Research methods of contact electrification: Theoretical simulation and experiment
Contact electrification (CE) is an ancient phenomenon in human history, which has been recorded more than 2600 years. Since the invention of triboelectric nanogenerators (TENGs), the CE has been widely focused again. However, the process of TENG generally includes two stages: CE and electrostatic in...
Saved in:
Published in | Nano energy Vol. 79; p. 105501 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Contact electrification (CE) is an ancient phenomenon in human history, which has been recorded more than 2600 years. Since the invention of triboelectric nanogenerators (TENGs), the CE has been widely focused again. However, the process of TENG generally includes two stages: CE and electrostatic induction. To distinguish the influence of these two effects on the performance of TENGs, this paper first reviews the generation process of four modes of TENGs and summarizes their characteristics in the stages of CE and electrostatic induction. Then, the research methods of CE are reviewed in three aspects: theory, simulation, and experiment. Finally, the prospect for future development of the research methods and applications are discussed. In brief, this paper provides an important reference for the current triboelectric researchers to frame out the efficient research methods for the behind CE mechanisms.
[Display omitted]
•This paper reviews the research methods of contact electrification.•The role and influence of contact electrification and electrostatic induction in the work process of TENGs are clarified.•The theoretical, simulation and experimental methods are classified and summarized according to different criteria.•In the end, future trend of research methods and applications of contact electrification is discussed. |
---|---|
AbstractList | Contact electrification (CE) is an ancient phenomenon in human history, which has been recorded more than 2600 years. Since the invention of triboelectric nanogenerators (TENGs), the CE has been widely focused again. However, the process of TENG generally includes two stages: CE and electrostatic induction. To distinguish the influence of these two effects on the performance of TENGs, this paper first reviews the generation process of four modes of TENGs and summarizes their characteristics in the stages of CE and electrostatic induction. Then, the research methods of CE are reviewed in three aspects: theory, simulation, and experiment. Finally, the prospect for future development of the research methods and applications are discussed. In brief, this paper provides an important reference for the current triboelectric researchers to frame out the efficient research methods for the behind CE mechanisms.
[Display omitted]
•This paper reviews the research methods of contact electrification.•The role and influence of contact electrification and electrostatic induction in the work process of TENGs are clarified.•The theoretical, simulation and experimental methods are classified and summarized according to different criteria.•In the end, future trend of research methods and applications of contact electrification is discussed. |
ArticleNumber | 105501 |
Author | Pan, Shuaihang Wu, Zishuai Yin, Nian Zhang, Zhinan Wang, Daoai |
Author_xml | – sequence: 1 givenname: Zhinan surname: Zhang fullname: Zhang, Zhinan email: zhinanz@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 2 givenname: Nian surname: Yin fullname: Yin, Nian organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Zishuai surname: Wu fullname: Wu, Zishuai organization: School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710000, China – sequence: 4 givenname: Shuaihang surname: Pan fullname: Pan, Shuaihang organization: School of Mechanical & Aerospace Engineering, University of California Los Angeles, Los Angeles 90095, USA – sequence: 5 givenname: Daoai surname: Wang fullname: Wang, Daoai organization: Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China |
BookMark | eNqFkE1OwzAQhb0oEqX0BixygQT_JE7SBRKq-JMqIUFZW449Vl2ldmUbBLfhLJyMtGHFAmbzNE96TzPfGZo47wChC4ILggm_3BZOOg-uoJgerKrCZIKmlBKS06aqTtE8xi0ehlekJnSKnp8gggxqk-0gbbyOX5_eZMq7JFXKoAeVgjVWyWS9W2TrDfgAadj7LNrda3_0M-l0Bu97CHYHLp2jEyP7CPMfnaGX25v18j5fPd49LK9XuWI1TbmmvGaGNV2pm1Zp05QtZ40yXcUlo51m0DJqGqg7XJaSQ9tipig3g1ZUYs5maDH2quBjDGCEsul4UArS9oJgcaAitmKkIg5UxEhlCJe_wvvhehk-_otdjTEYHnuzEERUFpwCbcPASmhv_y74Bh4-hBE |
CitedBy_id | crossref_primary_10_1088_2631_8695_acf980 crossref_primary_10_1016_j_mtadv_2023_100427 crossref_primary_10_1115_1_4056391 crossref_primary_10_1007_s40544_021_0572_7 crossref_primary_10_1088_1361_6463_ad3374 crossref_primary_10_26599_FRICT_2025_9441045 crossref_primary_10_1002_ente_202200699 crossref_primary_10_1039_D4TA07756C crossref_primary_10_1016_j_cej_2025_159480 crossref_primary_10_3390_biomimetics7040216 crossref_primary_10_1021_acsabm_4c01414 crossref_primary_10_1016_j_apt_2022_103664 crossref_primary_10_1016_j_cej_2024_150982 crossref_primary_10_1039_D3CS00736G crossref_primary_10_1038_s41467_024_46432_3 crossref_primary_10_3390_nanoenergyadv3040018 crossref_primary_10_1016_j_nanoen_2021_106647 crossref_primary_10_3390_mi12060698 crossref_primary_10_1002_ente_202401029 crossref_primary_10_3390_lubricants10080180 crossref_primary_10_1063_5_0142055 crossref_primary_10_1016_j_mtcomm_2023_105493 crossref_primary_10_1007_s40544_022_0596_7 crossref_primary_10_1063_5_0058597 crossref_primary_10_1126_sciadv_abg7595 crossref_primary_10_26599_FRICT_2025_9440968 crossref_primary_10_1088_1361_6463_ac7365 crossref_primary_10_1126_sciadv_abj0349 |
Cites_doi | 10.1126/science.1167130 10.1002/adma.201500311 10.1021/nl302560k 10.1116/1.1392398 10.1063/1.5124413 10.1038/srep04399 10.1016/j.powtec.2014.03.020 10.1021/nl303573d 10.1016/j.xphs.2015.12.024 10.1109/TIA.2013.2263113 10.1021/acs.iecr.9b03437 10.1016/j.fuproc.2014.11.032 10.1002/adma.201504366 10.1016/j.apt.2014.11.021 10.1007/s40544-020-0390-3 10.1021/nl400738p 10.1021/nl300988z 10.1021/nn403838y 10.1109/TIA.2015.2493065 10.1038/s41586-020-1985-6 10.1038/s41570-019-0115-1 10.1039/C4FD00159A 10.1080/01496395.2017.1286354 10.1002/adma.201302808 10.1002/admt.202000531 10.1016/j.nanoen.2019.02.051 10.1021/acsnano.6b02076 10.1016/j.nanoen.2012.01.004 10.1016/j.elstat.2012.11.002 10.1021/acsami.6b02802 10.1016/j.powtec.2013.04.014 10.1016/j.ajps.2016.04.006 10.1016/j.nanoen.2020.105262 10.1016/j.elstat.2017.11.001 10.1021/jp062126+ 10.1016/j.nanoen.2019.104272 10.1021/nn507221f 10.1021/nl4001053 10.1021/nn4043157 10.1039/C5EE01532D 10.1016/j.nanoen.2014.10.034 10.1016/j.nanoen.2015.01.013 10.1039/c3ee42571a 10.1063/1.5111983 10.1021/nl3045684 10.1016/j.powtec.2019.09.004 10.1016/j.nanoen.2018.12.081 10.1038/s41467-019-09461-x 10.1016/j.sna.2016.05.051 10.1126/sciadv.1700015 10.1063/1.5006634 10.1002/adma.201401184 10.1021/nl503402c 10.1016/j.elstat.2007.08.005 10.1021/acsnano.5b06372 10.1002/smll.201001555 10.1063/1.4983353 10.1021/acsnano.5b00534 10.1016/j.joule.2017.09.004 10.1021/nn4063616 10.1063/1.4931087 10.1063/1.5089769 10.1021/nn4037514 10.1016/j.physrep.2015.10.001 10.1016/j.nanoen.2013.12.016 10.2352/J.ImagingSci.Technol.2013.57.3.030401 10.1016/j.elstat.2018.09.001 10.1016/j.powtec.2016.08.030 10.1002/adem.201700997 10.1063/1.5133023 10.1002/adma.201400172 10.1021/nl101437p 10.1038/s41467-019-09851-1 10.1002/admt.202000454 10.1016/j.powtec.2015.05.050 10.2352/J.ImagingSci.Technol.2009.53.4.040503 10.1038/ncomms9376 10.1016/j.aeolia.2013.07.004 10.1016/j.nanoen.2014.11.034 10.1063/5.0020961 10.1016/j.nanoen.2019.03.072 10.1039/C9EE03258D 10.1016/j.nanoen.2018.08.015 10.1016/j.mattod.2016.12.001 10.1063/1.4752458 10.1016/j.elstat.2004.05.005 10.1126/sciadv.1600097 10.1021/nn4007708 10.1103/PhysRevB.76.235431 10.1002/adma.201400207 10.1021/nl4013002 10.1016/j.nanoen.2019.103920 10.1007/s00894-015-2746-6 10.1016/j.mattod.2018.01.031 10.1002/2015JD024275 10.1016/j.elstat.2007.08.007 10.1016/j.mattod.2019.05.016 10.1007/s12274-014-0634-5 10.2352/J.ImagingSci.Technol.(2006)50:3(282) 10.1016/S0304-3886(00)00013-9 10.1039/C8SM00603B 10.1088/1361-665X/ab6ba6 10.1007/s40544-018-0217-7 10.1002/adma.201504403 10.1088/1361-665X/ab5b5f 10.1021/nl4008985 10.1021/nn404614z 10.1016/j.nanoen.2014.11.050 10.1007/s12274-017-1805-y 10.1016/j.ijpharm.2015.05.081 10.1002/anie.200905281 10.1038/s41467-019-10433-4 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2020.105501 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2020_105501 S2211285520310752 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-d2673f38b4d89cdf849638cfb56a32bd3e932f8e7b044a6e9903c26f99052a063 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 00:56:42 EDT 2025 Tue Feb 13 08:07:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TENGs Triboelectric effect Research methods Contact electrification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-d2673f38b4d89cdf849638cfb56a32bd3e932f8e7b044a6e9903c26f99052a063 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2020_105501 crossref_primary_10_1016_j_nanoen_2020_105501 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105501 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Naik, Hancock, Abramov, Yu, Rowland, Huang, Chaudhuri (bb85) 2016; 105 Jeong, Lee, Roh, Feng, Park (bb60) 2020; 29 Shao, Liu, Willatzen, Wang (bb27) 2020; 7 Chen, Yang, Li, Fan, Zi, Jing, Guo, Wen, Pradel, Niu, Wang (bb14) 2015; 9 Chen, Wang (bb15) 2017; 1 Liang, Jiang, Liu, Feng, Zhang, Wang (bb5) 2020; 13 Shao, Willatzen, Jiang, Tang, Chen, Wang, Wang (bb25) 2019; 59 Duff, Lacks (bb88) 2008; 66 Sternovsky, Horányi, Robertson (bb61) 2001; 19 Jeong, Baek, Niu, Nam, Hur, Park, Hwang, Byun, Wang, Jung, Lee (bb50) 2014; 14 Pu, Li, Song, Du, Zhao, Jiang, Cao, Hu, Wang (bb56) 2015; 27 Lee, Chun, Lee, Kim, Kang, Kim, Kim, Shin, Gupta, Baik, Kim (bb79) 2014; 26 Wang, Lin, Xie, Jing, Niu, Wang (bb116) 2013; 13 Shao, Willatzen, Wang (bb26) 2020; 128 Niu, Liu, Wang, Lin, Zhou, Hu, Wang (bb94) 2013; 25 Hu, Xie, Zheng (bb46) 2012; 101 Wei, Gu (bb83) 2015; 600 Wang, Chen, Lin (bb21) 2015; 8 Vasandani, Mao, Jia, Sun (bb76) 2017; 90 Niu, Wang, Lin, Liu, Zhou, Hu, Wang (bb29) 2013; 6 Yang, Zhang, Lin, Zhou, Jing, Su, Yang, Chen, Hu, Wang (bb113) 2013; 7 Chen, Honaker (bb119) 2015; 131 Wang (bb1) 2020; 10 Zhou, Liu, Wang, Wang (bb41) 2020; 8 Cai, Yao (bb67) 2015; 107 Robinson, Burgess, Junkermeier, Badescu, Reinecke, Perkins, Zalalutdniov, Baldwin, Culbertson, Sheehan, Snow (bb102) 2010; 10 Lugo-Solis, Vasiliev (bb100) 2007; 76 Wang (bb39) 2017; 20 Fan, Tian, Wang (bb108) 2012; 1 Zhang, Di Han, Wang, Meng, Zhu, Sun, Hu, Wang, Li, Zhang (bb17) 2014; 4 Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu, Wang (bb72) 2019; 10 Fan, Lin, Zhu, Wu, Zhang, Wang (bb55) 2012; 12 Han, Zhang, Tian, Li, Zhang, Li, Wang (bb117) 2014; 8 Zi, Niu, Wang, Wen, Tang, Wang (bb19) 2015; 6 Pei, Wu, England, Byard, Berchtold, Adams (bb81) 2013; 248 Mizutani, Yasuda, Matsusaka (bb64) 2015; 26 Carter, Hartzell (bb65) 2019; 90 Wang, Lin, Wang (bb96) 2012; 12 Zou, Tan, Shi, Ouyang, Jiang, Liu, Li, Yu, Wang, Qu, Zhao, Fan, Wang, Li (bb8) 2019; 10 Seung, Gupta, Lee, Shin, Lee, Kim, Kim, Lin, Kim, Kim (bb54) 2015; 9 Khan, Ostfeld, Lochner, Pierre, Arias (bb13) 2016; 28 Ahmed, Hassan, Zu (bb98) 2018; 20 Brunsteiner, Zellnitz, Pinto, Karrer, Paudel (bb34) 2019; 356 Naik, Sarkar, Gupta, Hancock, Abramov, Yu, Chaudhuri (bb87) 2015; 491 Cheng, Song, Han, Meng, Su, Miao, Zhang (bb97) 2016; 247 Pei, Wu, Adams (bb86) 2015; 285 Nikitina, Barthel, Heinemann (bb37) 2009; 53 Han, Lee, Lin, Kim, Kim (bb70) 2019; 57 Zheng, Zhang, Huang (bb91) 2014; 4 Xu, Zheng, Liu, Zhou, Zhang, Song, Deng, Leung, Yang, Xu, Wang, Zeng, Wang (bb3) 2020; 578 Apodaca, Wesson, Bishop, Ratner, Grzybowski (bb22) 2010; 49 Wang (bb106) 2014; 176 Cui, Gu, Lei, Liu, Qin, Ma, Hao, Wang (bb52) 2016; 10 Diaz, Felix-Navarro (bb71) 2004; 62 Zhang, Tang, Han, Fan, Wang (bb42) 2014; 26 Kolehmainen, Ceresiat, Ozel, Sundaresan (bb90) 2019; 58 Pei, Wu, Adams (bb82) 2016; 304 Abdelaziz, Chen, Hieber, Leseman (bb45) 2018; 96 Wang (bb40) 2020; 68 Veregin, McDougall, Hawkins, Vong, Skorokhod, Schreiber (bb75) 2006; 50 Nair, Ren, Jalil, Riaz, Kravets, Britnell, Blake, Schedin, Mayorov, Yuan, Katsnelson, Cheng, Strupinski, Bulusheva, Okotrub, Grigorieva, Grigorenko, Novoselov, Geim (bb101) 2010; 6 Hinchet, Khan, Falconi, Kim (bb104) 2018; 21 Younes, Younes, Meziane, Samuila, Dascalescu (bb120) 2017; 52 Wang, Tao, Ma, Dai (bb32) 2019; 126 Wen, Yeh, Guo, Wang, Zi, Xu, Deng, Zhu, Wang, Hu, Zhu, Sun, Wang (bb111) 2016; 2 Cai, Yao (bb58) 2016; 6 Zhao, Li, Meng, Wang, Tan, Zou, Yuan, Lu, Pan, Fan, Zhang, Zhang, Wang, Li (bb9) 2020; 30 Wang, Huang, Polcar (bb69) 2019; 9 Nie, Guo, Lu, Zhuo, Mo, Wang (bb7) 2020; 5 Pu, Liu, Chen, Sun, Du, Zhang, Zhai, Hu, Wang (bb18) 2017; 3 Mutlu, Unlu, Gevrek, Sanyal (bb59) 2020; 29 Lacks, Shinbrot (bb105) 2019; 3 Niu, Wang (bb30) 2014; 14 Chen, Tang, Lu, Xu, Yang, Chen, Jiang, Wang (bb74) 2017; 110 Wang (bb57) 2013; 7 Lin, Xu, Chi Wang, Wang (bb68) 2020; 11 Hogue, Calle, Weitzman, Curry (bb84) 2008; 66 Valencia, Romero, Ancilotto, Silvestrelli (bb99) 2006; 110 Wang, Lin, Chen, Niu, Zi (bb24) 2016 Willatzen, Wang (bb31) 2018; 52 Zhu, Peng, Chen, Jing, Wang (bb20) 2014; 14 Veregin, Hawkins, Li, Gusarov, Kovalenko (bb66) 2013; 57 Zhu, Lin, Jing, Bai, Pan, Yang, Zhou, Wang (bb78) 2013; 13 Pu, Li, Liu, Jiang, Du, Zhao, Hu, Wang (bb112) 2016; 28 Byun, Cho, Seol, Kim, Kim, Shin, Park, Hwang (bb51) 2016; 8 Tan, Willatzen, Wang (bb35) 2020 Salama, Sowinski, Atieh, Mehrani (bb62) 2013; 71 Korevaar, Padding, Van der Hoef, Kuipers (bb80) 2014; 258 Jiang, Zhang, Chen, Han, Tang, Zhang, Xu, Wang (bb107) 2015; 9 Niu, Liu, Chen, Wang, Zhou, Lin, Xie, Wang (bb23) 2015; 12 Elias, Nair, Mohiuddin, Morozov, Blake, Halsall, Ferrari, Boukhvalov, Katsnelson, Geim, Novoselov (bb103) 2009; 323 Bai, Zhu, Lin, Jing, Chen, Zhang, Ma, Wang (bb110) 2013; 7 Xu, Zi, Wang, Zou, Dai, He, Wang, Wang, Feng, Li, Wang (bb44) 2018; 30 Chen, Guo, Wu, Xu, Zi, Hu, Wang (bb12) 2019; 64 Zhu, Chen, Liu, Bai, Zhou, Jing, Pan, Wang (bb2) 2013; 13 Lin, Xie, Wang, Wu, Niu, Wen, Wang (bb93) 2013; 7 Zhang, Chen, Xuan, Huang, You, Li, Sun, Jin, Wang, Dong, Luo, Flewitt, Wang (bb10) 2020; 11 Yang, Chen, Liu, Yang, Su, Wang (bb115) 2014; 8 Haeberle, Schella, Sperl, Schröter, Born (bb49) 2018; 14 Ouyang, Liu, Li, Shi, Zou, Xie, Ma, Li, Li, Zheng, Qu, Fan, Wang, Zhang, Li (bb4) 2019; 10 Zeghloul, Dascalescu, Rouagdia, Fatihou, Renoux, Souchet (bb121) 2016; 52 Wang, Lin, Wang (bb114) 2015; 11 Pan, Zhang (bb73) 2019; 7 Pan, Zhang (bb38) 2017; 122 Huang, Li, Zhang, Zhang, Zhang (bb36) 2015; 21 Zhang, Di Han, Wang, Zhu, Li, Wang, Zhang (bb53) 2013; 13 Lin, Wang, Xie, Jing, Niu, Hu, Wang (bb95) 2013; 13 Mukherjee, Gupta, Naik, Sarkar, Sharma, Peri, Chaudhuri (bb89) 2016; 11 Kim, Gupta, Lee, Sohn, Kim, Shin, Kim, Kim, Lee, Shin, Kim, Kim (bb92) 2014; 26 Zhang, Zhao, Yang, Yuan, Zhou, Yin, Liu, Li, Wang, Wang (bb6) 2020; 5 Ho, Han, Huang, Choi, Cheon, Sun, Lei, Park, Wang, Sun, Cho (bb11) 2020; 77 Bo, Zhang, Hu, Zheng (bb47) 2013; 11 Zhu, Pan, Guo, Chen, Zhou, Yu, Wang (bb109) 2012; 12 Wang, Wang (bb43) 2019; 30 Greason (bb48) 2000; 49 Boukhoulda, Miloudi, Medles, Rezoug, Tilmatine, Dascalescu (bb118) 2013; 49 Shao, Willatzen, Shi, Wang (bb28) 2019; 60 Méndez Harper, Dufek (bb63) 2016; 121 Feshanjerdi, Malekan (bb33) 2019; 125 Cui, Zheng, Liang, Wang (bb77) 2018; 11 Yang, Zhu, Zhang, Chen, Zhong, Lin, Su, Bai, Wen, Wang (bb16) 2013; 7 Zhu (10.1016/j.nanoen.2020.105501_bb2) 2013; 13 Chen (10.1016/j.nanoen.2020.105501_bb12) 2019; 64 Zhang (10.1016/j.nanoen.2020.105501_bb6) 2020; 5 Feshanjerdi (10.1016/j.nanoen.2020.105501_bb33) 2019; 125 Pei (10.1016/j.nanoen.2020.105501_bb86) 2015; 285 Niu (10.1016/j.nanoen.2020.105501_bb23) 2015; 12 Wang (10.1016/j.nanoen.2020.105501_bb116) 2013; 13 Vasandani (10.1016/j.nanoen.2020.105501_bb76) 2017; 90 Pan (10.1016/j.nanoen.2020.105501_bb73) 2019; 7 Shao (10.1016/j.nanoen.2020.105501_bb26) 2020; 128 Naik (10.1016/j.nanoen.2020.105501_bb85) 2016; 105 Zou (10.1016/j.nanoen.2020.105501_bb8) 2019; 10 Wen (10.1016/j.nanoen.2020.105501_bb111) 2016; 2 Seung (10.1016/j.nanoen.2020.105501_bb54) 2015; 9 Zhu (10.1016/j.nanoen.2020.105501_bb78) 2013; 13 Wang (10.1016/j.nanoen.2020.105501_bb106) 2014; 176 Méndez Harper (10.1016/j.nanoen.2020.105501_bb63) 2016; 121 Ouyang (10.1016/j.nanoen.2020.105501_bb4) 2019; 10 Zhou (10.1016/j.nanoen.2020.105501_bb41) 2020; 8 Liang (10.1016/j.nanoen.2020.105501_bb5) 2020; 13 Lacks (10.1016/j.nanoen.2020.105501_bb105) 2019; 3 Yang (10.1016/j.nanoen.2020.105501_bb115) 2014; 8 Zhang (10.1016/j.nanoen.2020.105501_bb53) 2013; 13 Niu (10.1016/j.nanoen.2020.105501_bb94) 2013; 25 Wang (10.1016/j.nanoen.2020.105501_bb40) 2020; 68 Fan (10.1016/j.nanoen.2020.105501_bb108) 2012; 1 Kolehmainen (10.1016/j.nanoen.2020.105501_bb90) 2019; 58 Pei (10.1016/j.nanoen.2020.105501_bb82) 2016; 304 Cui (10.1016/j.nanoen.2020.105501_bb77) 2018; 11 Valencia (10.1016/j.nanoen.2020.105501_bb99) 2006; 110 Veregin (10.1016/j.nanoen.2020.105501_bb75) 2006; 50 Cui (10.1016/j.nanoen.2020.105501_bb52) 2016; 10 Niu (10.1016/j.nanoen.2020.105501_bb29) 2013; 6 Chen (10.1016/j.nanoen.2020.105501_bb14) 2015; 9 Cheng (10.1016/j.nanoen.2020.105501_bb97) 2016; 247 Zi (10.1016/j.nanoen.2020.105501_bb19) 2015; 6 Shao (10.1016/j.nanoen.2020.105501_bb27) 2020; 7 Tan (10.1016/j.nanoen.2020.105501_bb35) 2020 Pan (10.1016/j.nanoen.2020.105501_bb38) 2017; 122 Chen (10.1016/j.nanoen.2020.105501_bb74) 2017; 110 Pu (10.1016/j.nanoen.2020.105501_bb56) 2015; 27 Willatzen (10.1016/j.nanoen.2020.105501_bb31) 2018; 52 Byun (10.1016/j.nanoen.2020.105501_bb51) 2016; 8 Wang (10.1016/j.nanoen.2020.105501_bb69) 2019; 9 Zhang (10.1016/j.nanoen.2020.105501_bb17) 2014; 4 Mizutani (10.1016/j.nanoen.2020.105501_bb64) 2015; 26 Jiang (10.1016/j.nanoen.2020.105501_bb107) 2015; 9 Naik (10.1016/j.nanoen.2020.105501_bb87) 2015; 491 Zou (10.1016/j.nanoen.2020.105501_bb72) 2019; 10 Zeghloul (10.1016/j.nanoen.2020.105501_bb121) 2016; 52 Wang (10.1016/j.nanoen.2020.105501_bb39) 2017; 20 Han (10.1016/j.nanoen.2020.105501_bb117) 2014; 8 Veregin (10.1016/j.nanoen.2020.105501_bb66) 2013; 57 Abdelaziz (10.1016/j.nanoen.2020.105501_bb45) 2018; 96 Wang (10.1016/j.nanoen.2020.105501_bb21) 2015; 8 Lee (10.1016/j.nanoen.2020.105501_bb79) 2014; 26 Bo (10.1016/j.nanoen.2020.105501_bb47) 2013; 11 Wang (10.1016/j.nanoen.2020.105501_bb32) 2019; 126 Mukherjee (10.1016/j.nanoen.2020.105501_bb89) 2016; 11 Ahmed (10.1016/j.nanoen.2020.105501_bb98) 2018; 20 Bai (10.1016/j.nanoen.2020.105501_bb110) 2013; 7 Lin (10.1016/j.nanoen.2020.105501_bb93) 2013; 7 Pu (10.1016/j.nanoen.2020.105501_bb18) 2017; 3 Zheng (10.1016/j.nanoen.2020.105501_bb91) 2014; 4 Lugo-Solis (10.1016/j.nanoen.2020.105501_bb100) 2007; 76 Zhao (10.1016/j.nanoen.2020.105501_bb9) 2020; 30 Zhang (10.1016/j.nanoen.2020.105501_bb10) 2020; 11 Brunsteiner (10.1016/j.nanoen.2020.105501_bb34) 2019; 356 Salama (10.1016/j.nanoen.2020.105501_bb62) 2013; 71 Carter (10.1016/j.nanoen.2020.105501_bb65) 2019; 90 Xu (10.1016/j.nanoen.2020.105501_bb44) 2018; 30 Pu (10.1016/j.nanoen.2020.105501_bb112) 2016; 28 Niu (10.1016/j.nanoen.2020.105501_bb30) 2014; 14 Jeong (10.1016/j.nanoen.2020.105501_bb60) 2020; 29 Sternovsky (10.1016/j.nanoen.2020.105501_bb61) 2001; 19 Hogue (10.1016/j.nanoen.2020.105501_bb84) 2008; 66 Lin (10.1016/j.nanoen.2020.105501_bb68) 2020; 11 Wang (10.1016/j.nanoen.2020.105501_bb57) 2013; 7 Diaz (10.1016/j.nanoen.2020.105501_bb71) 2004; 62 Khan (10.1016/j.nanoen.2020.105501_bb13) 2016; 28 Xu (10.1016/j.nanoen.2020.105501_bb3) 2020; 578 Korevaar (10.1016/j.nanoen.2020.105501_bb80) 2014; 258 Fan (10.1016/j.nanoen.2020.105501_bb55) 2012; 12 Ho (10.1016/j.nanoen.2020.105501_bb11) 2020; 77 Elias (10.1016/j.nanoen.2020.105501_bb103) 2009; 323 Chen (10.1016/j.nanoen.2020.105501_bb15) 2017; 1 Nikitina (10.1016/j.nanoen.2020.105501_bb37) 2009; 53 Wei (10.1016/j.nanoen.2020.105501_bb83) 2015; 600 Wang (10.1016/j.nanoen.2020.105501_bb1) 2020; 10 Cai (10.1016/j.nanoen.2020.105501_bb58) 2016; 6 Pei (10.1016/j.nanoen.2020.105501_bb81) 2013; 248 Apodaca (10.1016/j.nanoen.2020.105501_bb22) 2010; 49 Yang (10.1016/j.nanoen.2020.105501_bb16) 2013; 7 Wang (10.1016/j.nanoen.2020.105501_bb43) 2019; 30 Mutlu (10.1016/j.nanoen.2020.105501_bb59) 2020; 29 Wang (10.1016/j.nanoen.2020.105501_bb96) 2012; 12 Wang (10.1016/j.nanoen.2020.105501_bb24) 2016 Huang (10.1016/j.nanoen.2020.105501_bb36) 2015; 21 Zhang (10.1016/j.nanoen.2020.105501_bb42) 2014; 26 Lin (10.1016/j.nanoen.2020.105501_bb95) 2013; 13 Han (10.1016/j.nanoen.2020.105501_bb70) 2019; 57 Greason (10.1016/j.nanoen.2020.105501_bb48) 2000; 49 Yang (10.1016/j.nanoen.2020.105501_bb113) 2013; 7 Hinchet (10.1016/j.nanoen.2020.105501_bb104) 2018; 21 Hu (10.1016/j.nanoen.2020.105501_bb46) 2012; 101 Zhu (10.1016/j.nanoen.2020.105501_bb109) 2012; 12 Younes (10.1016/j.nanoen.2020.105501_bb120) 2017; 52 Nair (10.1016/j.nanoen.2020.105501_bb101) 2010; 6 Robinson (10.1016/j.nanoen.2020.105501_bb102) 2010; 10 Jeong (10.1016/j.nanoen.2020.105501_bb50) 2014; 14 Wang (10.1016/j.nanoen.2020.105501_bb114) 2015; 11 Zhu (10.1016/j.nanoen.2020.105501_bb20) 2014; 14 Duff (10.1016/j.nanoen.2020.105501_bb88) 2008; 66 Kim (10.1016/j.nanoen.2020.105501_bb92) 2014; 26 Shao (10.1016/j.nanoen.2020.105501_bb28) 2019; 60 Shao (10.1016/j.nanoen.2020.105501_bb25) 2019; 59 Boukhoulda (10.1016/j.nanoen.2020.105501_bb118) 2013; 49 Haeberle (10.1016/j.nanoen.2020.105501_bb49) 2018; 14 Cai (10.1016/j.nanoen.2020.105501_bb67) 2015; 107 Nie (10.1016/j.nanoen.2020.105501_bb7) 2020; 5 Chen (10.1016/j.nanoen.2020.105501_bb119) 2015; 131 |
References_xml | – volume: 126 year: 2019 ident: bb32 article-title: The electronic behaviors and charge transfer mechanism at the interface of metals: a first-principles perspective publication-title: J. Appl. Phys. – volume: 30 start-page: 34 year: 2019 end-page: 51 ident: bb43 article-title: On the origin of contact-electrification publication-title: Mater. Today – volume: 247 start-page: 206 year: 2016 end-page: 214 ident: bb97 article-title: A flexible large-area triboelectric generator by low-cost roll-to-roll process for location-based monitoring publication-title: Sens. Actuators, A Phys. – volume: 28 start-page: 98 year: 2016 end-page: 105 ident: bb112 article-title: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators publication-title: Adv. Mater. – volume: 9 start-page: 3324 year: 2015 end-page: 3331 ident: bb14 article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy publication-title: ACS Nano – volume: 8 start-page: 2649 year: 2014 end-page: 2657 ident: bb115 article-title: Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing publication-title: ACS Nano – volume: 107 year: 2015 ident: bb67 article-title: Surface modifications with Lissajous trajectories using atomic force microscopy publication-title: Appl. Phys. Lett. – volume: 285 start-page: 110 year: 2015 end-page: 122 ident: bb86 article-title: Numerical analysis of contact electrification of non-spherical particles in a rotating drum publication-title: Powder Technol. – volume: 8 start-page: 18519 year: 2016 end-page: 18525 ident: bb51 article-title: Control of triboelectrification by engineering surface dipole and surface electronic state publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 6131 year: 2016 end-page: 6138 ident: bb52 article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator publication-title: ACS Nano – volume: 7 start-page: 2 year: 2019 end-page: 17 ident: bb73 article-title: Fundamental theories and basic principles of triboelectric effect: a review publication-title: Friction – volume: 27 start-page: 2472 year: 2015 end-page: 2478 ident: bb56 article-title: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics publication-title: Adv. Mater. – volume: 52 start-page: 1246 year: 2017 end-page: 1256 ident: bb120 article-title: Modified tribo-charging device for the electrostatic separation of plastics from granular industrial wastes publication-title: Sep. Sci. Technol. – volume: 28 start-page: 4373 year: 2016 end-page: 4395 ident: bb13 article-title: Monitoring of vital signs with flexible and wearable medical devices publication-title: Adv. Mater. – volume: 7 year: 2020 ident: bb27 article-title: Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode publication-title: Appl. Phys. Rev. – volume: 13 start-page: 847 year: 2013 end-page: 853 ident: bb78 article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator publication-title: Nano Lett. – volume: 323 start-page: 610 year: 2009 end-page: 613 ident: bb103 article-title: Control of graphene’s properties by reversible hydrogenation: evidence for graphane publication-title: Science – volume: 8 start-page: 2250 year: 2015 end-page: 2282 ident: bb21 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. – volume: 7 start-page: 9213 year: 2013 end-page: 9222 ident: bb113 article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system publication-title: ACS Nano – volume: 121 start-page: 8209 year: 2016 end-page: 8228 ident: bb63 article-title: The effects of dynamics on the triboelectrification of volcanic ash publication-title: J. Geophys. Res. – volume: 77 year: 2020 ident: bb11 article-title: β-Phase-Preferential blow-spun fabrics for wearable triboelectric nanogenerators and textile interactive interface publication-title: Nano Energy – volume: 29 year: 2020 ident: bb59 article-title: Expanding the versatility of poly(dimethylsiloxane) through polymeric modification: an effective approach for improving triboelectric energy harvesting performance publication-title: Smart Mater. Struct. – volume: 66 start-page: 32 year: 2008 end-page: 38 ident: bb84 article-title: Calculating the trajectories of triboelectrically charged particles using discrete element modeling (DEM) publication-title: J. Electro. – volume: 131 start-page: 317 year: 2015 end-page: 324 ident: bb119 article-title: Dry separation on coal-silica mixture using rotary triboelectrostatic separator publication-title: Fuel Process. Technol. – volume: 10 year: 2019 ident: bb8 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nat. Commun. – volume: 6 start-page: 3576 year: 2013 end-page: 3583 ident: bb29 article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source publication-title: Energy Environ. Sci. – volume: 9 start-page: 3501 year: 2015 end-page: 3509 ident: bb54 article-title: Nanopatterned textile-based wearable triboelectric nanogenerator publication-title: ACS Nano – volume: 7 start-page: 8266 year: 2013 end-page: 8274 ident: bb93 article-title: Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging publication-title: ACS Nano – volume: 7 start-page: 3713 year: 2013 end-page: 3719 ident: bb110 article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: ACS Nano – volume: 356 start-page: 892 year: 2019 end-page: 898 ident: bb34 article-title: Can we predict trends in tribo-charging of pharmaceutical materials from first principles? publication-title: Powder Technol. – volume: 5 year: 2020 ident: bb7 article-title: Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting publication-title: Adv. Mater. Technol. – volume: 4 start-page: 123 year: 2014 end-page: 131 ident: bb17 article-title: High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment publication-title: Nano Energy – volume: 57 year: 2013 ident: bb66 article-title: Linking the chemistry and physics of electronic charge transfer in insulators: Theory and experiment publication-title: J. Imaging Sci. Technol. – volume: 26 start-page: 3918 year: 2014 end-page: 3925 ident: bb92 article-title: Transparent flexible graphene triboelectric nanogenerators publication-title: Adv. Mater. – volume: 90 start-page: 147 year: 2017 end-page: 152 ident: bb76 article-title: Relationship between triboelectric charge and contact force for two triboelectric layers publication-title: J. Electro. – volume: 12 start-page: 760 year: 2015 end-page: 774 ident: bb23 article-title: Theory of freestanding triboelectric-layer-based nanogenerators publication-title: Nano Energy – volume: 66 start-page: 51 year: 2008 end-page: 57 ident: bb88 article-title: Particle dynamics simulations of triboelectric charging in granular insulator systems publication-title: J. Electro – volume: 128 year: 2020 ident: bb26 article-title: Theoretical modelling of triboelectric nanogenerators (TENGs) publication-title: J. Appl. Phys. – volume: 64 year: 2019 ident: bb12 article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology publication-title: Nano Energy – volume: 53 year: 2009 ident: bb37 article-title: Electron transfer in electrical tribocharging using a quantum chemical approach publication-title: J. Imaging Sci. Technol. – volume: 110 start-page: 14832 year: 2006 end-page: 14841 ident: bb99 article-title: Lithium adsorption on graphite from density functional theory calculations publication-title: J. Phys. Chem. B – volume: 26 start-page: 5037 year: 2014 end-page: 5042 ident: bb79 article-title: Hydrophobic sponge structure-based triboelectric nanogenerator publication-title: Adv. Mater. – volume: 122 year: 2017 ident: bb38 article-title: Triboelectric effect: a new perspective on electron transfer process publication-title: J. Appl. Phys. – volume: 62 start-page: 277 year: 2004 end-page: 290 ident: bb71 article-title: A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties publication-title: J. Electro. – volume: 8 start-page: 219 year: 2014 end-page: 226 ident: bb117 article-title: Triboelectrification induced UV emission from plasmon discharge publication-title: Nano Res. – volume: 49 start-page: 2375 year: 2013 end-page: 2381 ident: bb118 article-title: Experimental modeling of a new triboelectrostatic separation process for mixed granular polymers publication-title: IEEE Trans. Ind. Appl. – volume: 13 start-page: 2916 year: 2013 end-page: 2923 ident: bb95 article-title: Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy publication-title: Nano Lett. – start-page: 155 year: 2016 end-page: 183 ident: bb24 article-title: Theoretical modeling of triboelectric nanogenerators publication-title: Triboelectric Nanogenerators – volume: 11 start-page: 1873 year: 2018 end-page: 1882 ident: bb77 article-title: Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind publication-title: Nano Res. – volume: 304 start-page: 208 year: 2016 end-page: 217 ident: bb82 article-title: DEM-CFD analysis of contact electrification and electrostatic interactions during fluidization publication-title: Powder Technol. – volume: 90 year: 2019 ident: bb65 article-title: Experimental methodology for measuring in-vacuum granular tribocharging publication-title: Rev. Sci. Instrum. – volume: 176 start-page: 447 year: 2014 end-page: 458 ident: bb106 article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives publication-title: Faraday Discuss. – volume: 110 year: 2017 ident: bb74 article-title: Characteristics of triboelectrification on dielectric surfaces contacted with a liquid metal in different gases publication-title: Appl. Phys. Lett. – volume: 12 start-page: 6339 year: 2012 end-page: 6346 ident: bb96 article-title: Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics publication-title: Nano Lett. – volume: 12 start-page: 3109 year: 2012 end-page: 3114 ident: bb55 article-title: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films publication-title: Nano Lett. – volume: 26 start-page: 454 year: 2015 end-page: 461 ident: bb64 article-title: Advanced characterization of particles triboelectrically charged by a two-stage system with vibrations and external electric fields publication-title: Adv. Powder Technol. – volume: 9 start-page: 12562 year: 2015 end-page: 12572 ident: bb107 article-title: Structural optimization of triboelectric nanogenerator for harvesting water wave energy publication-title: ACS Nano – volume: 3 year: 2017 ident: bb18 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. – volume: 258 start-page: 144 year: 2014 end-page: 156 ident: bb80 article-title: Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders publication-title: Powder Technol. – volume: 491 start-page: 58 year: 2015 end-page: 68 ident: bb87 article-title: A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly publication-title: Int. J. Pharm. – volume: 14 start-page: 4987 year: 2018 end-page: 4995 ident: bb49 article-title: Double origin of stochastic granular tribocharging publication-title: Soft Matter – volume: 12 start-page: 4960 year: 2012 end-page: 4965 ident: bb109 article-title: Triboelectric-generator-driven pulse electrodeposition for micropatterning publication-title: Nano Lett. – volume: 6 year: 2015 ident: bb19 article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators publication-title: Nat. Commun. – volume: 2 year: 2016 ident: bb111 article-title: Self-powered textile for Wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors publication-title: Sci. Adv. – volume: 52 start-page: 1808 year: 2016 end-page: 1813 ident: bb121 article-title: Sliding conformal contact tribocharging of polystyrene and polyvinyl chloride publication-title: IEEE Trans. Ind. Appl. – volume: 10 year: 2019 ident: bb72 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. – volume: 14 start-page: 161 year: 2014 end-page: 192 ident: bb30 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy – volume: 26 start-page: 3580 year: 2014 end-page: 3591 ident: bb42 article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy publication-title: Adv. Mater. – volume: 125 year: 2019 ident: bb33 article-title: Contact electrification between randomly rough surfaces with identical materials publication-title: J. Appl. Phys. – volume: 30 year: 2018 ident: bb44 article-title: On the electron-transfer mechanism in the contact-electrification effect publication-title: Adv. Mater. – volume: 21 year: 2015 ident: bb36 article-title: Theoretical study of the correlation between electrostatic hazard and electronic structure for some typical primary explosives publication-title: J. Mol. Model. – volume: 600 start-page: 1 year: 2015 end-page: 53 ident: bb83 article-title: Electrification of particulate entrained fluid flows-mechanisms, applications, and numerical methodology publication-title: Phys. Rep. – volume: 30 year: 2020 ident: bb9 article-title: Reversible conversion between schottky and ohmic contacts for highly sensitive, multifunctional biosensors publication-title: Adv. Funct. Mater. – volume: 60 start-page: 630 year: 2019 end-page: 640 ident: bb28 article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators publication-title: Nano Energy – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: bb108 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 11 start-page: 603 year: 2016 end-page: 617 ident: bb89 article-title: Effects of particle size on the triboelectrification phenomenon in pharmaceutical excipients: experiments and multi-scale modeling publication-title: Asian J. Pharm. Sci. – volume: 11 year: 2020 ident: bb10 article-title: Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors publication-title: Nat. Commun. – volume: 4 year: 2014 ident: bb91 article-title: Theoretical modeling of relative humidity on contact electrification of sand particles publication-title: Sci. Rep. – volume: 13 start-page: 2226 year: 2013 end-page: 2233 ident: bb116 article-title: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism publication-title: Nano Lett. – volume: 49 start-page: 946 year: 2010 end-page: 949 ident: bb22 article-title: Contact electrification between identical materials publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 1168 year: 2013 end-page: 1172 ident: bb53 article-title: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems publication-title: Nano Lett. – volume: 20 year: 2018 ident: bb98 article-title: Design guidelines of stretchable pressure sensors-based triboelectrification publication-title: Adv. Eng. Mater. – year: 2020 ident: bb35 article-title: Electron transfer in the contact-electrification between corrugated 2D materials: A first-principles study publication-title: Nano Energy – volume: 19 start-page: 2533 year: 2001 end-page: 2541 ident: bb61 article-title: Charging of dust particles on surfaces publication-title: J. Vac. Sci. Technol. A – volume: 101 year: 2012 ident: bb46 article-title: Contact charging of silica glass particles in a single collision publication-title: Appl. Phys. Lett. – volume: 5 year: 2020 ident: bb6 article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting publication-title: Adv. Mater. Technol. – volume: 71 start-page: 21 year: 2013 end-page: 27 ident: bb62 article-title: Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas-solid fluidized bed publication-title: J. Electro – volume: 11 year: 2020 ident: bb68 article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer publication-title: Nat. Commun. – volume: 578 start-page: 392 year: 2020 end-page: 396 ident: bb3 article-title: A droplet-based electricity generator with high instantaneous power density publication-title: Nature – volume: 10 year: 2019 ident: bb4 article-title: Symbiotic cardiac pacemaker publication-title: Nat. Commun. – volume: 1 start-page: 480 year: 2017 end-page: 521 ident: bb15 article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator publication-title: Joule – volume: 59 start-page: 380 year: 2019 end-page: 389 ident: bb25 article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current publication-title: Nano Energy – volume: 13 start-page: 277 year: 2020 end-page: 285 ident: bb5 article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy publication-title: Energy Environ. Sci. – volume: 14 start-page: 126 year: 2014 end-page: 138 ident: bb20 article-title: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications publication-title: Nano Energy – volume: 11 start-page: 436 year: 2015 end-page: 462 ident: bb114 article-title: Triboelectric nanogenerators as self-powered active sensors publication-title: Nano Energy – volume: 21 start-page: 611 year: 2018 end-page: 630 ident: bb104 article-title: Piezoelectric properties in two-dimensional materials: simulations and experiments publication-title: Mater. Today – volume: 10 year: 2020 ident: bb1 article-title: Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution publication-title: Adv. Energy Mater. – volume: 6 year: 2016 ident: bb58 article-title: Dynamic nano-triboelectrification using torsional resonance mode atomic force microscopy publication-title: Sci. Rep. – volume: 58 start-page: 17980 year: 2019 end-page: 17990 ident: bb90 article-title: 110th anniversary: effect of system size on boundary-driven contact charging in particulate flows publication-title: Ind. Eng. Chem. Res. – volume: 13 start-page: 2282 year: 2013 end-page: 2289 ident: bb2 article-title: Linear-grating triboelectric generator based on sliding electrification publication-title: Nano Lett. – volume: 68 year: 2020 ident: bb40 article-title: On the first principle theory of nanogenerators from Maxwell’s equations publication-title: Nano Energy – volume: 8 start-page: 481 year: 2020 end-page: 506 ident: bb41 article-title: Triboelectric nanogenerators: fundamental physics and potential applications publication-title: Friction – volume: 248 start-page: 34 year: 2013 end-page: 43 ident: bb81 article-title: Numerical analysis of contact electrification using DEM-CFD publication-title: Powder Technol. – volume: 10 start-page: 3001 year: 2010 end-page: 3005 ident: bb102 article-title: Properties of fluorinated graphene films publication-title: Nano Lett. – volume: 29 year: 2020 ident: bb60 article-title: Hierarchically structured ZnO nanorod-carbon fiber composites as ultrathin, flexible, highly sensitive triboelectric sensors publication-title: Smart Mater. Struct. – volume: 6 start-page: 2877 year: 2010 end-page: 2884 ident: bb101 article-title: Fluorographene: a two-dimensional counterpart of Teflon publication-title: Small – volume: 7 start-page: 9533 year: 2013 end-page: 9557 ident: bb57 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano – volume: 7 start-page: 9461 year: 2013 end-page: 9468 ident: bb16 article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system publication-title: ACS Nano – volume: 96 start-page: 10 year: 2018 end-page: 15 ident: bb45 article-title: Atomistic field theory for contact electrification of dielectrics publication-title: J. Electro. – volume: 11 start-page: 15 year: 2013 end-page: 21 ident: bb47 article-title: The analysis of electrification in windblown sand publication-title: Aeolian Res. – volume: 49 start-page: 245 year: 2000 end-page: 256 ident: bb48 article-title: Investigation of a test methodology for triboelectrification publication-title: J. Electro – volume: 9 year: 2019 ident: bb69 article-title: Triboelectrification of two-dimensional chemical vapor deposited WS2 at nanoscale publication-title: Sci. Rep. – volume: 25 start-page: 6184 year: 2013 end-page: 6193 ident: bb94 article-title: Theory of sliding-mode triboelectric nanogenerators publication-title: Adv. Mater. – volume: 76 year: 2007 ident: bb100 article-title: Ab initio study of K adsorption on graphene and carbon nanotubes: role of long-range ionic forces publication-title: Phys. Rev. B Condens. Matter Mater. Phys. – volume: 57 start-page: 680 year: 2019 end-page: 691 ident: bb70 article-title: Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials publication-title: Nano Energy – volume: 52 start-page: 517 year: 2018 end-page: 523 ident: bb31 article-title: Theory of contact electrification: optical transitions in two-level systems publication-title: Nano Energy – volume: 14 start-page: 7031 year: 2014 end-page: 7038 ident: bb50 article-title: Topographically-designed triboelectric nanogenerator via block copolymer self-assembly publication-title: Nano Lett. – volume: 105 start-page: 1467 year: 2016 end-page: 1477 ident: bb85 article-title: Quantification of tribocharging of pharmaceutical powders in V-blenders: experiments, multiscale modeling, and simulations publication-title: J. Pharm. Sci. – volume: 50 start-page: 282 year: 2006 end-page: 287 ident: bb75 article-title: A bidirectional acid-base charging model for triboelectrification: part 1 theory publication-title: J. Imaging Sci. Technol. – volume: 20 start-page: 74 year: 2017 end-page: 82 ident: bb39 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today – volume: 3 start-page: 465 year: 2019 end-page: 476 ident: bb105 article-title: Long-standing and unresolved issues in triboelectric charging publication-title: Nat. Rev. Chem. – volume: 323 start-page: 610 year: 2009 ident: 10.1016/j.nanoen.2020.105501_bb103 article-title: Control of graphene’s properties by reversible hydrogenation: evidence for graphane publication-title: Science doi: 10.1126/science.1167130 – volume: 27 start-page: 2472 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb56 article-title: A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics publication-title: Adv. Mater. doi: 10.1002/adma.201500311 – volume: 12 start-page: 4960 year: 2012 ident: 10.1016/j.nanoen.2020.105501_bb109 article-title: Triboelectric-generator-driven pulse electrodeposition for micropatterning publication-title: Nano Lett. doi: 10.1021/nl302560k – volume: 19 start-page: 2533 year: 2001 ident: 10.1016/j.nanoen.2020.105501_bb61 article-title: Charging of dust particles on surfaces publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.1392398 – volume: 126 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb32 article-title: The electronic behaviors and charge transfer mechanism at the interface of metals: a first-principles perspective publication-title: J. Appl. Phys. doi: 10.1063/1.5124413 – volume: 4 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb91 article-title: Theoretical modeling of relative humidity on contact electrification of sand particles publication-title: Sci. Rep. doi: 10.1038/srep04399 – volume: 258 start-page: 144 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb80 article-title: Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.03.020 – volume: 12 start-page: 6339 year: 2012 ident: 10.1016/j.nanoen.2020.105501_bb96 article-title: Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics publication-title: Nano Lett. doi: 10.1021/nl303573d – volume: 105 start-page: 1467 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb85 article-title: Quantification of tribocharging of pharmaceutical powders in V-blenders: experiments, multiscale modeling, and simulations publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2015.12.024 – volume: 49 start-page: 2375 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb118 article-title: Experimental modeling of a new triboelectrostatic separation process for mixed granular polymers publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2013.2263113 – volume: 58 start-page: 17980 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb90 article-title: 110th anniversary: effect of system size on boundary-driven contact charging in particulate flows publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b03437 – volume: 131 start-page: 317 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb119 article-title: Dry separation on coal-silica mixture using rotary triboelectrostatic separator publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2014.11.032 – volume: 28 start-page: 4373 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb13 article-title: Monitoring of vital signs with flexible and wearable medical devices publication-title: Adv. Mater. doi: 10.1002/adma.201504366 – volume: 26 start-page: 454 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb64 article-title: Advanced characterization of particles triboelectrically charged by a two-stage system with vibrations and external electric fields publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2014.11.021 – volume: 8 start-page: 481 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb41 article-title: Triboelectric nanogenerators: fundamental physics and potential applications publication-title: Friction doi: 10.1007/s40544-020-0390-3 – volume: 13 start-page: 2226 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb116 article-title: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism publication-title: Nano Lett. doi: 10.1021/nl400738p – volume: 12 start-page: 3109 year: 2012 ident: 10.1016/j.nanoen.2020.105501_bb55 article-title: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films publication-title: Nano Lett. doi: 10.1021/nl300988z – volume: 7 start-page: 9213 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb113 article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system publication-title: ACS Nano doi: 10.1021/nn403838y – volume: 52 start-page: 1808 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb121 article-title: Sliding conformal contact tribocharging of polystyrene and polyvinyl chloride publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2015.2493065 – volume: 578 start-page: 392 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb3 article-title: A droplet-based electricity generator with high instantaneous power density publication-title: Nature doi: 10.1038/s41586-020-1985-6 – volume: 3 start-page: 465 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb105 article-title: Long-standing and unresolved issues in triboelectric charging publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0115-1 – volume: 176 start-page: 447 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb106 article-title: Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives publication-title: Faraday Discuss. doi: 10.1039/C4FD00159A – volume: 52 start-page: 1246 year: 2017 ident: 10.1016/j.nanoen.2020.105501_bb120 article-title: Modified tribo-charging device for the electrostatic separation of plastics from granular industrial wastes publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2017.1286354 – volume: 25 start-page: 6184 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb94 article-title: Theory of sliding-mode triboelectric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201302808 – volume: 5 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb6 article-title: Bionic-fin-structured triboelectric nanogenerators for undersea energy harvesting publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000531 – volume: 59 start-page: 380 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb25 article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.051 – volume: 10 start-page: 6131 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb52 article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b02076 – volume: 1 start-page: 328 year: 2012 ident: 10.1016/j.nanoen.2020.105501_bb108 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 71 start-page: 21 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb62 article-title: Investigation of electrostatic charge distribution within the reactor wall fouling and bulk regions of a gas-solid fluidized bed publication-title: J. Electro doi: 10.1016/j.elstat.2012.11.002 – volume: 8 start-page: 18519 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb51 article-title: Control of triboelectrification by engineering surface dipole and surface electronic state publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02802 – volume: 248 start-page: 34 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb81 article-title: Numerical analysis of contact electrification using DEM-CFD publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.04.014 – volume: 11 start-page: 603 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb89 article-title: Effects of particle size on the triboelectrification phenomenon in pharmaceutical excipients: experiments and multi-scale modeling publication-title: Asian J. Pharm. Sci. doi: 10.1016/j.ajps.2016.04.006 – volume: 77 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb11 article-title: β-Phase-Preferential blow-spun fabrics for wearable triboelectric nanogenerators and textile interactive interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105262 – volume: 90 start-page: 147 year: 2017 ident: 10.1016/j.nanoen.2020.105501_bb76 article-title: Relationship between triboelectric charge and contact force for two triboelectric layers publication-title: J. Electro. doi: 10.1016/j.elstat.2017.11.001 – volume: 110 start-page: 14832 year: 2006 ident: 10.1016/j.nanoen.2020.105501_bb99 article-title: Lithium adsorption on graphite from density functional theory calculations publication-title: J. Phys. Chem. B doi: 10.1021/jp062126+ – volume: 68 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb40 article-title: On the first principle theory of nanogenerators from Maxwell’s equations publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104272 – volume: 9 start-page: 3501 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb54 article-title: Nanopatterned textile-based wearable triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/nn507221f – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb9 article-title: Reversible conversion between schottky and ohmic contacts for highly sensitive, multifunctional biosensors publication-title: Adv. Funct. Mater. – volume: 13 start-page: 847 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb78 article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator publication-title: Nano Lett. doi: 10.1021/nl4001053 – volume: 7 start-page: 9461 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb16 article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system publication-title: ACS Nano doi: 10.1021/nn4043157 – volume: 8 start-page: 2250 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb21 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 11 start-page: 436 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb114 article-title: Triboelectric nanogenerators as self-powered active sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.034 – volume: 12 start-page: 760 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb23 article-title: Theory of freestanding triboelectric-layer-based nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.013 – volume: 6 start-page: 3576 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb29 article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42571a – volume: 90 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb65 article-title: Experimental methodology for measuring in-vacuum granular tribocharging publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5111983 – year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb35 article-title: Electron transfer in the contact-electrification between corrugated 2D materials: A first-principles study publication-title: Nano Energy – volume: 13 start-page: 1168 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb53 article-title: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems publication-title: Nano Lett. doi: 10.1021/nl3045684 – volume: 356 start-page: 892 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb34 article-title: Can we predict trends in tribo-charging of pharmaceutical materials from first principles? publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.09.004 – volume: 57 start-page: 680 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb70 article-title: Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.081 – volume: 10 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb72 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 247 start-page: 206 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb97 article-title: A flexible large-area triboelectric generator by low-cost roll-to-roll process for location-based monitoring publication-title: Sens. Actuators, A Phys. doi: 10.1016/j.sna.2016.05.051 – volume: 3 year: 2017 ident: 10.1016/j.nanoen.2020.105501_bb18 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. doi: 10.1126/sciadv.1700015 – volume: 122 year: 2017 ident: 10.1016/j.nanoen.2020.105501_bb38 article-title: Triboelectric effect: a new perspective on electron transfer process publication-title: J. Appl. Phys. doi: 10.1063/1.5006634 – volume: 26 start-page: 5037 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb79 article-title: Hydrophobic sponge structure-based triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201401184 – volume: 11 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb10 article-title: Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors publication-title: Nat. Commun. – volume: 14 start-page: 7031 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb50 article-title: Topographically-designed triboelectric nanogenerator via block copolymer self-assembly publication-title: Nano Lett. doi: 10.1021/nl503402c – volume: 66 start-page: 51 year: 2008 ident: 10.1016/j.nanoen.2020.105501_bb88 article-title: Particle dynamics simulations of triboelectric charging in granular insulator systems publication-title: J. Electro doi: 10.1016/j.elstat.2007.08.005 – volume: 11 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb68 article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer publication-title: Nat. Commun. – volume: 9 start-page: 12562 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb107 article-title: Structural optimization of triboelectric nanogenerator for harvesting water wave energy publication-title: ACS Nano doi: 10.1021/acsnano.5b06372 – volume: 6 start-page: 2877 year: 2010 ident: 10.1016/j.nanoen.2020.105501_bb101 article-title: Fluorographene: a two-dimensional counterpart of Teflon publication-title: Small doi: 10.1002/smll.201001555 – volume: 9 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb69 article-title: Triboelectrification of two-dimensional chemical vapor deposited WS2 at nanoscale publication-title: Sci. Rep. – volume: 110 year: 2017 ident: 10.1016/j.nanoen.2020.105501_bb74 article-title: Characteristics of triboelectrification on dielectric surfaces contacted with a liquid metal in different gases publication-title: Appl. Phys. Lett. doi: 10.1063/1.4983353 – start-page: 155 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb24 article-title: Theoretical modeling of triboelectric nanogenerators – volume: 9 start-page: 3324 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb14 article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy publication-title: ACS Nano doi: 10.1021/acsnano.5b00534 – volume: 1 start-page: 480 year: 2017 ident: 10.1016/j.nanoen.2020.105501_bb15 article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator publication-title: Joule doi: 10.1016/j.joule.2017.09.004 – volume: 8 start-page: 2649 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb115 article-title: Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing publication-title: ACS Nano doi: 10.1021/nn4063616 – volume: 107 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb67 article-title: Surface modifications with Lissajous trajectories using atomic force microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.4931087 – volume: 125 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb33 article-title: Contact electrification between randomly rough surfaces with identical materials publication-title: J. Appl. Phys. doi: 10.1063/1.5089769 – volume: 7 start-page: 8266 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb93 article-title: Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging publication-title: ACS Nano doi: 10.1021/nn4037514 – volume: 600 start-page: 1 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb83 article-title: Electrification of particulate entrained fluid flows-mechanisms, applications, and numerical methodology publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.10.001 – volume: 4 start-page: 123 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb17 article-title: High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.016 – volume: 57 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb66 article-title: Linking the chemistry and physics of electronic charge transfer in insulators: Theory and experiment publication-title: J. Imaging Sci. Technol. doi: 10.2352/J.ImagingSci.Technol.2013.57.3.030401 – volume: 96 start-page: 10 year: 2018 ident: 10.1016/j.nanoen.2020.105501_bb45 article-title: Atomistic field theory for contact electrification of dielectrics publication-title: J. Electro. doi: 10.1016/j.elstat.2018.09.001 – volume: 304 start-page: 208 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb82 article-title: DEM-CFD analysis of contact electrification and electrostatic interactions during fluidization publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.08.030 – volume: 20 year: 2018 ident: 10.1016/j.nanoen.2020.105501_bb98 article-title: Design guidelines of stretchable pressure sensors-based triboelectrification publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201700997 – volume: 7 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb27 article-title: Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode publication-title: Appl. Phys. Rev. doi: 10.1063/1.5133023 – volume: 26 start-page: 3918 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb92 article-title: Transparent flexible graphene triboelectric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201400172 – volume: 10 start-page: 3001 year: 2010 ident: 10.1016/j.nanoen.2020.105501_bb102 article-title: Properties of fluorinated graphene films publication-title: Nano Lett. doi: 10.1021/nl101437p – volume: 10 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb4 article-title: Symbiotic cardiac pacemaker publication-title: Nat. Commun. doi: 10.1038/s41467-019-09851-1 – volume: 5 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb7 article-title: Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000454 – volume: 10 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb1 article-title: Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution publication-title: Adv. Energy Mater. – volume: 285 start-page: 110 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb86 article-title: Numerical analysis of contact electrification of non-spherical particles in a rotating drum publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.05.050 – volume: 53 year: 2009 ident: 10.1016/j.nanoen.2020.105501_bb37 article-title: Electron transfer in electrical tribocharging using a quantum chemical approach publication-title: J. Imaging Sci. Technol. doi: 10.2352/J.ImagingSci.Technol.2009.53.4.040503 – volume: 6 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb19 article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators publication-title: Nat. Commun. doi: 10.1038/ncomms9376 – volume: 11 start-page: 15 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb47 article-title: The analysis of electrification in windblown sand publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2013.07.004 – volume: 14 start-page: 161 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb30 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 128 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb26 article-title: Theoretical modelling of triboelectric nanogenerators (TENGs) publication-title: J. Appl. Phys. doi: 10.1063/5.0020961 – volume: 60 start-page: 630 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb28 article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.072 – volume: 13 start-page: 277 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb5 article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03258D – volume: 52 start-page: 517 year: 2018 ident: 10.1016/j.nanoen.2020.105501_bb31 article-title: Theory of contact electrification: optical transitions in two-level systems publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.015 – volume: 20 start-page: 74 year: 2017 ident: 10.1016/j.nanoen.2020.105501_bb39 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 101 year: 2012 ident: 10.1016/j.nanoen.2020.105501_bb46 article-title: Contact charging of silica glass particles in a single collision publication-title: Appl. Phys. Lett. doi: 10.1063/1.4752458 – volume: 62 start-page: 277 year: 2004 ident: 10.1016/j.nanoen.2020.105501_bb71 article-title: A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties publication-title: J. Electro. doi: 10.1016/j.elstat.2004.05.005 – volume: 2 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb111 article-title: Self-powered textile for Wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors publication-title: Sci. Adv. doi: 10.1126/sciadv.1600097 – volume: 7 start-page: 3713 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb110 article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: ACS Nano doi: 10.1021/nn4007708 – volume: 6 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb58 article-title: Dynamic nano-triboelectrification using torsional resonance mode atomic force microscopy publication-title: Sci. Rep. – volume: 76 year: 2007 ident: 10.1016/j.nanoen.2020.105501_bb100 article-title: Ab initio study of K adsorption on graphene and carbon nanotubes: role of long-range ionic forces publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.235431 – volume: 26 start-page: 3580 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb42 article-title: Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy publication-title: Adv. Mater. doi: 10.1002/adma.201400207 – volume: 13 start-page: 2916 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb95 article-title: Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy publication-title: Nano Lett. doi: 10.1021/nl4013002 – volume: 64 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb12 article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103920 – volume: 21 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb36 article-title: Theoretical study of the correlation between electrostatic hazard and electronic structure for some typical primary explosives publication-title: J. Mol. Model. doi: 10.1007/s00894-015-2746-6 – volume: 21 start-page: 611 year: 2018 ident: 10.1016/j.nanoen.2020.105501_bb104 article-title: Piezoelectric properties in two-dimensional materials: simulations and experiments publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.031 – volume: 30 year: 2018 ident: 10.1016/j.nanoen.2020.105501_bb44 article-title: On the electron-transfer mechanism in the contact-electrification effect publication-title: Adv. Mater. – volume: 121 start-page: 8209 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb63 article-title: The effects of dynamics on the triboelectrification of volcanic ash publication-title: J. Geophys. Res. doi: 10.1002/2015JD024275 – volume: 66 start-page: 32 year: 2008 ident: 10.1016/j.nanoen.2020.105501_bb84 article-title: Calculating the trajectories of triboelectrically charged particles using discrete element modeling (DEM) publication-title: J. Electro. doi: 10.1016/j.elstat.2007.08.007 – volume: 30 start-page: 34 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb43 article-title: On the origin of contact-electrification publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.016 – volume: 8 start-page: 219 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb117 article-title: Triboelectrification induced UV emission from plasmon discharge publication-title: Nano Res. doi: 10.1007/s12274-014-0634-5 – volume: 50 start-page: 282 year: 2006 ident: 10.1016/j.nanoen.2020.105501_bb75 article-title: A bidirectional acid-base charging model for triboelectrification: part 1 theory publication-title: J. Imaging Sci. Technol. doi: 10.2352/J.ImagingSci.Technol.(2006)50:3(282) – volume: 49 start-page: 245 year: 2000 ident: 10.1016/j.nanoen.2020.105501_bb48 article-title: Investigation of a test methodology for triboelectrification publication-title: J. Electro doi: 10.1016/S0304-3886(00)00013-9 – volume: 14 start-page: 4987 year: 2018 ident: 10.1016/j.nanoen.2020.105501_bb49 article-title: Double origin of stochastic granular tribocharging publication-title: Soft Matter doi: 10.1039/C8SM00603B – volume: 29 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb59 article-title: Expanding the versatility of poly(dimethylsiloxane) through polymeric modification: an effective approach for improving triboelectric energy harvesting performance publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab6ba6 – volume: 7 start-page: 2 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb73 article-title: Fundamental theories and basic principles of triboelectric effect: a review publication-title: Friction doi: 10.1007/s40544-018-0217-7 – volume: 28 start-page: 98 year: 2016 ident: 10.1016/j.nanoen.2020.105501_bb112 article-title: Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201504403 – volume: 29 year: 2020 ident: 10.1016/j.nanoen.2020.105501_bb60 article-title: Hierarchically structured ZnO nanorod-carbon fiber composites as ultrathin, flexible, highly sensitive triboelectric sensors publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab5b5f – volume: 13 start-page: 2282 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb2 article-title: Linear-grating triboelectric generator based on sliding electrification publication-title: Nano Lett. doi: 10.1021/nl4008985 – volume: 7 start-page: 9533 year: 2013 ident: 10.1016/j.nanoen.2020.105501_bb57 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 14 start-page: 126 year: 2014 ident: 10.1016/j.nanoen.2020.105501_bb20 article-title: Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.050 – volume: 11 start-page: 1873 year: 2018 ident: 10.1016/j.nanoen.2020.105501_bb77 article-title: Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind publication-title: Nano Res. doi: 10.1007/s12274-017-1805-y – volume: 491 start-page: 58 year: 2015 ident: 10.1016/j.nanoen.2020.105501_bb87 article-title: A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.05.081 – volume: 49 start-page: 946 year: 2010 ident: 10.1016/j.nanoen.2020.105501_bb22 article-title: Contact electrification between identical materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200905281 – volume: 10 year: 2019 ident: 10.1016/j.nanoen.2020.105501_bb8 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nat. Commun. doi: 10.1038/s41467-019-10433-4 |
SSID | ssj0000651712 |
Score | 2.4227488 |
SecondaryResourceType | review_article |
Snippet | Contact electrification (CE) is an ancient phenomenon in human history, which has been recorded more than 2600 years. Since the invention of triboelectric... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105501 |
SubjectTerms | Contact electrification Research methods TENGs Triboelectric effect |
Title | Research methods of contact electrification: Theoretical simulation and experiment |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.105501 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELYqWGBA_IryU3lgNW0cO3bYqoqqgOjSVuoWOY4tFUFa0bDyLDwLT4YvcdoiJJCYEkW-KDqf7y72d_chdKVTl0S7ZUOkUh0CpZ3uLjDERROpWcTiSEJx8uMwGkzY_ZRPG6hX18IArNL7_sqnl97aP2l7bbYXs1l7RN2_C5WcU-huKTj4YcYEWPn1e7DaZ3EhNhDloSeMJyBQV9CVMK9c5XMDjVBpyXnLPTvMjwi1EXX6-2jPp4u4W33RAWqY_BDtbjQRPEKjGjyHKzbo5efH3GKAoCtd4IrmBvBA5RTc4PG6chEvZy-evQurPMPrbv_HaNK_HfcGxFMlEB0KWpCMRiK0oUxZJmOdWclgYWmb8kiFNM1C4_I0K41IO4ypyLgYFGoaWXflVLk05QRt5fPcnCIcZ5q5mdJSSOPeYuMMCuaD2EVTZhXnTRTW6km07yMOdBbPSQ0Ye0oqpSag1KRSahORldSi6qPxx3hRaz75Zg-Jc_W_Sp79W_Ic7VBArJQbLBdoq3h9M5cu5SjSVmlTLbTdvXsYDL8AEk3WeA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB1Ccmh7KF1puurQq0kiS7bcWwgNSbNckkBuQpYlSGmd0Lj_02_pl1Wy5SSl0EJPNsZjzEiaGctv3gO4l7Epos2y8ZgQTc-2dpqzlvJMNmGSBCQKmG1OHo2D3ow8zem8Ap2yF8bCKl3sL2J6Hq3dlYbzZmO1WDQm2Hy7YEYptuyWITVxuGbZqWgVau3-oDfebLWYLNsK8_-e1sSzNmUTXY70SkW6VJYLFeeyt9QJxPxIUjuJp3sEh65iRO3ipY6hotITONjhETyFSYmfQ4Ug9PrzY6mRRaELmaFC6cZCgvJReEDTbfMiWi9enYAXEmmCtoT_ZzDrPk47Pc-pJXjSD3HmJTgIfe2zmCQskolmxK4tqWMaCB_Hia9MqaaZCuMmISJQJg35EgfaHCkWplI5h2q6TNUFoCiRxAyWZCFT5ik6SmzPfCsyCZVoQWkd_NI9XDoqcato8cJLzNgzL5zKrVN54dQ6eBurVUGl8cf9Yel5_m1KcBPtf7W8_LflHez1pqMhH_bHgyvYxxbAku-3XEM1e3tXN6YCyeJbN8O-AHgZ2Sk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+methods%C2%A0of+contact+electrification%3A+Theoretical+simulation+and+experiment&rft.jtitle=Nano+energy&rft.au=Zhang%2C+Zhinan&rft.au=Yin%2C+Nian&rft.au=Wu%2C+Zishuai&rft.au=Pan%2C+Shuaihang&rft.date=2021-01-01&rft.issn=2211-2855&rft.volume=79&rft.spage=105501&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2020_105501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |