Time to failure modeling of silver nanowire transparent conducting electrodes and effects of a reduced graphene oxide over layer
Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene oxide (GO) using ultrasonic spray coating. Ultrasonic spray coating is suited for large area depositions and thin films of AgNW and reduced G...
Saved in:
Published in | Solar energy materials and solar cells Vol. 144; pp. 102 - 108 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene oxide (GO) using ultrasonic spray coating. Ultrasonic spray coating is suited for large area depositions and thin films of AgNW and reduced GO TCEs with consistent optoelectronic properties were produced using this method and the reduction of GO was kept environmentally friendly by using ascorbic acid (AA) as the reducing agent. TCEs produced in this manner were highly conductive and had an average sheet resistance of 5.3Ω/□ and an average transmittance of 64.9% ― the best TCE produced in this manner had a figure of merit of 190. Here, AgNWs were protected from humidity induced degradation and the effect of capillary instability at elevated temperatures on the nanowires was retarded by the introduction of a GO–AA over layer. A τ value of 1.5×10−9 was found to signify the onset of capillary instability induced failure in the AgNW TCE and from experimentally supported calculations, it was predicted that the lifetimes of nanowire TCEs under thermal degradation could be extended significantly by keeping the gaseous environment oxygen free.
•Spray coated silver nanowire and reduced graphene oxide transparent conductor.•Graphene oxide reduced by ascorbic acid.•Average sheet resistance of 5.1Ω/□ and transmittance of 65.7%.•Using commercially available machines and reagents.•Time to failure modeling of silver nanowires under different gaseous environments. |
---|---|
AbstractList | Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene oxide (GO) using ultrasonic spray coating. Ultrasonic spray coating is suited for large area depositions and thin films of AgNW and reduced GO TCEs with consistent optoelectronic properties were produced using this method and the reduction of GO was kept environmentally friendly by using ascorbic acid (AA) as the reducing agent. TCEs produced in this manner were highly conductive and had an average sheet resistance of 5.3 Omega /[squ and an average transmittance of 64.9% - the best TCE produced in this manner had a figure of merit of 190. Here, AgNWs were protected from humidity induced degradation and the effect of capillary instability at elevated temperatures on the nanowires was retarded by the introduction of a GO-AA over layer. A tau value of 1.510 super(-9) was found to signify the onset of capillary instability induced failure in the AgNW TCE and from experimentally supported calculations, it was predicted that the lifetimes of nanowire TCEs under thermal degradation could be extended significantly by keeping the gaseous environment oxygen free. Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene oxide (GO) using ultrasonic spray coating. Ultrasonic spray coating is suited for large area depositions and thin films of AgNW and reduced GO TCEs with consistent optoelectronic properties were produced using this method and the reduction of GO was kept environmentally friendly by using ascorbic acid (AA) as the reducing agent. TCEs produced in this manner were highly conductive and had an average sheet resistance of 5.3Ω/□ and an average transmittance of 64.9% ― the best TCE produced in this manner had a figure of merit of 190. Here, AgNWs were protected from humidity induced degradation and the effect of capillary instability at elevated temperatures on the nanowires was retarded by the introduction of a GO–AA over layer. A τ value of 1.5×10−9 was found to signify the onset of capillary instability induced failure in the AgNW TCE and from experimentally supported calculations, it was predicted that the lifetimes of nanowire TCEs under thermal degradation could be extended significantly by keeping the gaseous environment oxygen free. •Spray coated silver nanowire and reduced graphene oxide transparent conductor.•Graphene oxide reduced by ascorbic acid.•Average sheet resistance of 5.1Ω/□ and transmittance of 65.7%.•Using commercially available machines and reagents.•Time to failure modeling of silver nanowires under different gaseous environments. |
Author | Le, Quang Luan Kwan, Yue Chau Garen Huan, Cheng Hon Alfred |
Author_xml | – sequence: 1 givenname: Yue Chau Garen surname: Kwan fullname: Kwan, Yue Chau Garen email: kwan0056@e.ntu.edu.sg organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 – sequence: 2 givenname: Quang Luan surname: Le fullname: Le, Quang Luan email: quang7@e.ntu.edu.sg organization: Materials Science and Engineering, College of Engineering, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 – sequence: 3 givenname: Cheng Hon Alfred surname: Huan fullname: Huan, Cheng Hon Alfred email: alfred@ntu.edu.sg organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 |
BookMark | eNqNkT1vFDEURS0UJDaBf0DhkmaG54-Z8VAgoYgAUiSaUFte-03wymMvtjeQjp-OR0tFATS2LJ97i3suyUVMEQl5yaBnwMbXh76ksJrac2BDD6oHGJ6QHVPT3Akxqwuyg5lPHXCpnpHLUg4AwEchd-TnnV-R1kQX48MpI12Tw-DjPU0LLT48YKbRxPTdt7-aTSxHkzFWalN0J1s3EgPamluuUBMdxWVp77IVGJqxUejofTbHrxiRph_etXPrDeYR83PydDGh4Ivf9xX5cvP-7vpjd_v5w6frd7edFROvnVNSMBTjfpotcCVxUVYZNgB3ewXjaA3iHgdExyWbpYNpduPkHBu4mCcEcUVenXuPOX07Yal69cViCCZiOhXNFB-kYgr-BwU1ykEAa-ibM2pzKiXjoq2vpvoU21Y-aAZ6M6QP-mxIb4Y0KN0MtbD8I3zMfjX58V-xt-cYtrkePGZdrMfYVm6ObNUu-b8X_ALn9bGP |
CitedBy_id | crossref_primary_10_1016_j_matre_2020_09_001 crossref_primary_10_1002_adfm_201705023 crossref_primary_10_1038_s41598_021_03528_w crossref_primary_10_3390_nano9040533 crossref_primary_10_1007_s10570_023_05250_4 crossref_primary_10_1016_j_orgel_2017_07_055 crossref_primary_10_3390_ma10040392 crossref_primary_10_1039_D4CS00080C crossref_primary_10_1016_j_jcis_2017_05_065 crossref_primary_10_1021_acsami_0c03587 crossref_primary_10_1002_smll_201703140 crossref_primary_10_1002_admt_202000744 crossref_primary_10_1039_C9TC06865A crossref_primary_10_1088_1361_6528_aa7f34 crossref_primary_10_1088_1757_899X_1098_6_062065 crossref_primary_10_1002_adma_202004356 crossref_primary_10_1016_j_mtener_2023_101409 crossref_primary_10_1002_smll_201602581 crossref_primary_10_1021_acs_langmuir_6b00796 crossref_primary_10_1016_j_materresbull_2018_11_017 crossref_primary_10_1088_2631_8695_ad37a0 crossref_primary_10_3390_ma10060570 crossref_primary_10_1016_j_orgel_2018_11_002 crossref_primary_10_1007_s12274_023_5832_6 crossref_primary_10_1016_j_solmat_2017_04_048 crossref_primary_10_1016_j_orgel_2023_106890 crossref_primary_10_1016_j_jcis_2017_09_112 |
Cites_doi | 10.1039/c3nr02320f 10.1002/smll.200700382 10.1088/0957-4484/17/24/009 10.1021/am301913w 10.1016/0001-6160(63)90191-3 10.1016/j.orgel.2011.08.027 10.1016/0001-6160(68)90079-5 10.1021/nn100343f 10.1186/1556-276X-8-235 10.1016/j.solmat.2014.09.006 10.1016/j.materresbull.2011.07.013 10.1016/j.synthmet.2012.05.026 10.1112/plms/s1-10.1.4 10.1038/srep01112 10.1016/j.physb.2005.06.035 10.1016/j.solmat.2013.09.015 10.1088/0508-3443/12/8/312 10.1002/smll.201203142 10.1016/j.jelechem.2011.06.034 10.1088/0268-1242/28/12/125008 10.1063/1.3518470 10.1016/j.solmat.2014.05.013 10.1021/am505908d 10.1021/jp100603h 10.1021/cg301119d 10.1016/j.vacuum.2012.05.031 10.1016/0001-6160(65)90199-9 10.1007/s12274-013-0323-9 10.1557/jmr.2014.338 10.1021/cm902635j 10.1039/B917705A 10.1016/0036-9748(70)90147-X 10.1063/1.1826237 10.1016/0038-1101(64)90038-3 10.1016/j.solmat.2014.03.024 10.1021/am5057618 10.1063/1.1714360 10.1016/j.colsurfb.2012.06.008 10.1039/c2nr31254a 10.1016/j.solmat.2011.09.024 10.1007/BF02396641 10.1063/1.1722742 10.1021/ja01539a017 10.1007/s11669-003-0005-5 10.1016/j.solmat.2014.01.040 10.1063/1.4801766 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.solmat.2015.08.005 |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Environment Abstracts Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3398 |
EndPage | 108 |
ExternalDocumentID | 10_1016_j_solmat_2015_08_005 S092702481500392X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST C1K SOI 7SP 7TB 7U5 8FD FR3 L7M |
ID | FETCH-LOGICAL-c372t-d8431e36b79c0284ef8c8a1502db8066caeebe5eed24194d079d67dd152397e03 |
IEDL.DBID | .~1 |
ISSN | 0927-0248 |
IngestDate | Fri Jul 11 06:21:32 EDT 2025 Fri Jul 11 16:37:35 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Tue Jul 01 04:09:53 EDT 2025 Fri Feb 23 02:16:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transparent conducting electrode Graphene oxide Green process Silver nanowire Time to failure modeling Spray coating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-d8431e36b79c0284ef8c8a1502db8066caeebe5eed24194d079d67dd152397e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1808645301 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1825481800 proquest_miscellaneous_1808645301 crossref_citationtrail_10_1016_j_solmat_2015_08_005 crossref_primary_10_1016_j_solmat_2015_08_005 elsevier_sciencedirect_doi_10_1016_j_solmat_2015_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mullins (bib41) 1957; 28 Moon, Kim, Lee, Hur, Kim, Lee (bib15) 2013; 3 Lee, Lee, Lee, Lee, Ko (bib28) 2012; 12 Rayleigh (bib36) 1878; 10 Noh, Kim, Kim, Na (bib48) 2013; 28 Fernández-Merino, Guardia, Paredes, Villar-Rodil, Solís-Fernández, Martínez-Alonso, Tascón (bib19) 2010; 114 Karim, Toimil-Molares, Balogh, Ensinger, Cornelius, Khan, Neumann (bib37) 2006; 17 Qi (bib30) 2005; 368 Nichols (bib42) 1968; 16 Dai, Yang, Xie (bib21) 2011; 46 Ferraria, Carapeto, Rogo (bib35) 2012; 86 Vaughan (bib26) 1961; 12 Xiong, Jin (bib24) 2011; 661 Hummers, Offeman (bib25) 1958; 80 Kahng, Kim, Lee, Kim, Kim, Park, Lee (bib1) 2014; 124 Burgués-Ceballos, Kehagias, Sotomayor-Torres, Campoy-Quiles, Lacharmoise (bib5) 2014; 127 Ahn, Jeong, Lee (bib16) 2012; 4 Gill (bib44) 2013; 102 Preston, Xu, Han, Munday, Hu (bib13) 2013; 6 Swartzenruber (bib27) 1964; 7 Meenakshi, Karthick, Selvaraj, Ramu (bib2) 2014; 128 Zhang, Yang, Shen, Cheng, Zhang, Guo (bib23) 2010; 46 Nichols, Mullins (bib40) 1965; 36 Langley, Giusti, Lagrange, Collins, Jiménez, Bréchet, Bellet (bib3) 2014; 125 Chen, Ahn, Yen, Tsai (bib8) 2014; 6 Lee, Lee, Ahn, Jeong, Lee, Lee (bib17) 2013; 5 Gasior, Pstruś, Moser, Krzyżak, Fitzner (bib31) 2003; 24 Wu, Fang, Huang, Jiang (bib9) 2014; 6 Ho, Cheng, Tey, Wei (bib10) 2014; 29 Kirkendall (bib32) 1947; 171 Huang, Zhan, Wang, Zhang, Xing, Guo, Leusink, Zheng, Wu (bib43) 2010; 97 Wang, Zhou, Deng, Chen, Wang, Zhang, Fu (bib22) 2013; 101 Rhead (bib46) 1963; 11 Khaligh, Goldthorpe (bib14) 2013; 8 Kirkendall (bib33) 1942; 147 De, Coleman (bib18) 2010; 4 Gao, Liu, Liu, Ma, Wang, Zhang (bib20) 2010; 22 Fan, Gosele, Zacharias (bib34) 2007; 3 Toimil Molares, Balogh, Cornelius, Neumann, Trautmann (bib38) 2004; 85 Nichols (bib39) 1976; 11 Hosseinzadeh Khaligh, Liew, Han, Abukhdeir, Goldthorpe (bib4) 2015; 132 Chih-Hung, Sui-Ying, Tsung-Wei, Yu-Tang, Yan-Fang, Jhang, Hsieh, Chung-Chih, Yen-Shan, Chieh-Wei, Chung-Chun (bib12) 2011; 12 Lee, Lee, Kim, Lee (bib29) 2013; 9 Hough (bib45) 1970; 4 Lee, Lee, Lee, Lee, Lee, Ko (bib11) 2012; 4 Rhead (bib47) 1965; 13 Emmott, Urbina, Nelson (bib6) 2012; 97 Yun, Kim, Kim, Park, Jin (bib7) 2012; 162 Nichols (10.1016/j.solmat.2015.08.005_bib40) 1965; 36 Ferraria (10.1016/j.solmat.2015.08.005_bib35) 2012; 86 Fernández-Merino (10.1016/j.solmat.2015.08.005_bib19) 2010; 114 Swartzenruber (10.1016/j.solmat.2015.08.005_bib27) 1964; 7 Gasior (10.1016/j.solmat.2015.08.005_bib31) 2003; 24 De (10.1016/j.solmat.2015.08.005_bib18) 2010; 4 Kahng (10.1016/j.solmat.2015.08.005_bib1) 2014; 124 Gao (10.1016/j.solmat.2015.08.005_bib20) 2010; 22 Lee (10.1016/j.solmat.2015.08.005_bib11) 2012; 4 Hosseinzadeh Khaligh (10.1016/j.solmat.2015.08.005_bib4) 2015; 132 Kirkendall (10.1016/j.solmat.2015.08.005_bib32) 1947; 171 Toimil Molares (10.1016/j.solmat.2015.08.005_bib38) 2004; 85 Wu (10.1016/j.solmat.2015.08.005_bib9) 2014; 6 Vaughan (10.1016/j.solmat.2015.08.005_bib26) 1961; 12 Hummers (10.1016/j.solmat.2015.08.005_bib25) 1958; 80 Nichols (10.1016/j.solmat.2015.08.005_bib39) 1976; 11 Chih-Hung (10.1016/j.solmat.2015.08.005_bib12) 2011; 12 Lee (10.1016/j.solmat.2015.08.005_bib29) 2013; 9 Wang (10.1016/j.solmat.2015.08.005_bib22) 2013; 101 Lee (10.1016/j.solmat.2015.08.005_bib17) 2013; 5 Zhang (10.1016/j.solmat.2015.08.005_bib23) 2010; 46 Chen (10.1016/j.solmat.2015.08.005_bib8) 2014; 6 Meenakshi (10.1016/j.solmat.2015.08.005_bib2) 2014; 128 Emmott (10.1016/j.solmat.2015.08.005_bib6) 2012; 97 Rayleigh (10.1016/j.solmat.2015.08.005_bib36) 1878; 10 Mullins (10.1016/j.solmat.2015.08.005_bib41) 1957; 28 Moon (10.1016/j.solmat.2015.08.005_bib15) 2013; 3 Huang (10.1016/j.solmat.2015.08.005_bib43) 2010; 97 Hough (10.1016/j.solmat.2015.08.005_bib45) 1970; 4 Langley (10.1016/j.solmat.2015.08.005_bib3) 2014; 125 Yun (10.1016/j.solmat.2015.08.005_bib7) 2012; 162 Preston (10.1016/j.solmat.2015.08.005_bib13) 2013; 6 Khaligh (10.1016/j.solmat.2015.08.005_bib14) 2013; 8 Nichols (10.1016/j.solmat.2015.08.005_bib42) 1968; 16 Karim (10.1016/j.solmat.2015.08.005_bib37) 2006; 17 Rhead (10.1016/j.solmat.2015.08.005_bib46) 1963; 11 Ahn (10.1016/j.solmat.2015.08.005_bib16) 2012; 4 Burgués-Ceballos (10.1016/j.solmat.2015.08.005_bib5) 2014; 127 Dai (10.1016/j.solmat.2015.08.005_bib21) 2011; 46 Kirkendall (10.1016/j.solmat.2015.08.005_bib33) 1942; 147 Lee (10.1016/j.solmat.2015.08.005_bib28) 2012; 12 Noh (10.1016/j.solmat.2015.08.005_bib48) 2013; 28 Xiong (10.1016/j.solmat.2015.08.005_bib24) 2011; 661 Fan (10.1016/j.solmat.2015.08.005_bib34) 2007; 3 Gill (10.1016/j.solmat.2015.08.005_bib44) 2013; 102 Qi (10.1016/j.solmat.2015.08.005_bib30) 2005; 368 Rhead (10.1016/j.solmat.2015.08.005_bib47) 1965; 13 Ho (10.1016/j.solmat.2015.08.005_bib10) 2014; 29 |
References_xml | – volume: 24 start-page: 40 year: 2003 end-page: 49 ident: bib31 article-title: Surface tension and thermodynamic properties of liquid Ag-Bi solutions publication-title: J. Phase Equilib. – volume: 124 start-page: 86 year: 2014 end-page: 91 ident: bib1 article-title: Highly conductive flexible transparent electrodes fabricated by combining graphene films and inkjet-printed silver grids publication-title: Sol. Energy Mater. Sol. Cells – volume: 97 start-page: 203112 year: 2010 ident: bib43 article-title: Rayleigh-instability-driven simultaneous morphological and compositional transformation from Co nanowires to CoO octahedra publication-title: Appl. Phys. Lett. – volume: 125 start-page: 318 year: 2014 end-page: 324 ident: bib3 article-title: Silver nanowire networks: physical properties and potential integration in solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 86 start-page: 1988 year: 2012 end-page: 1991 ident: bib35 article-title: X-ray photoelectron spectroscopy: silver salts revisited publication-title: Vacuum – volume: 12 start-page: 5598 year: 2012 end-page: 5605 ident: bib28 article-title: Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth publication-title: Cryst. Growth Des. – volume: 101 start-page: 171 year: 2013 end-page: 176 ident: bib22 article-title: An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility publication-title: Colloids Surf. B: Biointerfaces – volume: 97 start-page: 14 year: 2012 end-page: 21 ident: bib6 article-title: Environmental and economic assessment of ITO-free electrodes for organic solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 6 start-page: 21026 year: 2014 end-page: 21034 ident: bib9 article-title: Three-dimensional highly conductive graphene-silver nanowire hybrid foams for flexible and stretchable conductors publication-title: ACS Appl. Mater. Interfaces – volume: 368 start-page: 46 year: 2005 end-page: 50 ident: bib30 article-title: Size effect on melting temperature of nanosolids publication-title: Phys. B: Condens. Matter – volume: 5 start-page: 7750 year: 2013 end-page: 7755 ident: bib17 article-title: Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices publication-title: Nanoscale – volume: 128 start-page: 264 year: 2014 end-page: 269 ident: bib2 article-title: Investigations on reduced graphene oxide film embedded with silver nanowire as a transperent conducting electrode publication-title: Sol. Energy Mater. Sol. Cells – volume: 85 start-page: 5337 year: 2004 ident: bib38 article-title: Fragmentation of nanowires driven by Rayleigh instability publication-title: Appl. Phys. Lett. – volume: 17 start-page: 5954 year: 2006 ident: bib37 article-title: Morphological evolution of Au nanowires controlled by Rayleigh instability publication-title: Nanotechnology – volume: 102 start-page: 143108 year: 2013 ident: bib44 article-title: Controlling the Rayleigh instability of nanowires publication-title: Appl. Phys. Lett. – volume: 6 start-page: 20994 year: 2014 end-page: 20999 ident: bib8 article-title: Thermally induced percolational transition and thermal stability of silver nanowire networks studied by THz spectroscopy publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 1112 year: 2010 end-page: 1114 ident: bib23 article-title: Reduction of graphene oxide via L-ascorbic acid publication-title: Chem. Commun. – volume: 6 start-page: 461 year: 2013 end-page: 468 ident: bib13 article-title: Optical haze of transparent and conductive silver nanowire films, publication-title: Nano Res. – volume: 11 start-page: 1077 year: 1976 end-page: 1082 ident: bib39 article-title: On the spheroidization of rod-shaped particles of finite length publication-title: J. Mater. Sci. – volume: 162 start-page: 1364 year: 2012 end-page: 1368 ident: bib7 article-title: Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility publication-title: Synth. Met. – volume: 13 start-page: 223 year: 1965 end-page: 226 ident: bib47 article-title: Surface self-diffusion of silver in various atmospheres publication-title: Acta Metall. – volume: 12 start-page: 414 year: 1961 end-page: 416 ident: bib26 article-title: Four-probe resistivity measurements on small circular specimens publication-title: Br. J. Appl. Phys. – volume: 11 start-page: 1035 year: 1963 end-page: 1042 ident: bib46 article-title: Surface self-diffusion and faceting on silver publication-title: Acta Metall. – volume: 127 start-page: 50 year: 2014 end-page: 57 ident: bib5 article-title: Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor publication-title: Sol. Energy Mater. Sol. Cells – volume: 22 start-page: 2213 year: 2010 end-page: 2218 ident: bib20 article-title: Environment-friendly method to produce graphene that employs vitamin c and amino acid publication-title: Chem. Mater. – volume: 4 start-page: 559 year: 1970 end-page: 561 ident: bib45 article-title: An investigation of the surface self-diffusion coefficients of pure copper and silver by the grain boundary grooving technique publication-title: Scr. Metall. – volume: 8 start-page: 235 year: 2013 ident: bib14 article-title: Failure of silver nanowire transparent electrodes under current flow publication-title: Nanoscale Res. Lett. – volume: 114 start-page: 6426 year: 2010 end-page: 6432 ident: bib19 article-title: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions publication-title: J. Phys. Chem. C – volume: 171 start-page: 130 year: 1947 end-page: 142 ident: bib32 article-title: Zinc diffusion in alpha brass publication-title: Trans. AIME – volume: 10 start-page: 4 year: 1878 end-page: 13 ident: bib36 article-title: On the instability of jets publication-title: Proc. Lond. Math. Soc. – volume: 9 start-page: 2887 year: 2013 end-page: 2894 ident: bib29 article-title: Efficient welding of silver nanowire networks without post-processing publication-title: Small – volume: 3 start-page: 1112 year: 2013 ident: bib15 article-title: 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes publication-title: Sci. Rep. – volume: 46 start-page: 2004 year: 2011 end-page: 2008 ident: bib21 article-title: One-step synthesis of reduced graphite oxide–silver nanocomposite publication-title: Mater. Res. Bull. – volume: 4 start-page: 6408 year: 2012 end-page: 6414 ident: bib11 article-title: Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel publication-title: Nanoscale – volume: 36 start-page: 1826 year: 1965 end-page: 1835 ident: bib40 article-title: Morphological changes of a surface of revolution due to capillarity‐induced surface diffusion publication-title: J. Appl. Phys. – volume: 147 start-page: 104 year: 1942 end-page: 110 ident: bib33 article-title: Diffusion of zinc in alpha brass publication-title: Trans. AIME – volume: 28 start-page: 125008 year: 2013 ident: bib48 article-title: Effect of sheet resistance of Ag-nanowire-based electrodes on cell-performances of ITO-free organic solar cells publication-title: Semicond. Sci. Technol. – volume: 3 start-page: 1660 year: 2007 end-page: 1671 ident: bib34 article-title: Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review publication-title: Small – volume: 28 start-page: 333 year: 1957 ident: bib41 article-title: Theory of thermal grooving publication-title: J. Appl. Phys. – volume: 132 start-page: 337 year: 2015 end-page: 341 ident: bib4 article-title: Silver nanowire transparent electrodes for liquid crystal-based smart windows publication-title: Sol. Energy Mater. Sol. Cells – volume: 661 start-page: 77 year: 2011 end-page: 83 ident: bib24 article-title: The electrochemical behavior of AA and DA on graphene oxide modified electrodes containing various content of oxygen functional groups publication-title: J. Electroanal. Chem. – volume: 4 start-page: 2713 year: 2010 end-page: 2720 ident: bib18 article-title: Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? publication-title: ACS Nano – volume: 12 start-page: 2003 year: 2011 end-page: 2011 ident: bib12 article-title: Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells publication-title: Org. Electron. – volume: 80 start-page: 1339 year: 1958 ident: bib25 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 413 year: 1964 end-page: 422 ident: bib27 article-title: Four-point probe measurement of non-uniformities in semiconductor sheet resistivity publication-title: Solid State Electron. – volume: 16 start-page: 103 year: 1968 end-page: 113 ident: bib42 article-title: Theory of sintering of wires by surface diffusion publication-title: Acta Metall. – volume: 4 start-page: 6410 year: 2012 end-page: 6414 ident: bib16 article-title: Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 2965 year: 2014 end-page: 2972 ident: bib10 article-title: Biaxially stretchable transparent conductors that use nanowire networks publication-title: J. Mater. Res. – volume: 5 start-page: 7750 year: 2013 ident: 10.1016/j.solmat.2015.08.005_bib17 article-title: Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices publication-title: Nanoscale doi: 10.1039/c3nr02320f – volume: 3 start-page: 1660 year: 2007 ident: 10.1016/j.solmat.2015.08.005_bib34 article-title: Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review publication-title: Small doi: 10.1002/smll.200700382 – volume: 17 start-page: 5954 year: 2006 ident: 10.1016/j.solmat.2015.08.005_bib37 article-title: Morphological evolution of Au nanowires controlled by Rayleigh instability publication-title: Nanotechnology doi: 10.1088/0957-4484/17/24/009 – volume: 4 start-page: 6410 year: 2012 ident: 10.1016/j.solmat.2015.08.005_bib16 article-title: Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301913w – volume: 11 start-page: 1035 year: 1963 ident: 10.1016/j.solmat.2015.08.005_bib46 article-title: Surface self-diffusion and faceting on silver publication-title: Acta Metall. doi: 10.1016/0001-6160(63)90191-3 – volume: 12 start-page: 2003 year: 2011 ident: 10.1016/j.solmat.2015.08.005_bib12 article-title: Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells publication-title: Org. Electron. doi: 10.1016/j.orgel.2011.08.027 – volume: 171 start-page: 130 year: 1947 ident: 10.1016/j.solmat.2015.08.005_bib32 article-title: Zinc diffusion in alpha brass publication-title: Trans. AIME – volume: 16 start-page: 103 year: 1968 ident: 10.1016/j.solmat.2015.08.005_bib42 article-title: Theory of sintering of wires by surface diffusion publication-title: Acta Metall. doi: 10.1016/0001-6160(68)90079-5 – volume: 4 start-page: 2713 year: 2010 ident: 10.1016/j.solmat.2015.08.005_bib18 article-title: Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? publication-title: ACS Nano doi: 10.1021/nn100343f – volume: 8 start-page: 235 year: 2013 ident: 10.1016/j.solmat.2015.08.005_bib14 article-title: Failure of silver nanowire transparent electrodes under current flow publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-235 – volume: 132 start-page: 337 year: 2015 ident: 10.1016/j.solmat.2015.08.005_bib4 article-title: Silver nanowire transparent electrodes for liquid crystal-based smart windows publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.09.006 – volume: 46 start-page: 2004 year: 2011 ident: 10.1016/j.solmat.2015.08.005_bib21 article-title: One-step synthesis of reduced graphite oxide–silver nanocomposite publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2011.07.013 – volume: 162 start-page: 1364 year: 2012 ident: 10.1016/j.solmat.2015.08.005_bib7 article-title: Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility publication-title: Synth. Met. doi: 10.1016/j.synthmet.2012.05.026 – volume: 10 start-page: 4 year: 1878 ident: 10.1016/j.solmat.2015.08.005_bib36 article-title: On the instability of jets publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/s1-10.1.4 – volume: 3 start-page: 1112 year: 2013 ident: 10.1016/j.solmat.2015.08.005_bib15 article-title: 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes publication-title: Sci. Rep. doi: 10.1038/srep01112 – volume: 368 start-page: 46 year: 2005 ident: 10.1016/j.solmat.2015.08.005_bib30 article-title: Size effect on melting temperature of nanosolids publication-title: Phys. B: Condens. Matter doi: 10.1016/j.physb.2005.06.035 – volume: 125 start-page: 318 year: 2014 ident: 10.1016/j.solmat.2015.08.005_bib3 article-title: Silver nanowire networks: physical properties and potential integration in solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.09.015 – volume: 12 start-page: 414 year: 1961 ident: 10.1016/j.solmat.2015.08.005_bib26 article-title: Four-probe resistivity measurements on small circular specimens publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/12/8/312 – volume: 9 start-page: 2887 year: 2013 ident: 10.1016/j.solmat.2015.08.005_bib29 article-title: Efficient welding of silver nanowire networks without post-processing publication-title: Small doi: 10.1002/smll.201203142 – volume: 661 start-page: 77 year: 2011 ident: 10.1016/j.solmat.2015.08.005_bib24 article-title: The electrochemical behavior of AA and DA on graphene oxide modified electrodes containing various content of oxygen functional groups publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2011.06.034 – volume: 28 start-page: 125008 year: 2013 ident: 10.1016/j.solmat.2015.08.005_bib48 article-title: Effect of sheet resistance of Ag-nanowire-based electrodes on cell-performances of ITO-free organic solar cells publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/28/12/125008 – volume: 97 start-page: 203112 year: 2010 ident: 10.1016/j.solmat.2015.08.005_bib43 article-title: Rayleigh-instability-driven simultaneous morphological and compositional transformation from Co nanowires to CoO octahedra publication-title: Appl. Phys. Lett. doi: 10.1063/1.3518470 – volume: 128 start-page: 264 year: 2014 ident: 10.1016/j.solmat.2015.08.005_bib2 article-title: Investigations on reduced graphene oxide film embedded with silver nanowire as a transperent conducting electrode publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.05.013 – volume: 6 start-page: 21026 year: 2014 ident: 10.1016/j.solmat.2015.08.005_bib9 article-title: Three-dimensional highly conductive graphene-silver nanowire hybrid foams for flexible and stretchable conductors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505908d – volume: 114 start-page: 6426 year: 2010 ident: 10.1016/j.solmat.2015.08.005_bib19 article-title: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions publication-title: J. Phys. Chem. C doi: 10.1021/jp100603h – volume: 12 start-page: 5598 year: 2012 ident: 10.1016/j.solmat.2015.08.005_bib28 article-title: Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth publication-title: Cryst. Growth Des. doi: 10.1021/cg301119d – volume: 86 start-page: 1988 year: 2012 ident: 10.1016/j.solmat.2015.08.005_bib35 article-title: X-ray photoelectron spectroscopy: silver salts revisited publication-title: Vacuum doi: 10.1016/j.vacuum.2012.05.031 – volume: 13 start-page: 223 year: 1965 ident: 10.1016/j.solmat.2015.08.005_bib47 article-title: Surface self-diffusion of silver in various atmospheres publication-title: Acta Metall. doi: 10.1016/0001-6160(65)90199-9 – volume: 6 start-page: 461 year: 2013 ident: 10.1016/j.solmat.2015.08.005_bib13 article-title: Optical haze of transparent and conductive silver nanowire films, publication-title: Nano Res. doi: 10.1007/s12274-013-0323-9 – volume: 29 start-page: 2965 year: 2014 ident: 10.1016/j.solmat.2015.08.005_bib10 article-title: Biaxially stretchable transparent conductors that use nanowire networks publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.338 – volume: 22 start-page: 2213 year: 2010 ident: 10.1016/j.solmat.2015.08.005_bib20 article-title: Environment-friendly method to produce graphene that employs vitamin c and amino acid publication-title: Chem. Mater. doi: 10.1021/cm902635j – volume: 46 start-page: 1112 year: 2010 ident: 10.1016/j.solmat.2015.08.005_bib23 article-title: Reduction of graphene oxide via L-ascorbic acid publication-title: Chem. Commun. doi: 10.1039/B917705A – volume: 4 start-page: 559 year: 1970 ident: 10.1016/j.solmat.2015.08.005_bib45 article-title: An investigation of the surface self-diffusion coefficients of pure copper and silver by the grain boundary grooving technique publication-title: Scr. Metall. doi: 10.1016/0036-9748(70)90147-X – volume: 85 start-page: 5337 year: 2004 ident: 10.1016/j.solmat.2015.08.005_bib38 article-title: Fragmentation of nanowires driven by Rayleigh instability publication-title: Appl. Phys. Lett. doi: 10.1063/1.1826237 – volume: 7 start-page: 413 year: 1964 ident: 10.1016/j.solmat.2015.08.005_bib27 article-title: Four-point probe measurement of non-uniformities in semiconductor sheet resistivity publication-title: Solid State Electron. doi: 10.1016/0038-1101(64)90038-3 – volume: 147 start-page: 104 year: 1942 ident: 10.1016/j.solmat.2015.08.005_bib33 article-title: Diffusion of zinc in alpha brass publication-title: Trans. AIME – volume: 127 start-page: 50 year: 2014 ident: 10.1016/j.solmat.2015.08.005_bib5 article-title: Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.03.024 – volume: 6 start-page: 20994 year: 2014 ident: 10.1016/j.solmat.2015.08.005_bib8 article-title: Thermally induced percolational transition and thermal stability of silver nanowire networks studied by THz spectroscopy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5057618 – volume: 36 start-page: 1826 year: 1965 ident: 10.1016/j.solmat.2015.08.005_bib40 article-title: Morphological changes of a surface of revolution due to capillarity‐induced surface diffusion publication-title: J. Appl. Phys. doi: 10.1063/1.1714360 – volume: 101 start-page: 171 year: 2013 ident: 10.1016/j.solmat.2015.08.005_bib22 article-title: An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2012.06.008 – volume: 4 start-page: 6408 year: 2012 ident: 10.1016/j.solmat.2015.08.005_bib11 article-title: Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel publication-title: Nanoscale doi: 10.1039/c2nr31254a – volume: 97 start-page: 14 year: 2012 ident: 10.1016/j.solmat.2015.08.005_bib6 article-title: Environmental and economic assessment of ITO-free electrodes for organic solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.09.024 – volume: 11 start-page: 1077 year: 1976 ident: 10.1016/j.solmat.2015.08.005_bib39 article-title: On the spheroidization of rod-shaped particles of finite length publication-title: J. Mater. Sci. doi: 10.1007/BF02396641 – volume: 28 start-page: 333 year: 1957 ident: 10.1016/j.solmat.2015.08.005_bib41 article-title: Theory of thermal grooving publication-title: J. Appl. Phys. doi: 10.1063/1.1722742 – volume: 80 start-page: 1339 year: 1958 ident: 10.1016/j.solmat.2015.08.005_bib25 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 24 start-page: 40 year: 2003 ident: 10.1016/j.solmat.2015.08.005_bib31 article-title: Surface tension and thermodynamic properties of liquid Ag-Bi solutions publication-title: J. Phase Equilib. doi: 10.1007/s11669-003-0005-5 – volume: 124 start-page: 86 year: 2014 ident: 10.1016/j.solmat.2015.08.005_bib1 article-title: Highly conductive flexible transparent electrodes fabricated by combining graphene films and inkjet-printed silver grids publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.01.040 – volume: 102 start-page: 143108 year: 2013 ident: 10.1016/j.solmat.2015.08.005_bib44 article-title: Controlling the Rayleigh instability of nanowires publication-title: Appl. Phys. Lett. doi: 10.1063/1.4801766 |
SSID | ssj0002634 |
Score | 2.3126032 |
Snippet | Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102 |
SubjectTerms | Conduction Degradation Electrodes Failure Graphene Graphene oxide Green process Nanowires Oxides Silver nanowire Spray coating Time to failure modeling Transparent conducting electrode |
Title | Time to failure modeling of silver nanowire transparent conducting electrodes and effects of a reduced graphene oxide over layer |
URI | https://dx.doi.org/10.1016/j.solmat.2015.08.005 https://www.proquest.com/docview/1808645301 https://www.proquest.com/docview/1825481800 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8xm6TzetYiqUq9qKF3pZNdgORkpQ2BU_iT3dms_GFWPBSSDMJIbOZ-SaZ7xtCriJUNXNZAmVqxh0ey8xJGKxlCeAD8rtmmWGlPUyC8ZTfzfxZiwwbLgy2VdrYX8d0E63tPz17N3uLPO89shi5VCg2ggRTd4YMdh7iKr9-_WzzcAPzZRmNHbRu6HOmxwvcC7gQG7x8I-SJQ-x-T08_ArXJPqM9smthIx3UV7ZPWro4IDtfxAQPyRuyOWhV0kzm2GtOzZAb2EXLjK5y7ICmhSxKFCemldE0RyJYRaEiRtFXtLRDcZReUVkoaps98ASSLlHkVStqJK4hQtLyJVfwi-edS0DuR2Q6unkajh07X8FJvdCtHBUBetBekIRxCjCD6yxKI3SSq5IIoEgqNbjYhywKaT7mioWxCkKlIOUDitHMOybtoiz0CaFJKFMAipDtteIh1CCMZ5Gf9qUXMK543CFec1tFasXHcQbGXDRdZs-idoZAZwgcjcn8DnE-jlrU4hsb7MPGY-LbIhKQHzYcedk4WMDzhR9NZKHL9Ur0Iyj6uA9x8C8bKLORNM9O_30FZ2QbtuzbnXPSrpZrfQF4p0q6ZkF3ydbg9n48eQfLqwGI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HNSD-MS3K3iN3Sab11HEUh_txRZ6WzbZDURKUtoUPIk_3ZnNxhdiwUsOySSEncnMN9mZbwi5jJDVzGUJpKkZd3gsMydhYMsSwAfEd80y05XW6wfdIb8f-aMlctP0wmBZpfX9tU833tqeadnVbE3yvPXEYuylQrIRbDB1R8tklcPni2MMrl4_6zzcwGwto7SD4k3_nCnyAv0CMMQKL98weeIUu9_j0w9PbcJPZ4tsWtxIr-tX2yZLutghG1_YBHfJG7Zz0Kqkmcyx2JyaKTdwiZYZneVYAk0LWZTITkwrQ2qOnWAVhZQYWV9R0k7FUXpGZaGorfbAB0g6RZZXrajhuAYXScuXXMERnzuWAN33yLBzO7jpOnbAgpN6oVs5KgL4oL0gCeMUcAbXWZRGqCVXJRFgkVRq0LEPYRTifMwVC2MVhEpBzAcYo5m3T1aKstAHhCahTAEpQrjXioeQhDCeRX7all7AuOLxIfGaZRWpZR_HIRhj0ZSZPYtaGQKVIXA2JvMPifNx16Rm31ggHzYaE9-sSECAWHDnRaNgAR8Y7prIQpfzmWhHkPWBYbH2XzKQZ2PXPDv69xuck7XuoPcoHu_6D8dkHa7YXz0nZKWazvUpgJ8qOTPG_Q6bWQMW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+to+failure+modeling+of+silver+nanowire+transparent+conducting+electrodes+and+effects+of+a+reduced+graphene+oxide+over+layer&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Kwan%2C+Yue+Chau+Garen&rft.au=Le%2C+Quang+Luan&rft.au=Huan%2C+Cheng+Hon+Alfred&rft.date=2016-01-01&rft.issn=0927-0248&rft.volume=144&rft.spage=102&rft.epage=108&rft_id=info:doi/10.1016%2Fj.solmat.2015.08.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solmat_2015_08_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |