Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection
Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area o...
Saved in:
Published in | Australasian physical & engineering sciences in medicine Vol. 39; no. 3; pp. 797 - 806 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep. |
---|---|
AbstractList | Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep. Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep.Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep. Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep. |
Author | Padma Shri, T. K. Sriraam, N. Maheshwari, Uma |
Author_xml | – sequence: 1 givenname: N. surname: Sriraam fullname: Sriraam, N. email: sriraam@msrit.edu organization: Center for Medical Electronics and Computing, M.S.Ramaiah Institute of Technology (An Autonomous Institute, Affiliated to Visvesvaraya Technological University) – sequence: 2 givenname: T. K. surname: Padma Shri fullname: Padma Shri, T. K. organization: Department of Electronics & Communication, Manipal Institute of Technology, Manipal University, Department of Electronics & Communication, SCSVMV University – sequence: 3 givenname: Uma surname: Maheshwari fullname: Maheshwari, Uma organization: Department of Pulmonary Medicine, St. Johns National Academy of Health Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27550443$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3TAQhUVJaG4eP6CbIuimGyeSJUvysoS-IFAo7VroyiPHqa_kamRC_n10uWkogXYxzGK-MzOcc0qOYopAyBvOLjlj-gq5aKVqGK8ldduYV2TDje6bTkp9RDaMd6bpe2FOyCniHWOtFMq8Jiet7jompdiQ8h18GuNUphRpCvTe_YIGZ4CFYnEjUE5361wmf-tihJkCjHRxpUCOSFec4khxAV-yq7NYcloeaABX1gxIQ8p0yOm-YoBIByiVrIfOyXFwM8LFUz8jPz99_HH9pbn59vnr9YebxgvdlmbYSmW8H4z0HQM_CM6cCkFq53XY-s6BEo57NshQR7o6ArLvQXstBg9uK87I-8PeJaffK2Cxuwk9zLOLkFa03LSs6zulVEXfvUDv0ppj_a5SvFdKa64r9faJWrc7GOySp53LD_aPnxXgB8DnhJghPCOc2X1m9pCZrZnZfWbWVI1-ofFTcXufqqvT_F9le1BivRJHyH89_U_RI2kErNc |
CitedBy_id | crossref_primary_10_1016_j_trf_2023_08_007 crossref_primary_10_1093_sleep_zsz225 crossref_primary_10_1080_1463922X_2020_1842548 crossref_primary_10_1109_ACCESS_2019_2939038 crossref_primary_10_3389_fnins_2020_00008 crossref_primary_10_1186_s13104_017_2947_4 crossref_primary_10_3389_fnins_2021_564098 crossref_primary_10_3390_nu15245101 crossref_primary_10_4018_IJIRR_299941 crossref_primary_10_3390_s21206932 crossref_primary_10_1016_j_bspc_2021_102898 crossref_primary_10_1088_1742_6596_2949_1_012009 crossref_primary_10_3389_fnins_2022_782474 crossref_primary_10_1007_s00500_021_06218_x crossref_primary_10_1016_j_psep_2022_06_039 crossref_primary_10_1007_s13246_021_01020_3 crossref_primary_10_3390_s24082625 |
Cites_doi | 10.1097/00000542-199810000-00023 10.1001/archinte.164.4.406 10.1016/j.clinph.2005.04.001 10.1111/j.0001-5172.2004.00323.x 10.1111/j.0001-5172.2004.00322.x 10.1016/j.artmed.2011.06.004 10.1016/B978-1-4160-6645-3.00002-5 10.1103/PhysRevB.60.7299 10.1109/TASSP.1984.1164296 10.4018/ijbce.2014010103 10.1093/bja/aes312 10.1016/S1388-2457(00)00476-4 10.1183/09031936.02.00288202 10.1053/smrv.2001.0145 10.1183/09031936.98.11051135 10.1007/978-3-642-32909-8_5 10.1016/j.eswa.2012.09.022 10.1016/j.cmpb.2005.06.011 10.1002/j.1538-7305.1948.tb00917.x 10.1109/ISDA.2011.6121664 10.1109/NAECON.2011.6183071 10.1109/IEMBS.2005.1615793 10.1109/IEMBS.2011.6090897 10.1109/BioCAS.2015.7348362 10.1109/ATC.2011.6027492 10.1096/fasebj.20.4.A412-b 10.1109/MedCom.2014.7006048 10.1109/BRC.2011.5740661 10.1155/2012/107046 10.1111/j.1365-2044.2005.04289.x 10.1109/IECBES.2014.7047537 10.1109/IJCNN.2000.861392 |
ContentType | Journal Article |
Copyright | Australasian College of Physical Scientists and Engineers in Medicine 2016 |
Copyright_xml | – notice: Australasian College of Physical Scientists and Engineers in Medicine 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s13246-016-0472-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-5447 |
EndPage | 806 |
ExternalDocumentID | 4183244501 27550443 10_1007_s13246_016_0472_8 |
Genre | Journal Article Feature |
GroupedDBID | -EM ..I 06D 0R~ 0VY 1N0 203 23N 29~ 2KG 30V 36B 3V. 4.4 408 40D 53G 5GY 67N 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8WZ 96X A6W AAAVM AAIAL AAJKR AANXM AARHV AARTL AATVU AAWCG AAYIU AAYQN AAYTO AAZMS ABFTV ABJNI ABJOX ABKCH ABPLI ABQBU ABTAH ABTHY ABTMW ABULA ABUWG ABXPI ACBXY ACGFS ACGOD ACKNC ACMLO ADBBV ADHHG ADHIR ADINQ ADKPE ADRFC ADURQ ADZKW AEBTG AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AETCA AEXYK AFKRA AFWTZ AFZKB AGAYW AGDGC AGJBK AGQMX AGWZB AGYKE AH1 AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIIXL AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMYQR ANMIH ARAPS AXYYD AZQEC BENPR BGLVJ BGNMA BPHCQ BVXVI CAG CCPQU COF CSCUP DWQXO EIOEI EJD EMB EMOBN EN4 ESBYG EX3 FIGPU FINBP FRRFC FSGXE FYJPI FYUFA GGRSB GJIRD GNUQQ GQ6 GQ7 H13 HCIFZ HF~ HMCUK HMJXF HRMNR HZ~ I0C IAEEK IEN ITM J0Z JBSCW KOV KTM M1P M2P M4Y NQJWS NU0 O9- O93 O9I O9J P2P P62 PQQKQ PROAC PSQYO Q2X R9I RLLFE ROL RSV S1Z S27 S3A S3B SBL SHX SISQX SNE SNX SPISZ SSXJD STPWE SV3 T13 TSG U2A U9L UG4 UKHRP UZXMN VC2 VFIZW W48 WK8 WOQ WOW Z45 ZOVNA ZY4 ~A9 AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c372t-db468ccd84c50ecd310a6ff47ac7fbc5ae63a1c0d4f3107007e499e7c73dceab3 |
IEDL.DBID | 7X7 |
ISSN | 0158-9938 1879-5447 |
IngestDate | Fri Jul 11 06:54:16 EDT 2025 Fri Jul 25 05:27:37 EDT 2025 Thu Jan 02 22:19:59 EST 2025 Tue Jul 01 04:24:15 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Fri Feb 21 02:33:08 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Keywords | Spectral entropy (SE) Electroencephalogram (EEG) Back propagation (BP) algorithm Multilayer perceptron-feed forward (MLP-FF) neural network Polysomnograms (PSG) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-db468ccd84c50ecd310a6ff47ac7fbc5ae63a1c0d4f3107007e499e7c73dceab3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27550443 |
PQID | 1819667717 |
PQPubID | 33672 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1820595666 proquest_journals_1819667717 pubmed_primary_27550443 crossref_primary_10_1007_s13246_016_0472_8 crossref_citationtrail_10_1007_s13246_016_0472_8 springer_journals_10_1007_s13246_016_0472_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160900 2016-9-00 2016-Sep 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 9 year: 2016 text: 20160900 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationSubtitle | The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine |
PublicationTitle | Australasian physical & engineering sciences in medicine |
PublicationTitleAbbrev | Australas Phys Eng Sci Med |
PublicationTitleAlternate | Australas Phys Eng Sci Med |
PublicationYear | 2016 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Koley, Dey (CR27) 2012; 10 Morisson, Lavigne, Petit, Nielson, Malo, Montplaisir (CR20) 1998; 11 Germain, Nielson (CR24) 2001; 4 Anier, Lipping, Ferenets, Puumala, Sonkajarvi, Ratsep, Jantti (CR44) 2012; 109 CR35 Vakkuri, Yli-Hankala, Talja (CR37) 2004; 48 Fell, Roschke, Mann, Schaffner (CR21) 1996; 98 Carskadon, Dement (CR46) 2011; 5 Abasolo, Hornero, Espino, Poza, Sanchez, de la Rosa (CR33) 2005; 116 Rechtschaffen, Kales (CR3) 1968 CR2 CR4 Pincus, Goldberger (CR34) 1994; 266 Sun, Bi, Chen, Guo (CR50) 2015; 9 CR6 Dingli, Assimakopoulos, Fietze, Witt, Wraith, Douglas (CR19) 2002; 20 CR5 CR8 CR7 CR9 CR49 CR48 De Gennaro, Ferrara, Ferlazzo, Bertini (CR14) 2000; 111 CR40 Shannon (CR41) 1948; 27 Purnima, Sriraam, Krishnaswamy, Radhika (CR15) 2014; 3 Ross Steyn (CR43) 1999; 60 Redline, Kirchner, Quan, Gottlieb, Kapur, Newman (CR1) 2004; 164 CR17 CR16 CR13 Ogilvie (CR29) 2001; 5 Maksimow, Kaisti, Aalto, Maenpaa, Jaaskelainen, Hinkka, Martens, Sarkela, Oja, Scheinin (CR39) 2005; 60 Malcangi, Smirne (CR30) 2012; 311 CR11 Christopher, Claudia (CR12) 2012 Oja-Viertio, Maja, Sarkela, Talja, Tenkanen, Tolvanen-Laakso, Paloheimo, Vakkuri, Yli-Hankala, Merilainen (CR38) 2004; 48 Rampil (CR36) 1998; 89 Diambra, Bastos de Figueiredo, Malta (CR32) 1999; 273 lvarez-Estevez, Fernandez-Pastoriza, Hernandez-Pereira, Moret-Bonillo (CR28) 2013; 40 Krakovska, Mezeiova (CR26) 2011; 53 Acharya, Faust, Kannathal, Chua, Laxminarayan (CR31) 2005; 80 CR25 CR23 CR22 Langkvist, Karlsson, Loutfi (CR10) 2012 Svanborg, Guilleminault (CR18) 1996; 19 Haykin (CR45) 1999 Tinguely, Finelli, Landolt, Borbély, Achermann (CR47) 2006; 32 Johnson, Shore (CR42) 1984; 32 L Diambra (472_CR32) 1999; 273 ML Ross Steyn (472_CR43) 1999; 60 472_CR48 472_CR49 B Koley (472_CR27) 2012; 10 D Abasolo (472_CR33) 2005; 116 Letellier Christopher (472_CR12) 2012 L Gennaro De (472_CR14) 2000; 111 G Tinguely (472_CR47) 2006; 32 A Krakovska (472_CR26) 2011; 53 CE Shannon (472_CR41) 1948; 27 RW Johnson (472_CR42) 1984; 32 M Malcangi (472_CR30) 2012; 311 472_CR11 472_CR35 F Morisson (472_CR20) 1998; 11 K Maksimow (472_CR39) 2005; 60 R Acharya (472_CR31) 2005; 80 E Svanborg (472_CR18) 1996; 19 A Rechtschaffen (472_CR3) 1968 Ira J Rampil (472_CR36) 1998; 89 K Dingli (472_CR19) 2002; 20 BR Purnima (472_CR15) 2014; 3 472_CR40 A Vakkuri (472_CR37) 2004; 48 472_CR23 A Germain (472_CR24) 2001; 4 472_CR25 DA lvarez-Estevez (472_CR28) 2013; 40 RD Ogilvie (472_CR29) 2001; 5 H Oja-Viertio (472_CR38) 2004; 48 SM Pincus (472_CR34) 1994; 266 A Anier (472_CR44) 2012; 109 M Langkvist (472_CR10) 2012 472_CR13 472_CR16 472_CR17 J Fell (472_CR21) 1996; 98 472_CR9 472_CR8 472_CR7 S Haykin (472_CR45) 1999 472_CR2 MA Carskadon (472_CR46) 2011; 5 H Sun (472_CR50) 2015; 9 472_CR6 472_CR5 472_CR4 HL Redline (472_CR1) 2004; 164 472_CR22 |
References_xml | – ident: CR22 – volume: 273 start-page: 495 year: 1999 end-page: 505 ident: CR32 article-title: Epileptic activity recognition in EEG recording publication-title: J Phys A – ident: CR49 – year: 1999 ident: CR45 publication-title: Neural networks, a comprehensive foundation – ident: CR4 – volume: 89 start-page: 980 year: 1998 end-page: 1002 ident: CR36 article-title: A primer for EEG signals processing in anesthesia publication-title: J Am Soc Anesthesiol doi: 10.1097/00000542-199810000-00023 – ident: CR16 – volume: 19 start-page: 248 issue: 3 year: 1996 end-page: 254 ident: CR18 article-title: EEG frequency changes during sleep apneas publication-title: J Sleep – ident: CR35 – volume: 60 start-page: 862 year: 2005 end-page: 869 ident: CR39 article-title: Correlation of EEG spectral entropy with regional cerebral blood flow during sevoflurane and propofol anesthesia publication-title: J Anesth – year: 1968 ident: CR3 publication-title: A manual of standardized terminology techniques and scoring sleep stage of human subjects – ident: CR8 – volume: 98 start-page: 401 year: 1996 end-page: 410 ident: CR21 article-title: Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures publication-title: J Clin Neurophysiol – ident: CR25 – volume: 164 start-page: 406 year: 2004 end-page: 418 ident: CR1 article-title: The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture publication-title: JAMA Intern Med doi: 10.1001/archinte.164.4.406 – volume: 116 start-page: 1826 year: 2005 end-page: 1834 ident: CR33 article-title: Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with approximate entropy publication-title: J Clin Neurophysiol doi: 10.1016/j.clinph.2005.04.001 – volume: 266 start-page: 1643 year: 1994 end-page: 1656 ident: CR34 article-title: Physiological time series analysis: what does regularity quantify? publication-title: Am J Physiol – volume: 48 start-page: 145 year: 2004 end-page: 153 ident: CR37 article-title: Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia publication-title: J Acta Anaesthesiol Scand doi: 10.1111/j.0001-5172.2004.00323.x – volume: 48 start-page: 154 year: 2004 end-page: 161 ident: CR38 article-title: Description of the entropytm algorithm as applied in the Datex-Ohmeda S/5TM entropy module publication-title: Journal of Acta Anesthesiol Scand doi: 10.1111/j.0001-5172.2004.00322.x – volume: 9 start-page: 125 year: 2015 end-page: 134 ident: CR50 article-title: EEG-based safety driving performance estimation and alertness using support vector machine publication-title: Int J Secur Appl – volume: 53 start-page: 25 issue: 1 year: 2011 end-page: 33 ident: CR26 article-title: Automatic sleep scoring: a search for an optimal combination of measures publication-title: J Artif Intell Med doi: 10.1016/j.artmed.2011.06.004 – volume: 5 start-page: 16 year: 2011 end-page: 26 ident: CR46 article-title: Monitoring and staging human sleep publication-title: J Princ Pract Sleep Med doi: 10.1016/B978-1-4160-6645-3.00002-5 – volume: 60 start-page: 7299 year: 1999 end-page: 7311 ident: CR43 article-title: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition publication-title: J Phys Rev doi: 10.1103/PhysRevB.60.7299 – ident: CR11 – ident: CR9 – ident: CR5 – volume: 32 start-page: 129 year: 1984 end-page: 137 ident: CR42 article-title: Which is the better entropy expression for speech processing: S log S or log S? publication-title: IEEE Trans Acoust doi: 10.1109/TASSP.1984.1164296 – volume: 3 start-page: 27 year: 2014 end-page: 41 ident: CR15 article-title: A measure to detect sleep onset using statistical analysis of spike rhythmicity publication-title: Int J Biomed Clin Eng doi: 10.4018/ijbce.2014010103 – volume: 109 start-page: 928 year: 2012 end-page: 934 ident: CR44 article-title: Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy publication-title: Brit J Anesth doi: 10.1093/bja/aes312 – year: 2012 ident: CR10 article-title: Sleep stage classification using unsupervised feature learning publication-title: Adv Artif Neural Syst – volume: 111 start-page: 2107 year: 2000 end-page: 2115 ident: CR14 article-title: Slow eye movements and EEG power spectra during wake-sleep transition publication-title: J Clin Neurophysiol doi: 10.1016/S1388-2457(00)00476-4 – ident: CR2 – ident: CR6 – ident: CR40 – volume: 20 start-page: 1246 year: 2002 end-page: 1253 ident: CR19 article-title: Electroencephalographic spectral analysis: detection of cortical activity changes in sleep apnea patients publication-title: J Eur Respir doi: 10.1183/09031936.02.00288202 – volume: 5 start-page: 247 year: 2001 end-page: 270 ident: CR29 article-title: The process of falling asleep publication-title: J Sleep Med Rev doi: 10.1053/smrv.2001.0145 – year: 2012 ident: CR12 publication-title: Method and system for automatic scoring of sleep stages, the Patent Cooperation Treaty (PCT) – ident: CR23 – volume: 4 start-page: 83 year: 2001 end-page: 90 ident: CR24 article-title: EEG Power associated with early sleep onset images differing in sensory content publication-title: J Sleep Res Online – volume: 32 start-page: 283 year: 2006 end-page: 292 ident: CR47 article-title: Functional EEG topography in sleep and waking: state-dependent and state independent features publication-title: J Neuro Image – ident: CR48 – volume: 11 start-page: 1135 year: 1998 end-page: 1140 ident: CR20 article-title: Spectral analysis of wakefulness and REM sleep EEG in patients with sleep apnea syndrome publication-title: J Eur Respir doi: 10.1183/09031936.98.11051135 – volume: 311 start-page: 41 year: 2012 end-page: 50 ident: CR30 article-title: Fuzzy-logic inference for early detection of sleep onset in car driver publication-title: J Eng Appl Neural Netw doi: 10.1007/978-3-642-32909-8_5 – ident: CR17 – ident: CR13 – volume: 40 start-page: 1796 issue: 5 year: 2013 end-page: 1803 ident: CR28 article-title: A method for the automatic analysis of the sleep macrostructure in continuum publication-title: J Expert Syst Appl doi: 10.1016/j.eswa.2012.09.022 – volume: 80 start-page: 37 year: 2005 end-page: 45 ident: CR31 article-title: Non-linear analysis of EEG signals at various sleep stages publication-title: J Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2005.06.011 – volume: 27 start-page: 623 year: 1948 end-page: 656 ident: CR41 article-title: A mathematical theory of communication publication-title: J Bell Syst Technol doi: 10.1002/j.1538-7305.1948.tb00917.x – ident: CR7 – volume: 10 start-page: 1 year: 2012 end-page: 10 ident: CR27 article-title: An ensemble system for automatic sleep stage classification using single channel EEG signal publication-title: J Comput Biol Med – volume: 3 start-page: 27 year: 2014 ident: 472_CR15 publication-title: Int J Biomed Clin Eng doi: 10.4018/ijbce.2014010103 – ident: 472_CR8 doi: 10.1109/ISDA.2011.6121664 – volume: 32 start-page: 283 year: 2006 ident: 472_CR47 publication-title: J Neuro Image – volume: 116 start-page: 1826 year: 2005 ident: 472_CR33 publication-title: J Clin Neurophysiol doi: 10.1016/j.clinph.2005.04.001 – volume-title: A manual of standardized terminology techniques and scoring sleep stage of human subjects year: 1968 ident: 472_CR3 – volume: 53 start-page: 25 issue: 1 year: 2011 ident: 472_CR26 publication-title: J Artif Intell Med doi: 10.1016/j.artmed.2011.06.004 – volume: 19 start-page: 248 issue: 3 year: 1996 ident: 472_CR18 publication-title: J Sleep – volume: 60 start-page: 7299 year: 1999 ident: 472_CR43 publication-title: J Phys Rev doi: 10.1103/PhysRevB.60.7299 – volume: 266 start-page: 1643 year: 1994 ident: 472_CR34 publication-title: Am J Physiol – ident: 472_CR9 doi: 10.1109/NAECON.2011.6183071 – ident: 472_CR13 doi: 10.1109/IEMBS.2005.1615793 – volume: 4 start-page: 83 year: 2001 ident: 472_CR24 publication-title: J Sleep Res Online – volume: 273 start-page: 495 year: 1999 ident: 472_CR32 publication-title: J Phys A – ident: 472_CR6 doi: 10.1109/IEMBS.2011.6090897 – ident: 472_CR48 doi: 10.1109/BioCAS.2015.7348362 – ident: 472_CR7 – ident: 472_CR4 doi: 10.1109/ATC.2011.6027492 – volume: 111 start-page: 2107 year: 2000 ident: 472_CR14 publication-title: J Clin Neurophysiol doi: 10.1016/S1388-2457(00)00476-4 – ident: 472_CR35 doi: 10.1096/fasebj.20.4.A412-b – ident: 472_CR11 – volume: 40 start-page: 1796 issue: 5 year: 2013 ident: 472_CR28 publication-title: J Expert Syst Appl doi: 10.1016/j.eswa.2012.09.022 – volume: 11 start-page: 1135 year: 1998 ident: 472_CR20 publication-title: J Eur Respir doi: 10.1183/09031936.98.11051135 – volume: 164 start-page: 406 year: 2004 ident: 472_CR1 publication-title: JAMA Intern Med doi: 10.1001/archinte.164.4.406 – ident: 472_CR16 doi: 10.1109/MedCom.2014.7006048 – volume: 20 start-page: 1246 year: 2002 ident: 472_CR19 publication-title: J Eur Respir doi: 10.1183/09031936.02.00288202 – volume: 5 start-page: 16 year: 2011 ident: 472_CR46 publication-title: J Princ Pract Sleep Med doi: 10.1016/B978-1-4160-6645-3.00002-5 – ident: 472_CR2 doi: 10.1109/BRC.2011.5740661 – volume: 5 start-page: 247 year: 2001 ident: 472_CR29 publication-title: J Sleep Med Rev doi: 10.1053/smrv.2001.0145 – volume: 80 start-page: 37 year: 2005 ident: 472_CR31 publication-title: J Comput Methods Progr Biomed doi: 10.1016/j.cmpb.2005.06.011 – year: 2012 ident: 472_CR10 publication-title: Adv Artif Neural Syst doi: 10.1155/2012/107046 – volume-title: Neural networks, a comprehensive foundation year: 1999 ident: 472_CR45 – volume: 9 start-page: 125 year: 2015 ident: 472_CR50 publication-title: Int J Secur Appl – volume: 27 start-page: 623 year: 1948 ident: 472_CR41 publication-title: J Bell Syst Technol doi: 10.1002/j.1538-7305.1948.tb00917.x – volume: 10 start-page: 1 year: 2012 ident: 472_CR27 publication-title: J Comput Biol Med – volume: 60 start-page: 862 year: 2005 ident: 472_CR39 publication-title: J Anesth doi: 10.1111/j.1365-2044.2005.04289.x – volume: 109 start-page: 928 year: 2012 ident: 472_CR44 publication-title: Brit J Anesth doi: 10.1093/bja/aes312 – ident: 472_CR49 – volume: 98 start-page: 401 year: 1996 ident: 472_CR21 publication-title: J Clin Neurophysiol – volume: 311 start-page: 41 year: 2012 ident: 472_CR30 publication-title: J Eng Appl Neural Netw doi: 10.1007/978-3-642-32909-8_5 – ident: 472_CR22 – volume: 89 start-page: 980 year: 1998 ident: 472_CR36 publication-title: J Am Soc Anesthesiol doi: 10.1097/00000542-199810000-00023 – volume: 32 start-page: 129 year: 1984 ident: 472_CR42 publication-title: IEEE Trans Acoust doi: 10.1109/TASSP.1984.1164296 – ident: 472_CR25 doi: 10.1109/IECBES.2014.7047537 – volume-title: Method and system for automatic scoring of sleep stages, the Patent Cooperation Treaty (PCT) year: 2012 ident: 472_CR12 – ident: 472_CR5 – ident: 472_CR17 – ident: 472_CR40 – ident: 472_CR23 doi: 10.1109/IJCNN.2000.861392 – volume: 48 start-page: 154 year: 2004 ident: 472_CR38 publication-title: Journal of Acta Anesthesiol Scand doi: 10.1111/j.0001-5172.2004.00322.x – volume: 48 start-page: 145 year: 2004 ident: 472_CR37 publication-title: J Acta Anaesthesiol Scand doi: 10.1111/j.0001-5172.2004.00323.x |
SSID | ssj0024368 |
Score | 1.805779 |
Snippet | Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 797 |
SubjectTerms | Algorithms Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Databases as Topic Electroencephalography Electroencephalography - methods Entropy Humans Medical and Radiation Physics Neural Networks (Computer) Neurobiology Sleep Sleep - physiology Sleep Stages - physiology Spectrum analysis Technical Paper Wakefulness - physiology |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWBAvAkvGYkJFClNnDgdEaKqGBgQlbpFjn3uQJVUTSrEv-fsJm0RD4khkx0n8tm573LffQa4QS3IyZmunwex8q3gnd8zHP2oJw2Sf7enrlq2xXMyGPKnUTxq6rirlu3epiTdl3pV7Ea-30a_dHFB23gTtmIbutMiHob3awJ7rv6N3Bzt5F6UtqnMn4b46oy-Icxv2VHndPp7sNugRXa_MO8-bGBxADtrGoKHUL-0FKCyYKVh7_IN_WqCOGUE_MbIusyRBm2Fb4EThjhmUyeqWVTMst7HzFVbzug59k9vOf1gBp3cZ8UI0TJNgfqCHM801o65VRzBsP_4-jDwm6MUfBWJsPZ1zpNUKZ1yFQeoNIE6mRjDhVTC5CqWmESyqwLNDTUJmiykUAiFEpFWKPPoGDpFWeApMCWk5ponUZgbrqy8TjfPE2kClWJPhMqDoJ3TTDU64_a4i0m2Uki2Zsgst8yaIUs9uF3eMl2IbPzV-aI1VNbstyojnEJxm6DY1IPrZTPtFJv-kAWWc9snJCxJ8DXx4GRh4OXTQkGRGueRB3etxdcG_-1Vzv7V-xy2Q7f0LEHtAjr1bI6XhGjq_Mqt4E8ewO5l priority: 102 providerName: Springer Nature |
Title | Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection |
URI | https://link.springer.com/article/10.1007/s13246-016-0472-8 https://www.ncbi.nlm.nih.gov/pubmed/27550443 https://www.proquest.com/docview/1819667717 https://www.proquest.com/docview/1820595666 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3a5NIeQr_rNA0q9NQi6rW1lvcUNmU3oYVQQhe2JyNLoz10sZ3YIfTfd0Zrb7aE5mAb_CXjkTRvpKc3AB_RaXJyfiTLeGwlC97JiVco04nxSP6ds64y2-IiO1-ob8vxsh9wa3ta5dAnho7a1ZbHyL-QJyJkrin6OGmuJGeN4tnVPoXGY9hn6TKmdOml3tHaC0vhyONRo56k-TCrGZbOEZLgWJo2palT-Ncv3QOb9yZKg_-ZP4ODHjiK6cbSz-ERVi_g6Y6c4EvoLgc2UF2J2otb8xtlu0ZsBGHAFYqRCPxBXuxb4VogrkQT9DWrVjABfiXCwstrKocHfevmj_AYlD9bQeBWOIrZNzx54bALJK7qFSzms59fz2WfVUHaVCeddKXKcmtdruw4RusI35nMe6WN1b60Y4NZakY2dsrTJU0_CykqQm116iyaMn0Ne1Vd4VsQVhunnMrSpPTKstLOqCwz42Ob40QnNoJ4-KeF7SXHOfPFurgTS2YzFEwzYzMUeQSfto80G72Nh24-GgxV9E2vLe4qSgQftpep0fBMiKmwvuF7EoKVhGSzCN5sDLwtLdEUtCmVRvB5sPjOy__3KYcPf8o7eJKEusbktCPY665v8D2hma48DlWW9vn87Bj2p2e_vs_oeDq7-HFJZxfJ9C8tnPb1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcoAeEN8EChgJLqCIbOKNkwNCCFi2tPSAWqm34NjjPbBK0k2qVf8Uv5EZZ7NdVNFbDznlU5mx54395g3Aa7SKgpwbhWU0NiEL3oW5kxgmuXZI8Z27rjLb4jCdHsvvJ-OTLfgz1MIwrXKYE_1EbWvDa-TvKRIRMleUfXxsTkPuGsW7q0MLjd4t9vF8SSlb-2HvC9n3TRxPvh59noarrgKhSVTchbaUaWaMzaQZR2gs4RudOieVNsqVZqwxTfTIRFY6OqUohiJlBaiMSqxBXSb03BtwUyZJziMqm3zb0PbzpXcUYWkSyZNs2EX1pXqEXDh3p0MqmoT-jYOXwO2ljVkf7yZ34c4KqIpPvWfdgy2s7sPOhnzhA-h-DuyjuhK1E0v9G8N2jtgIwpwzFCPh-YpcXFzhXCDOROP1PKtWMOF-Jnyh54Lew4vMdXMuHHql0VYQmBZ2US97Xr6w2HnSWPUQjq_lfz-C7aqu8AkIo7SVVqZJXDppWNlnVJapdpHJMFexCSAa_mlhVhLn3GljXlyIM7MZCqa1sRmKLIC361uaXt_jqot3B0MVq6HeFheOGcCr9WkapLzzoiusz_iamGAsIec0gMe9gddvixUliVImAbwbLL7x8P99ytOrP-Ul3Joe_TgoDvYO95_B7dj7HRPjdmG7W5zhc0JSXfnCu6-AX9c9Xv4CkNgxMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VIiF6QHwWQ4FFggvIqj_WXueAEKJELUUVQlTKzdi7szkQ2W7sKupf49cxs7bToIreesjJjm15ZnbeeN-8AXiDRlGSs6FfBon2WfDOn1iJfjwpLFJ-56mrzLY4SQ9P5ddZMtuCP2MvDNMqxzXRLdSm1vyNfJ8yESFzRdXHvh1oEd8Pph-bM58nSPFO6zhOo3eRY7xYUfnWfjg6IFu_jaLpl5-fD_1hwoCvYxV1villmmltMqmTALUhrFOk1kpVaGVLnRSYxkWoAyMtHVKUT5EqBFRaxUZjUcZ03VtwW8VJyDGmZmpD58-14VG2pQVlEmfjjqpr2yMUw3U8_aSiBenfnHgF6F7ZpHW5b3of7g2gVXzqvewBbGH1EHY2pAwfQfdjZCLVlaitWBW_0W8XiI0g_DlHEQrHXeRG4woXAnEuGqftWbWCyfdz4Zo-l3Qf_uBcNxfColMdbQUBa2GW9arn6AuDnSOQVY_h9Ebe9xPYruoKn4LQqjDSyDSOSis1q_yEZZkWNtAZTlSkPQjGd5rrQe6cp24s8kuhZjZDzhQ3NkOeefBu_Zem1_q47uS90VD5EPZtfumkHrxeH6aA5V2YosL6nM-JCNISik492O0NvL5bpKhglDL24P1o8Y2L_-9Rnl3_KK_gDkVK_u3o5Pg53I2c2zFHbg-2u-U5viBQ1ZUvnfcK-HXT4fIXf141Xg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+wake-sleep+stage+1+multichannel+eeg+patterns+using+spectral+entropy+features+for+drowsiness+detection&rft.jtitle=Australasian+physical+%26+engineering+sciences+in+medicine&rft.au=Sriraam%2C+N&rft.au=Padma+Shri%2C+T+K&rft.au=Maheshwari%2C+Uma&rft.date=2016-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0158-9938&rft.eissn=1879-5447&rft.volume=39&rft.issue=3&rft.spage=797&rft_id=info:doi/10.1007%2Fs13246-016-0472-8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4183244501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0158-9938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0158-9938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0158-9938&client=summon |