13204-020-01581-x
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_037
  doi: 10.1016/j.cie.2019.106030
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_028
  doi: 10.1007/s40314-020-01350-0
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_020
  doi: 10.1016/j.asoc.2021.107105
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_038
  doi: 10.1140/epjp/i2018-12153-4
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_003
  doi: 10.1140/epjp/s13360-020-00183-4
– ident: 2024042712233599191_j_amns.2021.2.00120_ref_006
  doi: 10.1002/mma.2968
SSID ssj0002313662
Score 2.324951
Snippet In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2033
SubjectTerms genetic algorithms
Influenza
Morlet wavelet neural networks
Neural networks
Non-linear influenza disease system
numerical measures
Runge–Kutta
sequential quadratic programming
Title Design of Morlet wavelet neural network to solve the non-linear influenza disease system
URI https://www.degruyter.com/doi/10.2478/amns.2021.2.00120
https://www.proquest.com/docview/3191244150
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfgyv3E6Rx58Euq6JP3Ik_gxGcKGiMO9lTRJRdB1dp1D_3ovbbqh4N7TFO4ud7-7S-6H0BmNGU0CSHJkF3IT5iWhE1OdOEpIDiFBQVQy9Y7B0O-P2P3YG9uC28xeq6x8YuGoVSpNjbwDpmJCEeCXy-mHY1ijTHfVUmhsojq44DCsofp1b_jwuKyyAHqhvk_KdiZhQdgR7xMzpZtAbnhRvBz9HZBWKLOxKPrVSr9k86-86o8WYeduBzUsXsRXpYJ30Yae7KFtix2xPZmzfTS-La5i4DTBgzQDZeCFMJwSOTYTK2GHSXnfG-cpBnP71BiQH4bc3zE4U2T4tWQr-RbY9mxwOeT5AI3uek83fceyJjiSBiR3lKIsIIwqxqWQvquIDANOlEEqLI415GeCqkRRT3WV5wXcEyzgXDEX3DYB9HeIavB3fYRwEgJa0srTEEghiAnBWWLGGIUx59J1dRO5legiaUeKG2aLtwhSCyPtyEg7MtKOSFRIu4nOl59My3ka6xa3Kn1E9mjNopUhNFH4R0erVf_uCYDGpfR4_c4naMvQypellhaq5dlcnwL4yOM2-NDnQdva2Q_xyNsU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxwxDLbQcqAXKLRVl1KaA71UmjIkmUcOVQUFtBR2VVUg7S3NJJmqEszQ3aEr-qP4jdjzYAUS3LhnMpLt-PtsJzbAlsikyBMMcuwOxiYyytMgEz4PnLEKIcEhKlG-YziKB2fy-zgaL8BN9xaGrlV2PrF21K60lCPfRlMhKEL-8vXyb0BTo6i62o3QaMzi2F_PMGSbfjnaR_1-5Pzw4PTbIGinCgRWJLwKnBMy4VI4qayxcei4TRPFHSG5zDKP8YsRLncicjsuihIVGZko5WSIbo1HlABFl78oRRzyHizuHYx-_LzL6iBbEnHMm_Ipl0m6bS4K6grOMRb9XL9UvQ-Ac1a7PKvr487_nlxdV109toa5w5ew3PJTttsY1Cos-GINVlquylpPMH0F4_366gcrczYsJ6h8NjM0w6Ji1CETdyia--WsKhma9z_PkGmyoiwC4rVmwv4001H-G9bWiFjTVPo1nD2LPN9AD__u3wLLU2Rn3kUegRtB0xglc2qblGZK2TD0fQg70WnbtjCnSRrnGkMZkrYmaWuStua6lnYfPt19ctn073hq8UanD90e5ameG14f0gc6mq96dE8kUKEQ60_v_AGWBqfDE31yNDp-By9opH2T5tmAXjW58u-R-FTZZmttDH49t4HfAj_bFhg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4hKqG98FxEefqwXJCyBD-a-MABUUqB5SHtIvVmnNhBSJBWbaAq_4Z_yjhxQSCWAxJ324lmxjPfPDwD8IslnGUROjnpDvomXGRxkDCbBUanEk2CQavk4h2nZ432JT_uiM4EPI3fwpR635TZyu2eycpSZR7F2_oud821Kbp0v8sHn76O8sSOhuilDXaPmsjSTUpbB__224EfJBCkLKJFYAzjEeXMcJnqtBEamsaRpMYZb54kFl0WzUxmmDA7RohICs0jKQ0PUZNR4WKeqOVrkZAUL1Ftr3349_wlkIMAiTUatMqYfvyvb23eK5CdHpYpcWOv-_ejYpyCLS1baxamPSQle5UMzcGEzedhxsNT4i__YAE6zbLag3QzctrtI7_JULuxFQVxTTHxhLwqKSdFl6BEP1iC4JLk3TxwUFb3yU01EOVRE58WIlUf6Z9w-S30XIRJ_LpdApLFCMisERZtNdpJrSXPXKekOJEyDUNbh3BMOpX6ruVueMatQu_FUVs5aitHbUVVSe06bL1s6VUtOz5bvDrmh_K3d6BQLTnYg1i5DvE7Hr2u-u-ZiJlCxpa_vnUDpi6aLfXn6OxkBX64AfdV0GcVJov-vV1DGFQk614QCVx9t-w_Az92Fu0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Morlet+wavelet+neural+network+to+solve+the+non-linear+influenza+disease+system&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Sabir%2C+Zulqurnain&rft.au=Umar%2C+Muhammad&rft.au=Muhammad+Asif+Zahoor+Raja&rft.au=Fathurrochman%2C+Irwan&rft.date=2023-01-01&rft.pub=De+Gruyter+Poland&rft.eissn=2444-8656&rft.volume=8&rft.issue=1&rft.spage=2033&rft.epage=2048&rft_id=info:doi/10.2478%2Famns.2021.2.00120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon