Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor

Supercapacitors are promising devices for highly efficient energy storage and power management. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanism and the development of advanced nanostructured materials. Here, by combining experi...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 19; pp. 363 - 372
Main Authors Dai, Shuge, Xu, Weina, Xi, Yi, Wang, Mingjun, Gu, Xiao, Guo, Donglin, Hu, Chenguo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Supercapacitors are promising devices for highly efficient energy storage and power management. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanism and the development of advanced nanostructured materials. Here, by combining experimental and theoretical investigations, we have unveiled the detailed charge storage mechanism of KCu7S4 wires based on a flexible all-solid-state supercapacitor. KCu7S4 with a unique double-tunnel structure and excellent conductivity exhibits outstanding properties as an electrode material in supercapacitors. Both electrochemical experiments and DFT calculations show that the stable energy storage process is mainly contributed by potassium ions׳ insertion/extraction, where potassium ions are proved to have been more active than lithium ions in the redox reactions on the KCu7S4 electrodes. The flexible supercapacitor based on the KCu7S4/Graphene paper is low-cost, easy to fabricate and environmentally friendly. The understanding for the charge storage presented in this work would guide the improvement on supercapacitor and exploration of new electrode materials. KCu7S4 with unique double-tunnel structure and excellent conductivity exhibits outstanding properties as a redox active material in supercapacitors. The diffusion paths of K+, Li+ and H+ in the KCu7S4 tunnels are reported based on the density functional theory, thermodynamic analysis and nudged elastic band method. [Display omitted] •KCu7S4 with unique double-tunnel structure and excellent conductivity exhibits outstanding electrochemical properties.•The diffusion paths of K+, Li+ and H+ in the KCu7S4 tunnels are reported based on the theoretical analysis.•A highly flexible all-solid-state supercapacitor is fabricated based on the KCu7S4/Graphene paper electrodes.
AbstractList Supercapacitors are promising devices for highly efficient energy storage and power management. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanism and the development of advanced nanostructured materials. Here, by combining experimental and theoretical investigations, we have unveiled the detailed charge storage mechanism of KCu7S4 wires based on a flexible all-solid-state supercapacitor. KCu7S4 with a unique double-tunnel structure and excellent conductivity exhibits outstanding properties as an electrode material in supercapacitors. Both electrochemical experiments and DFT calculations show that the stable energy storage process is mainly contributed by potassium ions׳ insertion/extraction, where potassium ions are proved to have been more active than lithium ions in the redox reactions on the KCu7S4 electrodes. The flexible supercapacitor based on the KCu7S4/Graphene paper is low-cost, easy to fabricate and environmentally friendly. The understanding for the charge storage presented in this work would guide the improvement on supercapacitor and exploration of new electrode materials. KCu7S4 with unique double-tunnel structure and excellent conductivity exhibits outstanding properties as a redox active material in supercapacitors. The diffusion paths of K+, Li+ and H+ in the KCu7S4 tunnels are reported based on the density functional theory, thermodynamic analysis and nudged elastic band method. [Display omitted] •KCu7S4 with unique double-tunnel structure and excellent conductivity exhibits outstanding electrochemical properties.•The diffusion paths of K+, Li+ and H+ in the KCu7S4 tunnels are reported based on the theoretical analysis.•A highly flexible all-solid-state supercapacitor is fabricated based on the KCu7S4/Graphene paper electrodes.
Author Xi, Yi
Guo, Donglin
Dai, Shuge
Hu, Chenguo
Xu, Weina
Wang, Mingjun
Gu, Xiao
Author_xml – sequence: 1
  givenname: Shuge
  surname: Dai
  fullname: Dai, Shuge
– sequence: 2
  givenname: Weina
  surname: Xu
  fullname: Xu, Weina
– sequence: 3
  givenname: Yi
  surname: Xi
  fullname: Xi, Yi
  email: yxi6@cqu.edu.cn
– sequence: 4
  givenname: Mingjun
  surname: Wang
  fullname: Wang, Mingjun
– sequence: 5
  givenname: Xiao
  surname: Gu
  fullname: Gu, Xiao
  email: gx@cqu.edu.cn
– sequence: 6
  givenname: Donglin
  surname: Guo
  fullname: Guo, Donglin
– sequence: 7
  givenname: Chenguo
  surname: Hu
  fullname: Hu, Chenguo
  email: hucg@cqu.edu.cn
BookMark eNqFkM9KAzEQh3OoYNW-gYe8wK5JttukHgQp_sOCB_UcZrOzmpImJUlLfXtT6smDzmVgmO83zHdGRj54JOSSs5ozPrta1R58QF8Lxtua85qJdkTGQnBeCdW2p2SS0oqVmrVccjEmevEJ8QNpyiFC6dbT58VWvk4pJBqxD3sKJtsd0jVkjBYcHUKkQAeHe9s5pOBclYKzfZVyWaFpu8FoYAPGlswLcjKASzj56efk_f7ubfFYLV8enha3y8o0UuSqBxACsWU4qHnTSdXwKevNoIwxas7MrGVSiQaZMCBV1xgGBnrZQZn3cyWbc3J9zDUxpBRx0OU8ZBt8jmCd5kwfDOmVPhrSB0Oac10MFXj6C95Eu4b49R92c8SwPLazGHUyFr3B3kY0WffB_h3wDcg4h3c
CitedBy_id crossref_primary_10_1002_er_7918
crossref_primary_10_1021_acsenergylett_7b00379
crossref_primary_10_1007_s10853_020_05314_x
crossref_primary_10_1002_smll_201800285
crossref_primary_10_1016_j_matchemphys_2017_04_034
crossref_primary_10_1021_acs_jpcc_0c00036
crossref_primary_10_1021_acsami_4c06084
crossref_primary_10_1016_j_cej_2022_139263
crossref_primary_10_1002_aenm_202401221
crossref_primary_10_1002_cey2_271
crossref_primary_10_1557_s43578_023_00919_9
crossref_primary_10_1016_j_jcis_2021_10_184
crossref_primary_10_1016_j_est_2023_109100
crossref_primary_10_1016_j_jallcom_2018_03_138
crossref_primary_10_1016_j_jcis_2023_10_140
crossref_primary_10_1039_C9CE01261C
crossref_primary_10_1039_D3CP06031D
crossref_primary_10_1039_D1DT01679B
crossref_primary_10_1016_j_nanoen_2017_01_056
crossref_primary_10_1039_D2GC04711J
crossref_primary_10_1016_j_electacta_2021_139216
crossref_primary_10_1016_j_jallcom_2022_166996
crossref_primary_10_2139_ssrn_4147015
crossref_primary_10_1039_C7CS00505A
crossref_primary_10_1021_jacs_8b11911
crossref_primary_10_1039_C8NR07454B
crossref_primary_10_1016_j_ijhydene_2022_09_065
crossref_primary_10_1016_j_matdes_2020_108992
crossref_primary_10_2139_ssrn_4139199
crossref_primary_10_3389_fchem_2020_00413
crossref_primary_10_1016_j_rser_2022_113106
crossref_primary_10_1007_s10853_017_1493_8
crossref_primary_10_1016_j_ensm_2017_07_006
crossref_primary_10_1016_j_ijbiomac_2024_131143
crossref_primary_10_1016_j_matchemphys_2024_129923
crossref_primary_10_1007_s10853_021_06131_6
crossref_primary_10_1039_C8NR01553H
crossref_primary_10_1016_j_est_2019_101035
crossref_primary_10_3390_signals4010001
crossref_primary_10_1021_acsenergylett_7b00265
crossref_primary_10_1002_ente_201600212
crossref_primary_10_1016_j_jallcom_2020_154056
crossref_primary_10_1002_ente_201800476
crossref_primary_10_1016_j_jpowsour_2017_05_023
crossref_primary_10_1007_s40243_018_0136_6
crossref_primary_10_1039_C6NR09959A
crossref_primary_10_1016_j_compositesb_2022_110409
crossref_primary_10_1016_j_jpowsour_2020_228915
crossref_primary_10_1007_s10854_018_8686_z
crossref_primary_10_1016_j_apmt_2020_100563
crossref_primary_10_1016_j_heliyon_2018_e00862
crossref_primary_10_1021_acsnano_1c08193
crossref_primary_10_3389_fchem_2018_00555
crossref_primary_10_1007_s10853_017_1415_9
crossref_primary_10_1016_j_apsusc_2016_06_189
crossref_primary_10_1016_j_jmrt_2021_11_036
crossref_primary_10_1039_C7TA04382A
crossref_primary_10_1039_C7TA04071G
crossref_primary_10_1021_acs_inorgchem_4c02479
crossref_primary_10_1016_j_est_2022_104120
crossref_primary_10_1016_j_cej_2018_05_090
crossref_primary_10_1007_s11696_021_01523_z
crossref_primary_10_1016_j_ceramint_2017_11_062
crossref_primary_10_1016_j_jpowsour_2018_03_055
crossref_primary_10_1007_s10854_018_8748_2
crossref_primary_10_1016_j_jallcom_2019_07_095
crossref_primary_10_1016_j_nanoen_2019_103919
crossref_primary_10_1016_j_nanoen_2018_08_056
crossref_primary_10_1088_1361_6528_ab5a29
crossref_primary_10_3390_polym12030505
crossref_primary_10_1007_s10854_018_9592_0
crossref_primary_10_1016_j_jpowsour_2019_02_041
crossref_primary_10_1039_C6TA07829J
crossref_primary_10_1039_C9TA10944G
crossref_primary_10_1016_j_est_2020_102107
crossref_primary_10_1142_S179360472151005X
crossref_primary_10_1016_j_jcis_2022_05_096
Cites_doi 10.1016/j.jpowsour.2014.03.138
10.1016/j.nanoen.2014.07.008
10.1021/nl404008e
10.1002/adma.201101345
10.1021/jp311270s
10.1021/nl8038579
10.1021/cm9705395
10.1039/c2cc32306k
10.1002/adma.201401513
10.1002/adma.201301204
10.1016/j.jpowsour.2014.10.075
10.1039/c2ee23977a
10.1021/jp202846p
10.1063/1.1323224
10.1016/j.nanoen.2014.10.005
10.1103/PhysRevB.59.1758
10.1002/anie.200460937
10.1039/C3TA14275B
10.1016/j.nanoen.2014.10.015
10.1021/nn304833s
10.1038/nmat1782
10.1039/c3ta12839c
10.1021/jp7108785
10.1016/j.nanoen.2014.03.011
10.1016/j.nanoen.2014.09.015
10.1021/am402257y
10.1021/nn301971r
10.1002/aenm.201100312
10.1103/PhysRevB.54.11169
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2015.11.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 372
ExternalDocumentID 10_1016_j_nanoen_2015_11_025
S2211285515004590
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-daa22ee50ef893b783140dcf8ccc890c6507823e02ca78b3c0acad7ba507d9873
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 01:55:49 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Fri Feb 23 02:30:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Density functional theory
Flexible supercapacitor
Thermodynamic analysis
Tunnel-structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-daa22ee50ef893b783140dcf8ccc890c6507823e02ca78b3c0acad7ba507d9873
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2015_11_025
crossref_primary_10_1016_j_nanoen_2015_11_025
elsevier_sciencedirect_doi_10_1016_j_nanoen_2015_11_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationTitle Nano energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Nan, Lu, Peng, Li (bib2) 2012; 48
Kaempgen, Chan, Ma, Cui, Gruner (bib21) 2009; 9
An, Wang, Huang, Xu, Jiao, Yuan (bib26) 2014; 10
Chen, Yu, Wang, Li, Tan, Zhu, Yu (bib25) 2015; 11
Yuan, Yao, Hu, Huo, Chen, Zhou (bib29) 2013; 6
Yang, Dong, Lin, Chen, Li, Qiang, Ebrahimi, Mai, Wang, Wang (bib6) 2014; 14
Gu, Liu, Yang, Xiang, Gong, Xia (bib20) 2011; 115
Yang, Li, Lin, Ding, Yue, Wong, Cai, Tan, Mai (bib27) 2014; 2
Hwu, He, Mackay, Kuo, Skove, Mahapatro, Bucher, Halladay, Hayes (bib10) 1998; 10
Zhou, Li, Hibino, Honma (bib4) 2005; 44
Liu, Niu, Zhang, Zhou, Chen, Xie (bib16) 2014; 26
Hu, Xiao, Chen, Li, Huang, Zhang, Su, Miao, Jiang, Zhang, Zhou (bib28) 2015; 11
Shi, Zhao, Li, Liao, Yu (bib22) 2014; 6
Kresse, Joubert (bib14) 1999; 59
Shu, Chen, Xia, Gong, Gu (bib19) 2013; 117
Wang, Su, Wang, Li, Du, Cheng (bib18) 2011; 1
Dai, Xi, Hu, Yue, Cheng, Wang (bib9) 2014; 263
Dai, Xi, Hu, Liu, Zhang, Yue, Cheng (bib8) 2013; 1
Dong, Ye, Kuang, Lu, Zhang, Zhang, Tan, Wen, Wang (bib7) 2013; 5
Kresse, Furthmüller (bib13) 1996; 54
He, Chen, Li, Zhang, Fu, Zhao, Xie (bib11) 2012; 7
Bae, Park, Lee, Cha, Choi, Lee, Kim, Wang (bib17) 2011; 23
Hao, Li, Zhi (bib24) 2013; 25
Dai, Xi, Hu, Yue, Cheng, Wang (bib12) 2015; 274
Futaba, Hata, Yamada, Hiraoka, Hayamizu, Kakudate, Tanaike, Hatori, Yumura, Iijima (bib3) 2006; 5
Devaraj, Munichandraiah (bib1) 2008; 112
Cheng, Yang, Chen, Ji, Jiang, Ding, Liu (bib5) 2014; 9
Kang, Chun, Lee, Kim, Kim, Chung, Lee, Kim (bib23) 2012; 6
Henkelman, Jónsson (bib15) 2000; 113
An (10.1016/j.nanoen.2015.11.025_bib26) 2014; 10
Li (10.1016/j.nanoen.2015.11.025_bib2) 2012; 48
Dai (10.1016/j.nanoen.2015.11.025_bib8) 2013; 1
Hwu (10.1016/j.nanoen.2015.11.025_bib10) 1998; 10
Kresse (10.1016/j.nanoen.2015.11.025_bib13) 1996; 54
Yang (10.1016/j.nanoen.2015.11.025_bib27) 2014; 2
Shu (10.1016/j.nanoen.2015.11.025_bib19) 2013; 117
Dai (10.1016/j.nanoen.2015.11.025_bib12) 2015; 274
He (10.1016/j.nanoen.2015.11.025_bib11) 2012; 7
Yang (10.1016/j.nanoen.2015.11.025_bib6) 2014; 14
Wang (10.1016/j.nanoen.2015.11.025_bib18) 2011; 1
Futaba (10.1016/j.nanoen.2015.11.025_bib3) 2006; 5
Hao (10.1016/j.nanoen.2015.11.025_bib24) 2013; 25
Zhou (10.1016/j.nanoen.2015.11.025_bib4) 2005; 44
Kang (10.1016/j.nanoen.2015.11.025_bib23) 2012; 6
Cheng (10.1016/j.nanoen.2015.11.025_bib5) 2014; 9
Dai (10.1016/j.nanoen.2015.11.025_bib9) 2014; 263
Henkelman (10.1016/j.nanoen.2015.11.025_bib15) 2000; 113
Shi (10.1016/j.nanoen.2015.11.025_bib22) 2014; 6
Gu (10.1016/j.nanoen.2015.11.025_bib20) 2011; 115
Dong (10.1016/j.nanoen.2015.11.025_bib7) 2013; 5
Bae (10.1016/j.nanoen.2015.11.025_bib17) 2011; 23
Yuan (10.1016/j.nanoen.2015.11.025_bib29) 2013; 6
Devaraj (10.1016/j.nanoen.2015.11.025_bib1) 2008; 112
Liu (10.1016/j.nanoen.2015.11.025_bib16) 2014; 26
Hu (10.1016/j.nanoen.2015.11.025_bib28) 2015; 11
Kresse (10.1016/j.nanoen.2015.11.025_bib14) 1999; 59
Kaempgen (10.1016/j.nanoen.2015.11.025_bib21) 2009; 9
Chen (10.1016/j.nanoen.2015.11.025_bib25) 2015; 11
References_xml – volume: 10
  start-page: 6
  year: 1998
  end-page: 9
  ident: bib10
  publication-title: Chem. Mater.
– volume: 5
  start-page: 9508
  year: 2013
  end-page: 9516
  ident: bib7
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 917
  year: 2011
  end-page: 922
  ident: bib18
  publication-title: Adv. Energy. Mater.
– volume: 11
  start-page: 119
  year: 2015
  end-page: 128
  ident: bib25
  publication-title: Nano Energy
– volume: 113
  start-page: 9978
  year: 2000
  end-page: 9985
  ident: bib15
  publication-title: J. Chem. Phys.
– volume: 263
  start-page: 175
  year: 2014
  end-page: 180
  ident: bib9
  publication-title: J. Power Sources
– volume: 2
  start-page: 595
  year: 2014
  end-page: 599
  ident: bib27
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib13
  publication-title: Phys. Rev. B
– volume: 23
  start-page: 3446
  year: 2011
  end-page: 3449
  ident: bib17
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6400
  year: 2012
  end-page: 6406
  ident: bib23
  publication-title: ACS Nano
– volume: 112
  start-page: 4406
  year: 2008
  end-page: 4417
  ident: bib1
  publication-title: J. Phys. Chem. C.
– volume: 274
  start-page: 477
  year: 2015
  end-page: 482
  ident: bib12
  publication-title: J. Power Sources
– volume: 9
  start-page: 1872
  year: 2009
  end-page: 1876
  ident: bib21
  publication-title: Nano Lett.
– volume: 6
  start-page: 470
  year: 2013
  end-page: 476
  ident: bib29
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 82
  year: 2014
  end-page: 91
  ident: bib22
  publication-title: Nano Energy
– volume: 10
  start-page: 125
  year: 2014
  end-page: 134
  ident: bib26
  publication-title: Nano Energy
– volume: 5
  start-page: 987
  year: 2006
  end-page: 994
  ident: bib3
  publication-title: Nat. Mater.
– volume: 26
  start-page: 4855
  year: 2014
  end-page: 4862
  ident: bib16
  publication-title: Adv. Mater.
– volume: 1
  start-page: 15530
  year: 2013
  end-page: 15534
  ident: bib8
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: bib14
  publication-title: Phys. Rev. B
– volume: 44
  start-page: 797
  year: 2005
  end-page: 802
  ident: bib4
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 731
  year: 2014
  end-page: 736
  ident: bib6
  publication-title: Nano Lett.
– volume: 25
  start-page: 3899
  year: 2013
  end-page: 3904
  ident: bib24
  publication-title: Adv. Mater.
– volume: 48
  start-page: 6945
  year: 2012
  end-page: 6947
  ident: bib2
  publication-title: Chem. Commun.
– volume: 115
  start-page: 12672
  year: 2011
  end-page: 12676
  ident: bib20
  publication-title: J. Phys. Chem. C.
– volume: 7
  start-page: 174
  year: 2012
  end-page: 182
  ident: bib11
  publication-title: ASC Nano
– volume: 117
  start-page: 6929
  year: 2013
  end-page: 6932
  ident: bib19
  publication-title: J. Phys. Chem. C.
– volume: 11
  start-page: 226
  year: 2015
  end-page: 234
  ident: bib28
  publication-title: Nano Energy
– volume: 9
  start-page: 161
  year: 2014
  end-page: 167
  ident: bib5
  publication-title: Nano Energy
– volume: 263
  start-page: 175
  year: 2014
  ident: 10.1016/j.nanoen.2015.11.025_bib9
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.138
– volume: 9
  start-page: 161
  year: 2014
  ident: 10.1016/j.nanoen.2015.11.025_bib5
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.07.008
– volume: 14
  start-page: 731
  year: 2014
  ident: 10.1016/j.nanoen.2015.11.025_bib6
  publication-title: Nano Lett.
  doi: 10.1021/nl404008e
– volume: 23
  start-page: 3446
  year: 2011
  ident: 10.1016/j.nanoen.2015.11.025_bib17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101345
– volume: 117
  start-page: 6929
  year: 2013
  ident: 10.1016/j.nanoen.2015.11.025_bib19
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp311270s
– volume: 9
  start-page: 1872
  year: 2009
  ident: 10.1016/j.nanoen.2015.11.025_bib21
  publication-title: Nano Lett.
  doi: 10.1021/nl8038579
– volume: 10
  start-page: 6
  year: 1998
  ident: 10.1016/j.nanoen.2015.11.025_bib10
  publication-title: Chem. Mater.
  doi: 10.1021/cm9705395
– volume: 48
  start-page: 6945
  year: 2012
  ident: 10.1016/j.nanoen.2015.11.025_bib2
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32306k
– volume: 26
  start-page: 4855
  year: 2014
  ident: 10.1016/j.nanoen.2015.11.025_bib16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401513
– volume: 25
  start-page: 3899
  year: 2013
  ident: 10.1016/j.nanoen.2015.11.025_bib24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301204
– volume: 274
  start-page: 477
  year: 2015
  ident: 10.1016/j.nanoen.2015.11.025_bib12
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.075
– volume: 6
  start-page: 470
  year: 2013
  ident: 10.1016/j.nanoen.2015.11.025_bib29
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23977a
– volume: 115
  start-page: 12672
  year: 2011
  ident: 10.1016/j.nanoen.2015.11.025_bib20
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp202846p
– volume: 113
  start-page: 9978
  year: 2000
  ident: 10.1016/j.nanoen.2015.11.025_bib15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 11
  start-page: 119
  year: 2015
  ident: 10.1016/j.nanoen.2015.11.025_bib25
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.005
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.nanoen.2015.11.025_bib14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 44
  start-page: 797
  year: 2005
  ident: 10.1016/j.nanoen.2015.11.025_bib4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200460937
– volume: 2
  start-page: 595
  year: 2014
  ident: 10.1016/j.nanoen.2015.11.025_bib27
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14275B
– volume: 11
  start-page: 226
  year: 2015
  ident: 10.1016/j.nanoen.2015.11.025_bib28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.015
– volume: 7
  start-page: 174
  year: 2012
  ident: 10.1016/j.nanoen.2015.11.025_bib11
  publication-title: ASC Nano
  doi: 10.1021/nn304833s
– volume: 5
  start-page: 987
  year: 2006
  ident: 10.1016/j.nanoen.2015.11.025_bib3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1782
– volume: 1
  start-page: 15530
  year: 2013
  ident: 10.1016/j.nanoen.2015.11.025_bib8
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12839c
– volume: 112
  start-page: 4406
  year: 2008
  ident: 10.1016/j.nanoen.2015.11.025_bib1
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp7108785
– volume: 6
  start-page: 82
  year: 2014
  ident: 10.1016/j.nanoen.2015.11.025_bib22
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.03.011
– volume: 10
  start-page: 125
  year: 2014
  ident: 10.1016/j.nanoen.2015.11.025_bib26
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.09.015
– volume: 5
  start-page: 9508
  year: 2013
  ident: 10.1016/j.nanoen.2015.11.025_bib7
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am402257y
– volume: 6
  start-page: 6400
  year: 2012
  ident: 10.1016/j.nanoen.2015.11.025_bib23
  publication-title: ACS Nano
  doi: 10.1021/nn301971r
– volume: 1
  start-page: 917
  year: 2011
  ident: 10.1016/j.nanoen.2015.11.025_bib18
  publication-title: Adv. Energy. Mater.
  doi: 10.1002/aenm.201100312
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.nanoen.2015.11.025_bib13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
SSID ssj0000651712
Score 2.4012535
Snippet Supercapacitors are promising devices for highly efficient energy storage and power management. A notable improvement in performance has been achieved through...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 363
SubjectTerms Density functional theory
Flexible supercapacitor
Thermodynamic analysis
Tunnel-structure
Title Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor
URI https://dx.doi.org/10.1016/j.nanoen.2015.11.025
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalu2yHsSd7Fh92dZs4Se0cS1npVtZLV-gtOLIzOkpa-oCd9tsnpUnpYGywY4wFRpGlT7b0mbGHWNsYwkiKdtt5IjRpSpS3mKxImxnw41QVt-cvw3Z_HD5PokmNdateGCqrLH3_1qcX3rocaZXabC2m09ZIYu4iNUb8iHBJTHl7GCqy8uanvztnwRDrq-LSk-YLEqg66Ioyr9zkc0dEqH7UJDpPejP7pwi1F3V6J-y4hIu8s13RKau5_Iwd7ZEInrOEbszfHKcyR3QOfJrzQXejRiE3K050oB_cFE6NIzgt7I0jUOWGZ8SFmc4cN7OZQBOcWlG0F_HVZuGWgFEUcLsvL9i49_ja7Yvy2QQBgZJrYY2R0rnIcxmCkVTpAJMoC5kGAB17gJgMYUHgPAlG6TQAz4CxKjU4bmOtgktWz-e5u2I8Q_DgI6Q0RuPmzkINUlvipDcQti24axZUqkqg5BSnpy1mSVU89p5sFZyQgjHdSFDB10zspBZbTo0_5qvqLyTfbCNBt_-r5M2_JW_ZIX6Vhy13rL5ebtw9wo912ijsq8EOOk-D_vALiKjZ9g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalO2w7jD1Z9_RhV7eJk9TOcZSVbn1c2kJvxpGd0VHS0gfstN8-OU3KBmODXZ0IgiJLn2zpEyEPsTQxhBFnzab1WKiTxFHeYrLCTarBjxOR3573B83OOHyZRJMKaZW9MK6ssvD9W5-ee-tipVFos7GYThtDjrkLlxjxI4dLYszb90Lcvm6MQf3D3x20YIz1RX7r6QSYkyhb6PI6r0xnc-uYUP2o7vg83dDsn0LUl7DTPiZHBV6kj9tPOiEVm52Swy8sgmdEuSvzV0tdnSN6BzrNaLe1EcOQ6hV1fKDvVOdejSI6zQ2OIlKlmqaODDOZWapnM4Y2ODUs7y-iq83CLgHDKOB-X56Tcftp1OqwYm4Cg0DwNTNac25t5NkU0UgiZIBZlIFUAoCMPUBQhrggsB4HLWQSgKdBG5FoXDexFMEFqWbzzF4SmiJ68BFTai1xd6ehBC6NI6XXEDYN2BoJSlUpKEjF3WyLmSqrx97UVsHKKRjzDYUKrhG2k1psSTX-eF-Uf0F9Mw6Ffv9Xyat_S96T_c6o31O950H3mhzgk-Lk5YZU18uNvUUssk7uclv7BKSh24Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+storage+in+KCu7S4+as+redox+active+material+for+a+flexible+all-solid-state+supercapacitor&rft.jtitle=Nano+energy&rft.au=Dai%2C+Shuge&rft.au=Xu%2C+Weina&rft.au=Xi%2C+Yi&rft.au=Wang%2C+Mingjun&rft.date=2016-01-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=19&rft.spage=363&rft.epage=372&rft_id=info:doi/10.1016%2Fj.nanoen.2015.11.025&rft.externalDocID=S2211285515004590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon