Design of Morlet wavelet neural network to solve the non-linear influenza disease system
In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programmi...
Saved in:
Published in | Applied mathematics and nonlinear sciences Vol. 8; no. 1; pp. 2033 - 2048 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beirut
Sciendo
01.01.2023
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programming (SQP), that is, GA-SQP, are executed as the global and local search techniques. The mathematical form of the NIDS depends upon four groups: susceptible
), infected
), recovered
) and cross-immune individuals
). To solve the NIDS, an error function is designed using NIDS and its leading initial conditions (ICs). This error function is optimised with a combination of MWNNs and GA-SQP to solve for all the groups of NIDS. The comparison of the obtained solutions and Runge–Kutta results is presented to authenticate the correctness of the designed MWNNs along with the GA-SQP for solving NIDS. Moreover, the statistical operators using different measures are presented to check the reliability and constancy of the MWNNs along with the GA-SQP to solve the NIDS. |
---|---|
AbstractList | In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programming (SQP), that is, GA-SQP, are executed as the global and local search techniques. The mathematical form of the NIDS depends upon four groups: susceptible
S
(
y
), infected
I
(
y
), recovered
R
(
y
) and cross-immune individuals
C
(
y
). To solve the NIDS, an error function is designed using NIDS and its leading initial conditions (ICs). This error function is optimised with a combination of MWNNs and GA-SQP to solve for all the groups of NIDS. The comparison of the obtained solutions and Runge–Kutta results is presented to authenticate the correctness of the designed MWNNs along with the GA-SQP for solving NIDS. Moreover, the statistical operators using different measures are presented to check the reliability and constancy of the MWNNs along with the GA-SQP to solve the NIDS. In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programming (SQP), that is, GA-SQP, are executed as the global and local search techniques. The mathematical form of the NIDS depends upon four groups: susceptible S(y), infected I(y), recovered R(y) and cross-immune individuals C(y). To solve the NIDS, an error function is designed using NIDS and its leading initial conditions (ICs). This error function is optimised with a combination of MWNNs and GA-SQP to solve for all the groups of NIDS. The comparison of the obtained solutions and Runge–Kutta results is presented to authenticate the correctness of the designed MWNNs along with the GA-SQP for solving NIDS. Moreover, the statistical operators using different measures are presented to check the reliability and constancy of the MWNNs along with the GA-SQP to solve the NIDS. In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the optimisation procedures of the hybrid process of global/local search approaches. The genetic algorithm (GA) and sequential quadratic programming (SQP), that is, GA-SQP, are executed as the global and local search techniques. The mathematical form of the NIDS depends upon four groups: susceptible ), infected ), recovered ) and cross-immune individuals ). To solve the NIDS, an error function is designed using NIDS and its leading initial conditions (ICs). This error function is optimised with a combination of MWNNs and GA-SQP to solve for all the groups of NIDS. The comparison of the obtained solutions and Runge–Kutta results is presented to authenticate the correctness of the designed MWNNs along with the GA-SQP for solving NIDS. Moreover, the statistical operators using different measures are presented to check the reliability and constancy of the MWNNs along with the GA-SQP to solve the NIDS. |
Author | Sabir, Zulqurnain Raja, Muhammad Asif Zahoor Shorman, Samer M. Fathurrochman, Irwan Umar, Muhammad |
Author_xml | – sequence: 1 givenname: Zulqurnain surname: Sabir fullname: Sabir, Zulqurnain email: zulqurnain_maths@hu.edu.pk organization: Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan – sequence: 2 givenname: Muhammad surname: Umar fullname: Umar, Muhammad organization: Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan – sequence: 3 givenname: Muhammad Asif Zahoor surname: Raja fullname: Raja, Muhammad Asif Zahoor organization: Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, R.O.C – sequence: 4 givenname: Irwan surname: Fathurrochman fullname: Fathurrochman, Irwan organization: Department of Islamic Educational Management, Institute of Agama Islam Negeri Curup, Rejang Lebong, Indonesia – sequence: 5 givenname: Samer M. surname: Shorman fullname: Shorman, Samer M. organization: Department of Accounting and Finance, Faculty of Administrative Sciences, Applied Science University, Al Eker, Kingdom of Bahrain |
BookMark | eNp9kEtPwzAQhC1UJErpD-BmiXOKX4mTE0LlKYG4gMTNcuNNSUntYjutyq8noUggJDjNHPbb2Z1DNLDOAkLHlEyYkPmpXtowYYTRCZsQQhnZQ0MmhEjyLM0GP_wBGoewIIQwTnmWsSF6voBQzy12Fb53voGIN3oNvVpovW46iRvnX3F0OLhmDTi-AO7yk6a2oD2ubdW0YN81NnUAHQCHbYiwPEL7lW4CjL90hJ6uLh-nN8ndw_Xt9PwuKblkMTGGC8kEN6IodZkRw8pcFsxQyaSYzaCgUnNTGZ4aatJUFqkWsiiMIDCjLOV8hE52e1fevbUQolq41tsuUnFa0O51mpJuiu6mSu9C8FCpla-X2m8VJarvUPUdqr5DxdRnhx0jfzFlHXWsnY1e182_5NmO3Ogmgjcw9-22M9-n_cnmPc_5B7aDjfI |
CitedBy_id | crossref_primary_10_1063_5_0085737 crossref_primary_10_1016_j_bspc_2022_103888 crossref_primary_10_3390_pr11030722 crossref_primary_10_1140_epjp_s13360_022_02869_3 crossref_primary_10_1007_s11071_023_08381_2 crossref_primary_10_1016_j_cnsns_2024_108121 crossref_primary_10_1088_1402_4896_ad0581 crossref_primary_10_1007_s00500_022_07359_3 crossref_primary_10_3390_cancers15051591 |
Cites_doi | 10.1016/j.orhc.2015.05.003 10.1155/2020/7359242 10.1007/s40314-020-01330-4 10.1016/j.jtbi.2004.11.032 10.1016/j.ymssp.2020.106708 10.1016/j.eswa.2017.03.021 10.1016/j.asoc.2018.01.009 10.1016/j.cor.2013.12.001 10.1140/epjp/s13360-020-00417-5 10.21042/AMNS.2018.1.00005 10.1155/2020/5063271 10.1155/2020/5984095 10.1016/j.rinp.2020.103585 10.3390/sym12101628 10.1063/1.5117285 10.1016/j.taml.2020.01.049 10.1016/j.mbs.2005.12.029 10.1016/j.eswa.2017.09.013 10.1155/2019/9860471 10.1016/j.matcom.2020.06.021 10.1007/s00158-017-1869-z 10.1007/s00521-017-3110-9 10.1016/j.petrol.2018.06.063 10.1016/j.vaccine.2009.02.027 10.1016/j.rinp.2021.104235 10.1016/j.matcom.2008.04.008 10.1186/1471-2458-11-S1-S5 10.1002/etep.2768 10.1088/1757-899X/546/5/052013 10.3390/app9020280 10.1016/j.matcom.2020.01.005 10.1016/j.aej.2021.01.043 10.1002/spy2.36 10.1016/j.aej.2021.01.004 10.1142/S0218348X2140017X 10.1016/j.asoc.2019.04.022 10.1016/j.jocs.2017.08.004 10.2478/AMNS.2018.2.00038 10.1007/s11538-017-0301-6 10.1109/ACCESS.2021.3072952 10.2478/AMNS.2019.1.00009 10.1002/num.22692 10.1007/978-3-030-17795-9_35 10.2478/AMNS.2019.1.00005 10.1016/j.endm.2018.01.008 10.1140/epjp/s13360-020-00557-8 10.1140/epjp/s13360-020-00424-6 10.1061/(ASCE)AS.1943-5525.0001021 10.1155/2020/5251804 10.21042/AMNS.2018.1.00003 10.1007/s13204-020-01581-x 10.1016/j.cie.2019.106030 10.1007/s40314-020-01350-0 10.1016/j.asoc.2021.107105 10.1140/epjp/i2018-12153-4 10.1140/epjp/s13360-020-00183-4 10.1002/mma.2968 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI |
DOI | 10.2478/amns.2021.2.00120 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2444-8656 |
EndPage | 2048 |
ExternalDocumentID | 10_2478_amns_2021_2_00120 10_2478_amns_2021_2_00120812033 |
GroupedDBID | 9WM AATOW ABFKT ADBLJ AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c372t-dd347243d49cac60d2c8792d17274bbe917a3dfd35d1d55795a4799d40eb12533 |
IEDL.DBID | BENPR |
ISSN | 2444-8656 |
IngestDate | Mon Jun 30 11:41:54 EDT 2025 Thu Apr 24 22:58:14 EDT 2025 Tue Jul 01 03:14:27 EDT 2025 Thu Jul 10 10:32:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-dd347243d49cac60d2c8792d17274bbe917a3dfd35d1d55795a4799d40eb12533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3191244150?pq-origsite=%requestingapplication% |
PQID | 3191244150 |
PQPubID | 6761185 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3191244150 crossref_primary_10_2478_amns_2021_2_00120 crossref_citationtrail_10_2478_amns_2021_2_00120 walterdegruyter_journals_10_2478_amns_2021_2_00120812033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beirut |
PublicationPlace_xml | – name: Beirut |
PublicationTitle | Applied mathematics and nonlinear sciences |
PublicationYear | 2023 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2024042712233599191_j_amns.2021.2.00120_ref_050 2024042712233599191_j_amns.2021.2.00120_ref_013 2024042712233599191_j_amns.2021.2.00120_ref_057 2024042712233599191_j_amns.2021.2.00120_ref_014 2024042712233599191_j_amns.2021.2.00120_ref_058 2024042712233599191_j_amns.2021.2.00120_ref_011 2024042712233599191_j_amns.2021.2.00120_ref_055 2024042712233599191_j_amns.2021.2.00120_ref_012 2024042712233599191_j_amns.2021.2.00120_ref_056 2024042712233599191_j_amns.2021.2.00120_ref_053 2024042712233599191_j_amns.2021.2.00120_ref_010 2024042712233599191_j_amns.2021.2.00120_ref_054 2024042712233599191_j_amns.2021.2.00120_ref_051 2024042712233599191_j_amns.2021.2.00120_ref_052 2024042712233599191_j_amns.2021.2.00120_ref_019 2024042712233599191_j_amns.2021.2.00120_ref_017 2024042712233599191_j_amns.2021.2.00120_ref_018 2024042712233599191_j_amns.2021.2.00120_ref_015 2024042712233599191_j_amns.2021.2.00120_ref_016 2024042712233599191_j_amns.2021.2.00120_ref_002 2024042712233599191_j_amns.2021.2.00120_ref_046 2024042712233599191_j_amns.2021.2.00120_ref_003 2024042712233599191_j_amns.2021.2.00120_ref_047 2024042712233599191_j_amns.2021.2.00120_ref_044 2024042712233599191_j_amns.2021.2.00120_ref_001 2024042712233599191_j_amns.2021.2.00120_ref_045 2024042712233599191_j_amns.2021.2.00120_ref_042 2024042712233599191_j_amns.2021.2.00120_ref_043 2024042712233599191_j_amns.2021.2.00120_ref_040 2024042712233599191_j_amns.2021.2.00120_ref_041 2024042712233599191_j_amns.2021.2.00120_ref_008 2024042712233599191_j_amns.2021.2.00120_ref_009 2024042712233599191_j_amns.2021.2.00120_ref_006 2024042712233599191_j_amns.2021.2.00120_ref_007 2024042712233599191_j_amns.2021.2.00120_ref_004 2024042712233599191_j_amns.2021.2.00120_ref_048 2024042712233599191_j_amns.2021.2.00120_ref_005 2024042712233599191_j_amns.2021.2.00120_ref_049 2024042712233599191_j_amns.2021.2.00120_ref_035 2024042712233599191_j_amns.2021.2.00120_ref_036 2024042712233599191_j_amns.2021.2.00120_ref_033 2024042712233599191_j_amns.2021.2.00120_ref_034 2024042712233599191_j_amns.2021.2.00120_ref_031 2024042712233599191_j_amns.2021.2.00120_ref_032 2024042712233599191_j_amns.2021.2.00120_ref_030 2024042712233599191_j_amns.2021.2.00120_ref_039 2024042712233599191_j_amns.2021.2.00120_ref_037 2024042712233599191_j_amns.2021.2.00120_ref_038 2024042712233599191_j_amns.2021.2.00120_ref_024 2024042712233599191_j_amns.2021.2.00120_ref_025 2024042712233599191_j_amns.2021.2.00120_ref_022 2024042712233599191_j_amns.2021.2.00120_ref_023 2024042712233599191_j_amns.2021.2.00120_ref_020 2024042712233599191_j_amns.2021.2.00120_ref_021 2024042712233599191_j_amns.2021.2.00120_ref_028 2024042712233599191_j_amns.2021.2.00120_ref_029 2024042712233599191_j_amns.2021.2.00120_ref_026 2024042712233599191_j_amns.2021.2.00120_ref_027 |
References_xml | – ident: 2024042712233599191_j_amns.2021.2.00120_ref_010 doi: 10.1016/j.orhc.2015.05.003 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_021 doi: 10.1155/2020/7359242 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_024 doi: 10.1007/s40314-020-01330-4 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_011 doi: 10.1016/j.jtbi.2004.11.032 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_033 doi: 10.1016/j.ymssp.2020.106708 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_034 doi: 10.1016/j.eswa.2017.03.021 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_040 doi: 10.1016/j.asoc.2018.01.009 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_005 doi: 10.1016/j.cor.2013.12.001 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_041 doi: 10.1140/epjp/s13360-020-00417-5 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_053 doi: 10.21042/AMNS.2018.1.00005 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_051 doi: 10.1155/2020/5063271 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_012 doi: 10.1155/2020/5984095 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_022 doi: 10.1016/j.rinp.2020.103585 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_016 doi: 10.3390/sym12101628 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_007 doi: 10.1063/1.5117285 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_050 doi: 10.1016/j.taml.2020.01.049 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_014 doi: 10.1016/j.mbs.2005.12.029 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_032 doi: 10.1016/j.eswa.2017.09.013 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_054 doi: 10.1155/2019/9860471 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_001 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_023 doi: 10.1016/j.matcom.2020.06.021 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_048 doi: 10.1007/s00158-017-1869-z – ident: 2024042712233599191_j_amns.2021.2.00120_ref_027 doi: 10.1007/s00521-017-3110-9 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_046 doi: 10.1016/j.petrol.2018.06.063 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_009 doi: 10.1016/j.vaccine.2009.02.027 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_030 doi: 10.1016/j.rinp.2021.104235 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_013 doi: 10.1016/j.matcom.2008.04.008 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_008 doi: 10.1186/1471-2458-11-S1-S5 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_043 doi: 10.1002/etep.2768 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_002 doi: 10.1088/1757-899X/546/5/052013 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_042 doi: 10.3390/app9020280 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_031 doi: 10.1016/j.matcom.2020.01.005 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_015 doi: 10.1016/j.aej.2021.01.043 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_036 doi: 10.1002/spy2.36 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_018 doi: 10.1016/j.aej.2021.01.004 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_017 doi: 10.1142/S0218348X2140017X – ident: 2024042712233599191_j_amns.2021.2.00120_ref_019 doi: 10.1016/j.asoc.2019.04.022 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_039 doi: 10.1016/j.jocs.2017.08.004 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_055 doi: 10.2478/AMNS.2018.2.00038 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_004 doi: 10.1007/s11538-017-0301-6 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_029 doi: 10.1109/ACCESS.2021.3072952 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_052 doi: 10.2478/AMNS.2019.1.00009 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_047 doi: 10.1002/num.22692 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_045 doi: 10.1007/978-3-030-17795-9_35 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_049 doi: 10.2478/AMNS.2019.1.00005 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_035 doi: 10.1016/j.endm.2018.01.008 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_026 doi: 10.1140/epjp/s13360-020-00557-8 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_025 doi: 10.1140/epjp/s13360-020-00424-6 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_044 doi: 10.1061/(ASCE)AS.1943-5525.0001021 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_058 doi: 10.1155/2020/5251804 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_057 doi: 10.21042/AMNS.2018.1.00003 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_056 doi: 10.1007/s13204-020-01581-x – ident: 2024042712233599191_j_amns.2021.2.00120_ref_037 doi: 10.1016/j.cie.2019.106030 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_028 doi: 10.1007/s40314-020-01350-0 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_020 doi: 10.1016/j.asoc.2021.107105 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_038 doi: 10.1140/epjp/i2018-12153-4 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_003 doi: 10.1140/epjp/s13360-020-00183-4 – ident: 2024042712233599191_j_amns.2021.2.00120_ref_006 doi: 10.1002/mma.2968 |
SSID | ssj0002313662 |
Score | 2.324951 |
Snippet | In this study, the solution of the non-linear influenza disease system (NIDS) is presented using the Morlet wavelet neural networks (MWNNs) together with the... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2033 |
SubjectTerms | genetic algorithms Influenza Morlet wavelet neural networks Neural networks Non-linear influenza disease system numerical measures Runge–Kutta sequential quadratic programming |
Title | Design of Morlet wavelet neural network to solve the non-linear influenza disease system |
URI | https://www.degruyter.com/doi/10.2478/amns.2021.2.00120 https://www.proquest.com/docview/3191244150 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfgyv3E6Rx58Euq6JP3Ik_gxGcKGiMO9lTRJRdB1dp1D_3ovbbqh4N7TFO4ud7-7S-6H0BmNGU0CSHJkF3IT5iWhE1OdOEpIDiFBQVQy9Y7B0O-P2P3YG9uC28xeq6x8YuGoVSpNjbwDpmJCEeCXy-mHY1ijTHfVUmhsojq44DCsofp1b_jwuKyyAHqhvk_KdiZhQdgR7xMzpZtAbnhRvBz9HZBWKLOxKPrVSr9k86-86o8WYeduBzUsXsRXpYJ30Yae7KFtix2xPZmzfTS-La5i4DTBgzQDZeCFMJwSOTYTK2GHSXnfG-cpBnP71BiQH4bc3zE4U2T4tWQr-RbY9mxwOeT5AI3uek83fceyJjiSBiR3lKIsIIwqxqWQvquIDANOlEEqLI415GeCqkRRT3WV5wXcEyzgXDEX3DYB9HeIavB3fYRwEgJa0srTEEghiAnBWWLGGIUx59J1dRO5legiaUeKG2aLtwhSCyPtyEg7MtKOSFRIu4nOl59My3ka6xa3Kn1E9mjNopUhNFH4R0erVf_uCYDGpfR4_c4naMvQypellhaq5dlcnwL4yOM2-NDnQdva2Q_xyNsU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxwxDLbQcqAXKLRVl1KaA71UmjIkmUcOVQUFtBR2VVUg7S3NJJmqEszQ3aEr-qP4jdjzYAUS3LhnMpLt-PtsJzbAlsikyBMMcuwOxiYyytMgEz4PnLEKIcEhKlG-YziKB2fy-zgaL8BN9xaGrlV2PrF21K60lCPfRlMhKEL-8vXyb0BTo6i62o3QaMzi2F_PMGSbfjnaR_1-5Pzw4PTbIGinCgRWJLwKnBMy4VI4qayxcei4TRPFHSG5zDKP8YsRLncicjsuihIVGZko5WSIbo1HlABFl78oRRzyHizuHYx-_LzL6iBbEnHMm_Ipl0m6bS4K6grOMRb9XL9UvQ-Ac1a7PKvr487_nlxdV109toa5w5ew3PJTttsY1Cos-GINVlquylpPMH0F4_366gcrczYsJ6h8NjM0w6Ji1CETdyia--WsKhma9z_PkGmyoiwC4rVmwv4001H-G9bWiFjTVPo1nD2LPN9AD__u3wLLU2Rn3kUegRtB0xglc2qblGZK2TD0fQg70WnbtjCnSRrnGkMZkrYmaWuStua6lnYfPt19ctn073hq8UanD90e5ameG14f0gc6mq96dE8kUKEQ60_v_AGWBqfDE31yNDp-By9opH2T5tmAXjW58u-R-FTZZmttDH49t4HfAj_bFhg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4hKqG98FxEefqwXJCyBD-a-MABUUqB5SHtIvVmnNhBSJBWbaAq_4Z_yjhxQSCWAxJ324lmxjPfPDwD8IslnGUROjnpDvomXGRxkDCbBUanEk2CQavk4h2nZ432JT_uiM4EPI3fwpR635TZyu2eycpSZR7F2_oud821Kbp0v8sHn76O8sSOhuilDXaPmsjSTUpbB__224EfJBCkLKJFYAzjEeXMcJnqtBEamsaRpMYZb54kFl0WzUxmmDA7RohICs0jKQ0PUZNR4WKeqOVrkZAUL1Ftr3349_wlkIMAiTUatMqYfvyvb23eK5CdHpYpcWOv-_ejYpyCLS1baxamPSQle5UMzcGEzedhxsNT4i__YAE6zbLag3QzctrtI7_JULuxFQVxTTHxhLwqKSdFl6BEP1iC4JLk3TxwUFb3yU01EOVRE58WIlUf6Z9w-S30XIRJ_LpdApLFCMisERZtNdpJrSXPXKekOJEyDUNbh3BMOpX6ruVueMatQu_FUVs5aitHbUVVSe06bL1s6VUtOz5bvDrmh_K3d6BQLTnYg1i5DvE7Hr2u-u-ZiJlCxpa_vnUDpi6aLfXn6OxkBX64AfdV0GcVJov-vV1DGFQk614QCVx9t-w_Az92Fu0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Morlet+wavelet+neural+network+to+solve+the+non-linear+influenza+disease+system&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Sabir%2C+Zulqurnain&rft.au=Umar%2C+Muhammad&rft.au=Muhammad+Asif+Zahoor+Raja&rft.au=Fathurrochman%2C+Irwan&rft.date=2023-01-01&rft.pub=De+Gruyter+Poland&rft.eissn=2444-8656&rft.volume=8&rft.issue=1&rft.spage=2033&rft.epage=2048&rft_id=info:doi/10.2478%2Famns.2021.2.00120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |