Modeling Human Cardiac Thin Filament Structures
Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves t...
Saved in:
Published in | Frontiers in physiology Vol. 13; p. 932333 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
22.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including
de novo
structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function. |
---|---|
AbstractList | Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function. Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function. |
Author | Rynkiewicz, Michael J. Pavadai, Elumalai Lehman, William |
AuthorAffiliation | Department of Physiology and Biophysics , Boston University School of Medicine , Boston , MA , United States |
AuthorAffiliation_xml | – name: Department of Physiology and Biophysics , Boston University School of Medicine , Boston , MA , United States |
Author_xml | – sequence: 1 givenname: Michael J. surname: Rynkiewicz fullname: Rynkiewicz, Michael J. – sequence: 2 givenname: Elumalai surname: Pavadai fullname: Pavadai, Elumalai – sequence: 3 givenname: William surname: Lehman fullname: Lehman, William |
BookMark | eNpVkU1P3DAQhq2KCujCD-gtRy672DOxY1-Q0AoKElUPpVJvlr-ya5TEi50g8e-bZREqnoOtmdEzfuf9Ro6GNARCvjO6QpTqst1tX8sKKMBKISDiF3LKhKiXtIa_R_-9T8h5KU90PjUFStkxOUEuGSDQU3L5M_nQxWFT3U29Gaq1yT4aVz1u41Ddxs70YRir32Oe3DjlUM7I19Z0JZy_3wvy5_bmcX23fPj14359_bB02MC49ACtgsZiw7nnXgoTHBhpKXe2ZtIK4ZUHbIQTwKVEyyyq1nnZcqi5qHFB7g9cn8yT3uXYm_yqk4n6LZHyRps8RtcFbZ1hiEoqbEM9h629DxRaKuT8DdXMrKsDazfZPng3K8qm-wT9XBniVm_Si1bAGzbvdkEu3gE5PU-hjLqPxYWuM0NIU9EgpKSzCrVvZYdWl1MpObQfYxjVe9_0m29675s--Ib_AGoki_k |
CitedBy_id | crossref_primary_10_1016_j_jmb_2024_168498 crossref_primary_10_3389_fcvm_2022_1060716 crossref_primary_10_1007_s10974_023_09653_5 crossref_primary_10_1016_j_jmccpl_2022_100025 crossref_primary_10_3390_biomedicines12050999 crossref_primary_10_1085_jgp_202413538 crossref_primary_10_1085_jgp_202313421 crossref_primary_10_1085_jgp_202313387 crossref_primary_10_3390_ijms24054792 |
Cites_doi | 10.1016/j.bpj.2010.12.3697 10.1074/jbc.ra120.014713 10.1016/j.bpj.2014.06.034 10.1007/s10974-015-9419-z 10.1016/j.cell.2021.02.047 10.1016/s0006-3495(97)78206-7 10.1085/jgp.202012640 10.1074/jbc.ra119.012014 10.1016/s0006-3495(93)81110-x 10.1007/s10974-008-9157-6 10.1093/cvr/cvt071 10.1021/bi200506k 10.1007/s00424-019-02269-0 10.1016/0022-2836(82)90540-x 10.1016/j.str.2008.03.005 10.1006/jmbi.1996.0800 10.1007/978-0-387-85766-4_5 10.1016/j.bpj.2018.08.017 10.1002/cphy.c150030 10.1002/(sici)1097-0134(20000101)38:1<49:aid-prot6>3.0.co;2-b 10.1016/j.jmb.2009.10.060 10.1006/jmbi.1994.0070 10.1016/j.str.2020.09.013 10.1016/j.bpj.2020.05.017 10.1021/bi100349a 10.1074/jbc.m201768200 10.1016/j.bbrc.2021.03.010 10.1016/j.abb.2022.109282 10.1016/j.bpj.2020.11.014 10.1126/science.abn1934 10.1016/j.bpj.2020.07.006 10.1002/jcc.20084 10.1107/s0907444909042073 10.1016/j.jmb.2006.08.033 10.1016/s0006-3495(01)75924-3 10.1016/j.abb.2010.06.001 10.1073/pnas.1710354114 10.1038/nature01780 10.1006/jsbi.2002.4454 10.1152/physrev.2000.80.2.853 10.1073/pnas.0801950105 10.1073/pnas.2024288118 10.1038/s41467-019-14008-1 10.1038/nprot.2016.169 10.1016/j.bpj.2019.11.3393 10.1021/acs.jpclett.8b00958 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Rynkiewicz, Pavadai and Lehman. 2022 Rynkiewicz, Pavadai and Lehman |
Copyright_xml | – notice: Copyright © 2022 Rynkiewicz, Pavadai and Lehman. 2022 Rynkiewicz, Pavadai and Lehman |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fphys.2022.932333 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Rynkiewicz et al |
EISSN | 1664-042X |
EndPage | 932333 |
ExternalDocumentID | oai_doaj_org_article_bca1339893fe4e4eb4dde02f068d2297 10_3389_fphys_2022_932333 |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE IAO IEA IHR IHW ISR KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c372t-d22f927b3755d5d86aec2a8b05cb418b66d9d2376c625883b1b39fcd8f5245643 |
IEDL.DBID | RPM |
ISSN | 1664-042X |
IngestDate | Tue Oct 22 15:16:30 EDT 2024 Tue Sep 17 21:23:01 EDT 2024 Sat Oct 05 05:27:30 EDT 2024 Thu Nov 21 22:31:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-d22f927b3755d5d86aec2a8b05cb418b66d9d2376c625883b1b39fcd8f5245643 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 Edited by: Shin’Ichi Ishiwata, Waseda University, Japan Reviewed by: Murali Chandra, Washington State University, United States Neil Kad, University of Kent, United Kingdom This article was submitted to Striated Muscle Physiology, a section of the journal Frontiers in Physiology |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257132/ |
PMID | 35812320 |
PQID | 2688088392 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bca1339893fe4e4eb4dde02f068d2297 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9257132 proquest_miscellaneous_2688088392 crossref_primary_10_3389_fphys_2022_932333 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-22 |
PublicationDateYYYYMMDD | 2022-06-22 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in physiology |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Cao (B2) 2020; 295 Memo (B23) 2013; 99 Tobacman (B38) 2002; 277 Kozakov (B14) 2017; 12 Li (B19) 2011; 100 Sewanan (B35) 2021; 153 Jin (B13) 2010; 500 Palm (B26) 2001; 81 Chen (B3) 2010; 66 Doran (B5) 2020; 119 Lehman (B16) 2021; 551 Manning (B21) 2011; 50 Williams (B45) 2018; 9 Orzechowski (B25) 2014; 107 Hitchcock-DeGregori (B11) 2008; 644 Gordon (B9) 2000; 80 Whitby (B44) 2000; 38 Takeda (B37) 2003; 424 Li (B18) 2010; 395 Risi (B33); 29 Pavadai (B29) 2022; 725 Lehman (B15) 2018; 115 Vibert (B41) 1997; 266 Rynkiewicz (B34) 2015; 36 Gangadharan (B8) 2017; 114 Lorenz (B20) 1995; 246 Pavadai (B28) 2020; 119 Deranek (B4) 2019; 471 Wang (B43) 2021; 184 Racca (B31) 2020; 295 Murakami (B24) 2008; 105 McKillop (B22) 1993; 65 Risi (B32); 118 Trabuco (B40) 2008; 16 Yamada (B46) 2020; 11 Cabral-Lilly (B1) 1997; 73 Frye (B7) 2010; 49 Tobacman (B39) 2021; 120 Flicker (B6) 1982; 162 Greenfield (B10) 2006; 364 Strelkov (B36) 2002; 137 Wang (B42) 2022; 375 Pavadai (B27) 2019; 118 Holmes (B12) 2008; 29 Pettersen (B30) 2004; 25 Lehman (B17) 2016; 6 |
References_xml | – volume: 100 start-page: 1005 year: 2011 ident: B19 article-title: Tropomyosin Position on F-Actin Revealed by EM Reconstruction and Computational Chemistry publication-title: Biophysical J. doi: 10.1016/j.bpj.2010.12.3697 contributor: fullname: Li – volume: 295 start-page: 17128 year: 2020 ident: B31 article-title: M8R Tropomyosin Mutation Disrupts Actin Binding and Filament Regulation: The Beginning Affects the Middle and End publication-title: J. Biol. Chem. doi: 10.1074/jbc.ra120.014713 contributor: fullname: Racca – volume: 107 start-page: 694 year: 2014 ident: B25 article-title: An Atomic Model of the Tropomyosin Cable on F-Actin publication-title: Biophysical J. doi: 10.1016/j.bpj.2014.06.034 contributor: fullname: Orzechowski – volume: 36 start-page: 525 year: 2015 ident: B34 article-title: Electrostatic Interaction Map Reveals a New Binding Position for Tropomyosin on F-Actin publication-title: J. Muscle Res. Cell Motil. doi: 10.1007/s10974-015-9419-z contributor: fullname: Rynkiewicz – volume: 184 start-page: 2135 year: 2021 ident: B43 article-title: The Molecular Basis for Sarcomere Organization in Vertebrate Skeletal Muscle publication-title: Cell doi: 10.1016/j.cell.2021.02.047 contributor: fullname: Wang – volume: 73 start-page: 1763 year: 1997 ident: B1 article-title: Molecular Polarity in Tropomyosin-Troponin T Co-crystals publication-title: Biophysical J. doi: 10.1016/s0006-3495(97)78206-7 contributor: fullname: Cabral-Lilly – volume: 153 start-page: e202012640 year: 2021 ident: B35 article-title: Loss of Crossbridge Inhibition Drives Pathological Cardiac Hypertrophy in Patients Harboring the TPM1 E192K Mutation publication-title: J. Gen. Physiol. doi: 10.1085/jgp.202012640 contributor: fullname: Sewanan – volume: 295 start-page: 3794 year: 2020 ident: B2 article-title: The Glutamic Acid-Rich-Long C-Terminal Extension of Troponin T Has a Critical Role in Insect Muscle Functions publication-title: J. Biol. Chem. doi: 10.1074/jbc.ra119.012014 contributor: fullname: Cao – volume: 65 start-page: 693 year: 1993 ident: B22 article-title: Regulation of the Interaction between Actin and Myosin Subfragment 1: Evidence for Three States of the Thin Filament publication-title: Biophysical J. doi: 10.1016/s0006-3495(93)81110-x contributor: fullname: McKillop – volume: 29 start-page: 213 year: 2008 ident: B12 article-title: Gestalt-binding of Tropomyosin to Actin Filaments publication-title: J. Muscle Res. Cell Motil. doi: 10.1007/s10974-008-9157-6 contributor: fullname: Holmes – volume: 99 start-page: 65 year: 2013 ident: B23 article-title: Familial Dilated Cardiomyopathy Mutations Uncouple Troponin I Phosphorylation from Changes in Myofibrillar Ca2+ Sensitivity publication-title: Cardiovasc Res. doi: 10.1093/cvr/cvt071 contributor: fullname: Memo – volume: 50 start-page: 7405 year: 2011 ident: B21 article-title: A Model of Calcium Activation of the Cardiac Thin Filament publication-title: Biochemistry doi: 10.1021/bi200506k contributor: fullname: Manning – volume: 471 start-page: 661 year: 2019 ident: B4 article-title: Moving beyond Simple Answers to Complex Disorders in Sarcomeric Cardiomyopathies: the Role of Integrated Systems publication-title: Pflugers Arch. - Eur. J. Physiol. doi: 10.1007/s00424-019-02269-0 contributor: fullname: Deranek – volume: 162 start-page: 495 year: 1982 ident: B6 article-title: Troponin and its Interactions with Tropomyosin publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(82)90540-x contributor: fullname: Flicker – volume: 16 start-page: 673 year: 2008 ident: B40 article-title: Flexible Fitting of Atomic Structures into Electron Microscopy Maps Using Molecular Dynamics publication-title: Structure doi: 10.1016/j.str.2008.03.005 contributor: fullname: Trabuco – volume: 266 start-page: 8 year: 1997 ident: B41 article-title: Steric-model for Activation of Muscle Thin Filaments publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0800 contributor: fullname: Vibert – volume: 644 start-page: 60 year: 2008 ident: B11 article-title: Tropomyosin: Function Follows Structure publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-85766-4_5 contributor: fullname: Hitchcock-DeGregori – volume: 115 start-page: 1082 year: 2018 ident: B15 article-title: Precise Binding of Tropomyosin on Actin Involves Sequence-dependent Variance in Coiled-Coil Twisting publication-title: Biophysical J. doi: 10.1016/j.bpj.2018.08.017 contributor: fullname: Lehman – volume: 6 start-page: 1043 year: 2016 ident: B17 article-title: Thin Filament Structure and the Steric Blocking Model publication-title: Compr. Physiol. doi: 10.1002/cphy.c150030 contributor: fullname: Lehman – volume: 38 start-page: 49 year: 2000 ident: B44 article-title: Crystal Structure of Tropomyosin at 7 Ångstroms Resolution publication-title: Proteins doi: 10.1002/(sici)1097-0134(20000101)38:1<49:aid-prot6>3.0.co;2-b contributor: fullname: Whitby – volume: 395 start-page: 327 year: 2010 ident: B18 article-title: The Shape and Flexibility of Tropomyosin Coiled Coils: Implications for Actin Filament Assembly and Regulation publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.10.060 contributor: fullname: Li – volume: 246 start-page: 108 year: 1995 ident: B20 article-title: An Atomic Model of the Unregulated Thin Filament Obtained by X-Ray Fiber Diffraction on Oriented Actin-Tropomyosin Gels publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.0070 contributor: fullname: Lorenz – volume: 29 start-page: 50 ident: B33 article-title: High-Resolution Cryo-EM Structure of the Cardiac Actomyosin Complex publication-title: Structure doi: 10.1016/j.str.2020.09.013 contributor: fullname: Risi – volume: 119 start-page: 75 year: 2020 ident: B28 article-title: Protein-Protein Docking Reveals Dynamic Interactions of Tropomyosin on Actin Filaments publication-title: Biophysical J. doi: 10.1016/j.bpj.2020.05.017 contributor: fullname: Pavadai – volume: 49 start-page: 4908 year: 2010 ident: B7 article-title: Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle: Insight into the Diversity of N-Terminal Recognition, publication-title: Biochemistry doi: 10.1021/bi100349a contributor: fullname: Frye – volume: 277 start-page: 27636 year: 2002 ident: B38 article-title: The Troponin Tail Domain Promotes a Conformational State of the Thin Filament that Suppresses Myosin Activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.m201768200 contributor: fullname: Tobacman – volume: 551 start-page: 27 year: 2021 ident: B16 article-title: C-terminal Troponin-I Residues Trap Tropomyosin in the Muscle Thin Filament Blocked-State publication-title: Biochem. Biophysical Res. Commun. doi: 10.1016/j.bbrc.2021.03.010 contributor: fullname: Lehman – volume: 725 start-page: 109282 year: 2022 ident: B29 article-title: Modulation of Cardiac Thin Filament Structure by Phosphorylated Troponin-I Analyzed by Protein-Protein Docking and Molecular Dynamics Simulation publication-title: Archives Biochem. Biophysics doi: 10.1016/j.abb.2022.109282 contributor: fullname: Pavadai – volume: 120 start-page: 1 year: 2021 ident: B39 article-title: Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle publication-title: Biophysical J. doi: 10.1016/j.bpj.2020.11.014 contributor: fullname: Tobacman – volume: 375 start-page: eabn1934 year: 2022 ident: B42 article-title: Structures from Intact Myofibrils Reveal Mechanism of Thin Filament Regulation through Nebulin publication-title: Science doi: 10.1126/science.abn1934 contributor: fullname: Wang – volume: 119 start-page: 821 year: 2020 ident: B5 article-title: Cryo-EM and Molecular Docking Shows Myosin Loop 4 Contacts Actin and Tropomyosin on Thin Filaments publication-title: Biophysical J. doi: 10.1016/j.bpj.2020.07.006 contributor: fullname: Doran – volume: 25 start-page: 1605 year: 2004 ident: B30 article-title: UCSF Chimera?A Visualization System for Exploratory Research and Analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 contributor: fullname: Pettersen – volume: 66 start-page: 12 year: 2010 ident: B3 article-title: MolProbity: All-Atom Structure Validation for Macromolecular Crystallography publication-title: Acta Crystallogr. D. Biol. Cryst. doi: 10.1107/s0907444909042073 contributor: fullname: Chen – volume: 364 start-page: 80 year: 2006 ident: B10 article-title: Solution NMR Structure of the Junction between Tropomyosin Molecules: Implications for Actin Binding and Regulation publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.08.033 contributor: fullname: Greenfield – volume: 81 start-page: 2827 year: 2001 ident: B26 article-title: Disease-causing Mutations in Cardiac Troponin T: Identification of a Critical Tropomyosin-Binding Region publication-title: Biophysical J. doi: 10.1016/s0006-3495(01)75924-3 contributor: fullname: Palm – volume: 500 start-page: 144 year: 2010 ident: B13 article-title: Localization of the Two Tropomyosin-Binding Sites of Troponin T publication-title: Archives Biochem. Biophysics doi: 10.1016/j.abb.2010.06.001 contributor: fullname: Jin – volume: 114 start-page: 11115 year: 2017 ident: B8 article-title: Molecular Mechanisms and Structural Features of Cardiomyopathy-Causing Troponin T Mutants in the Tropomyosin Overlap Region publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1710354114 contributor: fullname: Gangadharan – volume: 424 start-page: 35 year: 2003 ident: B37 article-title: Structure of the Core Domain of Human Cardiac Troponin in the Ca2+-Saturated Form publication-title: Nature doi: 10.1038/nature01780 contributor: fullname: Takeda – volume: 137 start-page: 54 year: 2002 ident: B36 article-title: Analysis of α-Helical Coiled Coils with the Program TWISTER Reveals a Structural Mechanism for Stutter Compensation publication-title: J. Struct. Biol. doi: 10.1006/jsbi.2002.4454 contributor: fullname: Strelkov – volume: 80 start-page: 853 year: 2000 ident: B9 article-title: Regulation of Contraction in Striated Muscle publication-title: Physiol. Rev. doi: 10.1152/physrev.2000.80.2.853 contributor: fullname: Gordon – volume: 105 start-page: 7200 year: 2008 ident: B24 article-title: Structural Basis for Tropomyosin Overlap in Thin (Actin) Filaments and the Generation of a Molecular Swivel by Troponin-T publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0801950105 contributor: fullname: Murakami – volume: 118 start-page: e2024288118 ident: B32 article-title: The Structure of the Native Cardiac Thin Filament at Systolic Ca2+ Levels publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2024288118 contributor: fullname: Risi – volume: 11 start-page: 153 year: 2020 ident: B46 article-title: Cardiac Muscle Thin Filament Structures Reveal Calcium Regulatory Mechanism publication-title: Nat. Commun. doi: 10.1038/s41467-019-14008-1 contributor: fullname: Yamada – volume: 12 start-page: 255 year: 2017 ident: B14 article-title: The ClusPro Web Server for Protein-Protein Docking publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.169 contributor: fullname: Kozakov – volume: 118 start-page: 325 year: 2019 ident: B27 article-title: Docking Troponin T onto the Tropomyosin Overlapping Domain of Thin Filaments publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.11.3393 contributor: fullname: Pavadai – volume: 9 start-page: 3301 year: 2018 ident: B45 article-title: Mechanism of Cardiac Tropomyosin Transitions on Filamentous Actin as Revealed by All-Atom Steered Molecular Dynamics Simulations publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00958 contributor: fullname: Williams |
SSID | ssj0000402001 |
Score | 2.3987532 |
SecondaryResourceType | review_article |
Snippet | Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 932333 |
SubjectTerms | actin cryoEM Physiology protein-protein docking tropomyosin troponin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR4yUhMSKaOnTj2CBVVhQQLVOpmxS_RJWVo_z93TouaiQVliJREif2d47vPd74j5B40iqyVaRjINrCq8Ylp6TVzMpQO-IFw2YP_9q5m8-p1US_2Sn1hTFifHrgHbux8CzTKgFpNsYLDVfBDcpG40kEI0-8j52KPTOU5GGkRL3s3JrAwM064UgB8UIhHMFmklANFlPP1D4zMYYjkns6ZHpOjrbFIn_pGnpCD2J2SMZYvw03kNC_A00mWsadYgZNOlyBheBn9yHlhN0Cmz8h8-vI5mbFt2QPmZSPWDLqVjGicbOo61EGrNnrRasdr76pSO6WCCRjM4oG7aC1d6aRJPuhUoxezkudk1K26eEGo5r6UZaucdrFKvIGzjErGxNtWexMK8rDDwH732S0ssAIEzGbALAJme8AK8owo_T6IianzBRCX3YrL_iWugtztMLYwkNE70XZxtYEvKZhKNNprBWkG4A--OLzTLb9ySmwDMw_w6sv_aOIVOcReYzyYENdkBPKKN2B5rN1tHmQ_WmTXzg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zvvgiior1iwo-Cd3apE3SBxEdjiHMFx3srTRfOpBO5wb633uXdmLBB-lDoS0J-eWSu1_uekfIBWgUlvFcRDC3JkqFdpFkWkaKmUQBP6DKe_DHD3w0Se-n2bRD1uWtGgA__qR2WE9qsnjtfb5_XcOCv0LGCfq27_AQAKgepT2wRhhjG2STgmLECK9xY-37jRm5ki-InHCO4Rd0Wvs5_26lpal8Qv-WFdqOofyllIY7ZLuxJsObevp3ScdWe6SP9c3wL_PQn9CHAy8EOsQSneFwBiIAjYWPPnHsCtj2PpkM754Go6ipixBpJugyMpS6nArFRJaZzEheWk1LqeJMqzSRinOTG4x20UBupGQqUSx32kiXoZszZQekW80re0hCGeuEJSVXUtnUxQLuzHJmXVyWUucmIJdrDIq3Ov1FAbQBASs8YAUCVtSABeQWUfr5EDNX-wfzxXPRLIRC6RJocQ5mkrMpXCqFDTamLuYSxpWLgJyvMS5A0tF9UVZ2voKeOOw1Eg26gIgW-K0e22-q2YvPmZ3D1gTE--gfrR-TLRwUxoNRekK6MB32FCyPpTrz8vQNcmfW0g priority: 102 providerName: Scholars Portal |
Title | Modeling Human Cardiac Thin Filament Structures |
URI | https://search.proquest.com/docview/2688088392 https://pubmed.ncbi.nlm.nih.gov/PMC9257132 https://doaj.org/article/bca1339893fe4e4eb4dde02f068d2297 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_bnnwRRcX5MSr4JHRtkzZNHnU4hjARdLC30nzpwHVDtv_fu7SV9VUKLfQrze-O3P1y1wsh92BRWMZlHoJsTZjm2oWCaREqZhIF_IAqH8Gfv_LZIn1ZZsseydp_YXzSvlarcfW9HlerL59buV3rqM0Ti97mEwl6Biwq6pM-mN8Diu6HX2REcVJHMIGAycjhJAFQQUrH4K0whmvnYNkvcCbijjnyVfs7rmY3UfLA8kxPyHHjMgaP9aedkp6tzkiEi5jhr-SBn4YPJl7SOsB1OIPpCuQMLwvefXXYPVDqc7KYPn9MZmGz-EGoWU53oaHUSZorlmeZyYzgpdW0FCrOtEoToTg30mBKiwYGIwRTiWLSaSNchrHMlF2QQbWp7CUJRKwTlpRcCWVTF-dwZJYz6-KyFFqaIXloMSi2dY2LArgBYld47ArErqixG5InROnvRixP7U9sfj6LRkiF0iVwXwm-kLMpbCqFUTSmLuYC-iXzIblrMS5AnTFGUVZ2s4eWOAwoAr22Ick74Hda7F4BPfGFsRu9uPr3k9fkCLuKqWCU3pABCMnegtOxUyNP1mE_T8XIK9wv6hjZiQ |
link.rule.ids | 230,314,727,780,784,864,885,2102,24318,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4S95BeQktT4jZtVeipIEva1b6Oqalx2zgUkkBui_bVGGo5FOf_Z2Ztl-gadBDotdpvht35dmZnAL7gjMKFNKpE2YayVT6VmntdOh4ah_yAuezBX1zK-U3781bcHoDY74XJQfveLSf939WkX97l2Mr7la_2cWLV78XUoJ4hi6oO4YXgyjRPSHoegIkT1c3Wh4kUzFSJlgmQDDI2QXuFc6qeQ4m_0JyoBxNSzts_MDaHoZJP5p7ZKzjeGY3F-fbnXsNB7N9ARWXMaDN5kRfii2mWtS-oEmcxW6Kk8WPFVc4P-4Ck-gRuZt-vp_NyV_6g9FyxTRkYS4Ypx5UQQQQtu-hZp10tvGsb7aQMJlBQi0cOozV3jeMm-aCTIG9my9_CqF_38RQKXfuGN5102sU21QrPPEoeU9112pswhq97DOz9NsuFRXZA2NmMnSXs7Ba7MXwjlP4_SAmq84X1vz92JybrfIfs16A1lGKLh2txHK1ZqqXGfhk1hs97jC0qNHkpuj6uH7AliUOKJrttDGoA_qDF4R3UlJwae6cZ75795ic4ml8vLuzFj8tf7-EldZsCwxg7gxEKLH5AE2TjPmaFewRHFtsP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9-gPgiiorzs4JPQtc2adPkUadjfkwEHewtNF860G7I9v97l22yvkofCv1K8rsjuV_uekfIFaworOCyjEG2Ns5L42PBjIg1s5kGfkB18OD3X3hvkD8Oi-FKqa8QtG_0qF1_fbfr0WeIrZx8m2QZJ5a89jsS9AxYVDKxPlknmwUDJVsh6mESRl6UZnM_JtAwmXjcKgBCSGkbbBbGsIIOJv8CkyJtLEohd3_D4GyGS66sP91dsrMwHKObeQf3yJqr90mCpczwh_IobMZHnSBvE2E1zqg7AmnDx6K3kCN2BsT6gAy69--dXrwogRAbVtJpbCn1kpaalUVhCyt45QythE4Lo_NMaM6ttBjYYoDHCMF0ppn0xgpfoEczZ4dkox7X7ohEIjUZyyquhXa5T0s4M8eZ82lVCSNti1wvMVCTeaYLBQwBsVMBO4XYqTl2LXKLKP09iEmqw4Xxz4daiEppUwEDlmAReZfDoXOYS1PqUy5gXLJskcslxgqUGj0VVe3GM2iJw7Qi0HZrkbIBfqPF5h3QlpAee6Edx_9-84Jsvd511fPDy9MJ2cZRY2wYpadkA-TlzsAKmerzoG-_dcPcIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Human+Cardiac+Thin+Filament+Structures&rft.jtitle=Frontiers+in+physiology&rft.au=Rynkiewicz%2C+Michael+J&rft.au=Pavadai%2C+Elumalai&rft.au=Lehman%2C+William&rft.date=2022-06-22&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=13&rft.spage=932333&rft.epage=932333&rft_id=info:doi/10.3389%2Ffphys.2022.932333&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |