Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor
Supercapacitors are promising devices for highly efficient energy storage and power management. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanism and the development of advanced nanostructured materials. Here, by combining experi...
Saved in:
Published in | Nano energy Vol. 19; pp. 363 - 372 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Supercapacitors are promising devices for highly efficient energy storage and power management. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanism and the development of advanced nanostructured materials. Here, by combining experimental and theoretical investigations, we have unveiled the detailed charge storage mechanism of KCu7S4 wires based on a flexible all-solid-state supercapacitor. KCu7S4 with a unique double-tunnel structure and excellent conductivity exhibits outstanding properties as an electrode material in supercapacitors. Both electrochemical experiments and DFT calculations show that the stable energy storage process is mainly contributed by potassium ions׳ insertion/extraction, where potassium ions are proved to have been more active than lithium ions in the redox reactions on the KCu7S4 electrodes. The flexible supercapacitor based on the KCu7S4/Graphene paper is low-cost, easy to fabricate and environmentally friendly. The understanding for the charge storage presented in this work would guide the improvement on supercapacitor and exploration of new electrode materials.
KCu7S4 with unique double-tunnel structure and excellent conductivity exhibits outstanding properties as a redox active material in supercapacitors. The diffusion paths of K+, Li+ and H+ in the KCu7S4 tunnels are reported based on the density functional theory, thermodynamic analysis and nudged elastic band method.
[Display omitted]
•KCu7S4 with unique double-tunnel structure and excellent conductivity exhibits outstanding electrochemical properties.•The diffusion paths of K+, Li+ and H+ in the KCu7S4 tunnels are reported based on the theoretical analysis.•A highly flexible all-solid-state supercapacitor is fabricated based on the KCu7S4/Graphene paper electrodes. |
---|---|
AbstractList | Supercapacitors are promising devices for highly efficient energy storage and power management. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanism and the development of advanced nanostructured materials. Here, by combining experimental and theoretical investigations, we have unveiled the detailed charge storage mechanism of KCu7S4 wires based on a flexible all-solid-state supercapacitor. KCu7S4 with a unique double-tunnel structure and excellent conductivity exhibits outstanding properties as an electrode material in supercapacitors. Both electrochemical experiments and DFT calculations show that the stable energy storage process is mainly contributed by potassium ions׳ insertion/extraction, where potassium ions are proved to have been more active than lithium ions in the redox reactions on the KCu7S4 electrodes. The flexible supercapacitor based on the KCu7S4/Graphene paper is low-cost, easy to fabricate and environmentally friendly. The understanding for the charge storage presented in this work would guide the improvement on supercapacitor and exploration of new electrode materials.
KCu7S4 with unique double-tunnel structure and excellent conductivity exhibits outstanding properties as a redox active material in supercapacitors. The diffusion paths of K+, Li+ and H+ in the KCu7S4 tunnels are reported based on the density functional theory, thermodynamic analysis and nudged elastic band method.
[Display omitted]
•KCu7S4 with unique double-tunnel structure and excellent conductivity exhibits outstanding electrochemical properties.•The diffusion paths of K+, Li+ and H+ in the KCu7S4 tunnels are reported based on the theoretical analysis.•A highly flexible all-solid-state supercapacitor is fabricated based on the KCu7S4/Graphene paper electrodes. |
Author | Xi, Yi Guo, Donglin Dai, Shuge Hu, Chenguo Xu, Weina Wang, Mingjun Gu, Xiao |
Author_xml | – sequence: 1 givenname: Shuge surname: Dai fullname: Dai, Shuge – sequence: 2 givenname: Weina surname: Xu fullname: Xu, Weina – sequence: 3 givenname: Yi surname: Xi fullname: Xi, Yi email: yxi6@cqu.edu.cn – sequence: 4 givenname: Mingjun surname: Wang fullname: Wang, Mingjun – sequence: 5 givenname: Xiao surname: Gu fullname: Gu, Xiao email: gx@cqu.edu.cn – sequence: 6 givenname: Donglin surname: Guo fullname: Guo, Donglin – sequence: 7 givenname: Chenguo surname: Hu fullname: Hu, Chenguo email: hucg@cqu.edu.cn |
BookMark | eNqFkM9KAzEQh3OoYNW-gYe8wK5JttukHgQp_sOCB_UcZrOzmpImJUlLfXtT6smDzmVgmO83zHdGRj54JOSSs5ozPrta1R58QF8Lxtua85qJdkTGQnBeCdW2p2SS0oqVmrVccjEmevEJ8QNpyiFC6dbT58VWvk4pJBqxD3sKJtsd0jVkjBYcHUKkQAeHe9s5pOBclYKzfZVyWaFpu8FoYAPGlswLcjKASzj56efk_f7ubfFYLV8enha3y8o0UuSqBxACsWU4qHnTSdXwKevNoIwxas7MrGVSiQaZMCBV1xgGBnrZQZn3cyWbc3J9zDUxpBRx0OU8ZBt8jmCd5kwfDOmVPhrSB0Oac10MFXj6C95Eu4b49R92c8SwPLazGHUyFr3B3kY0WffB_h3wDcg4h3c |
CitedBy_id | crossref_primary_10_1002_er_7918 crossref_primary_10_1021_acsenergylett_7b00379 crossref_primary_10_1007_s10853_020_05314_x crossref_primary_10_1002_smll_201800285 crossref_primary_10_1016_j_matchemphys_2017_04_034 crossref_primary_10_1021_acs_jpcc_0c00036 crossref_primary_10_1021_acsami_4c06084 crossref_primary_10_1016_j_cej_2022_139263 crossref_primary_10_1002_aenm_202401221 crossref_primary_10_1002_cey2_271 crossref_primary_10_1557_s43578_023_00919_9 crossref_primary_10_1016_j_jcis_2021_10_184 crossref_primary_10_1016_j_est_2023_109100 crossref_primary_10_1016_j_jallcom_2018_03_138 crossref_primary_10_1016_j_jcis_2023_10_140 crossref_primary_10_1039_C9CE01261C crossref_primary_10_1039_D3CP06031D crossref_primary_10_1039_D1DT01679B crossref_primary_10_1016_j_nanoen_2017_01_056 crossref_primary_10_1039_D2GC04711J crossref_primary_10_1016_j_electacta_2021_139216 crossref_primary_10_1016_j_jallcom_2022_166996 crossref_primary_10_2139_ssrn_4147015 crossref_primary_10_1039_C7CS00505A crossref_primary_10_1021_jacs_8b11911 crossref_primary_10_1039_C8NR07454B crossref_primary_10_1016_j_ijhydene_2022_09_065 crossref_primary_10_1016_j_matdes_2020_108992 crossref_primary_10_2139_ssrn_4139199 crossref_primary_10_3389_fchem_2020_00413 crossref_primary_10_1016_j_rser_2022_113106 crossref_primary_10_1007_s10853_017_1493_8 crossref_primary_10_1016_j_ensm_2017_07_006 crossref_primary_10_1016_j_ijbiomac_2024_131143 crossref_primary_10_1016_j_matchemphys_2024_129923 crossref_primary_10_1007_s10853_021_06131_6 crossref_primary_10_1039_C8NR01553H crossref_primary_10_1016_j_est_2019_101035 crossref_primary_10_3390_signals4010001 crossref_primary_10_1021_acsenergylett_7b00265 crossref_primary_10_1002_ente_201600212 crossref_primary_10_1016_j_jallcom_2020_154056 crossref_primary_10_1002_ente_201800476 crossref_primary_10_1016_j_jpowsour_2017_05_023 crossref_primary_10_1007_s40243_018_0136_6 crossref_primary_10_1039_C6NR09959A crossref_primary_10_1016_j_compositesb_2022_110409 crossref_primary_10_1016_j_jpowsour_2020_228915 crossref_primary_10_1007_s10854_018_8686_z crossref_primary_10_1016_j_apmt_2020_100563 crossref_primary_10_1016_j_heliyon_2018_e00862 crossref_primary_10_1021_acsnano_1c08193 crossref_primary_10_3389_fchem_2018_00555 crossref_primary_10_1007_s10853_017_1415_9 crossref_primary_10_1016_j_apsusc_2016_06_189 crossref_primary_10_1016_j_jmrt_2021_11_036 crossref_primary_10_1039_C7TA04382A crossref_primary_10_1039_C7TA04071G crossref_primary_10_1021_acs_inorgchem_4c02479 crossref_primary_10_1016_j_est_2022_104120 crossref_primary_10_1016_j_cej_2018_05_090 crossref_primary_10_1007_s11696_021_01523_z crossref_primary_10_1016_j_ceramint_2017_11_062 crossref_primary_10_1016_j_jpowsour_2018_03_055 crossref_primary_10_1007_s10854_018_8748_2 crossref_primary_10_1016_j_jallcom_2019_07_095 crossref_primary_10_1016_j_nanoen_2019_103919 crossref_primary_10_1016_j_nanoen_2018_08_056 crossref_primary_10_1088_1361_6528_ab5a29 crossref_primary_10_3390_polym12030505 crossref_primary_10_1007_s10854_018_9592_0 crossref_primary_10_1016_j_jpowsour_2019_02_041 crossref_primary_10_1039_C6TA07829J crossref_primary_10_1039_C9TA10944G crossref_primary_10_1016_j_est_2020_102107 crossref_primary_10_1142_S179360472151005X crossref_primary_10_1016_j_jcis_2022_05_096 |
Cites_doi | 10.1016/j.jpowsour.2014.03.138 10.1016/j.nanoen.2014.07.008 10.1021/nl404008e 10.1002/adma.201101345 10.1021/jp311270s 10.1021/nl8038579 10.1021/cm9705395 10.1039/c2cc32306k 10.1002/adma.201401513 10.1002/adma.201301204 10.1016/j.jpowsour.2014.10.075 10.1039/c2ee23977a 10.1021/jp202846p 10.1063/1.1323224 10.1016/j.nanoen.2014.10.005 10.1103/PhysRevB.59.1758 10.1002/anie.200460937 10.1039/C3TA14275B 10.1016/j.nanoen.2014.10.015 10.1021/nn304833s 10.1038/nmat1782 10.1039/c3ta12839c 10.1021/jp7108785 10.1016/j.nanoen.2014.03.011 10.1016/j.nanoen.2014.09.015 10.1021/am402257y 10.1021/nn301971r 10.1002/aenm.201100312 10.1103/PhysRevB.54.11169 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2015.11.025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 372 |
ExternalDocumentID | 10_1016_j_nanoen_2015_11_025 S2211285515004590 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-daa22ee50ef893b783140dcf8ccc890c6507823e02ca78b3c0acad7ba507d9873 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 01:55:49 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Fri Feb 23 02:30:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Density functional theory Flexible supercapacitor Thermodynamic analysis Tunnel-structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-daa22ee50ef893b783140dcf8ccc890c6507823e02ca78b3c0acad7ba507d9873 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2015_11_025 crossref_primary_10_1016_j_nanoen_2015_11_025 elsevier_sciencedirect_doi_10_1016_j_nanoen_2015_11_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 2016-01-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationTitle | Nano energy |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Nan, Lu, Peng, Li (bib2) 2012; 48 Kaempgen, Chan, Ma, Cui, Gruner (bib21) 2009; 9 An, Wang, Huang, Xu, Jiao, Yuan (bib26) 2014; 10 Chen, Yu, Wang, Li, Tan, Zhu, Yu (bib25) 2015; 11 Yuan, Yao, Hu, Huo, Chen, Zhou (bib29) 2013; 6 Yang, Dong, Lin, Chen, Li, Qiang, Ebrahimi, Mai, Wang, Wang (bib6) 2014; 14 Gu, Liu, Yang, Xiang, Gong, Xia (bib20) 2011; 115 Yang, Li, Lin, Ding, Yue, Wong, Cai, Tan, Mai (bib27) 2014; 2 Hwu, He, Mackay, Kuo, Skove, Mahapatro, Bucher, Halladay, Hayes (bib10) 1998; 10 Zhou, Li, Hibino, Honma (bib4) 2005; 44 Liu, Niu, Zhang, Zhou, Chen, Xie (bib16) 2014; 26 Hu, Xiao, Chen, Li, Huang, Zhang, Su, Miao, Jiang, Zhang, Zhou (bib28) 2015; 11 Shi, Zhao, Li, Liao, Yu (bib22) 2014; 6 Kresse, Joubert (bib14) 1999; 59 Shu, Chen, Xia, Gong, Gu (bib19) 2013; 117 Wang, Su, Wang, Li, Du, Cheng (bib18) 2011; 1 Dai, Xi, Hu, Yue, Cheng, Wang (bib9) 2014; 263 Dai, Xi, Hu, Liu, Zhang, Yue, Cheng (bib8) 2013; 1 Dong, Ye, Kuang, Lu, Zhang, Zhang, Tan, Wen, Wang (bib7) 2013; 5 Kresse, Furthmüller (bib13) 1996; 54 He, Chen, Li, Zhang, Fu, Zhao, Xie (bib11) 2012; 7 Bae, Park, Lee, Cha, Choi, Lee, Kim, Wang (bib17) 2011; 23 Hao, Li, Zhi (bib24) 2013; 25 Dai, Xi, Hu, Yue, Cheng, Wang (bib12) 2015; 274 Futaba, Hata, Yamada, Hiraoka, Hayamizu, Kakudate, Tanaike, Hatori, Yumura, Iijima (bib3) 2006; 5 Devaraj, Munichandraiah (bib1) 2008; 112 Cheng, Yang, Chen, Ji, Jiang, Ding, Liu (bib5) 2014; 9 Kang, Chun, Lee, Kim, Kim, Chung, Lee, Kim (bib23) 2012; 6 Henkelman, Jónsson (bib15) 2000; 113 An (10.1016/j.nanoen.2015.11.025_bib26) 2014; 10 Li (10.1016/j.nanoen.2015.11.025_bib2) 2012; 48 Dai (10.1016/j.nanoen.2015.11.025_bib8) 2013; 1 Hwu (10.1016/j.nanoen.2015.11.025_bib10) 1998; 10 Kresse (10.1016/j.nanoen.2015.11.025_bib13) 1996; 54 Yang (10.1016/j.nanoen.2015.11.025_bib27) 2014; 2 Shu (10.1016/j.nanoen.2015.11.025_bib19) 2013; 117 Dai (10.1016/j.nanoen.2015.11.025_bib12) 2015; 274 He (10.1016/j.nanoen.2015.11.025_bib11) 2012; 7 Yang (10.1016/j.nanoen.2015.11.025_bib6) 2014; 14 Wang (10.1016/j.nanoen.2015.11.025_bib18) 2011; 1 Futaba (10.1016/j.nanoen.2015.11.025_bib3) 2006; 5 Hao (10.1016/j.nanoen.2015.11.025_bib24) 2013; 25 Zhou (10.1016/j.nanoen.2015.11.025_bib4) 2005; 44 Kang (10.1016/j.nanoen.2015.11.025_bib23) 2012; 6 Cheng (10.1016/j.nanoen.2015.11.025_bib5) 2014; 9 Dai (10.1016/j.nanoen.2015.11.025_bib9) 2014; 263 Henkelman (10.1016/j.nanoen.2015.11.025_bib15) 2000; 113 Shi (10.1016/j.nanoen.2015.11.025_bib22) 2014; 6 Gu (10.1016/j.nanoen.2015.11.025_bib20) 2011; 115 Dong (10.1016/j.nanoen.2015.11.025_bib7) 2013; 5 Bae (10.1016/j.nanoen.2015.11.025_bib17) 2011; 23 Yuan (10.1016/j.nanoen.2015.11.025_bib29) 2013; 6 Devaraj (10.1016/j.nanoen.2015.11.025_bib1) 2008; 112 Liu (10.1016/j.nanoen.2015.11.025_bib16) 2014; 26 Hu (10.1016/j.nanoen.2015.11.025_bib28) 2015; 11 Kresse (10.1016/j.nanoen.2015.11.025_bib14) 1999; 59 Kaempgen (10.1016/j.nanoen.2015.11.025_bib21) 2009; 9 Chen (10.1016/j.nanoen.2015.11.025_bib25) 2015; 11 |
References_xml | – volume: 10 start-page: 6 year: 1998 end-page: 9 ident: bib10 publication-title: Chem. Mater. – volume: 5 start-page: 9508 year: 2013 end-page: 9516 ident: bib7 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 917 year: 2011 end-page: 922 ident: bib18 publication-title: Adv. Energy. Mater. – volume: 11 start-page: 119 year: 2015 end-page: 128 ident: bib25 publication-title: Nano Energy – volume: 113 start-page: 9978 year: 2000 end-page: 9985 ident: bib15 publication-title: J. Chem. Phys. – volume: 263 start-page: 175 year: 2014 end-page: 180 ident: bib9 publication-title: J. Power Sources – volume: 2 start-page: 595 year: 2014 end-page: 599 ident: bib27 publication-title: J. Mater. Chem. A – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib13 publication-title: Phys. Rev. B – volume: 23 start-page: 3446 year: 2011 end-page: 3449 ident: bib17 publication-title: Adv. Mater. – volume: 6 start-page: 6400 year: 2012 end-page: 6406 ident: bib23 publication-title: ACS Nano – volume: 112 start-page: 4406 year: 2008 end-page: 4417 ident: bib1 publication-title: J. Phys. Chem. C. – volume: 274 start-page: 477 year: 2015 end-page: 482 ident: bib12 publication-title: J. Power Sources – volume: 9 start-page: 1872 year: 2009 end-page: 1876 ident: bib21 publication-title: Nano Lett. – volume: 6 start-page: 470 year: 2013 end-page: 476 ident: bib29 publication-title: Energy Environ. Sci. – volume: 6 start-page: 82 year: 2014 end-page: 91 ident: bib22 publication-title: Nano Energy – volume: 10 start-page: 125 year: 2014 end-page: 134 ident: bib26 publication-title: Nano Energy – volume: 5 start-page: 987 year: 2006 end-page: 994 ident: bib3 publication-title: Nat. Mater. – volume: 26 start-page: 4855 year: 2014 end-page: 4862 ident: bib16 publication-title: Adv. Mater. – volume: 1 start-page: 15530 year: 2013 end-page: 15534 ident: bib8 publication-title: J. Mater. Chem. A – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: bib14 publication-title: Phys. Rev. B – volume: 44 start-page: 797 year: 2005 end-page: 802 ident: bib4 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 731 year: 2014 end-page: 736 ident: bib6 publication-title: Nano Lett. – volume: 25 start-page: 3899 year: 2013 end-page: 3904 ident: bib24 publication-title: Adv. Mater. – volume: 48 start-page: 6945 year: 2012 end-page: 6947 ident: bib2 publication-title: Chem. Commun. – volume: 115 start-page: 12672 year: 2011 end-page: 12676 ident: bib20 publication-title: J. Phys. Chem. C. – volume: 7 start-page: 174 year: 2012 end-page: 182 ident: bib11 publication-title: ASC Nano – volume: 117 start-page: 6929 year: 2013 end-page: 6932 ident: bib19 publication-title: J. Phys. Chem. C. – volume: 11 start-page: 226 year: 2015 end-page: 234 ident: bib28 publication-title: Nano Energy – volume: 9 start-page: 161 year: 2014 end-page: 167 ident: bib5 publication-title: Nano Energy – volume: 263 start-page: 175 year: 2014 ident: 10.1016/j.nanoen.2015.11.025_bib9 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.138 – volume: 9 start-page: 161 year: 2014 ident: 10.1016/j.nanoen.2015.11.025_bib5 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.07.008 – volume: 14 start-page: 731 year: 2014 ident: 10.1016/j.nanoen.2015.11.025_bib6 publication-title: Nano Lett. doi: 10.1021/nl404008e – volume: 23 start-page: 3446 year: 2011 ident: 10.1016/j.nanoen.2015.11.025_bib17 publication-title: Adv. Mater. doi: 10.1002/adma.201101345 – volume: 117 start-page: 6929 year: 2013 ident: 10.1016/j.nanoen.2015.11.025_bib19 publication-title: J. Phys. Chem. C. doi: 10.1021/jp311270s – volume: 9 start-page: 1872 year: 2009 ident: 10.1016/j.nanoen.2015.11.025_bib21 publication-title: Nano Lett. doi: 10.1021/nl8038579 – volume: 10 start-page: 6 year: 1998 ident: 10.1016/j.nanoen.2015.11.025_bib10 publication-title: Chem. Mater. doi: 10.1021/cm9705395 – volume: 48 start-page: 6945 year: 2012 ident: 10.1016/j.nanoen.2015.11.025_bib2 publication-title: Chem. Commun. doi: 10.1039/c2cc32306k – volume: 26 start-page: 4855 year: 2014 ident: 10.1016/j.nanoen.2015.11.025_bib16 publication-title: Adv. Mater. doi: 10.1002/adma.201401513 – volume: 25 start-page: 3899 year: 2013 ident: 10.1016/j.nanoen.2015.11.025_bib24 publication-title: Adv. Mater. doi: 10.1002/adma.201301204 – volume: 274 start-page: 477 year: 2015 ident: 10.1016/j.nanoen.2015.11.025_bib12 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.075 – volume: 6 start-page: 470 year: 2013 ident: 10.1016/j.nanoen.2015.11.025_bib29 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23977a – volume: 115 start-page: 12672 year: 2011 ident: 10.1016/j.nanoen.2015.11.025_bib20 publication-title: J. Phys. Chem. C. doi: 10.1021/jp202846p – volume: 113 start-page: 9978 year: 2000 ident: 10.1016/j.nanoen.2015.11.025_bib15 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 11 start-page: 119 year: 2015 ident: 10.1016/j.nanoen.2015.11.025_bib25 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.005 – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.nanoen.2015.11.025_bib14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 44 start-page: 797 year: 2005 ident: 10.1016/j.nanoen.2015.11.025_bib4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200460937 – volume: 2 start-page: 595 year: 2014 ident: 10.1016/j.nanoen.2015.11.025_bib27 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14275B – volume: 11 start-page: 226 year: 2015 ident: 10.1016/j.nanoen.2015.11.025_bib28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.015 – volume: 7 start-page: 174 year: 2012 ident: 10.1016/j.nanoen.2015.11.025_bib11 publication-title: ASC Nano doi: 10.1021/nn304833s – volume: 5 start-page: 987 year: 2006 ident: 10.1016/j.nanoen.2015.11.025_bib3 publication-title: Nat. Mater. doi: 10.1038/nmat1782 – volume: 1 start-page: 15530 year: 2013 ident: 10.1016/j.nanoen.2015.11.025_bib8 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12839c – volume: 112 start-page: 4406 year: 2008 ident: 10.1016/j.nanoen.2015.11.025_bib1 publication-title: J. Phys. Chem. C. doi: 10.1021/jp7108785 – volume: 6 start-page: 82 year: 2014 ident: 10.1016/j.nanoen.2015.11.025_bib22 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.03.011 – volume: 10 start-page: 125 year: 2014 ident: 10.1016/j.nanoen.2015.11.025_bib26 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.09.015 – volume: 5 start-page: 9508 year: 2013 ident: 10.1016/j.nanoen.2015.11.025_bib7 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402257y – volume: 6 start-page: 6400 year: 2012 ident: 10.1016/j.nanoen.2015.11.025_bib23 publication-title: ACS Nano doi: 10.1021/nn301971r – volume: 1 start-page: 917 year: 2011 ident: 10.1016/j.nanoen.2015.11.025_bib18 publication-title: Adv. Energy. Mater. doi: 10.1002/aenm.201100312 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.nanoen.2015.11.025_bib13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 |
SSID | ssj0000651712 |
Score | 2.4012535 |
Snippet | Supercapacitors are promising devices for highly efficient energy storage and power management. A notable improvement in performance has been achieved through... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 363 |
SubjectTerms | Density functional theory Flexible supercapacitor Thermodynamic analysis Tunnel-structure |
Title | Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor |
URI | https://dx.doi.org/10.1016/j.nanoen.2015.11.025 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalu2yHsSd7Fh92dZs4Se0cS1npVtZLV-gtOLIzOkpa-oCd9tsnpUnpYGywY4wFRpGlT7b0mbGHWNsYwkiKdtt5IjRpSpS3mKxImxnw41QVt-cvw3Z_HD5PokmNdateGCqrLH3_1qcX3rocaZXabC2m09ZIYu4iNUb8iHBJTHl7GCqy8uanvztnwRDrq-LSk-YLEqg66Ioyr9zkc0dEqH7UJDpPejP7pwi1F3V6J-y4hIu8s13RKau5_Iwd7ZEInrOEbszfHKcyR3QOfJrzQXejRiE3K050oB_cFE6NIzgt7I0jUOWGZ8SFmc4cN7OZQBOcWlG0F_HVZuGWgFEUcLsvL9i49_ja7Yvy2QQBgZJrYY2R0rnIcxmCkVTpAJMoC5kGAB17gJgMYUHgPAlG6TQAz4CxKjU4bmOtgktWz-e5u2I8Q_DgI6Q0RuPmzkINUlvipDcQti24axZUqkqg5BSnpy1mSVU89p5sFZyQgjHdSFDB10zspBZbTo0_5qvqLyTfbCNBt_-r5M2_JW_ZIX6Vhy13rL5ebtw9wo912ijsq8EOOk-D_vALiKjZ9g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalO2w7jD1Z9_RhV7eJk9TOcZSVbn1c2kJvxpGd0VHS0gfstN8-OU3KBmODXZ0IgiJLn2zpEyEPsTQxhBFnzab1WKiTxFHeYrLCTarBjxOR3573B83OOHyZRJMKaZW9MK6ssvD9W5-ee-tipVFos7GYThtDjrkLlxjxI4dLYszb90Lcvm6MQf3D3x20YIz1RX7r6QSYkyhb6PI6r0xnc-uYUP2o7vg83dDsn0LUl7DTPiZHBV6kj9tPOiEVm52Swy8sgmdEuSvzV0tdnSN6BzrNaLe1EcOQ6hV1fKDvVOdejSI6zQ2OIlKlmqaODDOZWapnM4Y2ODUs7y-iq83CLgHDKOB-X56Tcftp1OqwYm4Cg0DwNTNac25t5NkU0UgiZIBZlIFUAoCMPUBQhrggsB4HLWQSgKdBG5FoXDexFMEFqWbzzF4SmiJ68BFTai1xd6ehBC6NI6XXEDYN2BoJSlUpKEjF3WyLmSqrx97UVsHKKRjzDYUKrhG2k1psSTX-eF-Uf0F9Mw6Ffv9Xyat_S96T_c6o31O950H3mhzgk-Lk5YZU18uNvUUssk7uclv7BKSh24Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+storage+in+KCu7S4+as+redox+active+material+for+a+flexible+all-solid-state+supercapacitor&rft.jtitle=Nano+energy&rft.au=Dai%2C+Shuge&rft.au=Xu%2C+Weina&rft.au=Xi%2C+Yi&rft.au=Wang%2C+Mingjun&rft.date=2016-01-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=19&rft.spage=363&rft.epage=372&rft_id=info:doi/10.1016%2Fj.nanoen.2015.11.025&rft.externalDocID=S2211285515004590 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |