Research methods of contact electrification: Theoretical simulation and experiment

Contact electrification (CE) is an ancient phenomenon in human history, which has been recorded more than 2600 years. Since the invention of triboelectric nanogenerators (TENGs), the CE has been widely focused again. However, the process of TENG generally includes two stages: CE and electrostatic in...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 79; p. 105501
Main Authors Zhang, Zhinan, Yin, Nian, Wu, Zishuai, Pan, Shuaihang, Wang, Daoai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Contact electrification (CE) is an ancient phenomenon in human history, which has been recorded more than 2600 years. Since the invention of triboelectric nanogenerators (TENGs), the CE has been widely focused again. However, the process of TENG generally includes two stages: CE and electrostatic induction. To distinguish the influence of these two effects on the performance of TENGs, this paper first reviews the generation process of four modes of TENGs and summarizes their characteristics in the stages of CE and electrostatic induction. Then, the research methods of CE are reviewed in three aspects: theory, simulation, and experiment. Finally, the prospect for future development of the research methods and applications are discussed. In brief, this paper provides an important reference for the current triboelectric researchers to frame out the efficient research methods for the behind CE mechanisms. [Display omitted] •This paper reviews the research methods of contact electrification.•The role and influence of contact electrification and electrostatic induction in the work process of TENGs are clarified.•The theoretical, simulation and experimental methods are classified and summarized according to different criteria.•In the end, future trend of research methods and applications of contact electrification is discussed.
AbstractList Contact electrification (CE) is an ancient phenomenon in human history, which has been recorded more than 2600 years. Since the invention of triboelectric nanogenerators (TENGs), the CE has been widely focused again. However, the process of TENG generally includes two stages: CE and electrostatic induction. To distinguish the influence of these two effects on the performance of TENGs, this paper first reviews the generation process of four modes of TENGs and summarizes their characteristics in the stages of CE and electrostatic induction. Then, the research methods of CE are reviewed in three aspects: theory, simulation, and experiment. Finally, the prospect for future development of the research methods and applications are discussed. In brief, this paper provides an important reference for the current triboelectric researchers to frame out the efficient research methods for the behind CE mechanisms. [Display omitted] •This paper reviews the research methods of contact electrification.•The role and influence of contact electrification and electrostatic induction in the work process of TENGs are clarified.•The theoretical, simulation and experimental methods are classified and summarized according to different criteria.•In the end, future trend of research methods and applications of contact electrification is discussed.
ArticleNumber 105501
Author Pan, Shuaihang
Wu, Zishuai
Yin, Nian
Zhang, Zhinan
Wang, Daoai
Author_xml – sequence: 1
  givenname: Zhinan
  surname: Zhang
  fullname: Zhang, Zhinan
  email: zhinanz@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 2
  givenname: Nian
  surname: Yin
  fullname: Yin, Nian
  organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 3
  givenname: Zishuai
  surname: Wu
  fullname: Wu, Zishuai
  organization: School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710000, China
– sequence: 4
  givenname: Shuaihang
  surname: Pan
  fullname: Pan, Shuaihang
  organization: School of Mechanical & Aerospace Engineering, University of California Los Angeles, Los Angeles 90095, USA
– sequence: 5
  givenname: Daoai
  surname: Wang
  fullname: Wang, Daoai
  organization: Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China
BookMark eNqFkE1OwzAQhb0oEqX0BixygQT_JE7SBRKq-JMqIUFZW449Vl2ldmUbBLfhLJyMtGHFAmbzNE96TzPfGZo47wChC4ILggm_3BZOOg-uoJgerKrCZIKmlBKS06aqTtE8xi0ehlekJnSKnp8gggxqk-0gbbyOX5_eZMq7JFXKoAeVgjVWyWS9W2TrDfgAadj7LNrda3_0M-l0Bu97CHYHLp2jEyP7CPMfnaGX25v18j5fPd49LK9XuWI1TbmmvGaGNV2pm1Zp05QtZ40yXcUlo51m0DJqGqg7XJaSQ9tipig3g1ZUYs5maDH2quBjDGCEsul4UArS9oJgcaAitmKkIg5UxEhlCJe_wvvhehk-_otdjTEYHnuzEERUFpwCbcPASmhv_y74Bh4-hBE
CitedBy_id crossref_primary_10_1088_2631_8695_acf980
crossref_primary_10_1016_j_mtadv_2023_100427
crossref_primary_10_1115_1_4056391
crossref_primary_10_1007_s40544_021_0572_7
crossref_primary_10_1088_1361_6463_ad3374
crossref_primary_10_26599_FRICT_2025_9441045
crossref_primary_10_1002_ente_202200699
crossref_primary_10_1039_D4TA07756C
crossref_primary_10_1016_j_cej_2025_159480
crossref_primary_10_3390_biomimetics7040216
crossref_primary_10_1021_acsabm_4c01414
crossref_primary_10_1016_j_apt_2022_103664
crossref_primary_10_1016_j_cej_2024_150982
crossref_primary_10_1039_D3CS00736G
crossref_primary_10_1038_s41467_024_46432_3
crossref_primary_10_3390_nanoenergyadv3040018
crossref_primary_10_1016_j_nanoen_2021_106647
crossref_primary_10_3390_mi12060698
crossref_primary_10_1002_ente_202401029
crossref_primary_10_3390_lubricants10080180
crossref_primary_10_1063_5_0142055
crossref_primary_10_1016_j_mtcomm_2023_105493
crossref_primary_10_1007_s40544_022_0596_7
crossref_primary_10_1063_5_0058597
crossref_primary_10_1126_sciadv_abg7595
crossref_primary_10_26599_FRICT_2025_9440968
crossref_primary_10_1088_1361_6463_ac7365
crossref_primary_10_1126_sciadv_abj0349
Cites_doi 10.1126/science.1167130
10.1002/adma.201500311
10.1021/nl302560k
10.1116/1.1392398
10.1063/1.5124413
10.1038/srep04399
10.1016/j.powtec.2014.03.020
10.1021/nl303573d
10.1016/j.xphs.2015.12.024
10.1109/TIA.2013.2263113
10.1021/acs.iecr.9b03437
10.1016/j.fuproc.2014.11.032
10.1002/adma.201504366
10.1016/j.apt.2014.11.021
10.1007/s40544-020-0390-3
10.1021/nl400738p
10.1021/nl300988z
10.1021/nn403838y
10.1109/TIA.2015.2493065
10.1038/s41586-020-1985-6
10.1038/s41570-019-0115-1
10.1039/C4FD00159A
10.1080/01496395.2017.1286354
10.1002/adma.201302808
10.1002/admt.202000531
10.1016/j.nanoen.2019.02.051
10.1021/acsnano.6b02076
10.1016/j.nanoen.2012.01.004
10.1016/j.elstat.2012.11.002
10.1021/acsami.6b02802
10.1016/j.powtec.2013.04.014
10.1016/j.ajps.2016.04.006
10.1016/j.nanoen.2020.105262
10.1016/j.elstat.2017.11.001
10.1021/jp062126+
10.1016/j.nanoen.2019.104272
10.1021/nn507221f
10.1021/nl4001053
10.1021/nn4043157
10.1039/C5EE01532D
10.1016/j.nanoen.2014.10.034
10.1016/j.nanoen.2015.01.013
10.1039/c3ee42571a
10.1063/1.5111983
10.1021/nl3045684
10.1016/j.powtec.2019.09.004
10.1016/j.nanoen.2018.12.081
10.1038/s41467-019-09461-x
10.1016/j.sna.2016.05.051
10.1126/sciadv.1700015
10.1063/1.5006634
10.1002/adma.201401184
10.1021/nl503402c
10.1016/j.elstat.2007.08.005
10.1021/acsnano.5b06372
10.1002/smll.201001555
10.1063/1.4983353
10.1021/acsnano.5b00534
10.1016/j.joule.2017.09.004
10.1021/nn4063616
10.1063/1.4931087
10.1063/1.5089769
10.1021/nn4037514
10.1016/j.physrep.2015.10.001
10.1016/j.nanoen.2013.12.016
10.2352/J.ImagingSci.Technol.2013.57.3.030401
10.1016/j.elstat.2018.09.001
10.1016/j.powtec.2016.08.030
10.1002/adem.201700997
10.1063/1.5133023
10.1002/adma.201400172
10.1021/nl101437p
10.1038/s41467-019-09851-1
10.1002/admt.202000454
10.1016/j.powtec.2015.05.050
10.2352/J.ImagingSci.Technol.2009.53.4.040503
10.1038/ncomms9376
10.1016/j.aeolia.2013.07.004
10.1016/j.nanoen.2014.11.034
10.1063/5.0020961
10.1016/j.nanoen.2019.03.072
10.1039/C9EE03258D
10.1016/j.nanoen.2018.08.015
10.1016/j.mattod.2016.12.001
10.1063/1.4752458
10.1016/j.elstat.2004.05.005
10.1126/sciadv.1600097
10.1021/nn4007708
10.1103/PhysRevB.76.235431
10.1002/adma.201400207
10.1021/nl4013002
10.1016/j.nanoen.2019.103920
10.1007/s00894-015-2746-6
10.1016/j.mattod.2018.01.031
10.1002/2015JD024275
10.1016/j.elstat.2007.08.007
10.1016/j.mattod.2019.05.016
10.1007/s12274-014-0634-5
10.2352/J.ImagingSci.Technol.(2006)50:3(282)
10.1016/S0304-3886(00)00013-9
10.1039/C8SM00603B
10.1088/1361-665X/ab6ba6
10.1007/s40544-018-0217-7
10.1002/adma.201504403
10.1088/1361-665X/ab5b5f
10.1021/nl4008985
10.1021/nn404614z
10.1016/j.nanoen.2014.11.050
10.1007/s12274-017-1805-y
10.1016/j.ijpharm.2015.05.081
10.1002/anie.200905281
10.1038/s41467-019-10433-4
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2020.105501
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2020_105501
S2211285520310752
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-d2673f38b4d89cdf849638cfb56a32bd3e932f8e7b044a6e9903c26f99052a063
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 23:09:23 EDT 2025
Tue Jul 01 00:56:42 EDT 2025
Tue Feb 13 08:07:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TENGs
Triboelectric effect
Research methods
Contact electrification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-d2673f38b4d89cdf849638cfb56a32bd3e932f8e7b044a6e9903c26f99052a063
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2020_105501
crossref_primary_10_1016_j_nanoen_2020_105501
elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Naik, Hancock, Abramov, Yu, Rowland, Huang, Chaudhuri (bb85) 2016; 105
Jeong, Lee, Roh, Feng, Park (bb60) 2020; 29
Shao, Liu, Willatzen, Wang (bb27) 2020; 7
Chen, Yang, Li, Fan, Zi, Jing, Guo, Wen, Pradel, Niu, Wang (bb14) 2015; 9
Chen, Wang (bb15) 2017; 1
Liang, Jiang, Liu, Feng, Zhang, Wang (bb5) 2020; 13
Shao, Willatzen, Jiang, Tang, Chen, Wang, Wang (bb25) 2019; 59
Duff, Lacks (bb88) 2008; 66
Sternovsky, Horányi, Robertson (bb61) 2001; 19
Jeong, Baek, Niu, Nam, Hur, Park, Hwang, Byun, Wang, Jung, Lee (bb50) 2014; 14
Pu, Li, Song, Du, Zhao, Jiang, Cao, Hu, Wang (bb56) 2015; 27
Lee, Chun, Lee, Kim, Kang, Kim, Kim, Shin, Gupta, Baik, Kim (bb79) 2014; 26
Wang, Lin, Xie, Jing, Niu, Wang (bb116) 2013; 13
Shao, Willatzen, Wang (bb26) 2020; 128
Niu, Liu, Wang, Lin, Zhou, Hu, Wang (bb94) 2013; 25
Hu, Xie, Zheng (bb46) 2012; 101
Wei, Gu (bb83) 2015; 600
Wang, Chen, Lin (bb21) 2015; 8
Vasandani, Mao, Jia, Sun (bb76) 2017; 90
Niu, Wang, Lin, Liu, Zhou, Hu, Wang (bb29) 2013; 6
Yang, Zhang, Lin, Zhou, Jing, Su, Yang, Chen, Hu, Wang (bb113) 2013; 7
Chen, Honaker (bb119) 2015; 131
Wang (bb1) 2020; 10
Zhou, Liu, Wang, Wang (bb41) 2020; 8
Cai, Yao (bb67) 2015; 107
Robinson, Burgess, Junkermeier, Badescu, Reinecke, Perkins, Zalalutdniov, Baldwin, Culbertson, Sheehan, Snow (bb102) 2010; 10
Lugo-Solis, Vasiliev (bb100) 2007; 76
Wang (bb39) 2017; 20
Fan, Tian, Wang (bb108) 2012; 1
Zhang, Di Han, Wang, Meng, Zhu, Sun, Hu, Wang, Li, Zhang (bb17) 2014; 4
Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu, Wang (bb72) 2019; 10
Fan, Lin, Zhu, Wu, Zhang, Wang (bb55) 2012; 12
Han, Zhang, Tian, Li, Zhang, Li, Wang (bb117) 2014; 8
Zi, Niu, Wang, Wen, Tang, Wang (bb19) 2015; 6
Pei, Wu, England, Byard, Berchtold, Adams (bb81) 2013; 248
Mizutani, Yasuda, Matsusaka (bb64) 2015; 26
Carter, Hartzell (bb65) 2019; 90
Wang, Lin, Wang (bb96) 2012; 12
Zou, Tan, Shi, Ouyang, Jiang, Liu, Li, Yu, Wang, Qu, Zhao, Fan, Wang, Li (bb8) 2019; 10
Seung, Gupta, Lee, Shin, Lee, Kim, Kim, Lin, Kim, Kim (bb54) 2015; 9
Khan, Ostfeld, Lochner, Pierre, Arias (bb13) 2016; 28
Ahmed, Hassan, Zu (bb98) 2018; 20
Brunsteiner, Zellnitz, Pinto, Karrer, Paudel (bb34) 2019; 356
Naik, Sarkar, Gupta, Hancock, Abramov, Yu, Chaudhuri (bb87) 2015; 491
Cheng, Song, Han, Meng, Su, Miao, Zhang (bb97) 2016; 247
Pei, Wu, Adams (bb86) 2015; 285
Nikitina, Barthel, Heinemann (bb37) 2009; 53
Han, Lee, Lin, Kim, Kim (bb70) 2019; 57
Zheng, Zhang, Huang (bb91) 2014; 4
Xu, Zheng, Liu, Zhou, Zhang, Song, Deng, Leung, Yang, Xu, Wang, Zeng, Wang (bb3) 2020; 578
Apodaca, Wesson, Bishop, Ratner, Grzybowski (bb22) 2010; 49
Wang (bb106) 2014; 176
Cui, Gu, Lei, Liu, Qin, Ma, Hao, Wang (bb52) 2016; 10
Diaz, Felix-Navarro (bb71) 2004; 62
Zhang, Tang, Han, Fan, Wang (bb42) 2014; 26
Kolehmainen, Ceresiat, Ozel, Sundaresan (bb90) 2019; 58
Pei, Wu, Adams (bb82) 2016; 304
Abdelaziz, Chen, Hieber, Leseman (bb45) 2018; 96
Wang (bb40) 2020; 68
Veregin, McDougall, Hawkins, Vong, Skorokhod, Schreiber (bb75) 2006; 50
Nair, Ren, Jalil, Riaz, Kravets, Britnell, Blake, Schedin, Mayorov, Yuan, Katsnelson, Cheng, Strupinski, Bulusheva, Okotrub, Grigorieva, Grigorenko, Novoselov, Geim (bb101) 2010; 6
Hinchet, Khan, Falconi, Kim (bb104) 2018; 21
Younes, Younes, Meziane, Samuila, Dascalescu (bb120) 2017; 52
Wang, Tao, Ma, Dai (bb32) 2019; 126
Wen, Yeh, Guo, Wang, Zi, Xu, Deng, Zhu, Wang, Hu, Zhu, Sun, Wang (bb111) 2016; 2
Cai, Yao (bb58) 2016; 6
Zhao, Li, Meng, Wang, Tan, Zou, Yuan, Lu, Pan, Fan, Zhang, Zhang, Wang, Li (bb9) 2020; 30
Wang, Huang, Polcar (bb69) 2019; 9
Nie, Guo, Lu, Zhuo, Mo, Wang (bb7) 2020; 5
Pu, Liu, Chen, Sun, Du, Zhang, Zhai, Hu, Wang (bb18) 2017; 3
Mutlu, Unlu, Gevrek, Sanyal (bb59) 2020; 29
Lacks, Shinbrot (bb105) 2019; 3
Niu, Wang (bb30) 2014; 14
Chen, Tang, Lu, Xu, Yang, Chen, Jiang, Wang (bb74) 2017; 110
Wang (bb57) 2013; 7
Lin, Xu, Chi Wang, Wang (bb68) 2020; 11
Hogue, Calle, Weitzman, Curry (bb84) 2008; 66
Valencia, Romero, Ancilotto, Silvestrelli (bb99) 2006; 110
Wang, Lin, Chen, Niu, Zi (bb24) 2016
Willatzen, Wang (bb31) 2018; 52
Zhu, Peng, Chen, Jing, Wang (bb20) 2014; 14
Veregin, Hawkins, Li, Gusarov, Kovalenko (bb66) 2013; 57
Zhu, Lin, Jing, Bai, Pan, Yang, Zhou, Wang (bb78) 2013; 13
Pu, Li, Liu, Jiang, Du, Zhao, Hu, Wang (bb112) 2016; 28
Byun, Cho, Seol, Kim, Kim, Shin, Park, Hwang (bb51) 2016; 8
Tan, Willatzen, Wang (bb35) 2020
Salama, Sowinski, Atieh, Mehrani (bb62) 2013; 71
Korevaar, Padding, Van der Hoef, Kuipers (bb80) 2014; 258
Jiang, Zhang, Chen, Han, Tang, Zhang, Xu, Wang (bb107) 2015; 9
Niu, Liu, Chen, Wang, Zhou, Lin, Xie, Wang (bb23) 2015; 12
Elias, Nair, Mohiuddin, Morozov, Blake, Halsall, Ferrari, Boukhvalov, Katsnelson, Geim, Novoselov (bb103) 2009; 323
Bai, Zhu, Lin, Jing, Chen, Zhang, Ma, Wang (bb110) 2013; 7
Xu, Zi, Wang, Zou, Dai, He, Wang, Wang, Feng, Li, Wang (bb44) 2018; 30
Chen, Guo, Wu, Xu, Zi, Hu, Wang (bb12) 2019; 64
Zhu, Chen, Liu, Bai, Zhou, Jing, Pan, Wang (bb2) 2013; 13
Lin, Xie, Wang, Wu, Niu, Wen, Wang (bb93) 2013; 7
Zhang, Chen, Xuan, Huang, You, Li, Sun, Jin, Wang, Dong, Luo, Flewitt, Wang (bb10) 2020; 11
Yang, Chen, Liu, Yang, Su, Wang (bb115) 2014; 8
Haeberle, Schella, Sperl, Schröter, Born (bb49) 2018; 14
Ouyang, Liu, Li, Shi, Zou, Xie, Ma, Li, Li, Zheng, Qu, Fan, Wang, Zhang, Li (bb4) 2019; 10
Zeghloul, Dascalescu, Rouagdia, Fatihou, Renoux, Souchet (bb121) 2016; 52
Wang, Lin, Wang (bb114) 2015; 11
Pan, Zhang (bb73) 2019; 7
Pan, Zhang (bb38) 2017; 122
Huang, Li, Zhang, Zhang, Zhang (bb36) 2015; 21
Zhang, Di Han, Wang, Zhu, Li, Wang, Zhang (bb53) 2013; 13
Lin, Wang, Xie, Jing, Niu, Hu, Wang (bb95) 2013; 13
Mukherjee, Gupta, Naik, Sarkar, Sharma, Peri, Chaudhuri (bb89) 2016; 11
Kim, Gupta, Lee, Sohn, Kim, Shin, Kim, Kim, Lee, Shin, Kim, Kim (bb92) 2014; 26
Zhang, Zhao, Yang, Yuan, Zhou, Yin, Liu, Li, Wang, Wang (bb6) 2020; 5
Ho, Han, Huang, Choi, Cheon, Sun, Lei, Park, Wang, Sun, Cho (bb11) 2020; 77
Bo, Zhang, Hu, Zheng (bb47) 2013; 11
Zhu, Pan, Guo, Chen, Zhou, Yu, Wang (bb109) 2012; 12
Wang, Wang (bb43) 2019; 30
Greason (bb48) 2000; 49
Boukhoulda, Miloudi, Medles, Rezoug, Tilmatine, Dascalescu (bb118) 2013; 49
Shao, Willatzen, Shi, Wang (bb28) 2019; 60
Méndez Harper, Dufek (bb63) 2016; 121
Feshanjerdi, Malekan (bb33) 2019; 125
Cui, Zheng, Liang, Wang (bb77) 2018; 11
Yang, Zhu, Zhang, Chen, Zhong, Lin, Su, Bai, Wen, Wang (bb16) 2013; 7
Zhu (10.1016/j.nanoen.2020.105501_bb2) 2013; 13
Chen (10.1016/j.nanoen.2020.105501_bb12) 2019; 64
Zhang (10.1016/j.nanoen.2020.105501_bb6) 2020; 5
Feshanjerdi (10.1016/j.nanoen.2020.105501_bb33) 2019; 125
Pei (10.1016/j.nanoen.2020.105501_bb86) 2015; 285
Niu (10.1016/j.nanoen.2020.105501_bb23) 2015; 12
Wang (10.1016/j.nanoen.2020.105501_bb116) 2013; 13
Vasandani (10.1016/j.nanoen.2020.105501_bb76) 2017; 90
Pan (10.1016/j.nanoen.2020.105501_bb73) 2019; 7
Shao (10.1016/j.nanoen.2020.105501_bb26) 2020; 128
Naik (10.1016/j.nanoen.2020.105501_bb85) 2016; 105
Zou (10.1016/j.nanoen.2020.105501_bb8) 2019; 10
Wen (10.1016/j.nanoen.2020.105501_bb111) 2016; 2
Seung (10.1016/j.nanoen.2020.105501_bb54) 2015; 9
Zhu (10.1016/j.nanoen.2020.105501_bb78) 2013; 13
Wang (10.1016/j.nanoen.2020.105501_bb106) 2014; 176
Méndez Harper (10.1016/j.nanoen.2020.105501_bb63) 2016; 121
Ouyang (10.1016/j.nanoen.2020.105501_bb4) 2019; 10
Zhou (10.1016/j.nanoen.2020.105501_bb41) 2020; 8
Liang (10.1016/j.nanoen.2020.105501_bb5) 2020; 13
Lacks (10.1016/j.nanoen.2020.105501_bb105) 2019; 3
Yang (10.1016/j.nanoen.2020.105501_bb115) 2014; 8
Zhang (10.1016/j.nanoen.2020.105501_bb53) 2013; 13
Niu (10.1016/j.nanoen.2020.105501_bb94) 2013; 25
Wang (10.1016/j.nanoen.2020.105501_bb40) 2020; 68
Fan (10.1016/j.nanoen.2020.105501_bb108) 2012; 1
Kolehmainen (10.1016/j.nanoen.2020.105501_bb90) 2019; 58
Pei (10.1016/j.nanoen.2020.105501_bb82) 2016; 304
Cui (10.1016/j.nanoen.2020.105501_bb77) 2018; 11
Valencia (10.1016/j.nanoen.2020.105501_bb99) 2006; 110
Veregin (10.1016/j.nanoen.2020.105501_bb75) 2006; 50
Cui (10.1016/j.nanoen.2020.105501_bb52) 2016; 10
Niu (10.1016/j.nanoen.2020.105501_bb29) 2013; 6
Chen (10.1016/j.nanoen.2020.105501_bb14) 2015; 9
Cheng (10.1016/j.nanoen.2020.105501_bb97) 2016; 247
Zi (10.1016/j.nanoen.2020.105501_bb19) 2015; 6
Shao (10.1016/j.nanoen.2020.105501_bb27) 2020; 7
Tan (10.1016/j.nanoen.2020.105501_bb35) 2020
Pan (10.1016/j.nanoen.2020.105501_bb38) 2017; 122
Chen (10.1016/j.nanoen.2020.105501_bb74) 2017; 110
Pu (10.1016/j.nanoen.2020.105501_bb56) 2015; 27
Willatzen (10.1016/j.nanoen.2020.105501_bb31) 2018; 52
Byun (10.1016/j.nanoen.2020.105501_bb51) 2016; 8
Wang (10.1016/j.nanoen.2020.105501_bb69) 2019; 9
Zhang (10.1016/j.nanoen.2020.105501_bb17) 2014; 4
Mizutani (10.1016/j.nanoen.2020.105501_bb64) 2015; 26
Jiang (10.1016/j.nanoen.2020.105501_bb107) 2015; 9
Naik (10.1016/j.nanoen.2020.105501_bb87) 2015; 491
Zou (10.1016/j.nanoen.2020.105501_bb72) 2019; 10
Zeghloul (10.1016/j.nanoen.2020.105501_bb121) 2016; 52
Wang (10.1016/j.nanoen.2020.105501_bb39) 2017; 20
Han (10.1016/j.nanoen.2020.105501_bb117) 2014; 8
Veregin (10.1016/j.nanoen.2020.105501_bb66) 2013; 57
Abdelaziz (10.1016/j.nanoen.2020.105501_bb45) 2018; 96
Wang (10.1016/j.nanoen.2020.105501_bb21) 2015; 8
Lee (10.1016/j.nanoen.2020.105501_bb79) 2014; 26
Bo (10.1016/j.nanoen.2020.105501_bb47) 2013; 11
Wang (10.1016/j.nanoen.2020.105501_bb32) 2019; 126
Mukherjee (10.1016/j.nanoen.2020.105501_bb89) 2016; 11
Ahmed (10.1016/j.nanoen.2020.105501_bb98) 2018; 20
Bai (10.1016/j.nanoen.2020.105501_bb110) 2013; 7
Lin (10.1016/j.nanoen.2020.105501_bb93) 2013; 7
Pu (10.1016/j.nanoen.2020.105501_bb18) 2017; 3
Zheng (10.1016/j.nanoen.2020.105501_bb91) 2014; 4
Lugo-Solis (10.1016/j.nanoen.2020.105501_bb100) 2007; 76
Zhao (10.1016/j.nanoen.2020.105501_bb9) 2020; 30
Zhang (10.1016/j.nanoen.2020.105501_bb10) 2020; 11
Brunsteiner (10.1016/j.nanoen.2020.105501_bb34) 2019; 356
Salama (10.1016/j.nanoen.2020.105501_bb62) 2013; 71
Carter (10.1016/j.nanoen.2020.105501_bb65) 2019; 90
Xu (10.1016/j.nanoen.2020.105501_bb44) 2018; 30
Pu (10.1016/j.nanoen.2020.105501_bb112) 2016; 28
Niu (10.1016/j.nanoen.2020.105501_bb30) 2014; 14
Jeong (10.1016/j.nanoen.2020.105501_bb60) 2020; 29
Sternovsky (10.1016/j.nanoen.2020.105501_bb61) 2001; 19
Hogue (10.1016/j.nanoen.2020.105501_bb84) 2008; 66
Lin (10.1016/j.nanoen.2020.105501_bb68) 2020; 11
Wang (10.1016/j.nanoen.2020.105501_bb57) 2013; 7
Diaz (10.1016/j.nanoen.2020.105501_bb71) 2004; 62
Khan (10.1016/j.nanoen.2020.105501_bb13) 2016; 28
Xu (10.1016/j.nanoen.2020.105501_bb3) 2020; 578
Korevaar (10.1016/j.nanoen.2020.105501_bb80) 2014; 258
Fan (10.1016/j.nanoen.2020.105501_bb55) 2012; 12
Ho (10.1016/j.nanoen.2020.105501_bb11) 2020; 77
Elias (10.1016/j.nanoen.2020.105501_bb103) 2009; 323
Chen (10.1016/j.nanoen.2020.105501_bb15) 2017; 1
Nikitina (10.1016/j.nanoen.2020.105501_bb37) 2009; 53
Wei (10.1016/j.nanoen.2020.105501_bb83) 2015; 600
Wang (10.1016/j.nanoen.2020.105501_bb1) 2020; 10
Cai (10.1016/j.nanoen.2020.105501_bb58) 2016; 6
Pei (10.1016/j.nanoen.2020.105501_bb81) 2013; 248
Apodaca (10.1016/j.nanoen.2020.105501_bb22) 2010; 49
Yang (10.1016/j.nanoen.2020.105501_bb16) 2013; 7
Wang (10.1016/j.nanoen.2020.105501_bb43) 2019; 30
Mutlu (10.1016/j.nanoen.2020.105501_bb59) 2020; 29
Wang (10.1016/j.nanoen.2020.105501_bb96) 2012; 12
Wang (10.1016/j.nanoen.2020.105501_bb24) 2016
Huang (10.1016/j.nanoen.2020.105501_bb36) 2015; 21
Zhang (10.1016/j.nanoen.2020.105501_bb42) 2014; 26
Lin (10.1016/j.nanoen.2020.105501_bb95) 2013; 13
Han (10.1016/j.nanoen.2020.105501_bb70) 2019; 57
Greason (10.1016/j.nanoen.2020.105501_bb48) 2000; 49
Yang (10.1016/j.nanoen.2020.105501_bb113) 2013; 7
Hinchet (10.1016/j.nanoen.2020.105501_bb104) 2018; 21
Hu (10.1016/j.nanoen.2020.105501_bb46) 2012; 101
Zhu (10.1016/j.nanoen.2020.105501_bb109) 2012; 12
Younes (10.1016/j.nanoen.2020.105501_bb120) 2017; 52
Nair (10.1016/j.nanoen.2020.105501_bb101) 2010; 6
Robinson (10.1016/j.nanoen.2020.105501_bb102) 2010; 10
Jeong (10.1016/j.nanoen.2020.105501_bb50) 2014; 14
Wang (10.1016/j.nanoen.2020.105501_bb114) 2015; 11
Zhu (10.1016/j.nanoen.2020.105501_bb20) 2014; 14
Duff (10.1016/j.nanoen.2020.105501_bb88) 2008; 66
Kim (10.1016/j.nanoen.2020.105501_bb92) 2014; 26
Shao (10.1016/j.nanoen.2020.105501_bb28) 2019; 60
Shao (10.1016/j.nanoen.2020.105501_bb25) 2019; 59
Boukhoulda (10.1016/j.nanoen.2020.105501_bb118) 2013; 49
Haeberle (10.1016/j.nanoen.2020.105501_bb49) 2018; 14
Cai (10.1016/j.nanoen.2020.105501_bb67) 2015; 107
Nie (10.1016/j.nanoen.2020.105501_bb7) 2020; 5
Chen (10.1016/j.nanoen.2020.105501_bb119) 2015; 131
References_xml – volume: 126
  year: 2019
  ident: bb32
  article-title: The electronic behaviors and charge transfer mechanism at the interface of metals: a first-principles perspective
  publication-title: J. Appl. Phys.
– volume: 30
  start-page: 34
  year: 2019
  end-page: 51
  ident: bb43
  article-title: On the origin of contact-electrification
  publication-title: Mater. Today
– volume: 247
  start-page: 206
  year: 2016
  end-page: 214
  ident: bb97
  article-title: A flexible large-area triboelectric generator by low-cost roll-to-roll process for location-based monitoring
  publication-title: Sens. Actuators, A Phys.
– volume: 28
  start-page: 98
  year: 2016
  end-page: 105
  ident: bb112
  article-title: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3324
  year: 2015
  end-page: 3331
  ident: bb14
  article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
  publication-title: ACS Nano
– volume: 8
  start-page: 2649
  year: 2014
  end-page: 2657
  ident: bb115
  article-title: Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing
  publication-title: ACS Nano
– volume: 107
  year: 2015
  ident: bb67
  article-title: Surface modifications with Lissajous trajectories using atomic force microscopy
  publication-title: Appl. Phys. Lett.
– volume: 285
  start-page: 110
  year: 2015
  end-page: 122
  ident: bb86
  article-title: Numerical analysis of contact electrification of non-spherical particles in a rotating drum
  publication-title: Powder Technol.
– volume: 8
  start-page: 18519
  year: 2016
  end-page: 18525
  ident: bb51
  article-title: Control of triboelectrification by engineering surface dipole and surface electronic state
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 6131
  year: 2016
  end-page: 6138
  ident: bb52
  article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 7
  start-page: 2
  year: 2019
  end-page: 17
  ident: bb73
  article-title: Fundamental theories and basic principles of triboelectric effect: a review
  publication-title: Friction
– volume: 27
  start-page: 2472
  year: 2015
  end-page: 2478
  ident: bb56
  article-title: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics
  publication-title: Adv. Mater.
– volume: 52
  start-page: 1246
  year: 2017
  end-page: 1256
  ident: bb120
  article-title: Modified tribo-charging device for the electrostatic separation of plastics from granular industrial wastes
  publication-title: Sep. Sci. Technol.
– volume: 28
  start-page: 4373
  year: 2016
  end-page: 4395
  ident: bb13
  article-title: Monitoring of vital signs with flexible and wearable medical devices
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  ident: bb27
  article-title: Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode
  publication-title: Appl. Phys. Rev.
– volume: 13
  start-page: 847
  year: 2013
  end-page: 853
  ident: bb78
  article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
  publication-title: Nano Lett.
– volume: 323
  start-page: 610
  year: 2009
  end-page: 613
  ident: bb103
  article-title: Control of graphene’s properties by reversible hydrogenation: evidence for graphane
  publication-title: Science
– volume: 8
  start-page: 2250
  year: 2015
  end-page: 2282
  ident: bb21
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 9213
  year: 2013
  end-page: 9222
  ident: bb113
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
– volume: 121
  start-page: 8209
  year: 2016
  end-page: 8228
  ident: bb63
  article-title: The effects of dynamics on the triboelectrification of volcanic ash
  publication-title: J. Geophys. Res.
– volume: 77
  year: 2020
  ident: bb11
  article-title: β-Phase-Preferential blow-spun fabrics for wearable triboelectric nanogenerators and textile interactive interface
  publication-title: Nano Energy
– volume: 29
  year: 2020
  ident: bb59
  article-title: Expanding the versatility of poly(dimethylsiloxane) through polymeric modification: an effective approach for improving triboelectric energy harvesting performance
  publication-title: Smart Mater. Struct.
– volume: 66
  start-page: 32
  year: 2008
  end-page: 38
  ident: bb84
  article-title: Calculating the trajectories of triboelectrically charged particles using discrete element modeling (DEM)
  publication-title: J. Electro.
– volume: 131
  start-page: 317
  year: 2015
  end-page: 324
  ident: bb119
  article-title: Dry separation on coal-silica mixture using rotary triboelectrostatic separator
  publication-title: Fuel Process. Technol.
– volume: 10
  year: 2019
  ident: bb8
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nat. Commun.
– volume: 6
  start-page: 3576
  year: 2013
  end-page: 3583
  ident: bb29
  article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 3501
  year: 2015
  end-page: 3509
  ident: bb54
  article-title: Nanopatterned textile-based wearable triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 7
  start-page: 8266
  year: 2013
  end-page: 8274
  ident: bb93
  article-title: Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging
  publication-title: ACS Nano
– volume: 7
  start-page: 3713
  year: 2013
  end-page: 3719
  ident: bb110
  article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
  publication-title: ACS Nano
– volume: 356
  start-page: 892
  year: 2019
  end-page: 898
  ident: bb34
  article-title: Can we predict trends in tribo-charging of pharmaceutical materials from first principles?
  publication-title: Powder Technol.
– volume: 5
  year: 2020
  ident: bb7
  article-title: Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting
  publication-title: Adv. Mater. Technol.
– volume: 4
  start-page: 123
  year: 2014
  end-page: 131
  ident: bb17
  article-title: High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment
  publication-title: Nano Energy
– volume: 57
  year: 2013
  ident: bb66
  article-title: Linking the chemistry and physics of electronic charge transfer in insulators: Theory and experiment
  publication-title: J. Imaging Sci. Technol.
– volume: 26
  start-page: 3918
  year: 2014
  end-page: 3925
  ident: bb92
  article-title: Transparent flexible graphene triboelectric nanogenerators
  publication-title: Adv. Mater.
– volume: 90
  start-page: 147
  year: 2017
  end-page: 152
  ident: bb76
  article-title: Relationship between triboelectric charge and contact force for two triboelectric layers
  publication-title: J. Electro.
– volume: 12
  start-page: 760
  year: 2015
  end-page: 774
  ident: bb23
  article-title: Theory of freestanding triboelectric-layer-based nanogenerators
  publication-title: Nano Energy
– volume: 66
  start-page: 51
  year: 2008
  end-page: 57
  ident: bb88
  article-title: Particle dynamics simulations of triboelectric charging in granular insulator systems
  publication-title: J. Electro
– volume: 128
  year: 2020
  ident: bb26
  article-title: Theoretical modelling of triboelectric nanogenerators (TENGs)
  publication-title: J. Appl. Phys.
– volume: 64
  year: 2019
  ident: bb12
  article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology
  publication-title: Nano Energy
– volume: 53
  year: 2009
  ident: bb37
  article-title: Electron transfer in electrical tribocharging using a quantum chemical approach
  publication-title: J. Imaging Sci. Technol.
– volume: 110
  start-page: 14832
  year: 2006
  end-page: 14841
  ident: bb99
  article-title: Lithium adsorption on graphite from density functional theory calculations
  publication-title: J. Phys. Chem. B
– volume: 26
  start-page: 5037
  year: 2014
  end-page: 5042
  ident: bb79
  article-title: Hydrophobic sponge structure-based triboelectric nanogenerator
  publication-title: Adv. Mater.
– volume: 122
  year: 2017
  ident: bb38
  article-title: Triboelectric effect: a new perspective on electron transfer process
  publication-title: J. Appl. Phys.
– volume: 62
  start-page: 277
  year: 2004
  end-page: 290
  ident: bb71
  article-title: A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties
  publication-title: J. Electro.
– volume: 8
  start-page: 219
  year: 2014
  end-page: 226
  ident: bb117
  article-title: Triboelectrification induced UV emission from plasmon discharge
  publication-title: Nano Res.
– volume: 49
  start-page: 2375
  year: 2013
  end-page: 2381
  ident: bb118
  article-title: Experimental modeling of a new triboelectrostatic separation process for mixed granular polymers
  publication-title: IEEE Trans. Ind. Appl.
– volume: 13
  start-page: 2916
  year: 2013
  end-page: 2923
  ident: bb95
  article-title: Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
  publication-title: Nano Lett.
– start-page: 155
  year: 2016
  end-page: 183
  ident: bb24
  article-title: Theoretical modeling of triboelectric nanogenerators
  publication-title: Triboelectric Nanogenerators
– volume: 11
  start-page: 1873
  year: 2018
  end-page: 1882
  ident: bb77
  article-title: Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind
  publication-title: Nano Res.
– volume: 304
  start-page: 208
  year: 2016
  end-page: 217
  ident: bb82
  article-title: DEM-CFD analysis of contact electrification and electrostatic interactions during fluidization
  publication-title: Powder Technol.
– volume: 90
  year: 2019
  ident: bb65
  article-title: Experimental methodology for measuring in-vacuum granular tribocharging
  publication-title: Rev. Sci. Instrum.
– volume: 176
  start-page: 447
  year: 2014
  end-page: 458
  ident: bb106
  article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives
  publication-title: Faraday Discuss.
– volume: 110
  year: 2017
  ident: bb74
  article-title: Characteristics of triboelectrification on dielectric surfaces contacted with a liquid metal in different gases
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 6339
  year: 2012
  end-page: 6346
  ident: bb96
  article-title: Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
  publication-title: Nano Lett.
– volume: 12
  start-page: 3109
  year: 2012
  end-page: 3114
  ident: bb55
  article-title: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
  publication-title: Nano Lett.
– volume: 26
  start-page: 454
  year: 2015
  end-page: 461
  ident: bb64
  article-title: Advanced characterization of particles triboelectrically charged by a two-stage system with vibrations and external electric fields
  publication-title: Adv. Powder Technol.
– volume: 9
  start-page: 12562
  year: 2015
  end-page: 12572
  ident: bb107
  article-title: Structural optimization of triboelectric nanogenerator for harvesting water wave energy
  publication-title: ACS Nano
– volume: 3
  year: 2017
  ident: bb18
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
– volume: 258
  start-page: 144
  year: 2014
  end-page: 156
  ident: bb80
  article-title: Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders
  publication-title: Powder Technol.
– volume: 491
  start-page: 58
  year: 2015
  end-page: 68
  ident: bb87
  article-title: A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly
  publication-title: Int. J. Pharm.
– volume: 14
  start-page: 4987
  year: 2018
  end-page: 4995
  ident: bb49
  article-title: Double origin of stochastic granular tribocharging
  publication-title: Soft Matter
– volume: 12
  start-page: 4960
  year: 2012
  end-page: 4965
  ident: bb109
  article-title: Triboelectric-generator-driven pulse electrodeposition for micropatterning
  publication-title: Nano Lett.
– volume: 6
  year: 2015
  ident: bb19
  article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators
  publication-title: Nat. Commun.
– volume: 2
  year: 2016
  ident: bb111
  article-title: Self-powered textile for Wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors
  publication-title: Sci. Adv.
– volume: 52
  start-page: 1808
  year: 2016
  end-page: 1813
  ident: bb121
  article-title: Sliding conformal contact tribocharging of polystyrene and polyvinyl chloride
  publication-title: IEEE Trans. Ind. Appl.
– volume: 10
  year: 2019
  ident: bb72
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
– volume: 14
  start-page: 161
  year: 2014
  end-page: 192
  ident: bb30
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 26
  start-page: 3580
  year: 2014
  end-page: 3591
  ident: bb42
  article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
  publication-title: Adv. Mater.
– volume: 125
  year: 2019
  ident: bb33
  article-title: Contact electrification between randomly rough surfaces with identical materials
  publication-title: J. Appl. Phys.
– volume: 30
  year: 2018
  ident: bb44
  article-title: On the electron-transfer mechanism in the contact-electrification effect
  publication-title: Adv. Mater.
– volume: 21
  year: 2015
  ident: bb36
  article-title: Theoretical study of the correlation between electrostatic hazard and electronic structure for some typical primary explosives
  publication-title: J. Mol. Model.
– volume: 600
  start-page: 1
  year: 2015
  end-page: 53
  ident: bb83
  article-title: Electrification of particulate entrained fluid flows-mechanisms, applications, and numerical methodology
  publication-title: Phys. Rep.
– volume: 30
  year: 2020
  ident: bb9
  article-title: Reversible conversion between schottky and ohmic contacts for highly sensitive, multifunctional biosensors
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 630
  year: 2019
  end-page: 640
  ident: bb28
  article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: bb108
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 11
  start-page: 603
  year: 2016
  end-page: 617
  ident: bb89
  article-title: Effects of particle size on the triboelectrification phenomenon in pharmaceutical excipients: experiments and multi-scale modeling
  publication-title: Asian J. Pharm. Sci.
– volume: 11
  year: 2020
  ident: bb10
  article-title: Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors
  publication-title: Nat. Commun.
– volume: 4
  year: 2014
  ident: bb91
  article-title: Theoretical modeling of relative humidity on contact electrification of sand particles
  publication-title: Sci. Rep.
– volume: 13
  start-page: 2226
  year: 2013
  end-page: 2233
  ident: bb116
  article-title: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism
  publication-title: Nano Lett.
– volume: 49
  start-page: 946
  year: 2010
  end-page: 949
  ident: bb22
  article-title: Contact electrification between identical materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 1168
  year: 2013
  end-page: 1172
  ident: bb53
  article-title: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
  publication-title: Nano Lett.
– volume: 20
  year: 2018
  ident: bb98
  article-title: Design guidelines of stretchable pressure sensors-based triboelectrification
  publication-title: Adv. Eng. Mater.
– year: 2020
  ident: bb35
  article-title: Electron transfer in the contact-electrification between corrugated 2D materials: A first-principles study
  publication-title: Nano Energy
– volume: 19
  start-page: 2533
  year: 2001
  end-page: 2541
  ident: bb61
  article-title: Charging of dust particles on surfaces
  publication-title: J. Vac. Sci. Technol. A
– volume: 101
  year: 2012
  ident: bb46
  article-title: Contact charging of silica glass particles in a single collision
  publication-title: Appl. Phys. Lett.
– volume: 5
  year: 2020
  ident: bb6
  article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting
  publication-title: Adv. Mater. Technol.
– volume: 71
  start-page: 21
  year: 2013
  end-page: 27
  ident: bb62
  article-title: Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas-solid fluidized bed
  publication-title: J. Electro
– volume: 11
  year: 2020
  ident: bb68
  article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer
  publication-title: Nat. Commun.
– volume: 578
  start-page: 392
  year: 2020
  end-page: 396
  ident: bb3
  article-title: A droplet-based electricity generator with high instantaneous power density
  publication-title: Nature
– volume: 10
  year: 2019
  ident: bb4
  article-title: Symbiotic cardiac pacemaker
  publication-title: Nat. Commun.
– volume: 1
  start-page: 480
  year: 2017
  end-page: 521
  ident: bb15
  article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator
  publication-title: Joule
– volume: 59
  start-page: 380
  year: 2019
  end-page: 389
  ident: bb25
  article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current
  publication-title: Nano Energy
– volume: 13
  start-page: 277
  year: 2020
  end-page: 285
  ident: bb5
  article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 126
  year: 2014
  end-page: 138
  ident: bb20
  article-title: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications
  publication-title: Nano Energy
– volume: 11
  start-page: 436
  year: 2015
  end-page: 462
  ident: bb114
  article-title: Triboelectric nanogenerators as self-powered active sensors
  publication-title: Nano Energy
– volume: 21
  start-page: 611
  year: 2018
  end-page: 630
  ident: bb104
  article-title: Piezoelectric properties in two-dimensional materials: simulations and experiments
  publication-title: Mater. Today
– volume: 10
  year: 2020
  ident: bb1
  article-title: Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  ident: bb58
  article-title: Dynamic nano-triboelectrification using torsional resonance mode atomic force microscopy
  publication-title: Sci. Rep.
– volume: 58
  start-page: 17980
  year: 2019
  end-page: 17990
  ident: bb90
  article-title: 110th anniversary: effect of system size on boundary-driven contact charging in particulate flows
  publication-title: Ind. Eng. Chem. Res.
– volume: 13
  start-page: 2282
  year: 2013
  end-page: 2289
  ident: bb2
  article-title: Linear-grating triboelectric generator based on sliding electrification
  publication-title: Nano Lett.
– volume: 68
  year: 2020
  ident: bb40
  article-title: On the first principle theory of nanogenerators from Maxwell’s equations
  publication-title: Nano Energy
– volume: 8
  start-page: 481
  year: 2020
  end-page: 506
  ident: bb41
  article-title: Triboelectric nanogenerators: fundamental physics and potential applications
  publication-title: Friction
– volume: 248
  start-page: 34
  year: 2013
  end-page: 43
  ident: bb81
  article-title: Numerical analysis of contact electrification using DEM-CFD
  publication-title: Powder Technol.
– volume: 10
  start-page: 3001
  year: 2010
  end-page: 3005
  ident: bb102
  article-title: Properties of fluorinated graphene films
  publication-title: Nano Lett.
– volume: 29
  year: 2020
  ident: bb60
  article-title: Hierarchically structured ZnO nanorod-carbon fiber composites as ultrathin, flexible, highly sensitive triboelectric sensors
  publication-title: Smart Mater. Struct.
– volume: 6
  start-page: 2877
  year: 2010
  end-page: 2884
  ident: bb101
  article-title: Fluorographene: a two-dimensional counterpart of Teflon
  publication-title: Small
– volume: 7
  start-page: 9533
  year: 2013
  end-page: 9557
  ident: bb57
  article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
– volume: 7
  start-page: 9461
  year: 2013
  end-page: 9468
  ident: bb16
  article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
  publication-title: ACS Nano
– volume: 96
  start-page: 10
  year: 2018
  end-page: 15
  ident: bb45
  article-title: Atomistic field theory for contact electrification of dielectrics
  publication-title: J. Electro.
– volume: 11
  start-page: 15
  year: 2013
  end-page: 21
  ident: bb47
  article-title: The analysis of electrification in windblown sand
  publication-title: Aeolian Res.
– volume: 49
  start-page: 245
  year: 2000
  end-page: 256
  ident: bb48
  article-title: Investigation of a test methodology for triboelectrification
  publication-title: J. Electro
– volume: 9
  year: 2019
  ident: bb69
  article-title: Triboelectrification of two-dimensional chemical vapor deposited WS2 at nanoscale
  publication-title: Sci. Rep.
– volume: 25
  start-page: 6184
  year: 2013
  end-page: 6193
  ident: bb94
  article-title: Theory of sliding-mode triboelectric nanogenerators
  publication-title: Adv. Mater.
– volume: 76
  year: 2007
  ident: bb100
  article-title: Ab initio study of K adsorption on graphene and carbon nanotubes: role of long-range ionic forces
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
– volume: 57
  start-page: 680
  year: 2019
  end-page: 691
  ident: bb70
  article-title: Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials
  publication-title: Nano Energy
– volume: 52
  start-page: 517
  year: 2018
  end-page: 523
  ident: bb31
  article-title: Theory of contact electrification: optical transitions in two-level systems
  publication-title: Nano Energy
– volume: 14
  start-page: 7031
  year: 2014
  end-page: 7038
  ident: bb50
  article-title: Topographically-designed triboelectric nanogenerator via block copolymer self-assembly
  publication-title: Nano Lett.
– volume: 105
  start-page: 1467
  year: 2016
  end-page: 1477
  ident: bb85
  article-title: Quantification of tribocharging of pharmaceutical powders in V-blenders: experiments, multiscale modeling, and simulations
  publication-title: J. Pharm. Sci.
– volume: 50
  start-page: 282
  year: 2006
  end-page: 287
  ident: bb75
  article-title: A bidirectional acid-base charging model for triboelectrification: part 1 theory
  publication-title: J. Imaging Sci. Technol.
– volume: 20
  start-page: 74
  year: 2017
  end-page: 82
  ident: bb39
  article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
– volume: 3
  start-page: 465
  year: 2019
  end-page: 476
  ident: bb105
  article-title: Long-standing and unresolved issues in triboelectric charging
  publication-title: Nat. Rev. Chem.
– volume: 323
  start-page: 610
  year: 2009
  ident: 10.1016/j.nanoen.2020.105501_bb103
  article-title: Control of graphene’s properties by reversible hydrogenation: evidence for graphane
  publication-title: Science
  doi: 10.1126/science.1167130
– volume: 27
  start-page: 2472
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb56
  article-title: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500311
– volume: 12
  start-page: 4960
  year: 2012
  ident: 10.1016/j.nanoen.2020.105501_bb109
  article-title: Triboelectric-generator-driven pulse electrodeposition for micropatterning
  publication-title: Nano Lett.
  doi: 10.1021/nl302560k
– volume: 19
  start-page: 2533
  year: 2001
  ident: 10.1016/j.nanoen.2020.105501_bb61
  article-title: Charging of dust particles on surfaces
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.1392398
– volume: 126
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb32
  article-title: The electronic behaviors and charge transfer mechanism at the interface of metals: a first-principles perspective
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5124413
– volume: 4
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb91
  article-title: Theoretical modeling of relative humidity on contact electrification of sand particles
  publication-title: Sci. Rep.
  doi: 10.1038/srep04399
– volume: 258
  start-page: 144
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb80
  article-title: Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.03.020
– volume: 12
  start-page: 6339
  year: 2012
  ident: 10.1016/j.nanoen.2020.105501_bb96
  article-title: Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
  publication-title: Nano Lett.
  doi: 10.1021/nl303573d
– volume: 105
  start-page: 1467
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb85
  article-title: Quantification of tribocharging of pharmaceutical powders in V-blenders: experiments, multiscale modeling, and simulations
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2015.12.024
– volume: 49
  start-page: 2375
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb118
  article-title: Experimental modeling of a new triboelectrostatic separation process for mixed granular polymers
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2013.2263113
– volume: 58
  start-page: 17980
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb90
  article-title: 110th anniversary: effect of system size on boundary-driven contact charging in particulate flows
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b03437
– volume: 131
  start-page: 317
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb119
  article-title: Dry separation on coal-silica mixture using rotary triboelectrostatic separator
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2014.11.032
– volume: 28
  start-page: 4373
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb13
  article-title: Monitoring of vital signs with flexible and wearable medical devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504366
– volume: 26
  start-page: 454
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb64
  article-title: Advanced characterization of particles triboelectrically charged by a two-stage system with vibrations and external electric fields
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2014.11.021
– volume: 8
  start-page: 481
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb41
  article-title: Triboelectric nanogenerators: fundamental physics and potential applications
  publication-title: Friction
  doi: 10.1007/s40544-020-0390-3
– volume: 13
  start-page: 2226
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb116
  article-title: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism
  publication-title: Nano Lett.
  doi: 10.1021/nl400738p
– volume: 12
  start-page: 3109
  year: 2012
  ident: 10.1016/j.nanoen.2020.105501_bb55
  article-title: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
  publication-title: Nano Lett.
  doi: 10.1021/nl300988z
– volume: 7
  start-page: 9213
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb113
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403838y
– volume: 52
  start-page: 1808
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb121
  article-title: Sliding conformal contact tribocharging of polystyrene and polyvinyl chloride
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2015.2493065
– volume: 578
  start-page: 392
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb3
  article-title: A droplet-based electricity generator with high instantaneous power density
  publication-title: Nature
  doi: 10.1038/s41586-020-1985-6
– volume: 3
  start-page: 465
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb105
  article-title: Long-standing and unresolved issues in triboelectric charging
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0115-1
– volume: 176
  start-page: 447
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb106
  article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives
  publication-title: Faraday Discuss.
  doi: 10.1039/C4FD00159A
– volume: 52
  start-page: 1246
  year: 2017
  ident: 10.1016/j.nanoen.2020.105501_bb120
  article-title: Modified tribo-charging device for the electrostatic separation of plastics from granular industrial wastes
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2017.1286354
– volume: 25
  start-page: 6184
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb94
  article-title: Theory of sliding-mode triboelectric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302808
– volume: 5
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb6
  article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000531
– volume: 59
  start-page: 380
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb25
  article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.051
– volume: 10
  start-page: 6131
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb52
  article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02076
– volume: 1
  start-page: 328
  year: 2012
  ident: 10.1016/j.nanoen.2020.105501_bb108
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 71
  start-page: 21
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb62
  article-title: Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas-solid fluidized bed
  publication-title: J. Electro
  doi: 10.1016/j.elstat.2012.11.002
– volume: 8
  start-page: 18519
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb51
  article-title: Control of triboelectrification by engineering surface dipole and surface electronic state
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b02802
– volume: 248
  start-page: 34
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb81
  article-title: Numerical analysis of contact electrification using DEM-CFD
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.04.014
– volume: 11
  start-page: 603
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb89
  article-title: Effects of particle size on the triboelectrification phenomenon in pharmaceutical excipients: experiments and multi-scale modeling
  publication-title: Asian J. Pharm. Sci.
  doi: 10.1016/j.ajps.2016.04.006
– volume: 77
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb11
  article-title: β-Phase-Preferential blow-spun fabrics for wearable triboelectric nanogenerators and textile interactive interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105262
– volume: 90
  start-page: 147
  year: 2017
  ident: 10.1016/j.nanoen.2020.105501_bb76
  article-title: Relationship between triboelectric charge and contact force for two triboelectric layers
  publication-title: J. Electro.
  doi: 10.1016/j.elstat.2017.11.001
– volume: 110
  start-page: 14832
  year: 2006
  ident: 10.1016/j.nanoen.2020.105501_bb99
  article-title: Lithium adsorption on graphite from density functional theory calculations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp062126+
– volume: 68
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb40
  article-title: On the first principle theory of nanogenerators from Maxwell’s equations
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104272
– volume: 9
  start-page: 3501
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb54
  article-title: Nanopatterned textile-based wearable triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/nn507221f
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb9
  article-title: Reversible conversion between schottky and ohmic contacts for highly sensitive, multifunctional biosensors
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 847
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb78
  article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
  publication-title: Nano Lett.
  doi: 10.1021/nl4001053
– volume: 7
  start-page: 9461
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb16
  article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn4043157
– volume: 8
  start-page: 2250
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb21
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 11
  start-page: 436
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb114
  article-title: Triboelectric nanogenerators as self-powered active sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.034
– volume: 12
  start-page: 760
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb23
  article-title: Theory of freestanding triboelectric-layer-based nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.013
– volume: 6
  start-page: 3576
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb29
  article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42571a
– volume: 90
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb65
  article-title: Experimental methodology for measuring in-vacuum granular tribocharging
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5111983
– year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb35
  article-title: Electron transfer in the contact-electrification between corrugated 2D materials: A first-principles study
  publication-title: Nano Energy
– volume: 13
  start-page: 1168
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb53
  article-title: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
  publication-title: Nano Lett.
  doi: 10.1021/nl3045684
– volume: 356
  start-page: 892
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb34
  article-title: Can we predict trends in tribo-charging of pharmaceutical materials from first principles?
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.09.004
– volume: 57
  start-page: 680
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb70
  article-title: Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.081
– volume: 10
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb72
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 247
  start-page: 206
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb97
  article-title: A flexible large-area triboelectric generator by low-cost roll-to-roll process for location-based monitoring
  publication-title: Sens. Actuators, A Phys.
  doi: 10.1016/j.sna.2016.05.051
– volume: 3
  year: 2017
  ident: 10.1016/j.nanoen.2020.105501_bb18
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700015
– volume: 122
  year: 2017
  ident: 10.1016/j.nanoen.2020.105501_bb38
  article-title: Triboelectric effect: a new perspective on electron transfer process
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5006634
– volume: 26
  start-page: 5037
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb79
  article-title: Hydrophobic sponge structure-based triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401184
– volume: 11
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb10
  article-title: Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors
  publication-title: Nat. Commun.
– volume: 14
  start-page: 7031
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb50
  article-title: Topographically-designed triboelectric nanogenerator via block copolymer self-assembly
  publication-title: Nano Lett.
  doi: 10.1021/nl503402c
– volume: 66
  start-page: 51
  year: 2008
  ident: 10.1016/j.nanoen.2020.105501_bb88
  article-title: Particle dynamics simulations of triboelectric charging in granular insulator systems
  publication-title: J. Electro
  doi: 10.1016/j.elstat.2007.08.005
– volume: 11
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb68
  article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer
  publication-title: Nat. Commun.
– volume: 9
  start-page: 12562
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb107
  article-title: Structural optimization of triboelectric nanogenerator for harvesting water wave energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06372
– volume: 6
  start-page: 2877
  year: 2010
  ident: 10.1016/j.nanoen.2020.105501_bb101
  article-title: Fluorographene: a two-dimensional counterpart of Teflon
  publication-title: Small
  doi: 10.1002/smll.201001555
– volume: 9
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb69
  article-title: Triboelectrification of two-dimensional chemical vapor deposited WS2 at nanoscale
  publication-title: Sci. Rep.
– volume: 110
  year: 2017
  ident: 10.1016/j.nanoen.2020.105501_bb74
  article-title: Characteristics of triboelectrification on dielectric surfaces contacted with a liquid metal in different gases
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4983353
– start-page: 155
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb24
  article-title: Theoretical modeling of triboelectric nanogenerators
– volume: 9
  start-page: 3324
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb14
  article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00534
– volume: 1
  start-page: 480
  year: 2017
  ident: 10.1016/j.nanoen.2020.105501_bb15
  article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.004
– volume: 8
  start-page: 2649
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb115
  article-title: Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing
  publication-title: ACS Nano
  doi: 10.1021/nn4063616
– volume: 107
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb67
  article-title: Surface modifications with Lissajous trajectories using atomic force microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4931087
– volume: 125
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb33
  article-title: Contact electrification between randomly rough surfaces with identical materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5089769
– volume: 7
  start-page: 8266
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb93
  article-title: Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging
  publication-title: ACS Nano
  doi: 10.1021/nn4037514
– volume: 600
  start-page: 1
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb83
  article-title: Electrification of particulate entrained fluid flows-mechanisms, applications, and numerical methodology
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2015.10.001
– volume: 4
  start-page: 123
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb17
  article-title: High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.016
– volume: 57
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb66
  article-title: Linking the chemistry and physics of electronic charge transfer in insulators: Theory and experiment
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.2013.57.3.030401
– volume: 96
  start-page: 10
  year: 2018
  ident: 10.1016/j.nanoen.2020.105501_bb45
  article-title: Atomistic field theory for contact electrification of dielectrics
  publication-title: J. Electro.
  doi: 10.1016/j.elstat.2018.09.001
– volume: 304
  start-page: 208
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb82
  article-title: DEM-CFD analysis of contact electrification and electrostatic interactions during fluidization
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.08.030
– volume: 20
  year: 2018
  ident: 10.1016/j.nanoen.2020.105501_bb98
  article-title: Design guidelines of stretchable pressure sensors-based triboelectrification
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201700997
– volume: 7
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb27
  article-title: Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5133023
– volume: 26
  start-page: 3918
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb92
  article-title: Transparent flexible graphene triboelectric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400172
– volume: 10
  start-page: 3001
  year: 2010
  ident: 10.1016/j.nanoen.2020.105501_bb102
  article-title: Properties of fluorinated graphene films
  publication-title: Nano Lett.
  doi: 10.1021/nl101437p
– volume: 10
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb4
  article-title: Symbiotic cardiac pacemaker
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09851-1
– volume: 5
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb7
  article-title: Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000454
– volume: 10
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb1
  article-title: Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution
  publication-title: Adv. Energy Mater.
– volume: 285
  start-page: 110
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb86
  article-title: Numerical analysis of contact electrification of non-spherical particles in a rotating drum
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.05.050
– volume: 53
  year: 2009
  ident: 10.1016/j.nanoen.2020.105501_bb37
  article-title: Electron transfer in electrical tribocharging using a quantum chemical approach
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.2009.53.4.040503
– volume: 6
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb19
  article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9376
– volume: 11
  start-page: 15
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb47
  article-title: The analysis of electrification in windblown sand
  publication-title: Aeolian Res.
  doi: 10.1016/j.aeolia.2013.07.004
– volume: 14
  start-page: 161
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb30
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.034
– volume: 128
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb26
  article-title: Theoretical modelling of triboelectric nanogenerators (TENGs)
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0020961
– volume: 60
  start-page: 630
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb28
  article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.072
– volume: 13
  start-page: 277
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb5
  article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03258D
– volume: 52
  start-page: 517
  year: 2018
  ident: 10.1016/j.nanoen.2020.105501_bb31
  article-title: Theory of contact electrification: optical transitions in two-level systems
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.015
– volume: 20
  start-page: 74
  year: 2017
  ident: 10.1016/j.nanoen.2020.105501_bb39
  article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 101
  year: 2012
  ident: 10.1016/j.nanoen.2020.105501_bb46
  article-title: Contact charging of silica glass particles in a single collision
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4752458
– volume: 62
  start-page: 277
  year: 2004
  ident: 10.1016/j.nanoen.2020.105501_bb71
  article-title: A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties
  publication-title: J. Electro.
  doi: 10.1016/j.elstat.2004.05.005
– volume: 2
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb111
  article-title: Self-powered textile for Wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600097
– volume: 7
  start-page: 3713
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb110
  article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
  publication-title: ACS Nano
  doi: 10.1021/nn4007708
– volume: 6
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb58
  article-title: Dynamic nano-triboelectrification using torsional resonance mode atomic force microscopy
  publication-title: Sci. Rep.
– volume: 76
  year: 2007
  ident: 10.1016/j.nanoen.2020.105501_bb100
  article-title: Ab initio study of K adsorption on graphene and carbon nanotubes: role of long-range ionic forces
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.235431
– volume: 26
  start-page: 3580
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb42
  article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400207
– volume: 13
  start-page: 2916
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb95
  article-title: Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
  publication-title: Nano Lett.
  doi: 10.1021/nl4013002
– volume: 64
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb12
  article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103920
– volume: 21
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb36
  article-title: Theoretical study of the correlation between electrostatic hazard and electronic structure for some typical primary explosives
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-015-2746-6
– volume: 21
  start-page: 611
  year: 2018
  ident: 10.1016/j.nanoen.2020.105501_bb104
  article-title: Piezoelectric properties in two-dimensional materials: simulations and experiments
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.01.031
– volume: 30
  year: 2018
  ident: 10.1016/j.nanoen.2020.105501_bb44
  article-title: On the electron-transfer mechanism in the contact-electrification effect
  publication-title: Adv. Mater.
– volume: 121
  start-page: 8209
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb63
  article-title: The effects of dynamics on the triboelectrification of volcanic ash
  publication-title: J. Geophys. Res.
  doi: 10.1002/2015JD024275
– volume: 66
  start-page: 32
  year: 2008
  ident: 10.1016/j.nanoen.2020.105501_bb84
  article-title: Calculating the trajectories of triboelectrically charged particles using discrete element modeling (DEM)
  publication-title: J. Electro.
  doi: 10.1016/j.elstat.2007.08.007
– volume: 30
  start-page: 34
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb43
  article-title: On the origin of contact-electrification
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.016
– volume: 8
  start-page: 219
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb117
  article-title: Triboelectrification induced UV emission from plasmon discharge
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0634-5
– volume: 50
  start-page: 282
  year: 2006
  ident: 10.1016/j.nanoen.2020.105501_bb75
  article-title: A bidirectional acid-base charging model for triboelectrification: part 1 theory
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.(2006)50:3(282)
– volume: 49
  start-page: 245
  year: 2000
  ident: 10.1016/j.nanoen.2020.105501_bb48
  article-title: Investigation of a test methodology for triboelectrification
  publication-title: J. Electro
  doi: 10.1016/S0304-3886(00)00013-9
– volume: 14
  start-page: 4987
  year: 2018
  ident: 10.1016/j.nanoen.2020.105501_bb49
  article-title: Double origin of stochastic granular tribocharging
  publication-title: Soft Matter
  doi: 10.1039/C8SM00603B
– volume: 29
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb59
  article-title: Expanding the versatility of poly(dimethylsiloxane) through polymeric modification: an effective approach for improving triboelectric energy harvesting performance
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab6ba6
– volume: 7
  start-page: 2
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb73
  article-title: Fundamental theories and basic principles of triboelectric effect: a review
  publication-title: Friction
  doi: 10.1007/s40544-018-0217-7
– volume: 28
  start-page: 98
  year: 2016
  ident: 10.1016/j.nanoen.2020.105501_bb112
  article-title: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504403
– volume: 29
  year: 2020
  ident: 10.1016/j.nanoen.2020.105501_bb60
  article-title: Hierarchically structured ZnO nanorod-carbon fiber composites as ultrathin, flexible, highly sensitive triboelectric sensors
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab5b5f
– volume: 13
  start-page: 2282
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb2
  article-title: Linear-grating triboelectric generator based on sliding electrification
  publication-title: Nano Lett.
  doi: 10.1021/nl4008985
– volume: 7
  start-page: 9533
  year: 2013
  ident: 10.1016/j.nanoen.2020.105501_bb57
  article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 14
  start-page: 126
  year: 2014
  ident: 10.1016/j.nanoen.2020.105501_bb20
  article-title: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.050
– volume: 11
  start-page: 1873
  year: 2018
  ident: 10.1016/j.nanoen.2020.105501_bb77
  article-title: Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1805-y
– volume: 491
  start-page: 58
  year: 2015
  ident: 10.1016/j.nanoen.2020.105501_bb87
  article-title: A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.05.081
– volume: 49
  start-page: 946
  year: 2010
  ident: 10.1016/j.nanoen.2020.105501_bb22
  article-title: Contact electrification between identical materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200905281
– volume: 10
  year: 2019
  ident: 10.1016/j.nanoen.2020.105501_bb8
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10433-4
SSID ssj0000651712
Score 2.4227488
SecondaryResourceType review_article
Snippet Contact electrification (CE) is an ancient phenomenon in human history, which has been recorded more than 2600 years. Since the invention of triboelectric...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105501
SubjectTerms Contact electrification
Research methods
TENGs
Triboelectric effect
Title Research methods of contact electrification: Theoretical simulation and experiment
URI https://dx.doi.org/10.1016/j.nanoen.2020.105501
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELYqWGBA_IryU3lgNW0cO3bYqoqqgOjSVuoWOY4tFUFa0bDyLDwLT4YvcdoiJJCYEkW-KDqf7y72d_chdKVTl0S7ZUOkUh0CpZ3uLjDERROpWcTiSEJx8uMwGkzY_ZRPG6hX18IArNL7_sqnl97aP2l7bbYXs1l7RN2_C5WcU-huKTj4YcYEWPn1e7DaZ3EhNhDloSeMJyBQV9CVMK9c5XMDjVBpyXnLPTvMjwi1EXX6-2jPp4u4W33RAWqY_BDtbjQRPEKjGjyHKzbo5efH3GKAoCtd4IrmBvBA5RTc4PG6chEvZy-evQurPMPrbv_HaNK_HfcGxFMlEB0KWpCMRiK0oUxZJmOdWclgYWmb8kiFNM1C4_I0K41IO4ypyLgYFGoaWXflVLk05QRt5fPcnCIcZ5q5mdJSSOPeYuMMCuaD2EVTZhXnTRTW6km07yMOdBbPSQ0Ye0oqpSag1KRSahORldSi6qPxx3hRaz75Zg-Jc_W_Sp79W_Ic7VBArJQbLBdoq3h9M5cu5SjSVmlTLbTdvXsYDL8AEk3WeA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB1Ccmh7KF1puurQq0kiS7bcWwgNSbNckkBuQpYlSGmd0Lj_02_pl1Wy5SSl0EJPNsZjzEiaGctv3gO4l7Epos2y8ZgQTc-2dpqzlvJMNmGSBCQKmG1OHo2D3ow8zem8Ap2yF8bCKl3sL2J6Hq3dlYbzZmO1WDQm2Hy7YEYptuyWITVxuGbZqWgVau3-oDfebLWYLNsK8_-e1sSzNmUTXY70SkW6VJYLFeeyt9QJxPxIUjuJp3sEh65iRO3ipY6hotITONjhETyFSYmfQ4Ug9PrzY6mRRaELmaFC6cZCgvJReEDTbfMiWi9enYAXEmmCtoT_ZzDrPk47Pc-pJXjSD3HmJTgIfe2zmCQskolmxK4tqWMaCB_Hia9MqaaZCuMmISJQJg35EgfaHCkWplI5h2q6TNUFoCiRxAyWZCFT5ik6SmzPfCsyCZVoQWkd_NI9XDoqcato8cJLzNgzL5zKrVN54dQ6eBurVUGl8cf9Yel5_m1KcBPtf7W8_LflHez1pqMhH_bHgyvYxxbAku-3XEM1e3tXN6YCyeJbN8O-AHgZ2Sk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+methods%C2%A0of+contact+electrification%3A+Theoretical+simulation+and+experiment&rft.jtitle=Nano+energy&rft.au=Zhang%2C+Zhinan&rft.au=Yin%2C+Nian&rft.au=Wu%2C+Zishuai&rft.au=Pan%2C+Shuaihang&rft.date=2021-01-01&rft.issn=2211-2855&rft.volume=79&rft.spage=105501&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2020_105501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon