Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection

Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area o...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 39; no. 3; pp. 797 - 806
Main Authors Sriraam, N., Padma Shri, T. K., Maheshwari, Uma
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep.
AbstractList Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep.
Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep.Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep.
Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high degree of irregularity through various stages of sleep. The identification of transition from wakefulness to stage1 sleep is a challenging area of research for the biomedical community. In this paper, spectral entropy (SE) is used as a complexity measure to quantify irregularities in awake and stage1 sleep of 8-channel sleep EEG data from the polysomnographic recordings of ten healthy subjects. The SE measures of awake and stage1 sleep EEG data are estimated for each second and applied to a multilayer perceptron feed forward neural network (MLP-FF). The network is trained using back propagation algorithm for recognizing these two patterns. Initially, the MLP network is trained and tested for randomly chosen subject-wise combined datasets I and II and then for the combined large dataset III. In all cases, 60 % of the entire dataset is used for training while 20 % is used for testing and 20 % for validation. Results indicate that the MLP neural network learns with maximum testing accuracy of 95.9 % for dataset II. In the case of combined large dataset, the network performs with a maximum accuracy of 99.2 % with 100 hidden neurons. Results show that in channels O1, O2, F3 and F4 (A1, A2 as reference), the mean of the spectral entropy value is higher in awake state than in stage1 sleep indicating that the EEG becomes more regular and rhythmic as the subject attains stage1 sleep from wakefulness. However, in C3 and C4 the mean values of SE values are not very much discriminative of both groups. This may prove to be a very effective indicator for scoring the first two stages of sleep EEG and may be used to detect the transition from wakefulness to stage1 sleep.
Author Padma Shri, T. K.
Sriraam, N.
Maheshwari, Uma
Author_xml – sequence: 1
  givenname: N.
  surname: Sriraam
  fullname: Sriraam, N.
  email: sriraam@msrit.edu
  organization: Center for Medical Electronics and Computing, M.S.Ramaiah Institute of Technology (An Autonomous Institute, Affiliated to Visvesvaraya Technological University)
– sequence: 2
  givenname: T. K.
  surname: Padma Shri
  fullname: Padma Shri, T. K.
  organization: Department of Electronics & Communication, Manipal Institute of Technology, Manipal University, Department of Electronics & Communication, SCSVMV University
– sequence: 3
  givenname: Uma
  surname: Maheshwari
  fullname: Maheshwari, Uma
  organization: Department of Pulmonary Medicine, St. Johns National Academy of Health Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27550443$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3TAQhUVJaG4eP6CbIuimGyeSJUvysoS-IFAo7VroyiPHqa_kamRC_n10uWkogXYxzGK-MzOcc0qOYopAyBvOLjlj-gq5aKVqGK8ldduYV2TDje6bTkp9RDaMd6bpe2FOyCniHWOtFMq8Jiet7jompdiQ8h18GuNUphRpCvTe_YIGZ4CFYnEjUE5361wmf-tihJkCjHRxpUCOSFec4khxAV-yq7NYcloeaABX1gxIQ8p0yOm-YoBIByiVrIfOyXFwM8LFUz8jPz99_HH9pbn59vnr9YebxgvdlmbYSmW8H4z0HQM_CM6cCkFq53XY-s6BEo57NshQR7o6ArLvQXstBg9uK87I-8PeJaffK2Cxuwk9zLOLkFa03LSs6zulVEXfvUDv0ppj_a5SvFdKa64r9faJWrc7GOySp53LD_aPnxXgB8DnhJghPCOc2X1m9pCZrZnZfWbWVI1-ofFTcXufqqvT_F9le1BivRJHyH89_U_RI2kErNc
CitedBy_id crossref_primary_10_1016_j_trf_2023_08_007
crossref_primary_10_1093_sleep_zsz225
crossref_primary_10_1080_1463922X_2020_1842548
crossref_primary_10_1109_ACCESS_2019_2939038
crossref_primary_10_3389_fnins_2020_00008
crossref_primary_10_1186_s13104_017_2947_4
crossref_primary_10_3389_fnins_2021_564098
crossref_primary_10_3390_nu15245101
crossref_primary_10_4018_IJIRR_299941
crossref_primary_10_3390_s21206932
crossref_primary_10_1016_j_bspc_2021_102898
crossref_primary_10_1088_1742_6596_2949_1_012009
crossref_primary_10_3389_fnins_2022_782474
crossref_primary_10_1007_s00500_021_06218_x
crossref_primary_10_1016_j_psep_2022_06_039
crossref_primary_10_1007_s13246_021_01020_3
crossref_primary_10_3390_s24082625
Cites_doi 10.1097/00000542-199810000-00023
10.1001/archinte.164.4.406
10.1016/j.clinph.2005.04.001
10.1111/j.0001-5172.2004.00323.x
10.1111/j.0001-5172.2004.00322.x
10.1016/j.artmed.2011.06.004
10.1016/B978-1-4160-6645-3.00002-5
10.1103/PhysRevB.60.7299
10.1109/TASSP.1984.1164296
10.4018/ijbce.2014010103
10.1093/bja/aes312
10.1016/S1388-2457(00)00476-4
10.1183/09031936.02.00288202
10.1053/smrv.2001.0145
10.1183/09031936.98.11051135
10.1007/978-3-642-32909-8_5
10.1016/j.eswa.2012.09.022
10.1016/j.cmpb.2005.06.011
10.1002/j.1538-7305.1948.tb00917.x
10.1109/ISDA.2011.6121664
10.1109/NAECON.2011.6183071
10.1109/IEMBS.2005.1615793
10.1109/IEMBS.2011.6090897
10.1109/BioCAS.2015.7348362
10.1109/ATC.2011.6027492
10.1096/fasebj.20.4.A412-b
10.1109/MedCom.2014.7006048
10.1109/BRC.2011.5740661
10.1155/2012/107046
10.1111/j.1365-2044.2005.04289.x
10.1109/IECBES.2014.7047537
10.1109/IJCNN.2000.861392
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2016
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s13246-016-0472-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-5447
EndPage 806
ExternalDocumentID 4183244501
27550443
10_1007_s13246_016_0472_8
Genre Journal Article
Feature
GroupedDBID -EM
..I
06D
0R~
0VY
1N0
203
23N
29~
2KG
30V
36B
3V.
4.4
408
40D
53G
5GY
67N
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8WZ
96X
A6W
AAAVM
AAIAL
AAJKR
AANXM
AARHV
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABFTV
ABJNI
ABJOX
ABKCH
ABPLI
ABQBU
ABTAH
ABTHY
ABTMW
ABULA
ABUWG
ABXPI
ACBXY
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADINQ
ADKPE
ADRFC
ADURQ
ADZKW
AEBTG
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFKRA
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AH1
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIIXL
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
AZQEC
BENPR
BGLVJ
BGNMA
BPHCQ
BVXVI
CAG
CCPQU
COF
CSCUP
DWQXO
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
FIGPU
FINBP
FRRFC
FSGXE
FYJPI
FYUFA
GGRSB
GJIRD
GNUQQ
GQ6
GQ7
H13
HCIFZ
HF~
HMCUK
HMJXF
HRMNR
HZ~
I0C
IAEEK
IEN
ITM
J0Z
JBSCW
KOV
KTM
M1P
M2P
M4Y
NQJWS
NU0
O9-
O93
O9I
O9J
P2P
P62
PQQKQ
PROAC
PSQYO
Q2X
R9I
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SHX
SISQX
SNE
SNX
SPISZ
SSXJD
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UKHRP
UZXMN
VC2
VFIZW
W48
WK8
WOQ
WOW
Z45
ZOVNA
ZY4
~A9
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c372t-db468ccd84c50ecd310a6ff47ac7fbc5ae63a1c0d4f3107007e499e7c73dceab3
IEDL.DBID 7X7
ISSN 0158-9938
1879-5447
IngestDate Fri Jul 11 06:54:16 EDT 2025
Fri Jul 25 05:27:37 EDT 2025
Thu Jan 02 22:19:59 EST 2025
Tue Jul 01 04:24:15 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Fri Feb 21 02:33:08 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 3
Keywords Spectral entropy (SE)
Electroencephalogram (EEG)
Back propagation (BP) algorithm
Multilayer perceptron-feed forward (MLP-FF) neural network
Polysomnograms (PSG)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-db468ccd84c50ecd310a6ff47ac7fbc5ae63a1c0d4f3107007e499e7c73dceab3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27550443
PQID 1819667717
PQPubID 33672
PageCount 10
ParticipantIDs proquest_miscellaneous_1820595666
proquest_journals_1819667717
pubmed_primary_27550443
crossref_primary_10_1007_s13246_016_0472_8
crossref_citationtrail_10_1007_s13246_016_0472_8
springer_journals_10_1007_s13246_016_0472_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160900
2016-9-00
2016-Sep
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 9
  year: 2016
  text: 20160900
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Australas Phys Eng Sci Med
PublicationTitleAlternate Australas Phys Eng Sci Med
PublicationYear 2016
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Koley, Dey (CR27) 2012; 10
Morisson, Lavigne, Petit, Nielson, Malo, Montplaisir (CR20) 1998; 11
Germain, Nielson (CR24) 2001; 4
Anier, Lipping, Ferenets, Puumala, Sonkajarvi, Ratsep, Jantti (CR44) 2012; 109
CR35
Vakkuri, Yli-Hankala, Talja (CR37) 2004; 48
Fell, Roschke, Mann, Schaffner (CR21) 1996; 98
Carskadon, Dement (CR46) 2011; 5
Abasolo, Hornero, Espino, Poza, Sanchez, de la Rosa (CR33) 2005; 116
Rechtschaffen, Kales (CR3) 1968
CR2
CR4
Pincus, Goldberger (CR34) 1994; 266
Sun, Bi, Chen, Guo (CR50) 2015; 9
CR6
Dingli, Assimakopoulos, Fietze, Witt, Wraith, Douglas (CR19) 2002; 20
CR5
CR8
CR7
CR9
CR49
CR48
De Gennaro, Ferrara, Ferlazzo, Bertini (CR14) 2000; 111
CR40
Shannon (CR41) 1948; 27
Purnima, Sriraam, Krishnaswamy, Radhika (CR15) 2014; 3
Ross Steyn (CR43) 1999; 60
Redline, Kirchner, Quan, Gottlieb, Kapur, Newman (CR1) 2004; 164
CR17
CR16
CR13
Ogilvie (CR29) 2001; 5
Maksimow, Kaisti, Aalto, Maenpaa, Jaaskelainen, Hinkka, Martens, Sarkela, Oja, Scheinin (CR39) 2005; 60
Malcangi, Smirne (CR30) 2012; 311
CR11
Christopher, Claudia (CR12) 2012
Oja-Viertio, Maja, Sarkela, Talja, Tenkanen, Tolvanen-Laakso, Paloheimo, Vakkuri, Yli-Hankala, Merilainen (CR38) 2004; 48
Rampil (CR36) 1998; 89
Diambra, Bastos de Figueiredo, Malta (CR32) 1999; 273
lvarez-Estevez, Fernandez-Pastoriza, Hernandez-Pereira, Moret-Bonillo (CR28) 2013; 40
Krakovska, Mezeiova (CR26) 2011; 53
Acharya, Faust, Kannathal, Chua, Laxminarayan (CR31) 2005; 80
CR25
CR23
CR22
Langkvist, Karlsson, Loutfi (CR10) 2012
Svanborg, Guilleminault (CR18) 1996; 19
Haykin (CR45) 1999
Tinguely, Finelli, Landolt, Borbély, Achermann (CR47) 2006; 32
Johnson, Shore (CR42) 1984; 32
L Diambra (472_CR32) 1999; 273
ML Ross Steyn (472_CR43) 1999; 60
472_CR48
472_CR49
B Koley (472_CR27) 2012; 10
D Abasolo (472_CR33) 2005; 116
Letellier Christopher (472_CR12) 2012
L Gennaro De (472_CR14) 2000; 111
G Tinguely (472_CR47) 2006; 32
A Krakovska (472_CR26) 2011; 53
CE Shannon (472_CR41) 1948; 27
RW Johnson (472_CR42) 1984; 32
M Malcangi (472_CR30) 2012; 311
472_CR11
472_CR35
F Morisson (472_CR20) 1998; 11
K Maksimow (472_CR39) 2005; 60
R Acharya (472_CR31) 2005; 80
E Svanborg (472_CR18) 1996; 19
A Rechtschaffen (472_CR3) 1968
Ira J Rampil (472_CR36) 1998; 89
K Dingli (472_CR19) 2002; 20
BR Purnima (472_CR15) 2014; 3
472_CR40
A Vakkuri (472_CR37) 2004; 48
472_CR23
A Germain (472_CR24) 2001; 4
472_CR25
DA lvarez-Estevez (472_CR28) 2013; 40
RD Ogilvie (472_CR29) 2001; 5
H Oja-Viertio (472_CR38) 2004; 48
SM Pincus (472_CR34) 1994; 266
A Anier (472_CR44) 2012; 109
M Langkvist (472_CR10) 2012
472_CR13
472_CR16
472_CR17
J Fell (472_CR21) 1996; 98
472_CR9
472_CR8
472_CR7
S Haykin (472_CR45) 1999
472_CR2
MA Carskadon (472_CR46) 2011; 5
H Sun (472_CR50) 2015; 9
472_CR6
472_CR5
472_CR4
HL Redline (472_CR1) 2004; 164
472_CR22
References_xml – ident: CR22
– volume: 273
  start-page: 495
  year: 1999
  end-page: 505
  ident: CR32
  article-title: Epileptic activity recognition in EEG recording
  publication-title: J Phys A
– ident: CR49
– year: 1999
  ident: CR45
  publication-title: Neural networks, a comprehensive foundation
– ident: CR4
– volume: 89
  start-page: 980
  year: 1998
  end-page: 1002
  ident: CR36
  article-title: A primer for EEG signals processing in anesthesia
  publication-title: J Am Soc Anesthesiol
  doi: 10.1097/00000542-199810000-00023
– ident: CR16
– volume: 19
  start-page: 248
  issue: 3
  year: 1996
  end-page: 254
  ident: CR18
  article-title: EEG frequency changes during sleep apneas
  publication-title: J Sleep
– ident: CR35
– volume: 60
  start-page: 862
  year: 2005
  end-page: 869
  ident: CR39
  article-title: Correlation of EEG spectral entropy with regional cerebral blood flow during sevoflurane and propofol anesthesia
  publication-title: J Anesth
– year: 1968
  ident: CR3
  publication-title: A manual of standardized terminology techniques and scoring sleep stage of human subjects
– ident: CR8
– volume: 98
  start-page: 401
  year: 1996
  end-page: 410
  ident: CR21
  article-title: Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures
  publication-title: J Clin Neurophysiol
– ident: CR25
– volume: 164
  start-page: 406
  year: 2004
  end-page: 418
  ident: CR1
  article-title: The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture
  publication-title: JAMA Intern Med
  doi: 10.1001/archinte.164.4.406
– volume: 116
  start-page: 1826
  year: 2005
  end-page: 1834
  ident: CR33
  article-title: Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with approximate entropy
  publication-title: J Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.04.001
– volume: 266
  start-page: 1643
  year: 1994
  end-page: 1656
  ident: CR34
  article-title: Physiological time series analysis: what does regularity quantify?
  publication-title: Am J Physiol
– volume: 48
  start-page: 145
  year: 2004
  end-page: 153
  ident: CR37
  article-title: Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia
  publication-title: J Acta Anaesthesiol Scand
  doi: 10.1111/j.0001-5172.2004.00323.x
– volume: 48
  start-page: 154
  year: 2004
  end-page: 161
  ident: CR38
  article-title: Description of the entropytm algorithm as applied in the Datex-Ohmeda S/5TM entropy module
  publication-title: Journal of Acta Anesthesiol Scand
  doi: 10.1111/j.0001-5172.2004.00322.x
– volume: 9
  start-page: 125
  year: 2015
  end-page: 134
  ident: CR50
  article-title: EEG-based safety driving performance estimation and alertness using support vector machine
  publication-title: Int J Secur Appl
– volume: 53
  start-page: 25
  issue: 1
  year: 2011
  end-page: 33
  ident: CR26
  article-title: Automatic sleep scoring: a search for an optimal combination of measures
  publication-title: J Artif Intell Med
  doi: 10.1016/j.artmed.2011.06.004
– volume: 5
  start-page: 16
  year: 2011
  end-page: 26
  ident: CR46
  article-title: Monitoring and staging human sleep
  publication-title: J Princ Pract Sleep Med
  doi: 10.1016/B978-1-4160-6645-3.00002-5
– volume: 60
  start-page: 7299
  year: 1999
  end-page: 7311
  ident: CR43
  article-title: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition
  publication-title: J Phys Rev
  doi: 10.1103/PhysRevB.60.7299
– ident: CR11
– ident: CR9
– ident: CR5
– volume: 32
  start-page: 129
  year: 1984
  end-page: 137
  ident: CR42
  article-title: Which is the better entropy expression for speech processing: S log S or log S?
  publication-title: IEEE Trans Acoust
  doi: 10.1109/TASSP.1984.1164296
– volume: 3
  start-page: 27
  year: 2014
  end-page: 41
  ident: CR15
  article-title: A measure to detect sleep onset using statistical analysis of spike rhythmicity
  publication-title: Int J Biomed Clin Eng
  doi: 10.4018/ijbce.2014010103
– volume: 109
  start-page: 928
  year: 2012
  end-page: 934
  ident: CR44
  article-title: Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy
  publication-title: Brit J Anesth
  doi: 10.1093/bja/aes312
– year: 2012
  ident: CR10
  article-title: Sleep stage classification using unsupervised feature learning
  publication-title: Adv Artif Neural Syst
– volume: 111
  start-page: 2107
  year: 2000
  end-page: 2115
  ident: CR14
  article-title: Slow eye movements and EEG power spectra during wake-sleep transition
  publication-title: J Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00476-4
– ident: CR2
– ident: CR6
– ident: CR40
– volume: 20
  start-page: 1246
  year: 2002
  end-page: 1253
  ident: CR19
  article-title: Electroencephalographic spectral analysis: detection of cortical activity changes in sleep apnea patients
  publication-title: J Eur Respir
  doi: 10.1183/09031936.02.00288202
– volume: 5
  start-page: 247
  year: 2001
  end-page: 270
  ident: CR29
  article-title: The process of falling asleep
  publication-title: J Sleep Med Rev
  doi: 10.1053/smrv.2001.0145
– year: 2012
  ident: CR12
  publication-title: Method and system for automatic scoring of sleep stages, the Patent Cooperation Treaty (PCT)
– ident: CR23
– volume: 4
  start-page: 83
  year: 2001
  end-page: 90
  ident: CR24
  article-title: EEG Power associated with early sleep onset images differing in sensory content
  publication-title: J Sleep Res Online
– volume: 32
  start-page: 283
  year: 2006
  end-page: 292
  ident: CR47
  article-title: Functional EEG topography in sleep and waking: state-dependent and state independent features
  publication-title: J Neuro Image
– ident: CR48
– volume: 11
  start-page: 1135
  year: 1998
  end-page: 1140
  ident: CR20
  article-title: Spectral analysis of wakefulness and REM sleep EEG in patients with sleep apnea syndrome
  publication-title: J Eur Respir
  doi: 10.1183/09031936.98.11051135
– volume: 311
  start-page: 41
  year: 2012
  end-page: 50
  ident: CR30
  article-title: Fuzzy-logic inference for early detection of sleep onset in car driver
  publication-title: J Eng Appl Neural Netw
  doi: 10.1007/978-3-642-32909-8_5
– ident: CR17
– ident: CR13
– volume: 40
  start-page: 1796
  issue: 5
  year: 2013
  end-page: 1803
  ident: CR28
  article-title: A method for the automatic analysis of the sleep macrostructure in continuum
  publication-title: J Expert Syst Appl
  doi: 10.1016/j.eswa.2012.09.022
– volume: 80
  start-page: 37
  year: 2005
  end-page: 45
  ident: CR31
  article-title: Non-linear analysis of EEG signals at various sleep stages
  publication-title: J Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2005.06.011
– volume: 27
  start-page: 623
  year: 1948
  end-page: 656
  ident: CR41
  article-title: A mathematical theory of communication
  publication-title: J Bell Syst Technol
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– ident: CR7
– volume: 10
  start-page: 1
  year: 2012
  end-page: 10
  ident: CR27
  article-title: An ensemble system for automatic sleep stage classification using single channel EEG signal
  publication-title: J Comput Biol Med
– volume: 3
  start-page: 27
  year: 2014
  ident: 472_CR15
  publication-title: Int J Biomed Clin Eng
  doi: 10.4018/ijbce.2014010103
– ident: 472_CR8
  doi: 10.1109/ISDA.2011.6121664
– volume: 32
  start-page: 283
  year: 2006
  ident: 472_CR47
  publication-title: J Neuro Image
– volume: 116
  start-page: 1826
  year: 2005
  ident: 472_CR33
  publication-title: J Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.04.001
– volume-title: A manual of standardized terminology techniques and scoring sleep stage of human subjects
  year: 1968
  ident: 472_CR3
– volume: 53
  start-page: 25
  issue: 1
  year: 2011
  ident: 472_CR26
  publication-title: J Artif Intell Med
  doi: 10.1016/j.artmed.2011.06.004
– volume: 19
  start-page: 248
  issue: 3
  year: 1996
  ident: 472_CR18
  publication-title: J Sleep
– volume: 60
  start-page: 7299
  year: 1999
  ident: 472_CR43
  publication-title: J Phys Rev
  doi: 10.1103/PhysRevB.60.7299
– volume: 266
  start-page: 1643
  year: 1994
  ident: 472_CR34
  publication-title: Am J Physiol
– ident: 472_CR9
  doi: 10.1109/NAECON.2011.6183071
– ident: 472_CR13
  doi: 10.1109/IEMBS.2005.1615793
– volume: 4
  start-page: 83
  year: 2001
  ident: 472_CR24
  publication-title: J Sleep Res Online
– volume: 273
  start-page: 495
  year: 1999
  ident: 472_CR32
  publication-title: J Phys A
– ident: 472_CR6
  doi: 10.1109/IEMBS.2011.6090897
– ident: 472_CR48
  doi: 10.1109/BioCAS.2015.7348362
– ident: 472_CR7
– ident: 472_CR4
  doi: 10.1109/ATC.2011.6027492
– volume: 111
  start-page: 2107
  year: 2000
  ident: 472_CR14
  publication-title: J Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00476-4
– ident: 472_CR35
  doi: 10.1096/fasebj.20.4.A412-b
– ident: 472_CR11
– volume: 40
  start-page: 1796
  issue: 5
  year: 2013
  ident: 472_CR28
  publication-title: J Expert Syst Appl
  doi: 10.1016/j.eswa.2012.09.022
– volume: 11
  start-page: 1135
  year: 1998
  ident: 472_CR20
  publication-title: J Eur Respir
  doi: 10.1183/09031936.98.11051135
– volume: 164
  start-page: 406
  year: 2004
  ident: 472_CR1
  publication-title: JAMA Intern Med
  doi: 10.1001/archinte.164.4.406
– ident: 472_CR16
  doi: 10.1109/MedCom.2014.7006048
– volume: 20
  start-page: 1246
  year: 2002
  ident: 472_CR19
  publication-title: J Eur Respir
  doi: 10.1183/09031936.02.00288202
– volume: 5
  start-page: 16
  year: 2011
  ident: 472_CR46
  publication-title: J Princ Pract Sleep Med
  doi: 10.1016/B978-1-4160-6645-3.00002-5
– ident: 472_CR2
  doi: 10.1109/BRC.2011.5740661
– volume: 5
  start-page: 247
  year: 2001
  ident: 472_CR29
  publication-title: J Sleep Med Rev
  doi: 10.1053/smrv.2001.0145
– volume: 80
  start-page: 37
  year: 2005
  ident: 472_CR31
  publication-title: J Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2005.06.011
– year: 2012
  ident: 472_CR10
  publication-title: Adv Artif Neural Syst
  doi: 10.1155/2012/107046
– volume-title: Neural networks, a comprehensive foundation
  year: 1999
  ident: 472_CR45
– volume: 9
  start-page: 125
  year: 2015
  ident: 472_CR50
  publication-title: Int J Secur Appl
– volume: 27
  start-page: 623
  year: 1948
  ident: 472_CR41
  publication-title: J Bell Syst Technol
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– volume: 10
  start-page: 1
  year: 2012
  ident: 472_CR27
  publication-title: J Comput Biol Med
– volume: 60
  start-page: 862
  year: 2005
  ident: 472_CR39
  publication-title: J Anesth
  doi: 10.1111/j.1365-2044.2005.04289.x
– volume: 109
  start-page: 928
  year: 2012
  ident: 472_CR44
  publication-title: Brit J Anesth
  doi: 10.1093/bja/aes312
– ident: 472_CR49
– volume: 98
  start-page: 401
  year: 1996
  ident: 472_CR21
  publication-title: J Clin Neurophysiol
– volume: 311
  start-page: 41
  year: 2012
  ident: 472_CR30
  publication-title: J Eng Appl Neural Netw
  doi: 10.1007/978-3-642-32909-8_5
– ident: 472_CR22
– volume: 89
  start-page: 980
  year: 1998
  ident: 472_CR36
  publication-title: J Am Soc Anesthesiol
  doi: 10.1097/00000542-199810000-00023
– volume: 32
  start-page: 129
  year: 1984
  ident: 472_CR42
  publication-title: IEEE Trans Acoust
  doi: 10.1109/TASSP.1984.1164296
– ident: 472_CR25
  doi: 10.1109/IECBES.2014.7047537
– volume-title: Method and system for automatic scoring of sleep stages, the Patent Cooperation Treaty (PCT)
  year: 2012
  ident: 472_CR12
– ident: 472_CR5
– ident: 472_CR17
– ident: 472_CR40
– ident: 472_CR23
  doi: 10.1109/IJCNN.2000.861392
– volume: 48
  start-page: 154
  year: 2004
  ident: 472_CR38
  publication-title: Journal of Acta Anesthesiol Scand
  doi: 10.1111/j.0001-5172.2004.00322.x
– volume: 48
  start-page: 145
  year: 2004
  ident: 472_CR37
  publication-title: J Acta Anaesthesiol Scand
  doi: 10.1111/j.0001-5172.2004.00323.x
SSID ssj0024368
Score 1.805779
Snippet Electroencephalographic (EEG) activity recorded during the entire sleep cycle reflects various complex processes associated with brain and exhibits a high...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 797
SubjectTerms Algorithms
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Databases as Topic
Electroencephalography
Electroencephalography - methods
Entropy
Humans
Medical and Radiation Physics
Neural Networks (Computer)
Neurobiology
Sleep
Sleep - physiology
Sleep Stages - physiology
Spectrum analysis
Technical Paper
Wakefulness - physiology
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWBAvAkvGYkJFClNnDgdEaKqGBgQlbpFjn3uQJVUTSrEv-fsJm0RD4khkx0n8tm573LffQa4QS3IyZmunwex8q3gnd8zHP2oJw2Sf7enrlq2xXMyGPKnUTxq6rirlu3epiTdl3pV7Ea-30a_dHFB23gTtmIbutMiHob3awJ7rv6N3Bzt5F6UtqnMn4b46oy-Icxv2VHndPp7sNugRXa_MO8-bGBxADtrGoKHUL-0FKCyYKVh7_IN_WqCOGUE_MbIusyRBm2Fb4EThjhmUyeqWVTMst7HzFVbzug59k9vOf1gBp3cZ8UI0TJNgfqCHM801o65VRzBsP_4-jDwm6MUfBWJsPZ1zpNUKZ1yFQeoNIE6mRjDhVTC5CqWmESyqwLNDTUJmiykUAiFEpFWKPPoGDpFWeApMCWk5ponUZgbrqy8TjfPE2kClWJPhMqDoJ3TTDU64_a4i0m2Uki2Zsgst8yaIUs9uF3eMl2IbPzV-aI1VNbstyojnEJxm6DY1IPrZTPtFJv-kAWWc9snJCxJ8DXx4GRh4OXTQkGRGueRB3etxdcG_-1Vzv7V-xy2Q7f0LEHtAjr1bI6XhGjq_Mqt4E8ewO5l
  priority: 102
  providerName: Springer Nature
Title Recognition of wake-sleep stage 1 multichannel eeg patterns using spectral entropy features for drowsiness detection
URI https://link.springer.com/article/10.1007/s13246-016-0472-8
https://www.ncbi.nlm.nih.gov/pubmed/27550443
https://www.proquest.com/docview/1819667717
https://www.proquest.com/docview/1820595666
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3a5NIeQr_rNA0q9NQi6rW1lvcUNmU3oYVQQhe2JyNLoz10sZ3YIfTfd0Zrb7aE5mAb_CXjkTRvpKc3AB_RaXJyfiTLeGwlC97JiVco04nxSP6ds64y2-IiO1-ob8vxsh9wa3ta5dAnho7a1ZbHyL-QJyJkrin6OGmuJGeN4tnVPoXGY9hn6TKmdOml3tHaC0vhyONRo56k-TCrGZbOEZLgWJo2palT-Ncv3QOb9yZKg_-ZP4ODHjiK6cbSz-ERVi_g6Y6c4EvoLgc2UF2J2otb8xtlu0ZsBGHAFYqRCPxBXuxb4VogrkQT9DWrVjABfiXCwstrKocHfevmj_AYlD9bQeBWOIrZNzx54bALJK7qFSzms59fz2WfVUHaVCeddKXKcmtdruw4RusI35nMe6WN1b60Y4NZakY2dsrTJU0_CykqQm116iyaMn0Ne1Vd4VsQVhunnMrSpPTKstLOqCwz42Ob40QnNoJ4-KeF7SXHOfPFurgTS2YzFEwzYzMUeQSfto80G72Nh24-GgxV9E2vLe4qSgQftpep0fBMiKmwvuF7EoKVhGSzCN5sDLwtLdEUtCmVRvB5sPjOy__3KYcPf8o7eJKEusbktCPY665v8D2hma48DlWW9vn87Bj2p2e_vs_oeDq7-HFJZxfJ9C8tnPb1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcoAeEN8EChgJLqCIbOKNkwNCCFi2tPSAWqm34NjjPbBK0k2qVf8Uv5EZZ7NdVNFbDznlU5mx54395g3Aa7SKgpwbhWU0NiEL3oW5kxgmuXZI8Z27rjLb4jCdHsvvJ-OTLfgz1MIwrXKYE_1EbWvDa-TvKRIRMleUfXxsTkPuGsW7q0MLjd4t9vF8SSlb-2HvC9n3TRxPvh59noarrgKhSVTchbaUaWaMzaQZR2gs4RudOieVNsqVZqwxTfTIRFY6OqUohiJlBaiMSqxBXSb03BtwUyZJziMqm3zb0PbzpXcUYWkSyZNs2EX1pXqEXDh3p0MqmoT-jYOXwO2ljVkf7yZ34c4KqIpPvWfdgy2s7sPOhnzhA-h-DuyjuhK1E0v9G8N2jtgIwpwzFCPh-YpcXFzhXCDOROP1PKtWMOF-Jnyh54Lew4vMdXMuHHql0VYQmBZ2US97Xr6w2HnSWPUQjq_lfz-C7aqu8AkIo7SVVqZJXDppWNlnVJapdpHJMFexCSAa_mlhVhLn3GljXlyIM7MZCqa1sRmKLIC361uaXt_jqot3B0MVq6HeFheOGcCr9WkapLzzoiusz_iamGAsIec0gMe9gddvixUliVImAbwbLL7x8P99ytOrP-Ul3Joe_TgoDvYO95_B7dj7HRPjdmG7W5zhc0JSXfnCu6-AX9c9Xv4CkNgxMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VIiF6QHwWQ4FFggvIqj_WXueAEKJELUUVQlTKzdi7szkQ2W7sKupf49cxs7bToIreesjJjm15ZnbeeN-8AXiDRlGSs6FfBon2WfDOn1iJfjwpLFJ-56mrzLY4SQ9P5ddZMtuCP2MvDNMqxzXRLdSm1vyNfJ8yESFzRdXHvh1oEd8Pph-bM58nSPFO6zhOo3eRY7xYUfnWfjg6IFu_jaLpl5-fD_1hwoCvYxV1villmmltMqmTALUhrFOk1kpVaGVLnRSYxkWoAyMtHVKUT5EqBFRaxUZjUcZ03VtwW8VJyDGmZmpD58-14VG2pQVlEmfjjqpr2yMUw3U8_aSiBenfnHgF6F7ZpHW5b3of7g2gVXzqvewBbGH1EHY2pAwfQfdjZCLVlaitWBW_0W8XiI0g_DlHEQrHXeRG4woXAnEuGqftWbWCyfdz4Zo-l3Qf_uBcNxfColMdbQUBa2GW9arn6AuDnSOQVY_h9Ebe9xPYruoKn4LQqjDSyDSOSis1q_yEZZkWNtAZTlSkPQjGd5rrQe6cp24s8kuhZjZDzhQ3NkOeefBu_Zem1_q47uS90VD5EPZtfumkHrxeH6aA5V2YosL6nM-JCNISik492O0NvL5bpKhglDL24P1o8Y2L_-9Rnl3_KK_gDkVK_u3o5Pg53I2c2zFHbg-2u-U5viBQ1ZUvnfcK-HXT4fIXf141Xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+wake-sleep+stage+1+multichannel+eeg+patterns+using+spectral+entropy+features+for+drowsiness+detection&rft.jtitle=Australasian+physical+%26+engineering+sciences+in+medicine&rft.au=Sriraam%2C+N&rft.au=Padma+Shri%2C+T+K&rft.au=Maheshwari%2C+Uma&rft.date=2016-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0158-9938&rft.eissn=1879-5447&rft.volume=39&rft.issue=3&rft.spage=797&rft_id=info:doi/10.1007%2Fs13246-016-0472-8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4183244501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0158-9938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0158-9938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0158-9938&client=summon