Modeling Human Cardiac Thin Filament Structures

Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves t...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 13; p. 932333
Main Authors Rynkiewicz, Michael J., Pavadai, Elumalai, Lehman, William
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 22.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function.
AbstractList Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function.
Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function.
Author Rynkiewicz, Michael J.
Pavadai, Elumalai
Lehman, William
AuthorAffiliation Department of Physiology and Biophysics , Boston University School of Medicine , Boston , MA , United States
AuthorAffiliation_xml – name: Department of Physiology and Biophysics , Boston University School of Medicine , Boston , MA , United States
Author_xml – sequence: 1
  givenname: Michael J.
  surname: Rynkiewicz
  fullname: Rynkiewicz, Michael J.
– sequence: 2
  givenname: Elumalai
  surname: Pavadai
  fullname: Pavadai, Elumalai
– sequence: 3
  givenname: William
  surname: Lehman
  fullname: Lehman, William
BookMark eNpVkU1P3DAQhq2KCujCD-gtRy672DOxY1-Q0AoKElUPpVJvlr-ya5TEi50g8e-bZREqnoOtmdEzfuf9Ro6GNARCvjO6QpTqst1tX8sKKMBKISDiF3LKhKiXtIa_R_-9T8h5KU90PjUFStkxOUEuGSDQU3L5M_nQxWFT3U29Gaq1yT4aVz1u41Ddxs70YRir32Oe3DjlUM7I19Z0JZy_3wvy5_bmcX23fPj14359_bB02MC49ACtgsZiw7nnXgoTHBhpKXe2ZtIK4ZUHbIQTwKVEyyyq1nnZcqi5qHFB7g9cn8yT3uXYm_yqk4n6LZHyRps8RtcFbZ1hiEoqbEM9h629DxRaKuT8DdXMrKsDazfZPng3K8qm-wT9XBniVm_Si1bAGzbvdkEu3gE5PU-hjLqPxYWuM0NIU9EgpKSzCrVvZYdWl1MpObQfYxjVe9_0m29675s--Ib_AGoki_k
CitedBy_id crossref_primary_10_1016_j_jmb_2024_168498
crossref_primary_10_3389_fcvm_2022_1060716
crossref_primary_10_1007_s10974_023_09653_5
crossref_primary_10_1016_j_jmccpl_2022_100025
crossref_primary_10_3390_biomedicines12050999
crossref_primary_10_1085_jgp_202413538
crossref_primary_10_1085_jgp_202313421
crossref_primary_10_1085_jgp_202313387
crossref_primary_10_3390_ijms24054792
Cites_doi 10.1016/j.bpj.2010.12.3697
10.1074/jbc.ra120.014713
10.1016/j.bpj.2014.06.034
10.1007/s10974-015-9419-z
10.1016/j.cell.2021.02.047
10.1016/s0006-3495(97)78206-7
10.1085/jgp.202012640
10.1074/jbc.ra119.012014
10.1016/s0006-3495(93)81110-x
10.1007/s10974-008-9157-6
10.1093/cvr/cvt071
10.1021/bi200506k
10.1007/s00424-019-02269-0
10.1016/0022-2836(82)90540-x
10.1016/j.str.2008.03.005
10.1006/jmbi.1996.0800
10.1007/978-0-387-85766-4_5
10.1016/j.bpj.2018.08.017
10.1002/cphy.c150030
10.1002/(sici)1097-0134(20000101)38:1<49:aid-prot6>3.0.co;2-b
10.1016/j.jmb.2009.10.060
10.1006/jmbi.1994.0070
10.1016/j.str.2020.09.013
10.1016/j.bpj.2020.05.017
10.1021/bi100349a
10.1074/jbc.m201768200
10.1016/j.bbrc.2021.03.010
10.1016/j.abb.2022.109282
10.1016/j.bpj.2020.11.014
10.1126/science.abn1934
10.1016/j.bpj.2020.07.006
10.1002/jcc.20084
10.1107/s0907444909042073
10.1016/j.jmb.2006.08.033
10.1016/s0006-3495(01)75924-3
10.1016/j.abb.2010.06.001
10.1073/pnas.1710354114
10.1038/nature01780
10.1006/jsbi.2002.4454
10.1152/physrev.2000.80.2.853
10.1073/pnas.0801950105
10.1073/pnas.2024288118
10.1038/s41467-019-14008-1
10.1038/nprot.2016.169
10.1016/j.bpj.2019.11.3393
10.1021/acs.jpclett.8b00958
ContentType Journal Article
Copyright Copyright © 2022 Rynkiewicz, Pavadai and Lehman. 2022 Rynkiewicz, Pavadai and Lehman
Copyright_xml – notice: Copyright © 2022 Rynkiewicz, Pavadai and Lehman. 2022 Rynkiewicz, Pavadai and Lehman
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fphys.2022.932333
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Rynkiewicz et al
EISSN 1664-042X
EndPage 932333
ExternalDocumentID oai_doaj_org_article_bca1339893fe4e4eb4dde02f068d2297
10_3389_fphys_2022_932333
GrantInformation_xml – fundername: ;
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IHW
ISR
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c372t-d22f927b3755d5d86aec2a8b05cb418b66d9d2376c625883b1b39fcd8f5245643
IEDL.DBID RPM
ISSN 1664-042X
IngestDate Tue Oct 22 15:16:30 EDT 2024
Tue Sep 17 21:23:01 EDT 2024
Sat Oct 05 05:27:30 EDT 2024
Thu Nov 21 22:31:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-d22f927b3755d5d86aec2a8b05cb418b66d9d2376c625883b1b39fcd8f5245643
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
Edited by: Shin’Ichi Ishiwata, Waseda University, Japan
Reviewed by: Murali Chandra, Washington State University, United States
Neil Kad, University of Kent, United Kingdom
This article was submitted to Striated Muscle Physiology, a section of the journal Frontiers in Physiology
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257132/
PMID 35812320
PQID 2688088392
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_bca1339893fe4e4eb4dde02f068d2297
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9257132
proquest_miscellaneous_2688088392
crossref_primary_10_3389_fphys_2022_932333
PublicationCentury 2000
PublicationDate 2022-06-22
PublicationDateYYYYMMDD 2022-06-22
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-22
  day: 22
PublicationDecade 2020
PublicationTitle Frontiers in physiology
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Cao (B2) 2020; 295
Memo (B23) 2013; 99
Tobacman (B38) 2002; 277
Kozakov (B14) 2017; 12
Li (B19) 2011; 100
Sewanan (B35) 2021; 153
Jin (B13) 2010; 500
Palm (B26) 2001; 81
Chen (B3) 2010; 66
Doran (B5) 2020; 119
Lehman (B16) 2021; 551
Manning (B21) 2011; 50
Williams (B45) 2018; 9
Orzechowski (B25) 2014; 107
Hitchcock-DeGregori (B11) 2008; 644
Gordon (B9) 2000; 80
Whitby (B44) 2000; 38
Takeda (B37) 2003; 424
Li (B18) 2010; 395
Risi (B33); 29
Pavadai (B29) 2022; 725
Lehman (B15) 2018; 115
Vibert (B41) 1997; 266
Rynkiewicz (B34) 2015; 36
Gangadharan (B8) 2017; 114
Lorenz (B20) 1995; 246
Pavadai (B28) 2020; 119
Deranek (B4) 2019; 471
Wang (B43) 2021; 184
Racca (B31) 2020; 295
Murakami (B24) 2008; 105
McKillop (B22) 1993; 65
Risi (B32); 118
Trabuco (B40) 2008; 16
Yamada (B46) 2020; 11
Cabral-Lilly (B1) 1997; 73
Frye (B7) 2010; 49
Tobacman (B39) 2021; 120
Flicker (B6) 1982; 162
Greenfield (B10) 2006; 364
Strelkov (B36) 2002; 137
Wang (B42) 2022; 375
Pavadai (B27) 2019; 118
Holmes (B12) 2008; 29
Pettersen (B30) 2004; 25
Lehman (B17) 2016; 6
References_xml – volume: 100
  start-page: 1005
  year: 2011
  ident: B19
  article-title: Tropomyosin Position on F-Actin Revealed by EM Reconstruction and Computational Chemistry
  publication-title: Biophysical J.
  doi: 10.1016/j.bpj.2010.12.3697
  contributor:
    fullname: Li
– volume: 295
  start-page: 17128
  year: 2020
  ident: B31
  article-title: M8R Tropomyosin Mutation Disrupts Actin Binding and Filament Regulation: The Beginning Affects the Middle and End
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.ra120.014713
  contributor:
    fullname: Racca
– volume: 107
  start-page: 694
  year: 2014
  ident: B25
  article-title: An Atomic Model of the Tropomyosin Cable on F-Actin
  publication-title: Biophysical J.
  doi: 10.1016/j.bpj.2014.06.034
  contributor:
    fullname: Orzechowski
– volume: 36
  start-page: 525
  year: 2015
  ident: B34
  article-title: Electrostatic Interaction Map Reveals a New Binding Position for Tropomyosin on F-Actin
  publication-title: J. Muscle Res. Cell Motil.
  doi: 10.1007/s10974-015-9419-z
  contributor:
    fullname: Rynkiewicz
– volume: 184
  start-page: 2135
  year: 2021
  ident: B43
  article-title: The Molecular Basis for Sarcomere Organization in Vertebrate Skeletal Muscle
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.047
  contributor:
    fullname: Wang
– volume: 73
  start-page: 1763
  year: 1997
  ident: B1
  article-title: Molecular Polarity in Tropomyosin-Troponin T Co-crystals
  publication-title: Biophysical J.
  doi: 10.1016/s0006-3495(97)78206-7
  contributor:
    fullname: Cabral-Lilly
– volume: 153
  start-page: e202012640
  year: 2021
  ident: B35
  article-title: Loss of Crossbridge Inhibition Drives Pathological Cardiac Hypertrophy in Patients Harboring the TPM1 E192K Mutation
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.202012640
  contributor:
    fullname: Sewanan
– volume: 295
  start-page: 3794
  year: 2020
  ident: B2
  article-title: The Glutamic Acid-Rich-Long C-Terminal Extension of Troponin T Has a Critical Role in Insect Muscle Functions
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.ra119.012014
  contributor:
    fullname: Cao
– volume: 65
  start-page: 693
  year: 1993
  ident: B22
  article-title: Regulation of the Interaction between Actin and Myosin Subfragment 1: Evidence for Three States of the Thin Filament
  publication-title: Biophysical J.
  doi: 10.1016/s0006-3495(93)81110-x
  contributor:
    fullname: McKillop
– volume: 29
  start-page: 213
  year: 2008
  ident: B12
  article-title: Gestalt-binding of Tropomyosin to Actin Filaments
  publication-title: J. Muscle Res. Cell Motil.
  doi: 10.1007/s10974-008-9157-6
  contributor:
    fullname: Holmes
– volume: 99
  start-page: 65
  year: 2013
  ident: B23
  article-title: Familial Dilated Cardiomyopathy Mutations Uncouple Troponin I Phosphorylation from Changes in Myofibrillar Ca2+ Sensitivity
  publication-title: Cardiovasc Res.
  doi: 10.1093/cvr/cvt071
  contributor:
    fullname: Memo
– volume: 50
  start-page: 7405
  year: 2011
  ident: B21
  article-title: A Model of Calcium Activation of the Cardiac Thin Filament
  publication-title: Biochemistry
  doi: 10.1021/bi200506k
  contributor:
    fullname: Manning
– volume: 471
  start-page: 661
  year: 2019
  ident: B4
  article-title: Moving beyond Simple Answers to Complex Disorders in Sarcomeric Cardiomyopathies: the Role of Integrated Systems
  publication-title: Pflugers Arch. - Eur. J. Physiol.
  doi: 10.1007/s00424-019-02269-0
  contributor:
    fullname: Deranek
– volume: 162
  start-page: 495
  year: 1982
  ident: B6
  article-title: Troponin and its Interactions with Tropomyosin
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(82)90540-x
  contributor:
    fullname: Flicker
– volume: 16
  start-page: 673
  year: 2008
  ident: B40
  article-title: Flexible Fitting of Atomic Structures into Electron Microscopy Maps Using Molecular Dynamics
  publication-title: Structure
  doi: 10.1016/j.str.2008.03.005
  contributor:
    fullname: Trabuco
– volume: 266
  start-page: 8
  year: 1997
  ident: B41
  article-title: Steric-model for Activation of Muscle Thin Filaments
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0800
  contributor:
    fullname: Vibert
– volume: 644
  start-page: 60
  year: 2008
  ident: B11
  article-title: Tropomyosin: Function Follows Structure
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-0-387-85766-4_5
  contributor:
    fullname: Hitchcock-DeGregori
– volume: 115
  start-page: 1082
  year: 2018
  ident: B15
  article-title: Precise Binding of Tropomyosin on Actin Involves Sequence-dependent Variance in Coiled-Coil Twisting
  publication-title: Biophysical J.
  doi: 10.1016/j.bpj.2018.08.017
  contributor:
    fullname: Lehman
– volume: 6
  start-page: 1043
  year: 2016
  ident: B17
  article-title: Thin Filament Structure and the Steric Blocking Model
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c150030
  contributor:
    fullname: Lehman
– volume: 38
  start-page: 49
  year: 2000
  ident: B44
  article-title: Crystal Structure of Tropomyosin at 7 Ångstroms Resolution
  publication-title: Proteins
  doi: 10.1002/(sici)1097-0134(20000101)38:1<49:aid-prot6>3.0.co;2-b
  contributor:
    fullname: Whitby
– volume: 395
  start-page: 327
  year: 2010
  ident: B18
  article-title: The Shape and Flexibility of Tropomyosin Coiled Coils: Implications for Actin Filament Assembly and Regulation
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.10.060
  contributor:
    fullname: Li
– volume: 246
  start-page: 108
  year: 1995
  ident: B20
  article-title: An Atomic Model of the Unregulated Thin Filament Obtained by X-Ray Fiber Diffraction on Oriented Actin-Tropomyosin Gels
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1994.0070
  contributor:
    fullname: Lorenz
– volume: 29
  start-page: 50
  ident: B33
  article-title: High-Resolution Cryo-EM Structure of the Cardiac Actomyosin Complex
  publication-title: Structure
  doi: 10.1016/j.str.2020.09.013
  contributor:
    fullname: Risi
– volume: 119
  start-page: 75
  year: 2020
  ident: B28
  article-title: Protein-Protein Docking Reveals Dynamic Interactions of Tropomyosin on Actin Filaments
  publication-title: Biophysical J.
  doi: 10.1016/j.bpj.2020.05.017
  contributor:
    fullname: Pavadai
– volume: 49
  start-page: 4908
  year: 2010
  ident: B7
  article-title: Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle: Insight into the Diversity of N-Terminal Recognition,
  publication-title: Biochemistry
  doi: 10.1021/bi100349a
  contributor:
    fullname: Frye
– volume: 277
  start-page: 27636
  year: 2002
  ident: B38
  article-title: The Troponin Tail Domain Promotes a Conformational State of the Thin Filament that Suppresses Myosin Activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m201768200
  contributor:
    fullname: Tobacman
– volume: 551
  start-page: 27
  year: 2021
  ident: B16
  article-title: C-terminal Troponin-I Residues Trap Tropomyosin in the Muscle Thin Filament Blocked-State
  publication-title: Biochem. Biophysical Res. Commun.
  doi: 10.1016/j.bbrc.2021.03.010
  contributor:
    fullname: Lehman
– volume: 725
  start-page: 109282
  year: 2022
  ident: B29
  article-title: Modulation of Cardiac Thin Filament Structure by Phosphorylated Troponin-I Analyzed by Protein-Protein Docking and Molecular Dynamics Simulation
  publication-title: Archives Biochem. Biophysics
  doi: 10.1016/j.abb.2022.109282
  contributor:
    fullname: Pavadai
– volume: 120
  start-page: 1
  year: 2021
  ident: B39
  article-title: Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle
  publication-title: Biophysical J.
  doi: 10.1016/j.bpj.2020.11.014
  contributor:
    fullname: Tobacman
– volume: 375
  start-page: eabn1934
  year: 2022
  ident: B42
  article-title: Structures from Intact Myofibrils Reveal Mechanism of Thin Filament Regulation through Nebulin
  publication-title: Science
  doi: 10.1126/science.abn1934
  contributor:
    fullname: Wang
– volume: 119
  start-page: 821
  year: 2020
  ident: B5
  article-title: Cryo-EM and Molecular Docking Shows Myosin Loop 4 Contacts Actin and Tropomyosin on Thin Filaments
  publication-title: Biophysical J.
  doi: 10.1016/j.bpj.2020.07.006
  contributor:
    fullname: Doran
– volume: 25
  start-page: 1605
  year: 2004
  ident: B30
  article-title: UCSF Chimera?A Visualization System for Exploratory Research and Analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
  contributor:
    fullname: Pettersen
– volume: 66
  start-page: 12
  year: 2010
  ident: B3
  article-title: MolProbity: All-Atom Structure Validation for Macromolecular Crystallography
  publication-title: Acta Crystallogr. D. Biol. Cryst.
  doi: 10.1107/s0907444909042073
  contributor:
    fullname: Chen
– volume: 364
  start-page: 80
  year: 2006
  ident: B10
  article-title: Solution NMR Structure of the Junction between Tropomyosin Molecules: Implications for Actin Binding and Regulation
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.08.033
  contributor:
    fullname: Greenfield
– volume: 81
  start-page: 2827
  year: 2001
  ident: B26
  article-title: Disease-causing Mutations in Cardiac Troponin T: Identification of a Critical Tropomyosin-Binding Region
  publication-title: Biophysical J.
  doi: 10.1016/s0006-3495(01)75924-3
  contributor:
    fullname: Palm
– volume: 500
  start-page: 144
  year: 2010
  ident: B13
  article-title: Localization of the Two Tropomyosin-Binding Sites of Troponin T
  publication-title: Archives Biochem. Biophysics
  doi: 10.1016/j.abb.2010.06.001
  contributor:
    fullname: Jin
– volume: 114
  start-page: 11115
  year: 2017
  ident: B8
  article-title: Molecular Mechanisms and Structural Features of Cardiomyopathy-Causing Troponin T Mutants in the Tropomyosin Overlap Region
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1710354114
  contributor:
    fullname: Gangadharan
– volume: 424
  start-page: 35
  year: 2003
  ident: B37
  article-title: Structure of the Core Domain of Human Cardiac Troponin in the Ca2+-Saturated Form
  publication-title: Nature
  doi: 10.1038/nature01780
  contributor:
    fullname: Takeda
– volume: 137
  start-page: 54
  year: 2002
  ident: B36
  article-title: Analysis of α-Helical Coiled Coils with the Program TWISTER Reveals a Structural Mechanism for Stutter Compensation
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2002.4454
  contributor:
    fullname: Strelkov
– volume: 80
  start-page: 853
  year: 2000
  ident: B9
  article-title: Regulation of Contraction in Striated Muscle
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.2000.80.2.853
  contributor:
    fullname: Gordon
– volume: 105
  start-page: 7200
  year: 2008
  ident: B24
  article-title: Structural Basis for Tropomyosin Overlap in Thin (Actin) Filaments and the Generation of a Molecular Swivel by Troponin-T
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0801950105
  contributor:
    fullname: Murakami
– volume: 118
  start-page: e2024288118
  ident: B32
  article-title: The Structure of the Native Cardiac Thin Filament at Systolic Ca2+ Levels
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2024288118
  contributor:
    fullname: Risi
– volume: 11
  start-page: 153
  year: 2020
  ident: B46
  article-title: Cardiac Muscle Thin Filament Structures Reveal Calcium Regulatory Mechanism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14008-1
  contributor:
    fullname: Yamada
– volume: 12
  start-page: 255
  year: 2017
  ident: B14
  article-title: The ClusPro Web Server for Protein-Protein Docking
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.169
  contributor:
    fullname: Kozakov
– volume: 118
  start-page: 325
  year: 2019
  ident: B27
  article-title: Docking Troponin T onto the Tropomyosin Overlapping Domain of Thin Filaments
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.11.3393
  contributor:
    fullname: Pavadai
– volume: 9
  start-page: 3301
  year: 2018
  ident: B45
  article-title: Mechanism of Cardiac Tropomyosin Transitions on Filamentous Actin as Revealed by All-Atom Steered Molecular Dynamics Simulations
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00958
  contributor:
    fullname: Williams
SSID ssj0000402001
Score 2.3987532
SecondaryResourceType review_article
Snippet Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 932333
SubjectTerms actin
cryoEM
Physiology
protein-protein docking
tropomyosin
troponin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR4yUhMSKaOnTj2CBVVhQQLVOpmxS_RJWVo_z93TouaiQVliJREif2d47vPd74j5B40iqyVaRjINrCq8Ylp6TVzMpQO-IFw2YP_9q5m8-p1US_2Sn1hTFifHrgHbux8CzTKgFpNsYLDVfBDcpG40kEI0-8j52KPTOU5GGkRL3s3JrAwM064UgB8UIhHMFmklANFlPP1D4zMYYjkns6ZHpOjrbFIn_pGnpCD2J2SMZYvw03kNC_A00mWsadYgZNOlyBheBn9yHlhN0Cmz8h8-vI5mbFt2QPmZSPWDLqVjGicbOo61EGrNnrRasdr76pSO6WCCRjM4oG7aC1d6aRJPuhUoxezkudk1K26eEGo5r6UZaucdrFKvIGzjErGxNtWexMK8rDDwH732S0ssAIEzGbALAJme8AK8owo_T6IianzBRCX3YrL_iWugtztMLYwkNE70XZxtYEvKZhKNNprBWkG4A--OLzTLb9ySmwDMw_w6sv_aOIVOcReYzyYENdkBPKKN2B5rN1tHmQ_WmTXzg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zvvgiior1iwo-Cd3apE3SBxEdjiHMFx3srTRfOpBO5wb633uXdmLBB-lDoS0J-eWSu1_uekfIBWgUlvFcRDC3JkqFdpFkWkaKmUQBP6DKe_DHD3w0Se-n2bRD1uWtGgA__qR2WE9qsnjtfb5_XcOCv0LGCfq27_AQAKgepT2wRhhjG2STgmLECK9xY-37jRm5ki-InHCO4Rd0Wvs5_26lpal8Qv-WFdqOofyllIY7ZLuxJsObevp3ScdWe6SP9c3wL_PQn9CHAy8EOsQSneFwBiIAjYWPPnHsCtj2PpkM754Go6ipixBpJugyMpS6nArFRJaZzEheWk1LqeJMqzSRinOTG4x20UBupGQqUSx32kiXoZszZQekW80re0hCGeuEJSVXUtnUxQLuzHJmXVyWUucmIJdrDIq3Ov1FAbQBASs8YAUCVtSABeQWUfr5EDNX-wfzxXPRLIRC6RJocQ5mkrMpXCqFDTamLuYSxpWLgJyvMS5A0tF9UVZ2voKeOOw1Eg26gIgW-K0e22-q2YvPmZ3D1gTE--gfrR-TLRwUxoNRekK6MB32FCyPpTrz8vQNcmfW0g
  priority: 102
  providerName: Scholars Portal
Title Modeling Human Cardiac Thin Filament Structures
URI https://search.proquest.com/docview/2688088392
https://pubmed.ncbi.nlm.nih.gov/PMC9257132
https://doaj.org/article/bca1339893fe4e4eb4dde02f068d2297
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_bnnwRRcX5MSr4JHRtkzZNHnU4hjARdLC30nzpwHVDtv_fu7SV9VUKLfQrze-O3P1y1wsh92BRWMZlHoJsTZjm2oWCaREqZhIF_IAqH8Gfv_LZIn1ZZsseydp_YXzSvlarcfW9HlerL59buV3rqM0Ti97mEwl6Biwq6pM-mN8Diu6HX2REcVJHMIGAycjhJAFQQUrH4K0whmvnYNkvcCbijjnyVfs7rmY3UfLA8kxPyHHjMgaP9aedkp6tzkiEi5jhr-SBn4YPJl7SOsB1OIPpCuQMLwvefXXYPVDqc7KYPn9MZmGz-EGoWU53oaHUSZorlmeZyYzgpdW0FCrOtEoToTg30mBKiwYGIwRTiWLSaSNchrHMlF2QQbWp7CUJRKwTlpRcCWVTF-dwZJYz6-KyFFqaIXloMSi2dY2LArgBYld47ArErqixG5InROnvRixP7U9sfj6LRkiF0iVwXwm-kLMpbCqFUTSmLuYC-iXzIblrMS5AnTFGUVZ2s4eWOAwoAr22Ick74Hda7F4BPfGFsRu9uPr3k9fkCLuKqWCU3pABCMnegtOxUyNP1mE_T8XIK9wv6hjZiQ
link.rule.ids 230,314,727,780,784,864,885,2102,24318,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4S95BeQktT4jZtVeipIEva1b6Oqalx2zgUkkBui_bVGGo5FOf_Z2Ztl-gadBDotdpvht35dmZnAL7gjMKFNKpE2YayVT6VmntdOh4ah_yAuezBX1zK-U3781bcHoDY74XJQfveLSf939WkX97l2Mr7la_2cWLV78XUoJ4hi6oO4YXgyjRPSHoegIkT1c3Wh4kUzFSJlgmQDDI2QXuFc6qeQ4m_0JyoBxNSzts_MDaHoZJP5p7ZKzjeGY3F-fbnXsNB7N9ARWXMaDN5kRfii2mWtS-oEmcxW6Kk8WPFVc4P-4Ck-gRuZt-vp_NyV_6g9FyxTRkYS4Ypx5UQQQQtu-hZp10tvGsb7aQMJlBQi0cOozV3jeMm-aCTIG9my9_CqF_38RQKXfuGN5102sU21QrPPEoeU9112pswhq97DOz9NsuFRXZA2NmMnSXs7Ba7MXwjlP4_SAmq84X1vz92JybrfIfs16A1lGKLh2txHK1ZqqXGfhk1hs97jC0qNHkpuj6uH7AliUOKJrttDGoA_qDF4R3UlJwae6cZ75795ic4ml8vLuzFj8tf7-EldZsCwxg7gxEKLH5AE2TjPmaFewRHFtsP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9-gPgiiorzs4JPQtc2adPkUadjfkwEHewtNF860G7I9v97l22yvkofCv1K8rsjuV_uekfIFaworOCyjEG2Ns5L42PBjIg1s5kGfkB18OD3X3hvkD8Oi-FKqa8QtG_0qF1_fbfr0WeIrZx8m2QZJ5a89jsS9AxYVDKxPlknmwUDJVsh6mESRl6UZnM_JtAwmXjcKgBCSGkbbBbGsIIOJv8CkyJtLEohd3_D4GyGS66sP91dsrMwHKObeQf3yJqr90mCpczwh_IobMZHnSBvE2E1zqg7AmnDx6K3kCN2BsT6gAy69--dXrwogRAbVtJpbCn1kpaalUVhCyt45QythE4Lo_NMaM6ttBjYYoDHCMF0ppn0xgpfoEczZ4dkox7X7ohEIjUZyyquhXa5T0s4M8eZ82lVCSNti1wvMVCTeaYLBQwBsVMBO4XYqTl2LXKLKP09iEmqw4Xxz4daiEppUwEDlmAReZfDoXOYS1PqUy5gXLJskcslxgqUGj0VVe3GM2iJw7Qi0HZrkbIBfqPF5h3QlpAee6Edx_9-84Jsvd511fPDy9MJ2cZRY2wYpadkA-TlzsAKmerzoG-_dcPcIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Human+Cardiac+Thin+Filament+Structures&rft.jtitle=Frontiers+in+physiology&rft.au=Rynkiewicz%2C+Michael+J&rft.au=Pavadai%2C+Elumalai&rft.au=Lehman%2C+William&rft.date=2022-06-22&rft.issn=1664-042X&rft.eissn=1664-042X&rft.volume=13&rft.spage=932333&rft.epage=932333&rft_id=info:doi/10.3389%2Ffphys.2022.932333&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon