Membrane fouling behaviors in a full-scale zero liquid discharge system for cold-rolling wastewater brine treatment: A comprehensive analysis on multiple membrane processes
•Membrane fouling in a ZLD system was investigated for multiple NF & RO steps.•A correlation between water quality and membrane fouling behavior was unraveled.•The membrane fouling behaviors varied along the flow direction in the ZLD system.•The 2nd pass RO process was subject to severe aluminum...
Saved in:
Published in | Water research (Oxford) Vol. 226; p. 119221 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Membrane fouling in a ZLD system was investigated for multiple NF & RO steps.•A correlation between water quality and membrane fouling behavior was unraveled.•The membrane fouling behaviors varied along the flow direction in the ZLD system.•The 2nd pass RO process was subject to severe aluminum-silica scaling.•The aromatic substances and TPHs were universally present on various membranes.
The challenge of water scarcity drives zero liquid discharge (ZLD) treatment to maximize reuse of industrial wastewater. Deciphering the characteristics and mechanisms of membrane fouling in the membrane-based ZLD system is crucial for the development of effective fouling control strategies. However, current studies only focused on the membrane fouling of single step, lacking in-depth understanding on the ZLD systems using multiple membrane processes. Herein, membrane fouling characteristics and mechanisms in a full-scale ZLD system for cold-rolling wastewater brine treatment were investigated via a comprehensive analysis on multiple nanofiltration (NF) and reverse osmosis (RO) membrane processes. The membrane fouling behaviors showed distinct characteristics along the wastewater flow direction in the ZLD system. Increasing amounts of foulants were deposited on the membrane surfaces with the sequence of the 1st pass RO, 1st stage NF, and 2nd stage NF processes. The organic fouling and silica scaling were more intensive in the 1st stage NF and 2nd stage NF for treating the brine of the 1st pass RO, as the foulants were rejected and concentrated by previous membrane processes. Severe inorganic fouling, containing amorphous SiO2, Al2O3, and Al2SiO5, occurred on the membrane surface of the 2nd pass RO membrane, due to the recirculated high-concentration silica, high water recovery, and concentration polarization. For the 3rd pass RO process, both the amounts of organic and inorganic foulants decreased dramatically, due to the low foulant concentration in its influent. This work provides a comprehensive understanding of membrane fouling in a membrane-based ZLD system, facilitating the development of membrane fouling control strategies for multiple membrane processes.
[Display omitted] |
---|---|
AbstractList | •Membrane fouling in a ZLD system was investigated for multiple NF & RO steps.•A correlation between water quality and membrane fouling behavior was unraveled.•The membrane fouling behaviors varied along the flow direction in the ZLD system.•The 2nd pass RO process was subject to severe aluminum-silica scaling.•The aromatic substances and TPHs were universally present on various membranes.
The challenge of water scarcity drives zero liquid discharge (ZLD) treatment to maximize reuse of industrial wastewater. Deciphering the characteristics and mechanisms of membrane fouling in the membrane-based ZLD system is crucial for the development of effective fouling control strategies. However, current studies only focused on the membrane fouling of single step, lacking in-depth understanding on the ZLD systems using multiple membrane processes. Herein, membrane fouling characteristics and mechanisms in a full-scale ZLD system for cold-rolling wastewater brine treatment were investigated via a comprehensive analysis on multiple nanofiltration (NF) and reverse osmosis (RO) membrane processes. The membrane fouling behaviors showed distinct characteristics along the wastewater flow direction in the ZLD system. Increasing amounts of foulants were deposited on the membrane surfaces with the sequence of the 1st pass RO, 1st stage NF, and 2nd stage NF processes. The organic fouling and silica scaling were more intensive in the 1st stage NF and 2nd stage NF for treating the brine of the 1st pass RO, as the foulants were rejected and concentrated by previous membrane processes. Severe inorganic fouling, containing amorphous SiO2, Al2O3, and Al2SiO5, occurred on the membrane surface of the 2nd pass RO membrane, due to the recirculated high-concentration silica, high water recovery, and concentration polarization. For the 3rd pass RO process, both the amounts of organic and inorganic foulants decreased dramatically, due to the low foulant concentration in its influent. This work provides a comprehensive understanding of membrane fouling in a membrane-based ZLD system, facilitating the development of membrane fouling control strategies for multiple membrane processes.
[Display omitted] The challenge of water scarcity drives zero liquid discharge (ZLD) treatment to maximize reuse of industrial wastewater. Deciphering the characteristics and mechanisms of membrane fouling in the membrane-based ZLD system is crucial for the development of effective fouling control strategies. However, current studies only focused on the membrane fouling of single step, lacking in-depth understanding on the ZLD systems using multiple membrane processes. Herein, membrane fouling characteristics and mechanisms in a full-scale ZLD system for cold-rolling wastewater brine treatment were investigated via a comprehensive analysis on multiple nanofiltration (NF) and reverse osmosis (RO) membrane processes. The membrane fouling behaviors showed distinct characteristics along the wastewater flow direction in the ZLD system. Increasing amounts of foulants were deposited on the membrane surfaces with the sequence of the 1st pass RO, 1st stage NF, and 2nd stage NF processes. The organic fouling and silica scaling were more intensive in the 1st stage NF and 2nd stage NF for treating the brine of the 1st pass RO, as the foulants were rejected and concentrated by previous membrane processes. Severe inorganic fouling, containing amorphous SiO₂, Al₂O₃, and Al₂SiO₅, occurred on the membrane surface of the 2nd pass RO membrane, due to the recirculated high-concentration silica, high water recovery, and concentration polarization. For the 3rd pass RO process, both the amounts of organic and inorganic foulants decreased dramatically, due to the low foulant concentration in its influent. This work provides a comprehensive understanding of membrane fouling in a membrane-based ZLD system, facilitating the development of membrane fouling control strategies for multiple membrane processes. The challenge of water scarcity drives zero liquid discharge (ZLD) treatment to maximize reuse of industrial wastewater. Deciphering the characteristics and mechanisms of membrane fouling in the membrane-based ZLD system is crucial for the development of effective fouling control strategies. However, current studies only focused on the membrane fouling of single step, lacking in-depth understanding on the ZLD systems using multiple membrane processes. Herein, membrane fouling characteristics and mechanisms in a full-scale ZLD system for cold-rolling wastewater brine treatment were investigated via a comprehensive analysis on multiple nanofiltration (NF) and reverse osmosis (RO) membrane processes. The membrane fouling behaviors showed distinct characteristics along the wastewater flow direction in the ZLD system. Increasing amounts of foulants were deposited on the membrane surfaces with the sequence of the 1st pass RO, 1st stage NF, and 2nd stage NF processes. The organic fouling and silica scaling were more intensive in the 1st stage NF and 2nd stage NF for treating the brine of the 1st pass RO, as the foulants were rejected and concentrated by previous membrane processes. Severe inorganic fouling, containing amorphous SiO2, Al2O3, and Al2SiO5, occurred on the membrane surface of the 2nd pass RO membrane, due to the recirculated high-concentration silica, high water recovery, and concentration polarization. For the 3rd pass RO process, both the amounts of organic and inorganic foulants decreased dramatically, due to the low foulant concentration in its influent. This work provides a comprehensive understanding of membrane fouling in a membrane-based ZLD system, facilitating the development of membrane fouling control strategies for multiple membrane processes.The challenge of water scarcity drives zero liquid discharge (ZLD) treatment to maximize reuse of industrial wastewater. Deciphering the characteristics and mechanisms of membrane fouling in the membrane-based ZLD system is crucial for the development of effective fouling control strategies. However, current studies only focused on the membrane fouling of single step, lacking in-depth understanding on the ZLD systems using multiple membrane processes. Herein, membrane fouling characteristics and mechanisms in a full-scale ZLD system for cold-rolling wastewater brine treatment were investigated via a comprehensive analysis on multiple nanofiltration (NF) and reverse osmosis (RO) membrane processes. The membrane fouling behaviors showed distinct characteristics along the wastewater flow direction in the ZLD system. Increasing amounts of foulants were deposited on the membrane surfaces with the sequence of the 1st pass RO, 1st stage NF, and 2nd stage NF processes. The organic fouling and silica scaling were more intensive in the 1st stage NF and 2nd stage NF for treating the brine of the 1st pass RO, as the foulants were rejected and concentrated by previous membrane processes. Severe inorganic fouling, containing amorphous SiO2, Al2O3, and Al2SiO5, occurred on the membrane surface of the 2nd pass RO membrane, due to the recirculated high-concentration silica, high water recovery, and concentration polarization. For the 3rd pass RO process, both the amounts of organic and inorganic foulants decreased dramatically, due to the low foulant concentration in its influent. This work provides a comprehensive understanding of membrane fouling in a membrane-based ZLD system, facilitating the development of membrane fouling control strategies for multiple membrane processes. |
ArticleNumber | 119221 |
Author | Dai, Ruobin Wang, Lingna Wang, Xueye Wang, Hailan Wang, Zhiwei |
Author_xml | – sequence: 1 givenname: Hailan surname: Wang fullname: Wang, Hailan – sequence: 2 givenname: Ruobin orcidid: 0000-0001-8971-6838 surname: Dai fullname: Dai, Ruobin email: dairuobin@tongji.edu.cn – sequence: 3 givenname: Lingna surname: Wang fullname: Wang, Lingna – sequence: 4 givenname: Xueye surname: Wang fullname: Wang, Xueye – sequence: 5 givenname: Zhiwei surname: Wang fullname: Wang, Zhiwei email: zwwang@tongji.edu.cn |
BookMark | eNqFUUtv1DAQtlCR2Bb-AQcfuWTxIw-nB6SqAopUxAXOluNMul459tbjbLX8Jn4kbgMXDvQ00uh7zXzn5CzEAIS85WzLGW_f77cPJifArWBCbDnvheAvyIarrq9EXaszsmGslhWXTf2KnCPuGStI2W_Ir68wD8kEoFNcvAt3dICdObqYkLpADZ0W7yu0xgP9CSlS7-4XN9LRod2ZdAcUT5hhLvREbfRjlaJ_0nkwZV9yQaJDcsWgJDR5hpAv6VWBzocEOwjojkBNMP6EDmkMdF58dodiN_9NdkjRAiLga_JyMh7hzZ95QX58-vj9-qa6_fb5y_XVbWVlJ3I1qskq4ND1xqpyfytZJ1Q_iMl0ZhpV009DZwYFE2u7UUrRM8ssmHZsVWOklRfk3apbnO8XwKznci54X9LEBbXkjVQNa1v2LFR0ouE9Z6or0HqF2hQRE0z6kNxs0klzph971Hu99qgfe9Rrj4V2-Q_NumyyiyEn4_xz5A8rGcq7jg6SRusgWBhdApv1GN3_BX4DytbC6A |
CitedBy_id | crossref_primary_10_1016_j_memsci_2023_122209 crossref_primary_10_1016_j_watres_2023_121023 crossref_primary_10_1016_j_psep_2024_11_131 crossref_primary_10_1016_j_watres_2025_123400 crossref_primary_10_2166_wrd_2024_005 crossref_primary_10_1016_j_jwpe_2024_105537 crossref_primary_10_1016_j_memsci_2023_122179 crossref_primary_10_1016_j_memsci_2024_122655 crossref_primary_10_1016_j_seppur_2024_130930 crossref_primary_10_1016_j_seppur_2024_128644 crossref_primary_10_1016_j_jhazmat_2023_133315 crossref_primary_10_1016_j_jwpe_2023_104308 crossref_primary_10_1007_s11783_023_1729_6 crossref_primary_10_1016_j_jenvman_2024_123531 crossref_primary_10_1021_acs_est_4c13117 crossref_primary_10_1016_j_desal_2023_116782 |
Cites_doi | 10.1021/acs.est.9b05343 10.1016/j.watres.2021.117773 10.1016/j.memsci.2020.118021 10.1016/j.watres.2020.115488 10.2166/wst.2021.456 10.1016/j.memsci.2020.118109 10.1021/acs.iecr.9b01353 10.1016/j.jclepro.2021.125842 10.1016/j.jece.2021.106272 10.1016/j.desal.2019.03.002 10.1016/j.memsci.2020.118356 10.1021/acs.est.0c00832 10.1016/j.memsci.2020.118185 10.1016/j.memsci.2018.06.043 10.1021/acs.est.6b01000 10.1016/j.jclepro.2019.118964 10.1016/j.memsci.2012.10.027 10.1016/j.seppur.2018.05.050 10.1021/acs.iecr.0c03365 10.1007/s11356-019-07488-7 10.1016/j.desal.2019.114305 10.1016/j.memsci.2018.10.023 10.1002/ceat.201400379 10.1016/j.desal.2020.114387 10.1016/j.seppur.2021.119034 10.4491/eer.2019.353 10.1016/j.desal.2014.10.043 10.1021/acs.iecr.1c00835 10.1016/j.watres.2006.01.023 10.1016/j.jwpe.2017.09.005 10.1016/j.watres.2016.03.021 10.1016/j.desal.2020.114693 10.1016/j.seppur.2016.06.028 10.1016/j.jwpe.2021.101968 10.1016/j.jwpe.2021.101991 10.1016/j.desal.2022.115648 10.1016/j.scitotenv.2020.137013 10.1016/j.watres.2020.115557 10.1016/j.scitotenv.2017.03.235 10.1016/j.watres.2016.10.082 10.1016/j.scitotenv.2019.134361 10.1016/j.jece.2016.10.032 10.1016/j.jwpe.2021.101962 10.1016/j.desal.2021.115303 10.1016/j.psep.2020.12.007 10.1016/j.memsci.2018.01.039 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Ltd. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2022.119221 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
ExternalDocumentID | 10_1016_j_watres_2022_119221 S0043135422011666 |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSH SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- RIG SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c372t-d8fc8e1e79ac82446307289b2fa7afd859fb7ab8ef067d33290c0cea6d685a3c3 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Thu Jul 10 23:05:00 EDT 2025 Fri Jul 11 00:43:27 EDT 2025 Tue Jul 01 05:19:07 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Sat Apr 05 15:42:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Zero liquid discharge Nanofiltration Reverse osmosis Cold-rolling wastewater brine Membrane fouling Silica scaling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-d8fc8e1e79ac82446307289b2fa7afd859fb7ab8ef067d33290c0cea6d685a3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8971-6838 |
PQID | 2725191087 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153850660 proquest_miscellaneous_2725191087 crossref_primary_10_1016_j_watres_2022_119221 crossref_citationtrail_10_1016_j_watres_2022_119221 elsevier_sciencedirect_doi_10_1016_j_watres_2022_119221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Water research (Oxford) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Li, Xiao, Huang (bib0019) 2020; 246 Mohammad, Teow, Ang, Chung, Oatley-Radcliffe, Hilal (bib0023) 2015; 356 Tong, Elimelech (bib0035) 2016; 50 Wang, Huang, Elimelech (bib0038) 2020; 605 Wende, Xu, Alan, Shehab (bib0040) 2018; 569 Jiang, Li, Bradley (bib0014) 2017; 595 Pype, Patureau, Wery, Poussade, Gernjak (bib0030) 2013; 428 Tian, Trzcinski, Lin, Ng (bib0034) 2016; 4 Ma, Tian, Kong (bib0021) 2020; 27 Li, Li, Wang, Zhang (bib0018) 2020; 172 Li, Yu, Luo (bib0017) 2015; 38 Virtanen, Parkkila, Koivuniemi, Lahti, Viitala, Kallioinen, Manttari, Bunker (bib0037) 2018; 205 Tang, Wang, Tang, Dai, Zhang, Li, Li, Xu, Yuan (bib0033) 2021; 9 Chen, Zhang, Zeng, Yang, Li (bib0006) 2021; 518 Dai, Guo, Tang, Chen, Li, Wang (bib0008) 2019; 53 Huang, Luo, Chen, Feng, Wan (bib0010) 2020; 59 Xin, Cheng, You, Bai, Wang (bib0043) 2020; 610 Moreira, Lebron, Couto, Maia, Moravia, Amaral (bib0024) 2021 Zheng, Yu, Wang, Yue, Zhang, Wang, Zhang, Wang, Liang, Wei (bib0050) 2018; 563 Carstea, Bridgeman, Baker, Reynolds (bib0004) 2016; 95 Xie, Gray (bib0042) 2017; 108 Sheng, Yu (bib0031) 2006; 40 Panagopoulos (bib0028) 2021; 146 Carstea, Popa, Baker, Bridgeman (bib0005) 2020; 699 Wang, Mu, Xiao, Zhu, Huang (bib0039) 2020; 715 Xiong, Wei (bib0044) 2017; 19 Song, Lee, Liu, Shi, Ong, Ng (bib0032) 2020; 609 Zhao, Japip, Zhang, Weber, Maletzko, Chung (bib0046) 2020; 173 Jiang, Li, Xu, Ruan (bib0012) 2021; 40 Lee, Kim, Shin, Rho, Lee, Kim, Park, Oh, Cho, Chon (bib0015) 2020; 485 Mu, Wang, Liang, Xiao, Fan, Han, Liu, Wang, Huang (bib0025) 2019; 570-571 Balcik (bib0001) 2021 Dai, Wang, Tang, Wang (bib0009) 2020; 54 Xiao, Shao, Wu, Peng, Akram, Wang, Zheng, Xing, Sun (bib0041) 2020; 482 Bush, Vanneste, Cath (bib0002) 2016; 170 Zhang, Zhang, Meng, Wang, Ren, Zou, Luan (bib0045) 2021; 40 Zhao, Hu, Zhang, Song, Wang, Tan, Kong, Zhang (bib0048) 2020; 496 Ma, Wang, Tian, Wang, Yuan, Qi, Ma, Chao, Lv (bib0022) 2021; 291 Li, Lin, Shao, Shen, Zhu, Huang (bib0016) 2021; 206 Park, Yeon, Park (bib0029) 2020; 25 Jiang, Li, Wang, Zhou (bib0013) 2021; 60 Lin, Lin, Chen, Ye, Li, Zeng, Van der Bruggen (bib0020) 2019; 58 Zhao, Yao, Meng, Zhang, Cao, Li (bib0047) 2021; 274 Zhao, Zhang, Liu, He, Su, Gao, Jiang (bib0049) 2018; 551 Oranso, Eric (bib0027) 2014 Chen, Xu, Xie, Huang, Lin, Tan (bib0007) 2020; 603 Huang, Luo, Chen, Feng, Wan (bib0011) 2020; 59 Carrero-Parreño, Onishi, Ruiz-Femenia, Salcedo-Díaz, Caballero, Reyes-Labarta (bib0003) 2019; 460 Unal (bib0036) 2022; 529 Ngo, Ueyama, Makabe, Bui, Nghiem, Nga, Fujioka (bib0026) 2021; 41 Wang (10.1016/j.watres.2022.119221_bib0038) 2020; 605 Xiong (10.1016/j.watres.2022.119221_bib0044) 2017; 19 Carstea (10.1016/j.watres.2022.119221_bib0005) 2020; 699 Jiang (10.1016/j.watres.2022.119221_bib0012) 2021; 40 Tong (10.1016/j.watres.2022.119221_bib0035) 2016; 50 Zhao (10.1016/j.watres.2022.119221_bib0047) 2021; 274 Zhao (10.1016/j.watres.2022.119221_bib0048) 2020; 496 Zheng (10.1016/j.watres.2022.119221_bib0050) 2018; 563 Dai (10.1016/j.watres.2022.119221_bib0009) 2020; 54 Li (10.1016/j.watres.2022.119221_bib0018) 2020; 172 Li (10.1016/j.watres.2022.119221_bib0016) 2021; 206 Zhang (10.1016/j.watres.2022.119221_bib0045) 2021; 40 Carrero-Parreño (10.1016/j.watres.2022.119221_bib0003) 2019; 460 Huang (10.1016/j.watres.2022.119221_bib0011) 2020; 59 Tang (10.1016/j.watres.2022.119221_bib0033) 2021; 9 Li (10.1016/j.watres.2022.119221_bib0017) 2015; 38 Xie (10.1016/j.watres.2022.119221_bib0042) 2017; 108 Zhao (10.1016/j.watres.2022.119221_bib0046) 2020; 173 Bush (10.1016/j.watres.2022.119221_bib0002) 2016; 170 Jiang (10.1016/j.watres.2022.119221_bib0014) 2017; 595 Pype (10.1016/j.watres.2022.119221_bib0030) 2013; 428 Carstea (10.1016/j.watres.2022.119221_bib0004) 2016; 95 Li (10.1016/j.watres.2022.119221_bib0019) 2020; 246 Ma (10.1016/j.watres.2022.119221_bib0022) 2021; 291 Jiang (10.1016/j.watres.2022.119221_bib0013) 2021; 60 Mu (10.1016/j.watres.2022.119221_bib0025) 2019; 570-571 Song (10.1016/j.watres.2022.119221_bib0032) 2020; 609 Virtanen (10.1016/j.watres.2022.119221_bib0037) 2018; 205 Park (10.1016/j.watres.2022.119221_bib0029) 2020; 25 Chen (10.1016/j.watres.2022.119221_bib0006) 2021; 518 Huang (10.1016/j.watres.2022.119221_bib0010) 2020; 59 Xin (10.1016/j.watres.2022.119221_bib0043) 2020; 610 Panagopoulos (10.1016/j.watres.2022.119221_bib0028) 2021; 146 Dai (10.1016/j.watres.2022.119221_bib0008) 2019; 53 Lee (10.1016/j.watres.2022.119221_bib0015) 2020; 485 Oranso (10.1016/j.watres.2022.119221_bib0027) 2014 Tian (10.1016/j.watres.2022.119221_bib0034) 2016; 4 Balcik (10.1016/j.watres.2022.119221_bib0001) 2021 Ngo (10.1016/j.watres.2022.119221_bib0026) 2021; 41 Chen (10.1016/j.watres.2022.119221_bib0007) 2020; 603 Moreira (10.1016/j.watres.2022.119221_bib0024) 2021 Ma (10.1016/j.watres.2022.119221_bib0021) 2020; 27 Lin (10.1016/j.watres.2022.119221_bib0020) 2019; 58 Xiao (10.1016/j.watres.2022.119221_bib0041) 2020; 482 Zhao (10.1016/j.watres.2022.119221_bib0049) 2018; 551 Wende (10.1016/j.watres.2022.119221_bib0040) 2018; 569 Sheng (10.1016/j.watres.2022.119221_bib0031) 2006; 40 Mohammad (10.1016/j.watres.2022.119221_bib0023) 2015; 356 Unal (10.1016/j.watres.2022.119221_bib0036) 2022; 529 Wang (10.1016/j.watres.2022.119221_bib0039) 2020; 715 |
References_xml | – year: 2021 ident: bib0024 article-title: Process development for textile wastewater treatment towards zero liquid discharge: Integrating membrane separation process and advanced oxidation techniques publication-title: Process Saf. Environ. Prot. – volume: 205 start-page: 263 year: 2018 end-page: 272 ident: bib0037 article-title: Characterization of membrane-foulant interactions with novel combination of Raman spectroscopy, surface plasmon resonance and molecular dynamics simulation publication-title: Sep. Purif. Technol. – volume: 9 year: 2021 ident: bib0033 article-title: Overall performance and microbial community analysis of a full-scale aerobic cold-rolling emulsion wastewater (CREW) treatment system publication-title: J. Environ. Chem. Eng. – volume: 146 start-page: 656 year: 2021 end-page: 669 ident: bib0028 article-title: Techno-economic assessment of minimal liquid discharge (MLD) treatment systems for saline wastewater (brine) management and treatment publication-title: Process Saf. Environ. Prot. – year: 2021 ident: bib0001 article-title: Understanding the operational problems and fouling characterization of RO membrane used for brackish water treatment via membrane autopsy publication-title: Water Sci. Technol. – volume: 38 start-page: 131 year: 2015 end-page: 138 ident: bib0017 article-title: Correlation between organic fouling of reverse-osmosis membranes and various interfacial interactions publication-title: Chem. Eng. Technol. – volume: 569 year: 2018 ident: bib0040 article-title: Numerical modeling of concentration polarization and inorganic fouling growth in the pressure-driven membrane filtration process publication-title: J. Membr. Sci. – volume: 563 start-page: 843 year: 2018 end-page: 856 ident: bib0050 article-title: Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: membrane autopsy and fouling characterization publication-title: J. Membr. Sci. – volume: 246 year: 2020 ident: bib0019 article-title: Reverse osmosis membrane autopsy in coal chemical wastewater treatment: evidences of spatially heterogeneous fouling and organic-inorganic synergistic effect publication-title: J. Clean. Prod. – volume: 108 start-page: 232 year: 2017 end-page: 239 ident: bib0042 article-title: Silica scaling in forward osmosis: From solution to membrane interface publication-title: Water Res. – volume: 173 year: 2020 ident: bib0046 article-title: Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review publication-title: Water Res. – volume: 50 start-page: 6846 year: 2016 end-page: 6855 ident: bib0035 article-title: The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions publication-title: Environ. Sci. Technol. – volume: 356 start-page: 226 year: 2015 end-page: 254 ident: bib0023 article-title: Nanofiltration membranes review: recent advances and future prospects publication-title: Desalination – volume: 274 year: 2021 ident: bib0047 article-title: Studies on the fouling behavior and cleaning method of pervaporation desalination membranes for reclamation of reverse osmosis concentrated water publication-title: Sep. Purif. Technol. – volume: 610 year: 2020 ident: bib0043 article-title: Using EEM fluorescence to characterize the membrane integrity of membrane bioreactor (MBR) publication-title: J. Membr. Sci. – volume: 60 year: 2021 ident: bib0013 article-title: Kinetic and mechanism studies on the photodegradation of cold-rolling emulsion wastewater by the UV/H publication-title: Ind. Eng. Chem. Res. – start-page: 471 year: 2014 ident: bib0027 article-title: Influence of organic, colloidal and combined fouling on NF rejection of NaCl and carbamazepine: role of solute–foulant–membrane interactions and cake-enhanced concentration polarisation publication-title: J. Membr. Sci. – volume: 59 start-page: 17653 year: 2020 end-page: 17670 ident: bib0011 article-title: How do chemical cleaning agents act on polyamide nanofiltration membrane and fouling layer? publication-title: Ind. Eng. Chem. Res. – volume: 40 year: 2006 ident: bib0031 article-title: Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy publication-title: Water Res. – volume: 428 start-page: 205 year: 2013 end-page: 211 ident: bib0030 article-title: Monitoring reverse osmosis performance: conductivity versus fluorescence excitation–emission matrix (EEM) publication-title: J. Membr. Sci. – volume: 595 year: 2017 ident: bib0014 article-title: A review of reverse osmosis membrane fouling and control strategies publication-title: Sci. Total Environ. – volume: 485 year: 2020 ident: bib0015 article-title: Fouling behavior of marine organic matter in reverse osmosis membranes of a real-scale seawater desalination plant in South Korea publication-title: Desalination – volume: 518 year: 2021 ident: bib0006 article-title: Pilot-scale treatment of hypersaline coal chemical wastewater with zero liquid discharge publication-title: Desalination – volume: 699 year: 2020 ident: bib0005 article-title: In situ fluorescence measurements of dissolved organic matter: a review publication-title: Sci. Total Environ. – volume: 715 year: 2020 ident: bib0039 article-title: Surface charge regulation of reverse osmosis membrane for anti-silica and organic fouling publication-title: Sci. Total Environ. – volume: 482 year: 2020 ident: bib0041 article-title: Zero liquid discharge hybrid membrane process for separation and recovery of ions with equivalent and similar molecular weights publication-title: Desalination – volume: 609 year: 2020 ident: bib0032 article-title: Spatial variation of fouling behavior in high recovery nanofiltration for industrial reverse osmosis brine treatment towards zero liquid discharge publication-title: J. Membr. Sci. – volume: 570-571 start-page: 1 year: 2019 end-page: 8 ident: bib0025 article-title: Effect of the relative degree of foulant “hydrophobicity” on membrane fouling publication-title: J. Membr. Sci. – volume: 603 year: 2020 ident: bib0007 article-title: Membrane distillation of a silver leaching solution: role of the coexisting aluminum ions on silica scaling publication-title: J. Membr. Sci. – volume: 95 start-page: 205 year: 2016 end-page: 219 ident: bib0004 article-title: Fluorescence spectroscopy for wastewater monitoring: a review publication-title: Water Res. – volume: 291 year: 2021 ident: bib0022 article-title: An integrated membrane- and thermal-based system for coal chemical wastewater treatment with near-zero liquid discharge publication-title: J. Clean. Prod. – volume: 59 year: 2020 ident: bib0010 article-title: How do chemical cleaning agents act on polyamide nanofiltration membrane and fouling layer? publication-title: Ind. Eng. Chem. Res. – volume: 25 start-page: 819 year: 2020 end-page: 829 ident: bib0029 article-title: Silica treatment technologies in reverse osmosis for industrial desalination: a review publication-title: Environ. Eng. Res. – volume: 206 year: 2021 ident: bib0016 article-title: Interaction between humic acid and silica in reverse osmosis membrane fouling process: a spectroscopic and molecular dynamics insight publication-title: Water Res. – volume: 172 year: 2020 ident: bib0018 article-title: Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: performance and economic evaluation publication-title: Water Res. – volume: 40 year: 2021 ident: bib0045 article-title: Near-zero liquid discharge of desulfurization wastewater by electrodialysis-reverse osmosis hybrid system publication-title: J. Water Process Eng. – volume: 496 year: 2020 ident: bib0048 article-title: Integrated membrane system without adding chemicals for produced water desalination towards zero liquid discharge publication-title: Desalination – volume: 27 start-page: 8103 year: 2020 end-page: 8118 ident: bib0021 article-title: Spatial-temporal characteristics of China's industrial wastewater discharge at different scales publication-title: Environ. Sci. Pollut. Res. – volume: 529 year: 2022 ident: bib0036 article-title: Membrane autopsy study to characterize fouling type of RO membrane used in an industrial zone wastewater reuse plant publication-title: Desalination – volume: 41 year: 2021 ident: bib0026 article-title: Fouling behavior and performance of a submerged flat-sheet nanofiltration membrane system for direct treatment of secondary wastewater effluent publication-title: J. Water Process Eng. – volume: 54 year: 2020 ident: bib0009 article-title: Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds publication-title: Environ. Sci. Technol. – volume: 19 start-page: 346 year: 2017 end-page: 351 ident: bib0044 article-title: Current status and technology trends of zero liquid discharge at coal chemical industry in China publication-title: J. Water Process Eng. – volume: 551 start-page: 145 year: 2018 end-page: 171 ident: bib0049 article-title: Antifouling membrane surface construction: chemistry plays a critical role publication-title: J. Membr. Sci. – volume: 460 start-page: 15 year: 2019 end-page: 27 ident: bib0003 article-title: Optimization of multistage membrane distillation system for treating shale gas produced water publication-title: Desalination – volume: 4 start-page: 4801 year: 2016 end-page: 4807 ident: bib0034 article-title: Enhancing sewage sludge anaerobic “re-digestion” with combinations of ultrasonic, ozone and alkaline treatments publication-title: J. Environ. Chem. Eng. – volume: 605 year: 2020 ident: bib0038 article-title: Complexation between dissolved silica and alginate molecules: implications for reverse osmosis membrane fouling publication-title: J. Membr. Sci. – volume: 40 year: 2021 ident: bib0012 article-title: Sustainable reverse osmosis, electrodialysis and bipolar membrane electrodialysis application for cold-rolling wastewater treatment in the steel industry publication-title: J. Water Process Eng. – volume: 53 year: 2019 ident: bib0008 article-title: Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds publication-title: Environ. Sci. Technol. – volume: 58 start-page: 11003 year: 2019 end-page: 11012 ident: bib0020 article-title: Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge publication-title: Ind. Eng. Chem. Res. – volume: 170 start-page: 78 year: 2016 end-page: 91 ident: bib0002 article-title: Membrane distillation for concentration of hypersaline brines from the Great Salt Lake: effects of scaling and fouling on performance, efficiency, and salt rejection publication-title: Sep. Purif. Technol. – volume: 53 issue: 23 year: 2019 ident: 10.1016/j.watres.2022.119221_bib0008 article-title: Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05343 – volume: 206 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0016 article-title: Interaction between humic acid and silica in reverse osmosis membrane fouling process: a spectroscopic and molecular dynamics insight publication-title: Water Res. doi: 10.1016/j.watres.2021.117773 – volume: 603 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0007 article-title: Membrane distillation of a silver leaching solution: role of the coexisting aluminum ions on silica scaling publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118021 – volume: 172 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0018 article-title: Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: performance and economic evaluation publication-title: Water Res. doi: 10.1016/j.watres.2020.115488 – start-page: 471 year: 2014 ident: 10.1016/j.watres.2022.119221_bib0027 article-title: Influence of organic, colloidal and combined fouling on NF rejection of NaCl and carbamazepine: role of solute–foulant–membrane interactions and cake-enhanced concentration polarisation publication-title: J. Membr. Sci. – year: 2021 ident: 10.1016/j.watres.2022.119221_bib0001 article-title: Understanding the operational problems and fouling characterization of RO membrane used for brackish water treatment via membrane autopsy publication-title: Water Sci. Technol. doi: 10.2166/wst.2021.456 – volume: 605 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0038 article-title: Complexation between dissolved silica and alginate molecules: implications for reverse osmosis membrane fouling publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118109 – volume: 58 start-page: 11003 issue: 25 year: 2019 ident: 10.1016/j.watres.2022.119221_bib0020 article-title: Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01353 – volume: 291 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0022 article-title: An integrated membrane- and thermal-based system for coal chemical wastewater treatment with near-zero liquid discharge publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.125842 – volume: 9 issue: 5 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0033 article-title: Overall performance and microbial community analysis of a full-scale aerobic cold-rolling emulsion wastewater (CREW) treatment system publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106272 – volume: 460 start-page: 15 year: 2019 ident: 10.1016/j.watres.2022.119221_bib0003 article-title: Optimization of multistage membrane distillation system for treating shale gas produced water publication-title: Desalination doi: 10.1016/j.desal.2019.03.002 – volume: 610 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0043 article-title: Using EEM fluorescence to characterize the membrane integrity of membrane bioreactor (MBR) publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118356 – volume: 54 issue: 12 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0009 article-title: Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c00832 – volume: 609 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0032 article-title: Spatial variation of fouling behavior in high recovery nanofiltration for industrial reverse osmosis brine treatment towards zero liquid discharge publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118185 – volume: 563 start-page: 843 year: 2018 ident: 10.1016/j.watres.2022.119221_bib0050 article-title: Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: membrane autopsy and fouling characterization publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.06.043 – volume: 50 start-page: 6846 issue: 13SI year: 2016 ident: 10.1016/j.watres.2022.119221_bib0035 article-title: The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b01000 – volume: 246 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0019 article-title: Reverse osmosis membrane autopsy in coal chemical wastewater treatment: evidences of spatially heterogeneous fouling and organic-inorganic synergistic effect publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118964 – volume: 428 start-page: 205 year: 2013 ident: 10.1016/j.watres.2022.119221_bib0030 article-title: Monitoring reverse osmosis performance: conductivity versus fluorescence excitation–emission matrix (EEM) publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.10.027 – volume: 205 start-page: 263 year: 2018 ident: 10.1016/j.watres.2022.119221_bib0037 article-title: Characterization of membrane-foulant interactions with novel combination of Raman spectroscopy, surface plasmon resonance and molecular dynamics simulation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.05.050 – volume: 59 issue: 40 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0010 article-title: How do chemical cleaning agents act on polyamide nanofiltration membrane and fouling layer? publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c03365 – volume: 27 start-page: 8103 issue: 8 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0021 article-title: Spatial-temporal characteristics of China's industrial wastewater discharge at different scales publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-07488-7 – volume: 485 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0015 article-title: Fouling behavior of marine organic matter in reverse osmosis membranes of a real-scale seawater desalination plant in South Korea publication-title: Desalination doi: 10.1016/j.desal.2019.114305 – volume: 570-571 start-page: 1 year: 2019 ident: 10.1016/j.watres.2022.119221_bib0025 article-title: Effect of the relative degree of foulant “hydrophobicity” on membrane fouling publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.10.023 – volume: 38 start-page: 131 issue: 1 year: 2015 ident: 10.1016/j.watres.2022.119221_bib0017 article-title: Correlation between organic fouling of reverse-osmosis membranes and various interfacial interactions publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201400379 – volume: 482 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0041 article-title: Zero liquid discharge hybrid membrane process for separation and recovery of ions with equivalent and similar molecular weights publication-title: Desalination doi: 10.1016/j.desal.2020.114387 – volume: 59 start-page: 17653 issue: 40 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0011 article-title: How do chemical cleaning agents act on polyamide nanofiltration membrane and fouling layer? publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c03365 – volume: 274 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0047 article-title: Studies on the fouling behavior and cleaning method of pervaporation desalination membranes for reclamation of reverse osmosis concentrated water publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119034 – year: 2021 ident: 10.1016/j.watres.2022.119221_bib0024 article-title: Process development for textile wastewater treatment towards zero liquid discharge: Integrating membrane separation process and advanced oxidation techniques publication-title: Process Saf. Environ. Prot. – volume: 25 start-page: 819 issue: 6 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0029 article-title: Silica treatment technologies in reverse osmosis for industrial desalination: a review publication-title: Environ. Eng. Res. doi: 10.4491/eer.2019.353 – volume: 356 start-page: 226 issue: SI year: 2015 ident: 10.1016/j.watres.2022.119221_bib0023 article-title: Nanofiltration membranes review: recent advances and future prospects publication-title: Desalination doi: 10.1016/j.desal.2014.10.043 – volume: 60 issue: 22 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0013 article-title: Kinetic and mechanism studies on the photodegradation of cold-rolling emulsion wastewater by the UV/H2O2 process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c00835 – volume: 40 issue: 6 year: 2006 ident: 10.1016/j.watres.2022.119221_bib0031 article-title: Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy publication-title: Water Res. doi: 10.1016/j.watres.2006.01.023 – volume: 19 start-page: 346 year: 2017 ident: 10.1016/j.watres.2022.119221_bib0044 article-title: Current status and technology trends of zero liquid discharge at coal chemical industry in China publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2017.09.005 – volume: 569 year: 2018 ident: 10.1016/j.watres.2022.119221_bib0040 article-title: Numerical modeling of concentration polarization and inorganic fouling growth in the pressure-driven membrane filtration process publication-title: J. Membr. Sci. – volume: 95 start-page: 205 year: 2016 ident: 10.1016/j.watres.2022.119221_bib0004 article-title: Fluorescence spectroscopy for wastewater monitoring: a review publication-title: Water Res. doi: 10.1016/j.watres.2016.03.021 – volume: 496 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0048 article-title: Integrated membrane system without adding chemicals for produced water desalination towards zero liquid discharge publication-title: Desalination doi: 10.1016/j.desal.2020.114693 – volume: 170 start-page: 78 year: 2016 ident: 10.1016/j.watres.2022.119221_bib0002 article-title: Membrane distillation for concentration of hypersaline brines from the Great Salt Lake: effects of scaling and fouling on performance, efficiency, and salt rejection publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.06.028 – volume: 40 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0012 article-title: Sustainable reverse osmosis, electrodialysis and bipolar membrane electrodialysis application for cold-rolling wastewater treatment in the steel industry publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.101968 – volume: 41 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0026 article-title: Fouling behavior and performance of a submerged flat-sheet nanofiltration membrane system for direct treatment of secondary wastewater effluent publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.101991 – volume: 529 year: 2022 ident: 10.1016/j.watres.2022.119221_bib0036 article-title: Membrane autopsy study to characterize fouling type of RO membrane used in an industrial zone wastewater reuse plant publication-title: Desalination doi: 10.1016/j.desal.2022.115648 – volume: 715 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0039 article-title: Surface charge regulation of reverse osmosis membrane for anti-silica and organic fouling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137013 – volume: 173 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0046 article-title: Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review publication-title: Water Res. doi: 10.1016/j.watres.2020.115557 – volume: 595 year: 2017 ident: 10.1016/j.watres.2022.119221_bib0014 article-title: A review of reverse osmosis membrane fouling and control strategies publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.235 – volume: 108 start-page: 232 year: 2017 ident: 10.1016/j.watres.2022.119221_bib0042 article-title: Silica scaling in forward osmosis: From solution to membrane interface publication-title: Water Res. doi: 10.1016/j.watres.2016.10.082 – volume: 699 year: 2020 ident: 10.1016/j.watres.2022.119221_bib0005 article-title: In situ fluorescence measurements of dissolved organic matter: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134361 – volume: 4 start-page: 4801 issue: 4 year: 2016 ident: 10.1016/j.watres.2022.119221_bib0034 article-title: Enhancing sewage sludge anaerobic “re-digestion” with combinations of ultrasonic, ozone and alkaline treatments publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.10.032 – volume: 40 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0045 article-title: Near-zero liquid discharge of desulfurization wastewater by electrodialysis-reverse osmosis hybrid system publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.101962 – volume: 518 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0006 article-title: Pilot-scale treatment of hypersaline coal chemical wastewater with zero liquid discharge publication-title: Desalination doi: 10.1016/j.desal.2021.115303 – volume: 146 start-page: 656 year: 2021 ident: 10.1016/j.watres.2022.119221_bib0028 article-title: Techno-economic assessment of minimal liquid discharge (MLD) treatment systems for saline wastewater (brine) management and treatment publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.12.007 – volume: 551 start-page: 145 year: 2018 ident: 10.1016/j.watres.2022.119221_bib0049 article-title: Antifouling membrane surface construction: chemistry plays a critical role publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.01.039 |
SSID | ssj0002239 |
Score | 2.4900925 |
Snippet | •Membrane fouling in a ZLD system was investigated for multiple NF & RO steps.•A correlation between water quality and membrane fouling behavior was... The challenge of water scarcity drives zero liquid discharge (ZLD) treatment to maximize reuse of industrial wastewater. Deciphering the characteristics and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119221 |
SubjectTerms | Cold-rolling wastewater brine industrial wastewater liquids Membrane fouling Nanofiltration Reverse osmosis silica Silica scaling water water shortages Zero liquid discharge |
Title | Membrane fouling behaviors in a full-scale zero liquid discharge system for cold-rolling wastewater brine treatment: A comprehensive analysis on multiple membrane processes |
URI | https://dx.doi.org/10.1016/j.watres.2022.119221 https://www.proquest.com/docview/2725191087 https://www.proquest.com/docview/3153850660 |
Volume | 226 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RaxQxEA6lfdEHsVaxassIfY3dS3ZvN74dxXJV2icLfVuyyURX2r3r3h0FH_xF_sjOXDZVC6XgvmWZQMhM5psk802EOMDQ0KZCK0no5mROMQCtOY8SXU5f4ajB55CnZ-Ppef75orjYEEeJC8NplYPvjz597a2HP4fDbB7O25Y5vgR-usgVYxhF4cxgz0u28g-__qR5EPyZdMvM0ok-t87xurFMyKBdolLkO4xSo4fg6Z6jXqPP8XPxbAgbYRJHti02sHshnv5VTHBH_D7FK9r6dgiBXznvvkGi4C-g7cACn7TLBekE4Sf2M7hsr1etB-blcrkkhFjVmbr3QObhZR8LdsONXfARG2kAGiYLwl12-keYACel9_g9JsKDHYqcwKyDlKwIV2lk80hLwMVLcX786evRVA5vMUinS7WUvgquwhGWxrqKQoIx-QbaqzUq2NIGXxUmNKVtKgwEf15rZTKXObRjP64Kq51-JTa7WYevBShlgtNVhg3Zg8fcUIRjlVfBFMbmo2ZX6KSC2g2Fyvm9jMs6ZaT9qKPialZcHRW3K-Rdr3ks1PGIfJm0W_9jcDVhySM93ydjqGkt8gULzeBsRUIl84BHWVU-LKMZYgoK9LI3_z2Ct-IJtyIl8p3YXPYr3KPYaNnsr41_X2xNTr5Mz24B8lwTjQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOUAPiKcoz0Hiapq1k03MraqoFuj21Eq9WY4zhqA2u83uqhIHfhE_kpl1XEqlqhK5JRlLlseeb8aebyzEeww1BRVaSUI3L3PyAWjNNSjR5_QUnl54H3J6OJ4c519OipMNsZe4MJxWOdj-aNPX1nr4sjOM5s68bZnjS-Cni1wxhpEXfkfczWn58jUGH379zfMg_DPpmJnFE39uneR14ZiRQWGiUmQ8jFKjm_DpmqVew8_-Q_Fg8BthN3btkdjA7rHYulJN8In4PcUzin07hMDXnHffIHHwF9B24IC32uWClILwE_sZnLbnq7YBJuZyvSSEWNaZmvdA86ORfazYDRduwXtspAKomS0Il-npH2EXOCu9x-8xEx7cUOUEZh2kbEU4Sz2bR14CLp6K4_1PR3sTOVzGIL0u1VI2VfAVjrA0zlfkE4zJOFCwVqvgSheaqjChLl1dYSD8a7RWJvOZRzduxlXhtNfPxGY36_C5AKVM8LrKsKYJ0WBuyMVxqlHBFMblo3pb6KQC64dK5XxhxqlNKWk_bFScZcXZqLhtIS9bzWOljlvky6Rd-8-MswQmt7R8lyaDpcXIJyw0grMVCZVMBB5lVXmzjGaMKcjTy178dw_einuTo-mBPfh8-PWluM9_Ij_yldhc9it8TY7Ssn6zXgh_ABMbFRs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane+fouling+behaviors+in+a+full-scale+zero+liquid+discharge+system+for+cold-rolling+wastewater+brine+treatment%3A+A+comprehensive+analysis+on+multiple+membrane+processes&rft.jtitle=Water+research+%28Oxford%29&rft.au=Wang%2C+Hailan&rft.au=Dai%2C+Ruobin&rft.au=Wang%2C+Lingna&rft.au=Wang%2C+Xueye&rft.date=2022-11-01&rft.issn=0043-1354&rft.volume=226+p.119221-&rft_id=info:doi/10.1016%2Fj.watres.2022.119221&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |