Opening catalytic sites in the copper-triazoles framework via defect chemistry for switching on the proton reduction
[Display omitted] •A defect-engineering strategy to construct the intrinsic defects in metal-organic frameworks was proposed.•The accurate chemical formulas of defective MOF were obtained by simply characterization techniques.•The intrinsic deficiency activates the inert framework to trigger their c...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 288; p. 119941 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A defect-engineering strategy to construct the intrinsic defects in metal-organic frameworks was proposed.•The accurate chemical formulas of defective MOF were obtained by simply characterization techniques.•The intrinsic deficiency activates the inert framework to trigger their catalytic performance for outstanding H2 evolution.
Defective metal-organic frameworks (MOFs) materials have ignited intensive attention in the field of photocatalytic H2 evolution. In this work, we applied a defect-engineering strategy to construct intrinsic defects in Cu-MOF, which gives birth to the excellent photocatalytic ability for proton reduction. Furthermore, the fine characterizations give the exact molecular formula of the defective Cu-MOF (copper-based metal-triazolate material, termed as MET-Cu-D). The intrinsic deficiency, ligand-vacancies of 1H-1,2,3-triazole, is generated in situ during the synthesis process, which triggers the catalytic activity of unsaturated Cu-sites for the outstanding H2 evolution performance. Photocatalysis results indicate that MET-Cu-D exhibited an excellent hydrogen evolution rate of 12.91 mmol g−1 and catalytic stability. This study provides a new train of thought for the design of defective MOFs to promote the further development of solar-hydrogen fuel. |
---|---|
AbstractList | [Display omitted]
•A defect-engineering strategy to construct the intrinsic defects in metal-organic frameworks was proposed.•The accurate chemical formulas of defective MOF were obtained by simply characterization techniques.•The intrinsic deficiency activates the inert framework to trigger their catalytic performance for outstanding H2 evolution.
Defective metal-organic frameworks (MOFs) materials have ignited intensive attention in the field of photocatalytic H2 evolution. In this work, we applied a defect-engineering strategy to construct intrinsic defects in Cu-MOF, which gives birth to the excellent photocatalytic ability for proton reduction. Furthermore, the fine characterizations give the exact molecular formula of the defective Cu-MOF (copper-based metal-triazolate material, termed as MET-Cu-D). The intrinsic deficiency, ligand-vacancies of 1H-1,2,3-triazole, is generated in situ during the synthesis process, which triggers the catalytic activity of unsaturated Cu-sites for the outstanding H2 evolution performance. Photocatalysis results indicate that MET-Cu-D exhibited an excellent hydrogen evolution rate of 12.91 mmol g−1 and catalytic stability. This study provides a new train of thought for the design of defective MOFs to promote the further development of solar-hydrogen fuel. |
ArticleNumber | 119941 |
Author | Zang, Shuang-Quan Zang, Ying Liu, Zhi-Juan Peng, Peng Wang, Zhao-Di Wang, Rui |
Author_xml | – sequence: 1 givenname: Zhao-Di surname: Wang fullname: Wang, Zhao-Di – sequence: 2 givenname: Ying surname: Zang fullname: Zang, Ying – sequence: 3 givenname: Zhi-Juan surname: Liu fullname: Liu, Zhi-Juan – sequence: 4 givenname: Peng surname: Peng fullname: Peng, Peng – sequence: 5 givenname: Rui surname: Wang fullname: Wang, Rui email: wangruijy@zzu.edu.cn – sequence: 6 givenname: Shuang-Quan surname: Zang fullname: Zang, Shuang-Quan email: zangsqzg@zzu.edu.cn |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DwD6TYcZrELJBQxUuq1A2sLWcypi5pHNmmVfl6EoUVC1jNaKRzdefMyKR1LRJyzdmCM57f7Ba6Ax2rRcpSvuBcyoyfkSkvC5GIshQTMmUyzRMhCnFBZiHsGGOpSMspiZsOW9u-057XzSlaoMFGDNS2NG6Rgus69En0Vn-5pr8br_d4dP6DHqymNRqESGGLexuiP1HjPA1HG2E7hLoxpPMu9qvH-hOide0lOTe6CXj1M-fk7fHhdfWcrDdPL6v7dQKiSGNS9x1lhlXOsdJYpCznQmKGUhqRGyw5lEuQRSUk1DmYMgcOWlZQ1EvDekzMye2YC96F4NEosFEPDaLXtlGcqcGf2qnRnxr8qdFfD2e_4M7bvfan_7C7EcP-sYNFrwJYbAFr63tVqnb274Bv17KR-Q |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2023_101301 crossref_primary_10_1002_aenm_202300086 crossref_primary_10_1016_j_cej_2023_147768 crossref_primary_10_1002_smll_202500558 crossref_primary_10_1021_acsami_1c17974 crossref_primary_10_3390_molecules26195952 crossref_primary_10_1016_j_ccr_2024_216356 crossref_primary_10_1039_D2NR04377G crossref_primary_10_1016_j_ijhydene_2022_10_108 crossref_primary_10_1016_j_jcat_2024_115436 crossref_primary_10_1021_acsaenm_3c00747 crossref_primary_10_1039_D3RA07532J crossref_primary_10_1039_D4CP02164A crossref_primary_10_1016_j_apcatb_2024_124567 crossref_primary_10_1016_j_jhazmat_2022_130426 crossref_primary_10_1007_s12598_024_03055_3 crossref_primary_10_1016_j_cej_2025_159567 crossref_primary_10_1039_D3NA00837A crossref_primary_10_1016_j_cattod_2022_03_001 crossref_primary_10_1002_admi_202101810 crossref_primary_10_1002_smsc_202100060 crossref_primary_10_1039_D2MH00914E crossref_primary_10_1039_D3CY01396K crossref_primary_10_1039_D3CC00275F crossref_primary_10_1016_j_molstruc_2023_137332 crossref_primary_10_1016_j_jiec_2023_10_055 crossref_primary_10_1016_j_apcatb_2021_120817 crossref_primary_10_1016_j_solidstatesciences_2023_107303 crossref_primary_10_1021_acsaem_3c01611 crossref_primary_10_1021_acs_inorgchem_2c01855 crossref_primary_10_1016_j_cej_2023_147828 crossref_primary_10_1021_acsami_1c21663 crossref_primary_10_1016_j_cej_2024_149163 crossref_primary_10_1016_j_jece_2022_107964 crossref_primary_10_1016_j_colsurfa_2024_134046 crossref_primary_10_1002_cjoc_202400514 crossref_primary_10_1016_j_apcatb_2022_121555 crossref_primary_10_1021_acs_chemrev_2c00587 crossref_primary_10_1039_D1CY01505B crossref_primary_10_1039_D4CS01061B crossref_primary_10_1002_adma_202203734 crossref_primary_10_1016_j_electacta_2024_145636 crossref_primary_10_1016_j_jece_2023_111118 crossref_primary_10_1039_D4CC03479A crossref_primary_10_1016_j_jcat_2024_115320 crossref_primary_10_1021_acs_langmuir_4c02834 crossref_primary_10_1039_D2CY00713D crossref_primary_10_1021_acssuschemeng_4c09653 crossref_primary_10_1002_adfm_202203224 crossref_primary_10_1021_acsami_2c17829 |
Cites_doi | 10.1039/D0CC01785J 10.1016/j.jcis.2018.06.001 10.1002/anie.202002375 10.1016/j.apcatb.2014.11.007 10.1201/9780429351402 10.1002/anie.201306214 10.1038/nmat4778 10.1002/anie.201810207 10.1039/a908534c 10.1002/anie.201509744 10.1016/j.apcatb.2019.01.091 10.1016/j.apcatb.2019.01.033 10.1021/jp304022f 10.1016/j.apcatb.2018.03.078 10.1002/anie.201907074 10.1002/chem.201103433 10.1021/ja404514r 10.1039/C8TA09973A 10.1002/anie.201709869 10.1002/anie.202010601 10.1016/j.apcatb.2020.119385 10.1021/cs5006844 10.1038/natrevmats.2016.59 10.1039/c2dt12311h 10.1016/j.jcis.2019.08.107 10.1021/acs.jpclett.5b01135 10.1039/C7EE01917C 10.1002/anie.201906870 10.1016/j.apcatb.2017.06.082 10.1016/j.apcatb.2020.119782 10.1016/j.ccr.2017.09.027 10.1038/s41467-019-12889-w 10.1021/acs.chemmater.6b00602 10.1039/C4CC02994A 10.1021/acs.chemmater.5b04306 10.1016/j.apcatb.2017.01.051 10.1016/j.apcatb.2017.03.067 10.1002/anie.202000385 10.1002/anie.201505461 10.1039/C6CS00724D 10.1002/anie.201411540 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2021.119941 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2021_119941 S0926337321000679 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP |
ID | FETCH-LOGICAL-c372t-d02394eb61ebae7206139e4e99f36fe81c85c97b39cd6cf86c1ca9bc7d5f0eb63 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 04:35:10 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Sat Mar 02 15:59:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Defect Copper-triazoles framework Proton reduction Photocatalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-d02394eb61ebae7206139e4e99f36fe81c85c97b39cd6cf86c1ca9bc7d5f0eb63 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apcatb_2021_119941 crossref_primary_10_1016_j_apcatb_2021_119941 elsevier_sciencedirect_doi_10_1016_j_apcatb_2021_119941 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-05 |
PublicationDateYYYYMMDD | 2021-07-05 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lee, Park, Kim, Sinha, Lee, Jung, Chang, Lee, Kim, Cho, Kim, Nam, Hyeon (bib0030) 2001; 414 Shi, Feng, Hou, Li, Li, Guan, Liu, Guo (bib0215) 2021; 280 Zhang, Song, Wang, Zeng (bib0020) 2017; 206 Liu, Guo, Wang, Liu, Li, Zang, Mak (bib0110) 2019; 7 Wang, Yi, Wang (bib0045) 2019; 247 Sholl, Lively (bib0075) 2015; 6 Yi, Xie, Xie, Chai, Liu, Chen, Huang, Cao (bib0160) 2020; 59 Wang, Sharapa, Chandresh, Nefedov, Heißler, Heinke, Studt, Wang, Wöll (bib0120) 2020; 59 Zhang, Xia, Ran, Davey, Qiao (bib0165) 2020; 10 Zhang, Wang, Hao, Jin, Wang (bib0180) 2020; 395 Cho, Seo, Kim, Pai, Do, Yoon, Hwang, Han, Baek (bib0095) 2019; 245 Xiao, Wang, Huang, Wei, Dong, Ma, Shen, Li, Wang (bib0105) 2017; 10 Lee, Doussot, Baux, Liu, Jameson, Richardson, Pak, Trousselet, Coudert, Telfer (bib0080) 2016; 28 Gándara, Uribe-Romo, Britt, Furukawa, Lei, Cheng, Duan, O’Keeffe, Yaghi (bib0145) 2012; 18 Lianos (bib0005) 2017; 210 Zhang, Yan, Lee (bib0185) 2021; 283 Dong, Zhang, Pei, Wang, Wei, Zang, Fan, Mak (bib0025) 2016; 55 Shearer, Chavan, Bordiga, Svelle, Olsbye, Lillerud (bib0085) 2016; 28 Zhu, Zou, Xu (bib0050) 2018; 8 Dissegna, Epp, Heinz, Kieslich, Fischer (bib0070) 2018; 30 Jin, Zhang, Ma (bib0190) 2019; 556 Wen, Mori, Kuwahara, An, Yamashita (bib0220) 2017; 218 Yang, Xu, Jiang (bib0040) 2017; 46 Tao, Qiao, Jin, Li, Xiao, Wang, Zhang, Xie, He, Jiang, Yu, Li, Wang (bib0125) 2019; 58 Zhang, Zhao (bib0155) 2019; 10 Wang, Tao, Xiao, Chen, Jiang, Wang (bib0100) 2018; 28 Trickett, Gagnon, Lee, Gándara, Bürgi, Yaghi (bib0140) 2015; 54 Wen, Mori, Kamegawa, Yamashita (bib0225) 2014; 50 Wang, Dong, Du, Zhao, Zang (bib0130) 2018; 30 H, Wang, Philo, Ichihara, Song, Li, Li, Qiu, Wang, Ye (bib0055) 2020; 267 Min, Lu (bib0210) 2012; 116 Kong, Min, Lu (bib0200) 2014; 4 Fang, Bueken, De Vos, Fischer (bib0065) 2015; 54 He, Pachfule, Wu, Xu, Chen (bib0010) 2016; 1 Liu, Jin, Zhang, Wang, Ma (bib0205) 2018; 529 Rives, Kannan (bib0170) 2000; 10 Ma, Wang, Zhang, Jiang (bib0115) 2019; 58 Sakai, Mersch, Reisner (bib0195) 2013; 52 Grzywa, Denysenko, Hanss, Scheidt, Scherer, Weil, Volkmer (bib0150) 2012; 41 Ji, Wang, El-Sayed, Liu, Si, Su, Ju, Wu, Yuan (bib0175) 2021; 285 Chen, Xiao, Wang, Wang, Cai, Li, Qiao, Zhu, Li, Zhang, Lu (bib0235) 2020; 59 Wu, Chua, Krungleviciute, Tyagi, Chen, Yildirim, Zhou (bib0090) 2013; 135 Montoya, Seitz, Chakthranont, Vojvodic, Jaramillo, Nørskov (bib0015) 2017; 16 Trofimovaitea, Parletta, Kumara, Frattinia, Isaacsa, Wilsond, Olivib, Coulsonc, Debguptac, Douthwaitec, Lee (bib0035) 2018; 232 Lin, Xiang, Xing, Zhou, Chen (bib0060) 2019; 378 Xia, Tang, Li, Zhang, Wu, He, Yamauchi (bib0135) 2019; 58 Shi, Zheng, Sun, Cao, Sun, Cui, Liu, Zhao, Du (bib0240) 2017; 56 Zang, Zhang, Wang, Wang, Zhu, Ren, Li, Dong, Zang (bib0245) 2020; 56 Yuan, Yin, Cao, Xu, Li, Xue (bib0230) 2015; 168 Yuan (10.1016/j.apcatb.2021.119941_bib0230) 2015; 168 Yang (10.1016/j.apcatb.2021.119941_bib0040) 2017; 46 Sholl (10.1016/j.apcatb.2021.119941_bib0075) 2015; 6 Wu (10.1016/j.apcatb.2021.119941_bib0090) 2013; 135 Shearer (10.1016/j.apcatb.2021.119941_bib0085) 2016; 28 Lin (10.1016/j.apcatb.2021.119941_bib0060) 2019; 378 Wang (10.1016/j.apcatb.2021.119941_bib0120) 2020; 59 Wen (10.1016/j.apcatb.2021.119941_bib0225) 2014; 50 Zhu (10.1016/j.apcatb.2021.119941_bib0050) 2018; 8 Yi (10.1016/j.apcatb.2021.119941_bib0160) 2020; 59 Gándara (10.1016/j.apcatb.2021.119941_bib0145) 2012; 18 Wang (10.1016/j.apcatb.2021.119941_bib0130) 2018; 30 Wang (10.1016/j.apcatb.2021.119941_bib0045) 2019; 247 Trofimovaitea (10.1016/j.apcatb.2021.119941_bib0035) 2018; 232 Sakai (10.1016/j.apcatb.2021.119941_bib0195) 2013; 52 Wang (10.1016/j.apcatb.2021.119941_bib0100) 2018; 28 Liu (10.1016/j.apcatb.2021.119941_bib0110) 2019; 7 Lee (10.1016/j.apcatb.2021.119941_bib0030) 2001; 414 Shi (10.1016/j.apcatb.2021.119941_bib0240) 2017; 56 Wen (10.1016/j.apcatb.2021.119941_bib0220) 2017; 218 Jin (10.1016/j.apcatb.2021.119941_bib0190) 2019; 556 Montoya (10.1016/j.apcatb.2021.119941_bib0015) 2017; 16 Zang (10.1016/j.apcatb.2021.119941_bib0245) 2020; 56 Shi (10.1016/j.apcatb.2021.119941_bib0215) 2021; 280 Ma (10.1016/j.apcatb.2021.119941_bib0115) 2019; 58 Ji (10.1016/j.apcatb.2021.119941_bib0175) 2021; 285 Zhang (10.1016/j.apcatb.2021.119941_bib0180) 2020; 395 Lianos (10.1016/j.apcatb.2021.119941_bib0005) 2017; 210 Trickett (10.1016/j.apcatb.2021.119941_bib0140) 2015; 54 Zhang (10.1016/j.apcatb.2021.119941_bib0020) 2017; 206 Cho (10.1016/j.apcatb.2021.119941_bib0095) 2019; 245 Zhang (10.1016/j.apcatb.2021.119941_bib0165) 2020; 10 Xiao (10.1016/j.apcatb.2021.119941_bib0105) 2017; 10 He (10.1016/j.apcatb.2021.119941_bib0010) 2016; 1 Kong (10.1016/j.apcatb.2021.119941_bib0200) 2014; 4 Liu (10.1016/j.apcatb.2021.119941_bib0205) 2018; 529 Grzywa (10.1016/j.apcatb.2021.119941_bib0150) 2012; 41 Rives (10.1016/j.apcatb.2021.119941_bib0170) 2000; 10 Min (10.1016/j.apcatb.2021.119941_bib0210) 2012; 116 Fang (10.1016/j.apcatb.2021.119941_bib0065) 2015; 54 Zhang (10.1016/j.apcatb.2021.119941_bib0185) 2021; 283 Dong (10.1016/j.apcatb.2021.119941_bib0025) 2016; 55 Xia (10.1016/j.apcatb.2021.119941_bib0135) 2019; 58 Tao (10.1016/j.apcatb.2021.119941_bib0125) 2019; 58 H (10.1016/j.apcatb.2021.119941_bib0055) 2020; 267 Chen (10.1016/j.apcatb.2021.119941_bib0235) 2020; 59 Dissegna (10.1016/j.apcatb.2021.119941_bib0070) 2018; 30 Lee (10.1016/j.apcatb.2021.119941_bib0080) 2016; 28 Zhang (10.1016/j.apcatb.2021.119941_bib0155) 2019; 10 |
References_xml | – volume: 267 year: 2020 ident: bib0055 publication-title: Appl. Catal. B-Environ. – volume: 210 start-page: 235 year: 2017 end-page: 254 ident: bib0005 publication-title: Appl. Catal. B-Environ. – volume: 54 start-page: 7234 year: 2015 end-page: 7254 ident: bib0065 publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 6261 year: 2020 end-page: 6264 ident: bib0245 publication-title: Chem. Commun. – volume: 8 year: 2018 ident: bib0050 publication-title: Adv. Energy Mater. – volume: 59 start-page: 17182 year: 2020 end-page: 17186 ident: bib0235 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 16059 year: 2016 ident: bib0010 publication-title: Nat. Rev. Mater. – volume: 7 start-page: 2838 year: 2019 end-page: 2844 ident: bib0110 publication-title: J. Mater. Chem. A. – volume: 55 start-page: 2073 year: 2016 end-page: 2077 ident: bib0025 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 10525 year: 2013 end-page: 10532 ident: bib0090 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 10595 year: 2012 end-page: 10601 ident: bib0145 publication-title: Chem. Eur. J. – volume: 378 start-page: 87 year: 2019 end-page: 103 ident: bib0060 publication-title: Coord. Chem. Rev. – volume: 218 start-page: 555 year: 2017 end-page: 569 ident: bib0220 publication-title: Appl. Catal. B-Environ. – volume: 59 start-page: 23641 year: 2020 end-page: 23648 ident: bib0160 publication-title: Angew. Chem. Int. Ed. – volume: 30 year: 2018 ident: bib0130 publication-title: Adv. Mater. – volume: 50 start-page: 11645 year: 2014 end-page: 11648 ident: bib0225 publication-title: Chem. Commun. – volume: 28 start-page: 3749 year: 2016 end-page: 3761 ident: bib0085 publication-title: Chem. Mater. – volume: 247 start-page: 24 year: 2019 end-page: 48 ident: bib0045 publication-title: Appl. Catal. B-Environ. – volume: 414 start-page: 353 year: 2001 end-page: 358 ident: bib0030 publication-title: Nat. Mater. – volume: 52 start-page: 12313 year: 2013 end-page: 12316 ident: bib0195 publication-title: Angew. Chem. Int. Ed. – volume: 280 year: 2021 ident: bib0215 publication-title: Appl. Catal. B-Environ. – volume: 556 start-page: 689 year: 2019 end-page: 703 ident: bib0190 publication-title: J. Colloid. Interf. Sci. – volume: 245 start-page: 635 year: 2019 end-page: 647 ident: bib0095 publication-title: Appl. Catal. B-Environ. – volume: 232 start-page: 501 year: 2018 end-page: 511 ident: bib0035 publication-title: Appl. Catal. B-Environ. – volume: 28 start-page: 368 year: 2016 end-page: 375 ident: bib0080 publication-title: Chem. Mater. – volume: 283 year: 2021 ident: bib0185 publication-title: Appl. Catal. B-Environ. – volume: 116 start-page: 19644 year: 2012 end-page: 19652 ident: bib0210 publication-title: J. Phys. Chem. C. – volume: 16 start-page: 70 year: 2017 end-page: 81 ident: bib0015 publication-title: Nat. Mater. – volume: 56 start-page: 14637 year: 2017 end-page: 14641 ident: bib0240 publication-title: Angew. Chem. Int. Ed. – volume: 285 year: 2021 ident: bib0175 publication-title: Appl. Catal. B-Environ. – volume: 30 year: 2018 ident: bib0070 publication-title: Adv. Mater. – volume: 529 start-page: 44 year: 2018 end-page: 52 ident: bib0205 publication-title: J. Colloid. Interf. Sci. – volume: 6 start-page: 3437 year: 2015 end-page: 3444 ident: bib0075 publication-title: J. Phys. Chem. Lett. – volume: 59 start-page: 10514 year: 2020 end-page: 10518 ident: bib0120 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 489 year: 2000 end-page: 495 ident: bib0170 publication-title: J. Mater. Chem. – volume: 206 start-page: 328 year: 2017 end-page: 335 ident: bib0020 publication-title: Appl. Catal. B-Environ. – volume: 58 start-page: 13354 year: 2019 end-page: 13359 ident: bib0135 publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 12175 year: 2019 end-page: 12179 ident: bib0115 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 2563 year: 2017 end-page: 2569 ident: bib0105 publication-title: Energy Environ. Sci. – volume: 54 start-page: 11162 year: 2015 end-page: 11167 ident: bib0140 publication-title: Angew. Chem. Int. Ed. – volume: 395 year: 2020 ident: bib0180 publication-title: Chem. Eng. J. – volume: 58 start-page: 1019 year: 2019 end-page: 1024 ident: bib0125 publication-title: Angew. Chem. Int. Ed. – volume: 10 year: 2020 ident: bib0165 publication-title: Adv. Energy Mater. – volume: 46 start-page: 4774 year: 2017 end-page: 4808 ident: bib0040 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 2763 year: 2014 end-page: 2769 ident: bib0200 publication-title: ACS Catal. – volume: 168 start-page: 572 year: 2015 end-page: 576 ident: bib0230 publication-title: Appl. Catal. B-Environ. – volume: 28 year: 2018 ident: bib0100 publication-title: Adv. Funct. Mater. – volume: 41 start-page: 4239 year: 2012 end-page: 4248 ident: bib0150 publication-title: Dalton Trans. – volume: 10 start-page: 4848 year: 2019 ident: bib0155 publication-title: Nat. Commun. – volume: 56 start-page: 6261 year: 2020 ident: 10.1016/j.apcatb.2021.119941_bib0245 publication-title: Chem. Commun. doi: 10.1039/D0CC01785J – volume: 529 start-page: 44 year: 2018 ident: 10.1016/j.apcatb.2021.119941_bib0205 publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2018.06.001 – volume: 59 start-page: 17182 year: 2020 ident: 10.1016/j.apcatb.2021.119941_bib0235 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002375 – volume: 168 start-page: 572 year: 2015 ident: 10.1016/j.apcatb.2021.119941_bib0230 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2014.11.007 – volume: 10 year: 2020 ident: 10.1016/j.apcatb.2021.119941_bib0165 publication-title: Adv. Energy Mater. doi: 10.1201/9780429351402 – volume: 52 start-page: 12313 year: 2013 ident: 10.1016/j.apcatb.2021.119941_bib0195 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306214 – volume: 16 start-page: 70 year: 2017 ident: 10.1016/j.apcatb.2021.119941_bib0015 publication-title: Nat. Mater. doi: 10.1038/nmat4778 – volume: 58 start-page: 1019 year: 2019 ident: 10.1016/j.apcatb.2021.119941_bib0125 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201810207 – volume: 10 start-page: 489 year: 2000 ident: 10.1016/j.apcatb.2021.119941_bib0170 publication-title: J. Mater. Chem. doi: 10.1039/a908534c – volume: 55 start-page: 2073 year: 2016 ident: 10.1016/j.apcatb.2021.119941_bib0025 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509744 – volume: 247 start-page: 24 year: 2019 ident: 10.1016/j.apcatb.2021.119941_bib0045 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.01.091 – volume: 245 start-page: 635 year: 2019 ident: 10.1016/j.apcatb.2021.119941_bib0095 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.01.033 – volume: 116 start-page: 19644 year: 2012 ident: 10.1016/j.apcatb.2021.119941_bib0210 publication-title: J. Phys. Chem. C. doi: 10.1021/jp304022f – volume: 232 start-page: 501 year: 2018 ident: 10.1016/j.apcatb.2021.119941_bib0035 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.03.078 – volume: 58 start-page: 12175 year: 2019 ident: 10.1016/j.apcatb.2021.119941_bib0115 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201907074 – volume: 18 start-page: 10595 year: 2012 ident: 10.1016/j.apcatb.2021.119941_bib0145 publication-title: Chem. Eur. J. doi: 10.1002/chem.201103433 – volume: 135 start-page: 10525 year: 2013 ident: 10.1016/j.apcatb.2021.119941_bib0090 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404514r – volume: 7 start-page: 2838 year: 2019 ident: 10.1016/j.apcatb.2021.119941_bib0110 publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA09973A – volume: 56 start-page: 14637 year: 2017 ident: 10.1016/j.apcatb.2021.119941_bib0240 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709869 – volume: 59 start-page: 23641 year: 2020 ident: 10.1016/j.apcatb.2021.119941_bib0160 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202010601 – volume: 280 year: 2021 ident: 10.1016/j.apcatb.2021.119941_bib0215 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.119385 – volume: 4 start-page: 2763 year: 2014 ident: 10.1016/j.apcatb.2021.119941_bib0200 publication-title: ACS Catal. doi: 10.1021/cs5006844 – volume: 1 start-page: 16059 year: 2016 ident: 10.1016/j.apcatb.2021.119941_bib0010 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.59 – volume: 41 start-page: 4239 year: 2012 ident: 10.1016/j.apcatb.2021.119941_bib0150 publication-title: Dalton Trans. doi: 10.1039/c2dt12311h – volume: 556 start-page: 689 year: 2019 ident: 10.1016/j.apcatb.2021.119941_bib0190 publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2019.08.107 – volume: 395 year: 2020 ident: 10.1016/j.apcatb.2021.119941_bib0180 publication-title: Chem. Eng. J. – volume: 283 year: 2021 ident: 10.1016/j.apcatb.2021.119941_bib0185 publication-title: Appl. Catal. B-Environ. – volume: 6 start-page: 3437 year: 2015 ident: 10.1016/j.apcatb.2021.119941_bib0075 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01135 – volume: 10 start-page: 2563 year: 2017 ident: 10.1016/j.apcatb.2021.119941_bib0105 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01917C – volume: 58 start-page: 13354 year: 2019 ident: 10.1016/j.apcatb.2021.119941_bib0135 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906870 – volume: 218 start-page: 555 year: 2017 ident: 10.1016/j.apcatb.2021.119941_bib0220 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.06.082 – volume: 285 year: 2021 ident: 10.1016/j.apcatb.2021.119941_bib0175 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.119782 – volume: 378 start-page: 87 year: 2019 ident: 10.1016/j.apcatb.2021.119941_bib0060 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.027 – volume: 28 year: 2018 ident: 10.1016/j.apcatb.2021.119941_bib0100 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 4848 year: 2019 ident: 10.1016/j.apcatb.2021.119941_bib0155 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12889-w – volume: 28 start-page: 3749 year: 2016 ident: 10.1016/j.apcatb.2021.119941_bib0085 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00602 – volume: 50 start-page: 11645 year: 2014 ident: 10.1016/j.apcatb.2021.119941_bib0225 publication-title: Chem. Commun. doi: 10.1039/C4CC02994A – volume: 28 start-page: 368 year: 2016 ident: 10.1016/j.apcatb.2021.119941_bib0080 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04306 – volume: 206 start-page: 328 year: 2017 ident: 10.1016/j.apcatb.2021.119941_bib0020 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.01.051 – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2021.119941_bib0050 publication-title: Adv. Energy Mater. – volume: 210 start-page: 235 year: 2017 ident: 10.1016/j.apcatb.2021.119941_bib0005 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.03.067 – volume: 59 start-page: 10514 year: 2020 ident: 10.1016/j.apcatb.2021.119941_bib0120 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000385 – volume: 414 start-page: 353 year: 2001 ident: 10.1016/j.apcatb.2021.119941_bib0030 publication-title: Nat. Mater. – volume: 54 start-page: 11162 year: 2015 ident: 10.1016/j.apcatb.2021.119941_bib0140 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505461 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2021.119941_bib0070 publication-title: Adv. Mater. – volume: 46 start-page: 4774 year: 2017 ident: 10.1016/j.apcatb.2021.119941_bib0040 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00724D – volume: 54 start-page: 7234 year: 2015 ident: 10.1016/j.apcatb.2021.119941_bib0065 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411540 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2021.119941_bib0130 publication-title: Adv. Mater. – volume: 267 year: 2020 ident: 10.1016/j.apcatb.2021.119941_bib0055 publication-title: Appl. Catal. B-Environ. |
SSID | ssj0002328 |
Score | 2.5639977 |
Snippet | [Display omitted]
•A defect-engineering strategy to construct the intrinsic defects in metal-organic frameworks was proposed.•The accurate chemical formulas of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119941 |
SubjectTerms | Copper-triazoles framework Defect Photocatalysis Proton reduction |
Title | Opening catalytic sites in the copper-triazoles framework via defect chemistry for switching on the proton reduction |
URI | https://dx.doi.org/10.1016/j.apcatb.2021.119941 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heigcULuAWKDIh17dJXFsx0e0Am1blUuLxC3yYyIFod1oN7SCA78dTx48JARSb0k040SeyTySb2YAvgpEEYzNuMxCyglHyHPpkFuJacildsZSovjrXM0ush-X8nINpkMtDMEqe9vf2fTWWvdXJv1uTuqqmvw-NqkSQlMRCtlcKuLLMk1a_u3-CeYRI4bWGkdiTtRD-VyL8bK1t42LWWKaRNthTJa87p6euZyzT7DVx4rspHucz7CG8xF8nA4j2kaw-ayb4Ah2T5-K1iJb_9autqEh1EgkYe23mtu4GqN_xitWzVmM_5hf1DUuOQ3wuKP-TqwcEFvsb2VZQIJ8MD_cl8U4l63-VU0Lw2SLbhFq-BAPl9QKloS9Axdnp3-mM95PW-Be6LThoZ2Sjk4l6CzqlBy9wQyNKYUqMU98Lr3RThgflC9z5RNvjfM6yPI4soldWJ8v5rgHzKoQbKlj6pjHBXRqrVNOoQsyZCnmdgxi2OTC963IaSLGdTFgzq6KTjQFiaboRDMG_shVd6043qHXg_yKFypVRG_xJuf-f3MewAadtXheeQjrzfIGv8SopXFHrVoewYeT7z9n5w_LPfBi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROACHql1ApaWtD726S-LYjo_ValfbFrgAErfIj4kUVO1GuymIHvrb68mjgISK1FuUzDiRx56H880MwCeBKIKxGZdZSDnhCHkuHXIrMQ251M5YChRPz9T8Mvt2Ja82YDLkwhCsstf9nU5vtXV_Z9zP5riuqvH5sUmVEJqSUEjnmhewlcXtS20MPv--x3lEl6FVx5GaE_mQP9eCvGztbeNimJgmUXkYkyVP26cHNmf2Cl72ziL70n3Pa9jAxQi2J0OPthHsPignOIKD6X3WWmTrt-16DxqCjUQS1h7W3MXRGP00XrNqwaIDyPyyrnHFqYPHLyrwxMoBssVuKssCEuaD-eG9LDq6bH1bNS0Oky27QajiQ7xcUS1YkvY-XM6mF5M579stcC902vDQtklHpxJ0FnVKlt5ghsaUQpWYJz6X3mgnjA_Kl7nyibfGeR1keRzZxAFsLpYLfAPMqhBsqWPsmMcBdGqtU06hCzJkKeb2EMQwyYXva5FTS4wfxQA6uy460RQkmqITzSHwv1x1V4vjGXo9yK94tKaKaC7-yfn2vzk_wvb84vSkOPl69v0d7NCTFtwrj2CzWf3E99GFadyHdon-AUuS8fA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opening+catalytic+sites+in+the+copper-triazoles+framework+via+defect+chemistry+for+switching+on+the+proton+reduction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wang%2C+Zhao-Di&rft.au=Zang%2C+Ying&rft.au=Liu%2C+Zhi-Juan&rft.au=Peng%2C+Peng&rft.date=2021-07-05&rft.issn=0926-3373&rft.volume=288&rft.spage=119941&rft_id=info:doi/10.1016%2Fj.apcatb.2021.119941&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2021_119941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |