Time to failure modeling of silver nanowire transparent conducting electrodes and effects of a reduced graphene oxide over layer

Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene oxide (GO) using ultrasonic spray coating. Ultrasonic spray coating is suited for large area depositions and thin films of AgNW and reduced G...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 144; pp. 102 - 108
Main Authors Kwan, Yue Chau Garen, Le, Quang Luan, Huan, Cheng Hon Alfred
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene oxide (GO) using ultrasonic spray coating. Ultrasonic spray coating is suited for large area depositions and thin films of AgNW and reduced GO TCEs with consistent optoelectronic properties were produced using this method and the reduction of GO was kept environmentally friendly by using ascorbic acid (AA) as the reducing agent. TCEs produced in this manner were highly conductive and had an average sheet resistance of 5.3Ω/□ and an average transmittance of 64.9% ― the best TCE produced in this manner had a figure of merit of 190. Here, AgNWs were protected from humidity induced degradation and the effect of capillary instability at elevated temperatures on the nanowires was retarded by the introduction of a GO–AA over layer. A τ value of 1.5×10−9 was found to signify the onset of capillary instability induced failure in the AgNW TCE and from experimentally supported calculations, it was predicted that the lifetimes of nanowire TCEs under thermal degradation could be extended significantly by keeping the gaseous environment oxygen free. •Spray coated silver nanowire and reduced graphene oxide transparent conductor.•Graphene oxide reduced by ascorbic acid.•Average sheet resistance of 5.1Ω/□ and transmittance of 65.7%.•Using commercially available machines and reagents.•Time to failure modeling of silver nanowires under different gaseous environments.
AbstractList Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene oxide (GO) using ultrasonic spray coating. Ultrasonic spray coating is suited for large area depositions and thin films of AgNW and reduced GO TCEs with consistent optoelectronic properties were produced using this method and the reduction of GO was kept environmentally friendly by using ascorbic acid (AA) as the reducing agent. TCEs produced in this manner were highly conductive and had an average sheet resistance of 5.3 Omega /[squ and an average transmittance of 64.9% - the best TCE produced in this manner had a figure of merit of 190. Here, AgNWs were protected from humidity induced degradation and the effect of capillary instability at elevated temperatures on the nanowires was retarded by the introduction of a GO-AA over layer. A tau value of 1.510 super(-9) was found to signify the onset of capillary instability induced failure in the AgNW TCE and from experimentally supported calculations, it was predicted that the lifetimes of nanowire TCEs under thermal degradation could be extended significantly by keeping the gaseous environment oxygen free.
Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene oxide (GO) using ultrasonic spray coating. Ultrasonic spray coating is suited for large area depositions and thin films of AgNW and reduced GO TCEs with consistent optoelectronic properties were produced using this method and the reduction of GO was kept environmentally friendly by using ascorbic acid (AA) as the reducing agent. TCEs produced in this manner were highly conductive and had an average sheet resistance of 5.3Ω/□ and an average transmittance of 64.9% ― the best TCE produced in this manner had a figure of merit of 190. Here, AgNWs were protected from humidity induced degradation and the effect of capillary instability at elevated temperatures on the nanowires was retarded by the introduction of a GO–AA over layer. A τ value of 1.5×10−9 was found to signify the onset of capillary instability induced failure in the AgNW TCE and from experimentally supported calculations, it was predicted that the lifetimes of nanowire TCEs under thermal degradation could be extended significantly by keeping the gaseous environment oxygen free. •Spray coated silver nanowire and reduced graphene oxide transparent conductor.•Graphene oxide reduced by ascorbic acid.•Average sheet resistance of 5.1Ω/□ and transmittance of 65.7%.•Using commercially available machines and reagents.•Time to failure modeling of silver nanowires under different gaseous environments.
Author Le, Quang Luan
Kwan, Yue Chau Garen
Huan, Cheng Hon Alfred
Author_xml – sequence: 1
  givenname: Yue Chau Garen
  surname: Kwan
  fullname: Kwan, Yue Chau Garen
  email: kwan0056@e.ntu.edu.sg
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
– sequence: 2
  givenname: Quang Luan
  surname: Le
  fullname: Le, Quang Luan
  email: quang7@e.ntu.edu.sg
  organization: Materials Science and Engineering, College of Engineering, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
– sequence: 3
  givenname: Cheng Hon Alfred
  surname: Huan
  fullname: Huan, Cheng Hon Alfred
  email: alfred@ntu.edu.sg
  organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
BookMark eNqNkT1vFDEURS0UJDaBf0DhkmaG54-Z8VAgoYgAUiSaUFte-03wymMvtjeQjp-OR0tFATS2LJ97i3suyUVMEQl5yaBnwMbXh76ksJrac2BDD6oHGJ6QHVPT3Akxqwuyg5lPHXCpnpHLUg4AwEchd-TnnV-R1kQX48MpI12Tw-DjPU0LLT48YKbRxPTdt7-aTSxHkzFWalN0J1s3EgPamluuUBMdxWVp77IVGJqxUejofTbHrxiRph_etXPrDeYR83PydDGh4Ivf9xX5cvP-7vpjd_v5w6frd7edFROvnVNSMBTjfpotcCVxUVYZNgB3ewXjaA3iHgdExyWbpYNpduPkHBu4mCcEcUVenXuPOX07Yal69cViCCZiOhXNFB-kYgr-BwU1ykEAa-ibM2pzKiXjoq2vpvoU21Y-aAZ6M6QP-mxIb4Y0KN0MtbD8I3zMfjX58V-xt-cYtrkePGZdrMfYVm6ObNUu-b8X_ALn9bGP
CitedBy_id crossref_primary_10_1016_j_matre_2020_09_001
crossref_primary_10_1002_adfm_201705023
crossref_primary_10_1038_s41598_021_03528_w
crossref_primary_10_3390_nano9040533
crossref_primary_10_1007_s10570_023_05250_4
crossref_primary_10_1016_j_orgel_2017_07_055
crossref_primary_10_3390_ma10040392
crossref_primary_10_1039_D4CS00080C
crossref_primary_10_1016_j_jcis_2017_05_065
crossref_primary_10_1021_acsami_0c03587
crossref_primary_10_1002_smll_201703140
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1039_C9TC06865A
crossref_primary_10_1088_1361_6528_aa7f34
crossref_primary_10_1088_1757_899X_1098_6_062065
crossref_primary_10_1002_adma_202004356
crossref_primary_10_1016_j_mtener_2023_101409
crossref_primary_10_1002_smll_201602581
crossref_primary_10_1021_acs_langmuir_6b00796
crossref_primary_10_1016_j_materresbull_2018_11_017
crossref_primary_10_1088_2631_8695_ad37a0
crossref_primary_10_3390_ma10060570
crossref_primary_10_1016_j_orgel_2018_11_002
crossref_primary_10_1007_s12274_023_5832_6
crossref_primary_10_1016_j_solmat_2017_04_048
crossref_primary_10_1016_j_orgel_2023_106890
crossref_primary_10_1016_j_jcis_2017_09_112
Cites_doi 10.1039/c3nr02320f
10.1002/smll.200700382
10.1088/0957-4484/17/24/009
10.1021/am301913w
10.1016/0001-6160(63)90191-3
10.1016/j.orgel.2011.08.027
10.1016/0001-6160(68)90079-5
10.1021/nn100343f
10.1186/1556-276X-8-235
10.1016/j.solmat.2014.09.006
10.1016/j.materresbull.2011.07.013
10.1016/j.synthmet.2012.05.026
10.1112/plms/s1-10.1.4
10.1038/srep01112
10.1016/j.physb.2005.06.035
10.1016/j.solmat.2013.09.015
10.1088/0508-3443/12/8/312
10.1002/smll.201203142
10.1016/j.jelechem.2011.06.034
10.1088/0268-1242/28/12/125008
10.1063/1.3518470
10.1016/j.solmat.2014.05.013
10.1021/am505908d
10.1021/jp100603h
10.1021/cg301119d
10.1016/j.vacuum.2012.05.031
10.1016/0001-6160(65)90199-9
10.1007/s12274-013-0323-9
10.1557/jmr.2014.338
10.1021/cm902635j
10.1039/B917705A
10.1016/0036-9748(70)90147-X
10.1063/1.1826237
10.1016/0038-1101(64)90038-3
10.1016/j.solmat.2014.03.024
10.1021/am5057618
10.1063/1.1714360
10.1016/j.colsurfb.2012.06.008
10.1039/c2nr31254a
10.1016/j.solmat.2011.09.024
10.1007/BF02396641
10.1063/1.1722742
10.1021/ja01539a017
10.1007/s11669-003-0005-5
10.1016/j.solmat.2014.01.040
10.1063/1.4801766
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.solmat.2015.08.005
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Environment Abstracts

Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3398
EndPage 108
ExternalDocumentID 10_1016_j_solmat_2015_08_005
S092702481500392X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
C1K
SOI
7SP
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c372t-d8431e36b79c0284ef8c8a1502db8066caeebe5eed24194d079d67dd152397e03
IEDL.DBID .~1
ISSN 0927-0248
IngestDate Fri Jul 11 06:21:32 EDT 2025
Fri Jul 11 16:37:35 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Tue Jul 01 04:09:53 EDT 2025
Fri Feb 23 02:16:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Transparent conducting electrode
Graphene oxide
Green process
Silver nanowire
Time to failure modeling
Spray coating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-d8431e36b79c0284ef8c8a1502db8066caeebe5eed24194d079d67dd152397e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1808645301
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1825481800
proquest_miscellaneous_1808645301
crossref_citationtrail_10_1016_j_solmat_2015_08_005
crossref_primary_10_1016_j_solmat_2015_08_005
elsevier_sciencedirect_doi_10_1016_j_solmat_2015_08_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Solar energy materials and solar cells
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mullins (bib41) 1957; 28
Moon, Kim, Lee, Hur, Kim, Lee (bib15) 2013; 3
Lee, Lee, Lee, Lee, Ko (bib28) 2012; 12
Rayleigh (bib36) 1878; 10
Noh, Kim, Kim, Na (bib48) 2013; 28
Fernández-Merino, Guardia, Paredes, Villar-Rodil, Solís-Fernández, Martínez-Alonso, Tascón (bib19) 2010; 114
Karim, Toimil-Molares, Balogh, Ensinger, Cornelius, Khan, Neumann (bib37) 2006; 17
Qi (bib30) 2005; 368
Nichols (bib42) 1968; 16
Dai, Yang, Xie (bib21) 2011; 46
Ferraria, Carapeto, Rogo (bib35) 2012; 86
Vaughan (bib26) 1961; 12
Xiong, Jin (bib24) 2011; 661
Hummers, Offeman (bib25) 1958; 80
Kahng, Kim, Lee, Kim, Kim, Park, Lee (bib1) 2014; 124
Burgués-Ceballos, Kehagias, Sotomayor-Torres, Campoy-Quiles, Lacharmoise (bib5) 2014; 127
Ahn, Jeong, Lee (bib16) 2012; 4
Gill (bib44) 2013; 102
Preston, Xu, Han, Munday, Hu (bib13) 2013; 6
Swartzenruber (bib27) 1964; 7
Meenakshi, Karthick, Selvaraj, Ramu (bib2) 2014; 128
Zhang, Yang, Shen, Cheng, Zhang, Guo (bib23) 2010; 46
Nichols, Mullins (bib40) 1965; 36
Langley, Giusti, Lagrange, Collins, Jiménez, Bréchet, Bellet (bib3) 2014; 125
Chen, Ahn, Yen, Tsai (bib8) 2014; 6
Lee, Lee, Ahn, Jeong, Lee, Lee (bib17) 2013; 5
Gasior, Pstruś, Moser, Krzyżak, Fitzner (bib31) 2003; 24
Wu, Fang, Huang, Jiang (bib9) 2014; 6
Ho, Cheng, Tey, Wei (bib10) 2014; 29
Kirkendall (bib32) 1947; 171
Huang, Zhan, Wang, Zhang, Xing, Guo, Leusink, Zheng, Wu (bib43) 2010; 97
Wang, Zhou, Deng, Chen, Wang, Zhang, Fu (bib22) 2013; 101
Rhead (bib46) 1963; 11
Khaligh, Goldthorpe (bib14) 2013; 8
Kirkendall (bib33) 1942; 147
De, Coleman (bib18) 2010; 4
Gao, Liu, Liu, Ma, Wang, Zhang (bib20) 2010; 22
Fan, Gosele, Zacharias (bib34) 2007; 3
Toimil Molares, Balogh, Cornelius, Neumann, Trautmann (bib38) 2004; 85
Nichols (bib39) 1976; 11
Hosseinzadeh Khaligh, Liew, Han, Abukhdeir, Goldthorpe (bib4) 2015; 132
Chih-Hung, Sui-Ying, Tsung-Wei, Yu-Tang, Yan-Fang, Jhang, Hsieh, Chung-Chih, Yen-Shan, Chieh-Wei, Chung-Chun (bib12) 2011; 12
Lee, Lee, Kim, Lee (bib29) 2013; 9
Hough (bib45) 1970; 4
Lee, Lee, Lee, Lee, Lee, Ko (bib11) 2012; 4
Rhead (bib47) 1965; 13
Emmott, Urbina, Nelson (bib6) 2012; 97
Yun, Kim, Kim, Park, Jin (bib7) 2012; 162
Nichols (10.1016/j.solmat.2015.08.005_bib40) 1965; 36
Ferraria (10.1016/j.solmat.2015.08.005_bib35) 2012; 86
Fernández-Merino (10.1016/j.solmat.2015.08.005_bib19) 2010; 114
Swartzenruber (10.1016/j.solmat.2015.08.005_bib27) 1964; 7
Gasior (10.1016/j.solmat.2015.08.005_bib31) 2003; 24
De (10.1016/j.solmat.2015.08.005_bib18) 2010; 4
Kahng (10.1016/j.solmat.2015.08.005_bib1) 2014; 124
Gao (10.1016/j.solmat.2015.08.005_bib20) 2010; 22
Lee (10.1016/j.solmat.2015.08.005_bib11) 2012; 4
Hosseinzadeh Khaligh (10.1016/j.solmat.2015.08.005_bib4) 2015; 132
Kirkendall (10.1016/j.solmat.2015.08.005_bib32) 1947; 171
Toimil Molares (10.1016/j.solmat.2015.08.005_bib38) 2004; 85
Wu (10.1016/j.solmat.2015.08.005_bib9) 2014; 6
Vaughan (10.1016/j.solmat.2015.08.005_bib26) 1961; 12
Hummers (10.1016/j.solmat.2015.08.005_bib25) 1958; 80
Nichols (10.1016/j.solmat.2015.08.005_bib39) 1976; 11
Chih-Hung (10.1016/j.solmat.2015.08.005_bib12) 2011; 12
Lee (10.1016/j.solmat.2015.08.005_bib29) 2013; 9
Wang (10.1016/j.solmat.2015.08.005_bib22) 2013; 101
Lee (10.1016/j.solmat.2015.08.005_bib17) 2013; 5
Zhang (10.1016/j.solmat.2015.08.005_bib23) 2010; 46
Chen (10.1016/j.solmat.2015.08.005_bib8) 2014; 6
Meenakshi (10.1016/j.solmat.2015.08.005_bib2) 2014; 128
Emmott (10.1016/j.solmat.2015.08.005_bib6) 2012; 97
Rayleigh (10.1016/j.solmat.2015.08.005_bib36) 1878; 10
Mullins (10.1016/j.solmat.2015.08.005_bib41) 1957; 28
Moon (10.1016/j.solmat.2015.08.005_bib15) 2013; 3
Huang (10.1016/j.solmat.2015.08.005_bib43) 2010; 97
Hough (10.1016/j.solmat.2015.08.005_bib45) 1970; 4
Langley (10.1016/j.solmat.2015.08.005_bib3) 2014; 125
Yun (10.1016/j.solmat.2015.08.005_bib7) 2012; 162
Preston (10.1016/j.solmat.2015.08.005_bib13) 2013; 6
Khaligh (10.1016/j.solmat.2015.08.005_bib14) 2013; 8
Nichols (10.1016/j.solmat.2015.08.005_bib42) 1968; 16
Karim (10.1016/j.solmat.2015.08.005_bib37) 2006; 17
Rhead (10.1016/j.solmat.2015.08.005_bib46) 1963; 11
Ahn (10.1016/j.solmat.2015.08.005_bib16) 2012; 4
Burgués-Ceballos (10.1016/j.solmat.2015.08.005_bib5) 2014; 127
Dai (10.1016/j.solmat.2015.08.005_bib21) 2011; 46
Kirkendall (10.1016/j.solmat.2015.08.005_bib33) 1942; 147
Lee (10.1016/j.solmat.2015.08.005_bib28) 2012; 12
Noh (10.1016/j.solmat.2015.08.005_bib48) 2013; 28
Xiong (10.1016/j.solmat.2015.08.005_bib24) 2011; 661
Fan (10.1016/j.solmat.2015.08.005_bib34) 2007; 3
Gill (10.1016/j.solmat.2015.08.005_bib44) 2013; 102
Qi (10.1016/j.solmat.2015.08.005_bib30) 2005; 368
Rhead (10.1016/j.solmat.2015.08.005_bib47) 1965; 13
Ho (10.1016/j.solmat.2015.08.005_bib10) 2014; 29
References_xml – volume: 24
  start-page: 40
  year: 2003
  end-page: 49
  ident: bib31
  article-title: Surface tension and thermodynamic properties of liquid Ag-Bi solutions
  publication-title: J. Phase Equilib.
– volume: 124
  start-page: 86
  year: 2014
  end-page: 91
  ident: bib1
  article-title: Highly conductive flexible transparent electrodes fabricated by combining graphene films and inkjet-printed silver grids
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 97
  start-page: 203112
  year: 2010
  ident: bib43
  article-title: Rayleigh-instability-driven simultaneous morphological and compositional transformation from Co nanowires to CoO octahedra
  publication-title: Appl. Phys. Lett.
– volume: 125
  start-page: 318
  year: 2014
  end-page: 324
  ident: bib3
  article-title: Silver nanowire networks: physical properties and potential integration in solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 86
  start-page: 1988
  year: 2012
  end-page: 1991
  ident: bib35
  article-title: X-ray photoelectron spectroscopy: silver salts revisited
  publication-title: Vacuum
– volume: 12
  start-page: 5598
  year: 2012
  end-page: 5605
  ident: bib28
  article-title: Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth
  publication-title: Cryst. Growth Des.
– volume: 101
  start-page: 171
  year: 2013
  end-page: 176
  ident: bib22
  article-title: An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 97
  start-page: 14
  year: 2012
  end-page: 21
  ident: bib6
  article-title: Environmental and economic assessment of ITO-free electrodes for organic solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 6
  start-page: 21026
  year: 2014
  end-page: 21034
  ident: bib9
  article-title: Three-dimensional highly conductive graphene-silver nanowire hybrid foams for flexible and stretchable conductors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 368
  start-page: 46
  year: 2005
  end-page: 50
  ident: bib30
  article-title: Size effect on melting temperature of nanosolids
  publication-title: Phys. B: Condens. Matter
– volume: 5
  start-page: 7750
  year: 2013
  end-page: 7755
  ident: bib17
  article-title: Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices
  publication-title: Nanoscale
– volume: 128
  start-page: 264
  year: 2014
  end-page: 269
  ident: bib2
  article-title: Investigations on reduced graphene oxide film embedded with silver nanowire as a transperent conducting electrode
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 85
  start-page: 5337
  year: 2004
  ident: bib38
  article-title: Fragmentation of nanowires driven by Rayleigh instability
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 5954
  year: 2006
  ident: bib37
  article-title: Morphological evolution of Au nanowires controlled by Rayleigh instability
  publication-title: Nanotechnology
– volume: 102
  start-page: 143108
  year: 2013
  ident: bib44
  article-title: Controlling the Rayleigh instability of nanowires
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 20994
  year: 2014
  end-page: 20999
  ident: bib8
  article-title: Thermally induced percolational transition and thermal stability of silver nanowire networks studied by THz spectroscopy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 1112
  year: 2010
  end-page: 1114
  ident: bib23
  article-title: Reduction of graphene oxide via L-ascorbic acid
  publication-title: Chem. Commun.
– volume: 6
  start-page: 461
  year: 2013
  end-page: 468
  ident: bib13
  article-title: Optical haze of transparent and conductive silver nanowire films,
  publication-title: Nano Res.
– volume: 11
  start-page: 1077
  year: 1976
  end-page: 1082
  ident: bib39
  article-title: On the spheroidization of rod-shaped particles of finite length
  publication-title: J. Mater. Sci.
– volume: 162
  start-page: 1364
  year: 2012
  end-page: 1368
  ident: bib7
  article-title: Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility
  publication-title: Synth. Met.
– volume: 13
  start-page: 223
  year: 1965
  end-page: 226
  ident: bib47
  article-title: Surface self-diffusion of silver in various atmospheres
  publication-title: Acta Metall.
– volume: 12
  start-page: 414
  year: 1961
  end-page: 416
  ident: bib26
  article-title: Four-probe resistivity measurements on small circular specimens
  publication-title: Br. J. Appl. Phys.
– volume: 11
  start-page: 1035
  year: 1963
  end-page: 1042
  ident: bib46
  article-title: Surface self-diffusion and faceting on silver
  publication-title: Acta Metall.
– volume: 127
  start-page: 50
  year: 2014
  end-page: 57
  ident: bib5
  article-title: Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 22
  start-page: 2213
  year: 2010
  end-page: 2218
  ident: bib20
  article-title: Environment-friendly method to produce graphene that employs vitamin c and amino acid
  publication-title: Chem. Mater.
– volume: 4
  start-page: 559
  year: 1970
  end-page: 561
  ident: bib45
  article-title: An investigation of the surface self-diffusion coefficients of pure copper and silver by the grain boundary grooving technique
  publication-title: Scr. Metall.
– volume: 8
  start-page: 235
  year: 2013
  ident: bib14
  article-title: Failure of silver nanowire transparent electrodes under current flow
  publication-title: Nanoscale Res. Lett.
– volume: 114
  start-page: 6426
  year: 2010
  end-page: 6432
  ident: bib19
  article-title: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions
  publication-title: J. Phys. Chem. C
– volume: 171
  start-page: 130
  year: 1947
  end-page: 142
  ident: bib32
  article-title: Zinc diffusion in alpha brass
  publication-title: Trans. AIME
– volume: 10
  start-page: 4
  year: 1878
  end-page: 13
  ident: bib36
  article-title: On the instability of jets
  publication-title: Proc. Lond. Math. Soc.
– volume: 9
  start-page: 2887
  year: 2013
  end-page: 2894
  ident: bib29
  article-title: Efficient welding of silver nanowire networks without post-processing
  publication-title: Small
– volume: 3
  start-page: 1112
  year: 2013
  ident: bib15
  article-title: 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes
  publication-title: Sci. Rep.
– volume: 46
  start-page: 2004
  year: 2011
  end-page: 2008
  ident: bib21
  article-title: One-step synthesis of reduced graphite oxide–silver nanocomposite
  publication-title: Mater. Res. Bull.
– volume: 4
  start-page: 6408
  year: 2012
  end-page: 6414
  ident: bib11
  article-title: Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel
  publication-title: Nanoscale
– volume: 36
  start-page: 1826
  year: 1965
  end-page: 1835
  ident: bib40
  article-title: Morphological changes of a surface of revolution due to capillarity‐induced surface diffusion
  publication-title: J. Appl. Phys.
– volume: 147
  start-page: 104
  year: 1942
  end-page: 110
  ident: bib33
  article-title: Diffusion of zinc in alpha brass
  publication-title: Trans. AIME
– volume: 28
  start-page: 125008
  year: 2013
  ident: bib48
  article-title: Effect of sheet resistance of Ag-nanowire-based electrodes on cell-performances of ITO-free organic solar cells
  publication-title: Semicond. Sci. Technol.
– volume: 3
  start-page: 1660
  year: 2007
  end-page: 1671
  ident: bib34
  article-title: Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review
  publication-title: Small
– volume: 28
  start-page: 333
  year: 1957
  ident: bib41
  article-title: Theory of thermal grooving
  publication-title: J. Appl. Phys.
– volume: 132
  start-page: 337
  year: 2015
  end-page: 341
  ident: bib4
  article-title: Silver nanowire transparent electrodes for liquid crystal-based smart windows
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 661
  start-page: 77
  year: 2011
  end-page: 83
  ident: bib24
  article-title: The electrochemical behavior of AA and DA on graphene oxide modified electrodes containing various content of oxygen functional groups
  publication-title: J. Electroanal. Chem.
– volume: 4
  start-page: 2713
  year: 2010
  end-page: 2720
  ident: bib18
  article-title: Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?
  publication-title: ACS Nano
– volume: 12
  start-page: 2003
  year: 2011
  end-page: 2011
  ident: bib12
  article-title: Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells
  publication-title: Org. Electron.
– volume: 80
  start-page: 1339
  year: 1958
  ident: bib25
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 413
  year: 1964
  end-page: 422
  ident: bib27
  article-title: Four-point probe measurement of non-uniformities in semiconductor sheet resistivity
  publication-title: Solid State Electron.
– volume: 16
  start-page: 103
  year: 1968
  end-page: 113
  ident: bib42
  article-title: Theory of sintering of wires by surface diffusion
  publication-title: Acta Metall.
– volume: 4
  start-page: 6410
  year: 2012
  end-page: 6414
  ident: bib16
  article-title: Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 2965
  year: 2014
  end-page: 2972
  ident: bib10
  article-title: Biaxially stretchable transparent conductors that use nanowire networks
  publication-title: J. Mater. Res.
– volume: 5
  start-page: 7750
  year: 2013
  ident: 10.1016/j.solmat.2015.08.005_bib17
  article-title: Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices
  publication-title: Nanoscale
  doi: 10.1039/c3nr02320f
– volume: 3
  start-page: 1660
  year: 2007
  ident: 10.1016/j.solmat.2015.08.005_bib34
  article-title: Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review
  publication-title: Small
  doi: 10.1002/smll.200700382
– volume: 17
  start-page: 5954
  year: 2006
  ident: 10.1016/j.solmat.2015.08.005_bib37
  article-title: Morphological evolution of Au nanowires controlled by Rayleigh instability
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/24/009
– volume: 4
  start-page: 6410
  year: 2012
  ident: 10.1016/j.solmat.2015.08.005_bib16
  article-title: Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301913w
– volume: 11
  start-page: 1035
  year: 1963
  ident: 10.1016/j.solmat.2015.08.005_bib46
  article-title: Surface self-diffusion and faceting on silver
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(63)90191-3
– volume: 12
  start-page: 2003
  year: 2011
  ident: 10.1016/j.solmat.2015.08.005_bib12
  article-title: Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2011.08.027
– volume: 171
  start-page: 130
  year: 1947
  ident: 10.1016/j.solmat.2015.08.005_bib32
  article-title: Zinc diffusion in alpha brass
  publication-title: Trans. AIME
– volume: 16
  start-page: 103
  year: 1968
  ident: 10.1016/j.solmat.2015.08.005_bib42
  article-title: Theory of sintering of wires by surface diffusion
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(68)90079-5
– volume: 4
  start-page: 2713
  year: 2010
  ident: 10.1016/j.solmat.2015.08.005_bib18
  article-title: Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films?
  publication-title: ACS Nano
  doi: 10.1021/nn100343f
– volume: 8
  start-page: 235
  year: 2013
  ident: 10.1016/j.solmat.2015.08.005_bib14
  article-title: Failure of silver nanowire transparent electrodes under current flow
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-235
– volume: 132
  start-page: 337
  year: 2015
  ident: 10.1016/j.solmat.2015.08.005_bib4
  article-title: Silver nanowire transparent electrodes for liquid crystal-based smart windows
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.09.006
– volume: 46
  start-page: 2004
  year: 2011
  ident: 10.1016/j.solmat.2015.08.005_bib21
  article-title: One-step synthesis of reduced graphite oxide–silver nanocomposite
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2011.07.013
– volume: 162
  start-page: 1364
  year: 2012
  ident: 10.1016/j.solmat.2015.08.005_bib7
  article-title: Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2012.05.026
– volume: 10
  start-page: 4
  year: 1878
  ident: 10.1016/j.solmat.2015.08.005_bib36
  article-title: On the instability of jets
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s1-10.1.4
– volume: 3
  start-page: 1112
  year: 2013
  ident: 10.1016/j.solmat.2015.08.005_bib15
  article-title: 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes
  publication-title: Sci. Rep.
  doi: 10.1038/srep01112
– volume: 368
  start-page: 46
  year: 2005
  ident: 10.1016/j.solmat.2015.08.005_bib30
  article-title: Size effect on melting temperature of nanosolids
  publication-title: Phys. B: Condens. Matter
  doi: 10.1016/j.physb.2005.06.035
– volume: 125
  start-page: 318
  year: 2014
  ident: 10.1016/j.solmat.2015.08.005_bib3
  article-title: Silver nanowire networks: physical properties and potential integration in solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.09.015
– volume: 12
  start-page: 414
  year: 1961
  ident: 10.1016/j.solmat.2015.08.005_bib26
  article-title: Four-probe resistivity measurements on small circular specimens
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/12/8/312
– volume: 9
  start-page: 2887
  year: 2013
  ident: 10.1016/j.solmat.2015.08.005_bib29
  article-title: Efficient welding of silver nanowire networks without post-processing
  publication-title: Small
  doi: 10.1002/smll.201203142
– volume: 661
  start-page: 77
  year: 2011
  ident: 10.1016/j.solmat.2015.08.005_bib24
  article-title: The electrochemical behavior of AA and DA on graphene oxide modified electrodes containing various content of oxygen functional groups
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2011.06.034
– volume: 28
  start-page: 125008
  year: 2013
  ident: 10.1016/j.solmat.2015.08.005_bib48
  article-title: Effect of sheet resistance of Ag-nanowire-based electrodes on cell-performances of ITO-free organic solar cells
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/28/12/125008
– volume: 97
  start-page: 203112
  year: 2010
  ident: 10.1016/j.solmat.2015.08.005_bib43
  article-title: Rayleigh-instability-driven simultaneous morphological and compositional transformation from Co nanowires to CoO octahedra
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3518470
– volume: 128
  start-page: 264
  year: 2014
  ident: 10.1016/j.solmat.2015.08.005_bib2
  article-title: Investigations on reduced graphene oxide film embedded with silver nanowire as a transperent conducting electrode
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.05.013
– volume: 6
  start-page: 21026
  year: 2014
  ident: 10.1016/j.solmat.2015.08.005_bib9
  article-title: Three-dimensional highly conductive graphene-silver nanowire hybrid foams for flexible and stretchable conductors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505908d
– volume: 114
  start-page: 6426
  year: 2010
  ident: 10.1016/j.solmat.2015.08.005_bib19
  article-title: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp100603h
– volume: 12
  start-page: 5598
  year: 2012
  ident: 10.1016/j.solmat.2015.08.005_bib28
  article-title: Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg301119d
– volume: 86
  start-page: 1988
  year: 2012
  ident: 10.1016/j.solmat.2015.08.005_bib35
  article-title: X-ray photoelectron spectroscopy: silver salts revisited
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2012.05.031
– volume: 13
  start-page: 223
  year: 1965
  ident: 10.1016/j.solmat.2015.08.005_bib47
  article-title: Surface self-diffusion of silver in various atmospheres
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(65)90199-9
– volume: 6
  start-page: 461
  year: 2013
  ident: 10.1016/j.solmat.2015.08.005_bib13
  article-title: Optical haze of transparent and conductive silver nanowire films,
  publication-title: Nano Res.
  doi: 10.1007/s12274-013-0323-9
– volume: 29
  start-page: 2965
  year: 2014
  ident: 10.1016/j.solmat.2015.08.005_bib10
  article-title: Biaxially stretchable transparent conductors that use nanowire networks
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2014.338
– volume: 22
  start-page: 2213
  year: 2010
  ident: 10.1016/j.solmat.2015.08.005_bib20
  article-title: Environment-friendly method to produce graphene that employs vitamin c and amino acid
  publication-title: Chem. Mater.
  doi: 10.1021/cm902635j
– volume: 46
  start-page: 1112
  year: 2010
  ident: 10.1016/j.solmat.2015.08.005_bib23
  article-title: Reduction of graphene oxide via L-ascorbic acid
  publication-title: Chem. Commun.
  doi: 10.1039/B917705A
– volume: 4
  start-page: 559
  year: 1970
  ident: 10.1016/j.solmat.2015.08.005_bib45
  article-title: An investigation of the surface self-diffusion coefficients of pure copper and silver by the grain boundary grooving technique
  publication-title: Scr. Metall.
  doi: 10.1016/0036-9748(70)90147-X
– volume: 85
  start-page: 5337
  year: 2004
  ident: 10.1016/j.solmat.2015.08.005_bib38
  article-title: Fragmentation of nanowires driven by Rayleigh instability
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1826237
– volume: 7
  start-page: 413
  year: 1964
  ident: 10.1016/j.solmat.2015.08.005_bib27
  article-title: Four-point probe measurement of non-uniformities in semiconductor sheet resistivity
  publication-title: Solid State Electron.
  doi: 10.1016/0038-1101(64)90038-3
– volume: 147
  start-page: 104
  year: 1942
  ident: 10.1016/j.solmat.2015.08.005_bib33
  article-title: Diffusion of zinc in alpha brass
  publication-title: Trans. AIME
– volume: 127
  start-page: 50
  year: 2014
  ident: 10.1016/j.solmat.2015.08.005_bib5
  article-title: Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.03.024
– volume: 6
  start-page: 20994
  year: 2014
  ident: 10.1016/j.solmat.2015.08.005_bib8
  article-title: Thermally induced percolational transition and thermal stability of silver nanowire networks studied by THz spectroscopy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5057618
– volume: 36
  start-page: 1826
  year: 1965
  ident: 10.1016/j.solmat.2015.08.005_bib40
  article-title: Morphological changes of a surface of revolution due to capillarity‐induced surface diffusion
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1714360
– volume: 101
  start-page: 171
  year: 2013
  ident: 10.1016/j.solmat.2015.08.005_bib22
  article-title: An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2012.06.008
– volume: 4
  start-page: 6408
  year: 2012
  ident: 10.1016/j.solmat.2015.08.005_bib11
  article-title: Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel
  publication-title: Nanoscale
  doi: 10.1039/c2nr31254a
– volume: 97
  start-page: 14
  year: 2012
  ident: 10.1016/j.solmat.2015.08.005_bib6
  article-title: Environmental and economic assessment of ITO-free electrodes for organic solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.09.024
– volume: 11
  start-page: 1077
  year: 1976
  ident: 10.1016/j.solmat.2015.08.005_bib39
  article-title: On the spheroidization of rod-shaped particles of finite length
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF02396641
– volume: 28
  start-page: 333
  year: 1957
  ident: 10.1016/j.solmat.2015.08.005_bib41
  article-title: Theory of thermal grooving
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1722742
– volume: 80
  start-page: 1339
  year: 1958
  ident: 10.1016/j.solmat.2015.08.005_bib25
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 24
  start-page: 40
  year: 2003
  ident: 10.1016/j.solmat.2015.08.005_bib31
  article-title: Surface tension and thermodynamic properties of liquid Ag-Bi solutions
  publication-title: J. Phase Equilib.
  doi: 10.1007/s11669-003-0005-5
– volume: 124
  start-page: 86
  year: 2014
  ident: 10.1016/j.solmat.2015.08.005_bib1
  article-title: Highly conductive flexible transparent electrodes fabricated by combining graphene films and inkjet-printed silver grids
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.01.040
– volume: 102
  start-page: 143108
  year: 2013
  ident: 10.1016/j.solmat.2015.08.005_bib44
  article-title: Controlling the Rayleigh instability of nanowires
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4801766
SSID ssj0002634
Score 2.3126032
Snippet Transparent conducting electrodes (TCE) with increased robustness and stability were produced from a composite of silver nanowires (AgNW) and reduced graphene...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102
SubjectTerms Conduction
Degradation
Electrodes
Failure
Graphene
Graphene oxide
Green process
Nanowires
Oxides
Silver nanowire
Spray coating
Time to failure modeling
Transparent conducting electrode
Title Time to failure modeling of silver nanowire transparent conducting electrodes and effects of a reduced graphene oxide over layer
URI https://dx.doi.org/10.1016/j.solmat.2015.08.005
https://www.proquest.com/docview/1808645301
https://www.proquest.com/docview/1825481800
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8xm6TzetYiqUq9qKF3pZNdgORkpQ2BU_iT3dms_GFWPBSSDMJIbOZ-SaZ7xtCriJUNXNZAmVqxh0ey8xJGKxlCeAD8rtmmWGlPUyC8ZTfzfxZiwwbLgy2VdrYX8d0E63tPz17N3uLPO89shi5VCg2ggRTd4YMdh7iKr9-_WzzcAPzZRmNHbRu6HOmxwvcC7gQG7x8I-SJQ-x-T08_ArXJPqM9smthIx3UV7ZPWro4IDtfxAQPyRuyOWhV0kzm2GtOzZAb2EXLjK5y7ICmhSxKFCemldE0RyJYRaEiRtFXtLRDcZReUVkoaps98ASSLlHkVStqJK4hQtLyJVfwi-edS0DuR2Q6unkajh07X8FJvdCtHBUBetBekIRxCjCD6yxKI3SSq5IIoEgqNbjYhywKaT7mioWxCkKlIOUDitHMOybtoiz0CaFJKFMAipDtteIh1CCMZ5Gf9qUXMK543CFec1tFasXHcQbGXDRdZs-idoZAZwgcjcn8DnE-jlrU4hsb7MPGY-LbIhKQHzYcedk4WMDzhR9NZKHL9Ur0Iyj6uA9x8C8bKLORNM9O_30FZ2QbtuzbnXPSrpZrfQF4p0q6ZkF3ydbg9n48eQfLqwGI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HNSD-MS3K3iN3Sab11HEUh_txRZ6WzbZDURKUtoUPIk_3ZnNxhdiwUsOySSEncnMN9mZbwi5jJDVzGUJpKkZd3gsMydhYMsSwAfEd80y05XW6wfdIb8f-aMlctP0wmBZpfX9tU833tqeadnVbE3yvPXEYuylQrIRbDB1R8tklcPni2MMrl4_6zzcwGwto7SD4k3_nCnyAv0CMMQKL98weeIUu9_j0w9PbcJPZ4tsWtxIr-tX2yZLutghG1_YBHfJG7Zz0Kqkmcyx2JyaKTdwiZYZneVYAk0LWZTITkwrQ2qOnWAVhZQYWV9R0k7FUXpGZaGorfbAB0g6RZZXrajhuAYXScuXXMERnzuWAN33yLBzO7jpOnbAgpN6oVs5KgL4oL0gCeMUcAbXWZRGqCVXJRFgkVRq0LEPYRTifMwVC2MVhEpBzAcYo5m3T1aKstAHhCahTAEpQrjXioeQhDCeRX7all7AuOLxIfGaZRWpZR_HIRhj0ZSZPYtaGQKVIXA2JvMPifNx16Rm31ggHzYaE9-sSECAWHDnRaNgAR8Y7prIQpfzmWhHkPWBYbH2XzKQZ2PXPDv69xuck7XuoPcoHu_6D8dkHa7YXz0nZKWazvUpgJ8qOTPG_Q6bWQMW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+to+failure+modeling+of+silver+nanowire+transparent+conducting+electrodes+and+effects+of+a+reduced+graphene+oxide+over+layer&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Kwan%2C+Yue+Chau+Garen&rft.au=Le%2C+Quang+Luan&rft.au=Huan%2C+Cheng+Hon+Alfred&rft.date=2016-01-01&rft.issn=0927-0248&rft.volume=144&rft.spage=102&rft.epage=108&rft_id=info:doi/10.1016%2Fj.solmat.2015.08.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solmat_2015_08_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon