Numerical simulation and experimental study of the electroosmotic flow in open microfluidic chip based on super-wettability surface

The traditional bonding technology severely limits the development of microfluidic chip owing to the complicated techniques, the blockage and deformation of microchannels, etc. In this paper, an open microfluidic chip based on super-wettability surface is proposed to avoid the bonding technology. Th...

Full description

Saved in:
Bibliographic Details
Published inColloid and interface science communications Vol. 45; p. 100516
Main Authors Jiang, Shuyue, Zhang, Haifeng, Chen, Liang, Li, Yiping, Sang, Shengtian, Liu, Xiaowei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The traditional bonding technology severely limits the development of microfluidic chip owing to the complicated techniques, the blockage and deformation of microchannels, etc. In this paper, an open microfluidic chip based on super-wettability surface is proposed to avoid the bonding technology. The feasibility of open microfluidic chip based on capillary electrophoresis is demonstrated from the analysis of electroosmotic flow. In theory, we build simulation model to study the flow field of the open microchannel. The electroosmotic flow (EOF) velocity of an open microchannel (0.477 mm/s) is bascially euqal to a closed microchannel (0.479 mm/s). In experiment, the open microfluidic chip based on super-wettability surface is fabricated by chemical etching and laser ablation. The EOF velocity and electroosmotic mobility of open microfluidic chip are 1.05 mm/s and 4.2 × 10−4 cm2/(V·s), respectively. As a result, this open microfluidic chip can obtain the stable electroosmotic flow. Finally, under the action of electroosmotic flow, potassium ferricyanide is transported from the reservoir to the detection area by measuring the cyclic voltammetry curve.We envisage that this will also open up research avenues on open microfluidic chip, an area that still exists undeveloped. [Display omitted] •A novel open microfluidic chip based on a super-wettability surface is proposed.•The microfluidic chip with super-wettability surface can obtain stable electroosmotic flow.•The microfluidic chip with super-wettability surface is fabricated by chemical etching and laser ablation.
AbstractList The traditional bonding technology severely limits the development of microfluidic chip owing to the complicated techniques, the blockage and deformation of microchannels, etc. In this paper, an open microfluidic chip based on super-wettability surface is proposed to avoid the bonding technology. The feasibility of open microfluidic chip based on capillary electrophoresis is demonstrated from the analysis of electroosmotic flow. In theory, we build simulation model to study the flow field of the open microchannel. The electroosmotic flow (EOF) velocity of an open microchannel (0.477 mm/s) is bascially euqal to a closed microchannel (0.479 mm/s). In experiment, the open microfluidic chip based on super-wettability surface is fabricated by chemical etching and laser ablation. The EOF velocity and electroosmotic mobility of open microfluidic chip are 1.05 mm/s and 4.2 × 10−4 cm2/(V·s), respectively. As a result, this open microfluidic chip can obtain the stable electroosmotic flow. Finally, under the action of electroosmotic flow, potassium ferricyanide is transported from the reservoir to the detection area by measuring the cyclic voltammetry curve.We envisage that this will also open up research avenues on open microfluidic chip, an area that still exists undeveloped. [Display omitted] •A novel open microfluidic chip based on a super-wettability surface is proposed.•The microfluidic chip with super-wettability surface can obtain stable electroosmotic flow.•The microfluidic chip with super-wettability surface is fabricated by chemical etching and laser ablation.
ArticleNumber 100516
Author Liu, Xiaowei
Jiang, Shuyue
Zhang, Haifeng
Chen, Liang
Li, Yiping
Sang, Shengtian
Author_xml – sequence: 1
  givenname: Shuyue
  surname: Jiang
  fullname: Jiang, Shuyue
  organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China
– sequence: 2
  givenname: Haifeng
  surname: Zhang
  fullname: Zhang, Haifeng
  email: zhanghf@hit.edu.cn
  organization: Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
– sequence: 3
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China
– sequence: 4
  givenname: Yiping
  surname: Li
  fullname: Li, Yiping
  organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China
– sequence: 5
  givenname: Shengtian
  surname: Sang
  fullname: Sang, Shengtian
  organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China
– sequence: 6
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
BookMark eNqFkE1LAzEQhoMoWD_-gYf8ga1JdtNdPQgifoHoRc8hnUxoSnZTkqzas3_c1HoQD3qaYd55X2aeA7I7hAEJOeFsyhmfnS6nEDyEfiqY4GXEJJ_tkIkQXFas7sTuj36fHKe0ZKxsNkzU3YR8PI49Rgfa0-T60evswkD1YCi-r4rQ45A3Wh7NmgZL8wIpeoQcQ0h9yA6o9eGNuoGGFQ60dxCD9aMzRYGFW9G5TmhoCU1jCazeMGc9d97ldZlEqwGPyJ7VPuHxdz0kLzfXz1d31cPT7f3V5UMFdStyBVbyWnftXHAuZSu55V1tJJtxybq2kcDbrkOwplDRzUwKC22r4Yw3AgAM1Iek2eaWE1OKaNWqPKjjWnGmNizVUm1Zqg1LtWVZbOe_bODyF6cctfP_mS-2ZiyPvTqMKoHDAdC4WCgqE9zfAZ_uUJcK
CitedBy_id crossref_primary_10_1038_s41598_022_15935_8
crossref_primary_10_1016_j_microc_2023_109432
crossref_primary_10_1515_phys_2023_0173
crossref_primary_10_1016_j_cej_2025_161028
crossref_primary_10_1007_s40430_025_05429_9
crossref_primary_10_1016_j_cmpb_2023_107883
crossref_primary_10_59400_esc_v2i3_480
crossref_primary_10_1039_D3AN00535F
Cites_doi 10.1063/1.2772880
10.1039/C3NR04755E
10.1039/C5LC00729A
10.1063/1.5001345
10.1088/0953-8984/20/39/395005
10.1021/ac9912698
10.1039/c0lc00477d
10.1039/B712575P
10.1126/science.7761829
10.1016/S0169-409X(00)00138-1
10.1016/j.chroma.2007.08.083
10.1063/1.5118728
10.1126/science.1076996
10.1039/B811945G
10.1016/j.colsurfa.2008.06.029
10.1006/jcis.2001.7809
10.1088/1742-6596/1141/1/012134
10.1038/s41598-019-50713-z
10.1007/s10404-005-0063-6
10.1007/s10544-007-9125-8
10.1016/j.mee.2014.09.024
10.3390/s19102393
10.1039/C8AY02642D
10.1021/jacs.5b12728
10.1021/am3015923
10.1038/nature01793
10.1002/elps.201900308
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.colcom.2021.100516
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2215-0382
ExternalDocumentID 10_1016_j_colcom_2021_100516
S2215038221001564
GroupedDBID --M
0R~
0SF
4.4
457
4G.
6I.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEXQZ
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GROUPED_DOAJ
IXB
KOM
KQ8
M41
M~E
NCXOZ
O9-
OAUVE
OK1
RIG
ROL
SPC
SPCBC
SSG
SSK
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-cf513a87b21155751f183d5061508745c1788ecfd016a4652fc77ac9142cccdc3
IEDL.DBID IXB
ISSN 2215-0382
IngestDate Tue Jul 01 01:24:29 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Fri Feb 23 02:42:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electroosmotic flow
Microfluidic chip
Superhydrophobic surface
Super-hydrophilic microchannel
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-cf513a87b21155751f183d5061508745c1788ecfd016a4652fc77ac9142cccdc3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2215038221001564
ParticipantIDs crossref_primary_10_1016_j_colcom_2021_100516
crossref_citationtrail_10_1016_j_colcom_2021_100516
elsevier_sciencedirect_doi_10_1016_j_colcom_2021_100516
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Colloid and interface science communications
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hunter (bb0135) 1981
Ichikawa, Yamamoto, Yamamoto, Motosuke (bb0085) 2017; 29
Miller, Weiss, Heineman, Banerjee (bb0150) 2019; 9
Dorrer, Rühe (bb0060) 2009; 5
Kariandakis, Beskok (bb0120) 2002
Pikal (bb0075) 2001; 46
Bixler, Bhushan (bb0095) 2014; 6
Jung, Han, Choi, Ahn (bb0010) 2005; 132
Wu, Carlo, Lee (bb0015) 2008; 10
Wang, Zhou, Zhao, Zhang, Zhu (bb0140) 2007; 1170
Babar, Dubey, Bahga (bb0145) 2020; 41
Kunti, Dhar, Bhattacharya, Chakraborty (bb0030) 2019; 31
Roach, Shirtcliffe, Newton (bb0070) 2008; 4
Honig, Nicholls (bb0105) 1995; 5214
Nosonovsky, Bhushan (bb0065) 2008; 20
Hu, Chan, Bush (bb0090) 2003; 424
Polson, Hayes (bb0155) 2000; 72
Maynes, Jeffs, Woolford, Webb (bb0100) 2007; 19
Chang, You (bb0035) 2019; 11
Thorsen, Maerkl, Quake (bb0005) 2002; 298
Ren, Escobedo, Li (bb0110) 2001; 242
Wan, Sadri, Young (bb0045) 2015; 15
Ageev, Osiptsov (bb0080) 2018; 1141
Sunkara, Cho (bb0040) 2012; 4
Santangelo, Shtepliuk, Puglisi, Filippini, Yakimova, Eriksson (bb0020) 2019; 19
Zhang, Wong, Yang, Ooi (bb0125) 2006; 2
Li, Wu, Rojanasakul, Liu (bb0050) 2013; 193
Su, Tian, Jiang (bb0055) 2016; 138
Meltzer, Krogmeier, Kwok, Allen, Crane, Griffis, Knaian, Kojanian, Malkin, Nahas, Papkov, Shaikh, Vyavahare, Zhong, Zhou, Larson, Gilmanshin (bb0025) 2011; 11
Yang, D. Q.; Liu,Y. Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness. Colloid. Surface A., 2008, 328, 28–33.
Wan (10.1016/j.colcom.2021.100516_bb0045) 2015; 15
Wang (10.1016/j.colcom.2021.100516_bb0140) 2007; 1170
Jung (10.1016/j.colcom.2021.100516_bb0010) 2005; 132
Ageev (10.1016/j.colcom.2021.100516_bb0080) 2018; 1141
Meltzer (10.1016/j.colcom.2021.100516_bb0025) 2011; 11
Zhang (10.1016/j.colcom.2021.100516_bb0125) 2006; 2
Kunti (10.1016/j.colcom.2021.100516_bb0030) 2019; 31
Chang (10.1016/j.colcom.2021.100516_bb0035) 2019; 11
Thorsen (10.1016/j.colcom.2021.100516_bb0005) 2002; 298
Babar (10.1016/j.colcom.2021.100516_bb0145) 2020; 41
Polson (10.1016/j.colcom.2021.100516_bb0155) 2000; 72
Maynes (10.1016/j.colcom.2021.100516_bb0100) 2007; 19
Roach (10.1016/j.colcom.2021.100516_bb0070) 2008; 4
Miller (10.1016/j.colcom.2021.100516_bb0150) 2019; 9
Santangelo (10.1016/j.colcom.2021.100516_bb0020) 2019; 19
Bixler (10.1016/j.colcom.2021.100516_bb0095) 2014; 6
Dorrer (10.1016/j.colcom.2021.100516_bb0060) 2009; 5
Hu (10.1016/j.colcom.2021.100516_bb0090) 2003; 424
Ren (10.1016/j.colcom.2021.100516_bb0110) 2001; 242
Li (10.1016/j.colcom.2021.100516_bb0050) 2013; 193
Ichikawa (10.1016/j.colcom.2021.100516_bb0085) 2017; 29
10.1016/j.colcom.2021.100516_bb0130
Kariandakis (10.1016/j.colcom.2021.100516_bb0120) 2002
Honig (10.1016/j.colcom.2021.100516_bb0105) 1995; 5214
Hunter (10.1016/j.colcom.2021.100516_bb0135) 1981
Su (10.1016/j.colcom.2021.100516_bb0055) 2016; 138
Pikal (10.1016/j.colcom.2021.100516_bb0075) 2001; 46
Sunkara (10.1016/j.colcom.2021.100516_bb0040) 2012; 4
Wu (10.1016/j.colcom.2021.100516_bb0015) 2008; 10
Nosonovsky (10.1016/j.colcom.2021.100516_bb0065) 2008; 20
References_xml – volume: 6
  start-page: 76
  year: 2014
  end-page: 96
  ident: bb0095
  article-title: Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow
  publication-title: Nanoscale.
– volume: 242
  start-page: 264
  year: 2001
  end-page: 271
  ident: bb0110
  article-title: Electroosmotic flow in a microcapillary with one solution displacing another solution
  publication-title: J. Colloid Interface Sci.
– volume: 193
  start-page: 186
  year: 2013
  end-page: 192
  ident: bb0050
  article-title: Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications.
  publication-title: A
– volume: 2
  start-page: 205
  year: 2006
  end-page: 214
  ident: bb0125
  article-title: Dynamic aspects of electroosmotic flow
  publication-title: Microfluid. Nanofluid.
– volume: 29
  year: 2017
  ident: bb0085
  article-title: Near hydrophobic-surface flow measurement by micro-3D PTV for evaluation of drag reduction
  publication-title: Phys. Fluids
– volume: 132
  start-page: 46
  year: 2005
  end-page: 57
  ident: bb0010
  article-title: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies
  publication-title: Microelectron. Eng.
– volume: 138
  start-page: 1727
  year: 2016
  end-page: 1748
  ident: bb0055
  article-title: Bioinspired interfaces with super-wettability: from materials to chemistry
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 224
  year: 2008
  end-page: 240
  ident: bb0070
  article-title: Progress in superhydrophobic surface development
  publication-title: Soft Matter
– volume: 4
  start-page: 6537
  year: 2012
  end-page: 6544
  ident: bb0040
  article-title: Investigation on the Mechanism of Aminosilane-Mediated Bonding of Thermoplastics and Poly(dimethylsiloxane)
  publication-title: ACS Appl. Mater. Interfaces
– volume: 298
  start-page: 580
  year: 2002
  end-page: 584
  ident: bb0005
  article-title: Microfluidic large-scale integration
  publication-title: Science
– volume: 72
  start-page: 1088
  year: 2000
  end-page: 1092
  ident: bb0155
  article-title: Electroosmotic flow control of fluids on a capillary electrophoresis microdevice using an applied external voltage
  publication-title: Anal. Chem.
– volume: 19
  start-page: 2393
  year: 2019
  ident: bb0020
  article-title: Epitaxial graphene sensors combined with 3D printed microfluidic chip for heavy metals detection
  publication-title: Sensors
– volume: 5
  start-page: 51
  year: 2009
  end-page: 61
  ident: bb0060
  article-title: Some thoughts on superhydrophobic wetting
  publication-title: Soft Matter
– volume: 46
  start-page: 281
  year: 2001
  end-page: 305
  ident: bb0075
  article-title: The role of electroosmotic flow in transdermal iontophoresis
  publication-title: Adv. Drug Deliv. Rev.
– volume: 1141
  year: 2018
  ident: bb0080
  article-title: Slow viscous flow in a microchannel with similar and different superhydrophobic walls
  publication-title: J. Phys. Conf. Ser.
– volume: 10
  start-page: 197
  year: 2008
  end-page: 202
  ident: bb0015
  article-title: Microfluidic self-assembly of tumor spheroids for anticancer during drug discovery
  publication-title: Biomed. Microdevices
– reference: Yang, D. Q.; Liu,Y. Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness. Colloid. Surface A., 2008, 328, 28–33.
– volume: 41
  start-page: 570
  year: 2020
  end-page: 577
  ident: bb0145
  article-title: Effect of surface conduction-induced electromigration on current monitoring method for electroosmotic flow measurement
  publication-title: Electrophoresis
– volume: 20
  start-page: 395005
  year: 2008
  ident: bb0065
  article-title: Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing
  publication-title: J. Phys. Condens. Matter
– volume: 424
  start-page: 663
  year: 2003
  end-page: 666
  ident: bb0090
  article-title: The hydrodynamics of water strider locomotion
  publication-title: Nature.
– volume: 9
  start-page: 14428
  year: 2019
  ident: bb0150
  article-title: Electroosmotic flow driven microfluidic device for bacteria isolation using magnetic microbeads
  publication-title: Sci. Rep.
– volume: 31
  year: 2019
  ident: bb0030
  article-title: Directionally controlled open channel microfluidics
  publication-title: Phys. Fluids
– volume: 1170
  start-page: 1
  year: 2007
  end-page: 8
  ident: bb0140
  article-title: Measurement of electroosmotic flow in capillary and microchip electrophoresis
  publication-title: J. Chromatogr. A
– volume: 11
  start-page: 863
  year: 2011
  end-page: 873
  ident: bb0025
  article-title: A lab-on-chip for biothreat detection using single-molecule DNA mapping
  publication-title: Lab Chip
– volume: 15
  start-page: 3785
  year: 2015
  end-page: 3792
  ident: bb0045
  article-title: Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves
  publication-title: Lab Chip
– volume: 5214
  start-page: 1144
  year: 1995
  end-page: 1149
  ident: bb0105
  article-title: Classical electrostatics in biology and chemistry
  publication-title: Science
– year: 1981
  ident: bb0135
  article-title: Zeta Potential in Colloid Science: Principles and Applications
– year: 2002
  ident: bb0120
  article-title: Microflows fundamental and simulation
– volume: 11
  start-page: 1229
  year: 2019
  end-page: 1236
  ident: bb0035
  article-title: A hybrid adhesive bonding of PMMA and PCB with an application on microchip electrophoresis
  publication-title: Anal. Methods
– volume: 19
  year: 2007
  ident: bb0100
  article-title: Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction
  publication-title: Phys. Fluids
– volume: 19
  year: 2007
  ident: 10.1016/j.colcom.2021.100516_bb0100
  article-title: Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction
  publication-title: Phys. Fluids
  doi: 10.1063/1.2772880
– volume: 6
  start-page: 76
  year: 2014
  ident: 10.1016/j.colcom.2021.100516_bb0095
  article-title: Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow
  publication-title: Nanoscale.
  doi: 10.1039/C3NR04755E
– volume: 15
  start-page: 3785
  year: 2015
  ident: 10.1016/j.colcom.2021.100516_bb0045
  article-title: Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves
  publication-title: Lab Chip
  doi: 10.1039/C5LC00729A
– volume: 29
  year: 2017
  ident: 10.1016/j.colcom.2021.100516_bb0085
  article-title: Near hydrophobic-surface flow measurement by micro-3D PTV for evaluation of drag reduction
  publication-title: Phys. Fluids
  doi: 10.1063/1.5001345
– volume: 20
  start-page: 395005
  year: 2008
  ident: 10.1016/j.colcom.2021.100516_bb0065
  article-title: Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/20/39/395005
– volume: 72
  start-page: 1088
  year: 2000
  ident: 10.1016/j.colcom.2021.100516_bb0155
  article-title: Electroosmotic flow control of fluids on a capillary electrophoresis microdevice using an applied external voltage
  publication-title: Anal. Chem.
  doi: 10.1021/ac9912698
– volume: 11
  start-page: 863
  year: 2011
  ident: 10.1016/j.colcom.2021.100516_bb0025
  article-title: A lab-on-chip for biothreat detection using single-molecule DNA mapping
  publication-title: Lab Chip
  doi: 10.1039/c0lc00477d
– volume: 4
  start-page: 224
  year: 2008
  ident: 10.1016/j.colcom.2021.100516_bb0070
  article-title: Progress in superhydrophobic surface development
  publication-title: Soft Matter
  doi: 10.1039/B712575P
– volume: 5214
  start-page: 1144
  year: 1995
  ident: 10.1016/j.colcom.2021.100516_bb0105
  article-title: Classical electrostatics in biology and chemistry
  publication-title: Science
  doi: 10.1126/science.7761829
– volume: 46
  start-page: 281
  year: 2001
  ident: 10.1016/j.colcom.2021.100516_bb0075
  article-title: The role of electroosmotic flow in transdermal iontophoresis
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(00)00138-1
– volume: 1170
  start-page: 1
  year: 2007
  ident: 10.1016/j.colcom.2021.100516_bb0140
  article-title: Measurement of electroosmotic flow in capillary and microchip electrophoresis
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2007.08.083
– volume: 193
  start-page: 186
  year: 2013
  ident: 10.1016/j.colcom.2021.100516_bb0050
  article-title: Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications. Sens. Actuators
  publication-title: A
– volume: 31
  year: 2019
  ident: 10.1016/j.colcom.2021.100516_bb0030
  article-title: Directionally controlled open channel microfluidics
  publication-title: Phys. Fluids
  doi: 10.1063/1.5118728
– volume: 298
  start-page: 580
  year: 2002
  ident: 10.1016/j.colcom.2021.100516_bb0005
  article-title: Microfluidic large-scale integration
  publication-title: Science
  doi: 10.1126/science.1076996
– volume: 5
  start-page: 51
  year: 2009
  ident: 10.1016/j.colcom.2021.100516_bb0060
  article-title: Some thoughts on superhydrophobic wetting
  publication-title: Soft Matter
  doi: 10.1039/B811945G
– ident: 10.1016/j.colcom.2021.100516_bb0130
  doi: 10.1016/j.colsurfa.2008.06.029
– volume: 242
  start-page: 264
  year: 2001
  ident: 10.1016/j.colcom.2021.100516_bb0110
  article-title: Electroosmotic flow in a microcapillary with one solution displacing another solution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2001.7809
– volume: 1141
  year: 2018
  ident: 10.1016/j.colcom.2021.100516_bb0080
  article-title: Slow viscous flow in a microchannel with similar and different superhydrophobic walls
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1141/1/012134
– volume: 9
  start-page: 14428
  year: 2019
  ident: 10.1016/j.colcom.2021.100516_bb0150
  article-title: Electroosmotic flow driven microfluidic device for bacteria isolation using magnetic microbeads
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50713-z
– volume: 2
  start-page: 205
  year: 2006
  ident: 10.1016/j.colcom.2021.100516_bb0125
  article-title: Dynamic aspects of electroosmotic flow
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-005-0063-6
– year: 2002
  ident: 10.1016/j.colcom.2021.100516_bb0120
– volume: 10
  start-page: 197
  year: 2008
  ident: 10.1016/j.colcom.2021.100516_bb0015
  article-title: Microfluidic self-assembly of tumor spheroids for anticancer during drug discovery
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-007-9125-8
– volume: 132
  start-page: 46
  year: 2005
  ident: 10.1016/j.colcom.2021.100516_bb0010
  article-title: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2014.09.024
– volume: 19
  start-page: 2393
  year: 2019
  ident: 10.1016/j.colcom.2021.100516_bb0020
  article-title: Epitaxial graphene sensors combined with 3D printed microfluidic chip for heavy metals detection
  publication-title: Sensors
  doi: 10.3390/s19102393
– volume: 11
  start-page: 1229
  year: 2019
  ident: 10.1016/j.colcom.2021.100516_bb0035
  article-title: A hybrid adhesive bonding of PMMA and PCB with an application on microchip electrophoresis
  publication-title: Anal. Methods
  doi: 10.1039/C8AY02642D
– volume: 138
  start-page: 1727
  year: 2016
  ident: 10.1016/j.colcom.2021.100516_bb0055
  article-title: Bioinspired interfaces with super-wettability: from materials to chemistry
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12728
– volume: 4
  start-page: 6537
  year: 2012
  ident: 10.1016/j.colcom.2021.100516_bb0040
  article-title: Investigation on the Mechanism of Aminosilane-Mediated Bonding of Thermoplastics and Poly(dimethylsiloxane)
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3015923
– year: 1981
  ident: 10.1016/j.colcom.2021.100516_bb0135
– volume: 424
  start-page: 663
  year: 2003
  ident: 10.1016/j.colcom.2021.100516_bb0090
  article-title: The hydrodynamics of water strider locomotion
  publication-title: Nature.
  doi: 10.1038/nature01793
– volume: 41
  start-page: 570
  year: 2020
  ident: 10.1016/j.colcom.2021.100516_bb0145
  article-title: Effect of surface conduction-induced electromigration on current monitoring method for electroosmotic flow measurement
  publication-title: Electrophoresis
  doi: 10.1002/elps.201900308
SSID ssj0002140238
Score 2.2412288
Snippet The traditional bonding technology severely limits the development of microfluidic chip owing to the complicated techniques, the blockage and deformation of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100516
SubjectTerms Electroosmotic flow
Microfluidic chip
Super-hydrophilic microchannel
Superhydrophobic surface
Title Numerical simulation and experimental study of the electroosmotic flow in open microfluidic chip based on super-wettability surface
URI https://dx.doi.org/10.1016/j.colcom.2021.100516
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL15EUbE-yh68Ls1jt4nHWizVYg8-sLewmWQx0ialJhTP_nFnsokoiIKnkM3Oskw2OzPZme9j7FwRibHjaUEEKEK66YWIE4xSjOdCCApCpane-XbaHz_Km5mabbBhWwtDaZXN3m_39Hq3blp6jTZ7yyzr3XtorRwfDZxb1wMTJqgvw7qIb3b5-Z_FwwjCqwmtqb8ggbaCrk7zQnVT2gjO16WMAUXE5z9ZqC9WZ7TLdhp3kQ_sjPbYRprvs_dpZc9Z5vw1WzT8W1znCf-K189r5FheGI4-Hm_oboqatge4mRdrnuWcyLP4gpLyzLzKEnwCz9mSk21LOA76WuGAYp2WpcXzfsOWldGQHrDH0dXDcCwaMgUBfuCVAoxyfR0GMUZ8ig5bDH7MibKA8IFU4GIwnIJJUC1a9pVnIAg0XLjSA4AE_EO2mRd5esS4QacKHKMTqR2J8UYcxEr2nTBF14vQbjrMbxUYQYM0ToQX86hNKXuJrNojUntk1d5h4lNqaZE2_ugftO8m-rZiIjQGv0oe_1vyhG3Tna1FPGWb5apKz9ApKeMu2xpcT8ZTuk7unibdehV-AD8U5AA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELaAHsoFURXEuz60R2sTx94sBw48inYL7KUg7S11JrYIWrIrNqsVZ34Sf5CZ2EFUqlqpElc7tqzPo3nEM_Mx9lUTiXEkjSACFKFieyjyAqMUJ2PogYaeNlTvfDXs9m_Uj5EeLbHnthaG0iqD7vc6vdHWYaQT0OxMy7LzU6K1ihI0cHFTD6xCZuWFfVxg3DY7GpzhJX-T8vz79WlfBGoBAUkqawFOx4nppTnGP5qeHhyKdqF9e_RUaYgxNLTgCvSIjOpq6SBNDRzGSgJAAQnuu8w-oPeRkjYYjE5ef-xIDFlkw6BNBxR0wrZkr8krw_ulPBUEKKYUBU1M638yiW_M3Pk6Wwv-KT_2EHxiS7b6zJ6Gc_-wM-az8j4QfnFTFfwtQQBvWtXyiePoVPLArzNpeIKAu_FkwcuKE1sXv6csQDeelwXOwG055WRMC46bzua4oVjYuvYNxB9x5MEZsBvs5l0g3mQr1aSyW4w79OIgcqZQJlIY4ORprlU36ln09ai9zjZLWgAzCK3NiWFjnLU5bHeZhz0j2DMP-zYTr6umvrXHP75P27vJfhPRDK3PX1fu_PfKL-xj__rqMrscDC922SrN-ELIPbZSP8ztPnpEdX7QSCBnv95b5F8Awzkcqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+and+experimental+study+of+the+electroosmotic+flow+in+open+microfluidic+chip+based+on+super-wettability+surface&rft.jtitle=Colloid+and+interface+science+communications&rft.au=Jiang%2C+Shuyue&rft.au=Zhang%2C+Haifeng&rft.au=Chen%2C+Liang&rft.au=Li%2C+Yiping&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=2215-0382&rft.eissn=2215-0382&rft.volume=45&rft_id=info:doi/10.1016%2Fj.colcom.2021.100516&rft.externalDocID=S2215038221001564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0382&client=summon