Numerical simulation and experimental study of the electroosmotic flow in open microfluidic chip based on super-wettability surface
The traditional bonding technology severely limits the development of microfluidic chip owing to the complicated techniques, the blockage and deformation of microchannels, etc. In this paper, an open microfluidic chip based on super-wettability surface is proposed to avoid the bonding technology. Th...
Saved in:
Published in | Colloid and interface science communications Vol. 45; p. 100516 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The traditional bonding technology severely limits the development of microfluidic chip owing to the complicated techniques, the blockage and deformation of microchannels, etc. In this paper, an open microfluidic chip based on super-wettability surface is proposed to avoid the bonding technology. The feasibility of open microfluidic chip based on capillary electrophoresis is demonstrated from the analysis of electroosmotic flow. In theory, we build simulation model to study the flow field of the open microchannel. The electroosmotic flow (EOF) velocity of an open microchannel (0.477 mm/s) is bascially euqal to a closed microchannel (0.479 mm/s). In experiment, the open microfluidic chip based on super-wettability surface is fabricated by chemical etching and laser ablation. The EOF velocity and electroosmotic mobility of open microfluidic chip are 1.05 mm/s and 4.2 × 10−4 cm2/(V·s), respectively. As a result, this open microfluidic chip can obtain the stable electroosmotic flow. Finally, under the action of electroosmotic flow, potassium ferricyanide is transported from the reservoir to the detection area by measuring the cyclic voltammetry curve.We envisage that this will also open up research avenues on open microfluidic chip, an area that still exists undeveloped.
[Display omitted]
•A novel open microfluidic chip based on a super-wettability surface is proposed.•The microfluidic chip with super-wettability surface can obtain stable electroosmotic flow.•The microfluidic chip with super-wettability surface is fabricated by chemical etching and laser ablation. |
---|---|
AbstractList | The traditional bonding technology severely limits the development of microfluidic chip owing to the complicated techniques, the blockage and deformation of microchannels, etc. In this paper, an open microfluidic chip based on super-wettability surface is proposed to avoid the bonding technology. The feasibility of open microfluidic chip based on capillary electrophoresis is demonstrated from the analysis of electroosmotic flow. In theory, we build simulation model to study the flow field of the open microchannel. The electroosmotic flow (EOF) velocity of an open microchannel (0.477 mm/s) is bascially euqal to a closed microchannel (0.479 mm/s). In experiment, the open microfluidic chip based on super-wettability surface is fabricated by chemical etching and laser ablation. The EOF velocity and electroosmotic mobility of open microfluidic chip are 1.05 mm/s and 4.2 × 10−4 cm2/(V·s), respectively. As a result, this open microfluidic chip can obtain the stable electroosmotic flow. Finally, under the action of electroosmotic flow, potassium ferricyanide is transported from the reservoir to the detection area by measuring the cyclic voltammetry curve.We envisage that this will also open up research avenues on open microfluidic chip, an area that still exists undeveloped.
[Display omitted]
•A novel open microfluidic chip based on a super-wettability surface is proposed.•The microfluidic chip with super-wettability surface can obtain stable electroosmotic flow.•The microfluidic chip with super-wettability surface is fabricated by chemical etching and laser ablation. |
ArticleNumber | 100516 |
Author | Liu, Xiaowei Jiang, Shuyue Zhang, Haifeng Chen, Liang Li, Yiping Sang, Shengtian |
Author_xml | – sequence: 1 givenname: Shuyue surname: Jiang fullname: Jiang, Shuyue organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China – sequence: 2 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng email: zhanghf@hit.edu.cn organization: Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China – sequence: 3 givenname: Liang surname: Chen fullname: Chen, Liang organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China – sequence: 4 givenname: Yiping surname: Li fullname: Li, Yiping organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China – sequence: 5 givenname: Shengtian surname: Sang fullname: Sang, Shengtian organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China – sequence: 6 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China |
BookMark | eNqFkE1LAzEQhoMoWD_-gYf8ga1JdtNdPQgifoHoRc8hnUxoSnZTkqzas3_c1HoQD3qaYd55X2aeA7I7hAEJOeFsyhmfnS6nEDyEfiqY4GXEJJ_tkIkQXFas7sTuj36fHKe0ZKxsNkzU3YR8PI49Rgfa0-T60evswkD1YCi-r4rQ45A3Wh7NmgZL8wIpeoQcQ0h9yA6o9eGNuoGGFQ60dxCD9aMzRYGFW9G5TmhoCU1jCazeMGc9d97ldZlEqwGPyJ7VPuHxdz0kLzfXz1d31cPT7f3V5UMFdStyBVbyWnftXHAuZSu55V1tJJtxybq2kcDbrkOwplDRzUwKC22r4Yw3AgAM1Iek2eaWE1OKaNWqPKjjWnGmNizVUm1Zqg1LtWVZbOe_bODyF6cctfP_mS-2ZiyPvTqMKoHDAdC4WCgqE9zfAZ_uUJcK |
CitedBy_id | crossref_primary_10_1038_s41598_022_15935_8 crossref_primary_10_1016_j_microc_2023_109432 crossref_primary_10_1515_phys_2023_0173 crossref_primary_10_1016_j_cej_2025_161028 crossref_primary_10_1007_s40430_025_05429_9 crossref_primary_10_1016_j_cmpb_2023_107883 crossref_primary_10_59400_esc_v2i3_480 crossref_primary_10_1039_D3AN00535F |
Cites_doi | 10.1063/1.2772880 10.1039/C3NR04755E 10.1039/C5LC00729A 10.1063/1.5001345 10.1088/0953-8984/20/39/395005 10.1021/ac9912698 10.1039/c0lc00477d 10.1039/B712575P 10.1126/science.7761829 10.1016/S0169-409X(00)00138-1 10.1016/j.chroma.2007.08.083 10.1063/1.5118728 10.1126/science.1076996 10.1039/B811945G 10.1016/j.colsurfa.2008.06.029 10.1006/jcis.2001.7809 10.1088/1742-6596/1141/1/012134 10.1038/s41598-019-50713-z 10.1007/s10404-005-0063-6 10.1007/s10544-007-9125-8 10.1016/j.mee.2014.09.024 10.3390/s19102393 10.1039/C8AY02642D 10.1021/jacs.5b12728 10.1021/am3015923 10.1038/nature01793 10.1002/elps.201900308 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.colcom.2021.100516 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2215-0382 |
ExternalDocumentID | 10_1016_j_colcom_2021_100516 S2215038221001564 |
GroupedDBID | --M 0R~ 0SF 4.4 457 4G. 6I. 7-5 AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEXQZ AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AHPOS AIEXJ AIKHN AITUG AJBFU AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GROUPED_DOAJ IXB KOM KQ8 M41 M~E NCXOZ O9- OAUVE OK1 RIG ROL SPC SPCBC SSG SSK SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-cf513a87b21155751f183d5061508745c1788ecfd016a4652fc77ac9142cccdc3 |
IEDL.DBID | IXB |
ISSN | 2215-0382 |
IngestDate | Tue Jul 01 01:24:29 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Fri Feb 23 02:42:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electroosmotic flow Microfluidic chip Superhydrophobic surface Super-hydrophilic microchannel |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-cf513a87b21155751f183d5061508745c1788ecfd016a4652fc77ac9142cccdc3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2215038221001564 |
ParticipantIDs | crossref_primary_10_1016_j_colcom_2021_100516 crossref_citationtrail_10_1016_j_colcom_2021_100516 elsevier_sciencedirect_doi_10_1016_j_colcom_2021_100516 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Colloid and interface science communications |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hunter (bb0135) 1981 Ichikawa, Yamamoto, Yamamoto, Motosuke (bb0085) 2017; 29 Miller, Weiss, Heineman, Banerjee (bb0150) 2019; 9 Dorrer, Rühe (bb0060) 2009; 5 Kariandakis, Beskok (bb0120) 2002 Pikal (bb0075) 2001; 46 Bixler, Bhushan (bb0095) 2014; 6 Jung, Han, Choi, Ahn (bb0010) 2005; 132 Wu, Carlo, Lee (bb0015) 2008; 10 Wang, Zhou, Zhao, Zhang, Zhu (bb0140) 2007; 1170 Babar, Dubey, Bahga (bb0145) 2020; 41 Kunti, Dhar, Bhattacharya, Chakraborty (bb0030) 2019; 31 Roach, Shirtcliffe, Newton (bb0070) 2008; 4 Honig, Nicholls (bb0105) 1995; 5214 Nosonovsky, Bhushan (bb0065) 2008; 20 Hu, Chan, Bush (bb0090) 2003; 424 Polson, Hayes (bb0155) 2000; 72 Maynes, Jeffs, Woolford, Webb (bb0100) 2007; 19 Chang, You (bb0035) 2019; 11 Thorsen, Maerkl, Quake (bb0005) 2002; 298 Ren, Escobedo, Li (bb0110) 2001; 242 Wan, Sadri, Young (bb0045) 2015; 15 Ageev, Osiptsov (bb0080) 2018; 1141 Sunkara, Cho (bb0040) 2012; 4 Santangelo, Shtepliuk, Puglisi, Filippini, Yakimova, Eriksson (bb0020) 2019; 19 Zhang, Wong, Yang, Ooi (bb0125) 2006; 2 Li, Wu, Rojanasakul, Liu (bb0050) 2013; 193 Su, Tian, Jiang (bb0055) 2016; 138 Meltzer, Krogmeier, Kwok, Allen, Crane, Griffis, Knaian, Kojanian, Malkin, Nahas, Papkov, Shaikh, Vyavahare, Zhong, Zhou, Larson, Gilmanshin (bb0025) 2011; 11 Yang, D. Q.; Liu,Y. Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness. Colloid. Surface A., 2008, 328, 28–33. Wan (10.1016/j.colcom.2021.100516_bb0045) 2015; 15 Wang (10.1016/j.colcom.2021.100516_bb0140) 2007; 1170 Jung (10.1016/j.colcom.2021.100516_bb0010) 2005; 132 Ageev (10.1016/j.colcom.2021.100516_bb0080) 2018; 1141 Meltzer (10.1016/j.colcom.2021.100516_bb0025) 2011; 11 Zhang (10.1016/j.colcom.2021.100516_bb0125) 2006; 2 Kunti (10.1016/j.colcom.2021.100516_bb0030) 2019; 31 Chang (10.1016/j.colcom.2021.100516_bb0035) 2019; 11 Thorsen (10.1016/j.colcom.2021.100516_bb0005) 2002; 298 Babar (10.1016/j.colcom.2021.100516_bb0145) 2020; 41 Polson (10.1016/j.colcom.2021.100516_bb0155) 2000; 72 Maynes (10.1016/j.colcom.2021.100516_bb0100) 2007; 19 Roach (10.1016/j.colcom.2021.100516_bb0070) 2008; 4 Miller (10.1016/j.colcom.2021.100516_bb0150) 2019; 9 Santangelo (10.1016/j.colcom.2021.100516_bb0020) 2019; 19 Bixler (10.1016/j.colcom.2021.100516_bb0095) 2014; 6 Dorrer (10.1016/j.colcom.2021.100516_bb0060) 2009; 5 Hu (10.1016/j.colcom.2021.100516_bb0090) 2003; 424 Ren (10.1016/j.colcom.2021.100516_bb0110) 2001; 242 Li (10.1016/j.colcom.2021.100516_bb0050) 2013; 193 Ichikawa (10.1016/j.colcom.2021.100516_bb0085) 2017; 29 10.1016/j.colcom.2021.100516_bb0130 Kariandakis (10.1016/j.colcom.2021.100516_bb0120) 2002 Honig (10.1016/j.colcom.2021.100516_bb0105) 1995; 5214 Hunter (10.1016/j.colcom.2021.100516_bb0135) 1981 Su (10.1016/j.colcom.2021.100516_bb0055) 2016; 138 Pikal (10.1016/j.colcom.2021.100516_bb0075) 2001; 46 Sunkara (10.1016/j.colcom.2021.100516_bb0040) 2012; 4 Wu (10.1016/j.colcom.2021.100516_bb0015) 2008; 10 Nosonovsky (10.1016/j.colcom.2021.100516_bb0065) 2008; 20 |
References_xml | – volume: 6 start-page: 76 year: 2014 end-page: 96 ident: bb0095 article-title: Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow publication-title: Nanoscale. – volume: 242 start-page: 264 year: 2001 end-page: 271 ident: bb0110 article-title: Electroosmotic flow in a microcapillary with one solution displacing another solution publication-title: J. Colloid Interface Sci. – volume: 193 start-page: 186 year: 2013 end-page: 192 ident: bb0050 article-title: Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications. publication-title: A – volume: 2 start-page: 205 year: 2006 end-page: 214 ident: bb0125 article-title: Dynamic aspects of electroosmotic flow publication-title: Microfluid. Nanofluid. – volume: 29 year: 2017 ident: bb0085 article-title: Near hydrophobic-surface flow measurement by micro-3D PTV for evaluation of drag reduction publication-title: Phys. Fluids – volume: 132 start-page: 46 year: 2005 end-page: 57 ident: bb0010 article-title: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies publication-title: Microelectron. Eng. – volume: 138 start-page: 1727 year: 2016 end-page: 1748 ident: bb0055 article-title: Bioinspired interfaces with super-wettability: from materials to chemistry publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 224 year: 2008 end-page: 240 ident: bb0070 article-title: Progress in superhydrophobic surface development publication-title: Soft Matter – volume: 4 start-page: 6537 year: 2012 end-page: 6544 ident: bb0040 article-title: Investigation on the Mechanism of Aminosilane-Mediated Bonding of Thermoplastics and Poly(dimethylsiloxane) publication-title: ACS Appl. Mater. Interfaces – volume: 298 start-page: 580 year: 2002 end-page: 584 ident: bb0005 article-title: Microfluidic large-scale integration publication-title: Science – volume: 72 start-page: 1088 year: 2000 end-page: 1092 ident: bb0155 article-title: Electroosmotic flow control of fluids on a capillary electrophoresis microdevice using an applied external voltage publication-title: Anal. Chem. – volume: 19 start-page: 2393 year: 2019 ident: bb0020 article-title: Epitaxial graphene sensors combined with 3D printed microfluidic chip for heavy metals detection publication-title: Sensors – volume: 5 start-page: 51 year: 2009 end-page: 61 ident: bb0060 article-title: Some thoughts on superhydrophobic wetting publication-title: Soft Matter – volume: 46 start-page: 281 year: 2001 end-page: 305 ident: bb0075 article-title: The role of electroosmotic flow in transdermal iontophoresis publication-title: Adv. Drug Deliv. Rev. – volume: 1141 year: 2018 ident: bb0080 article-title: Slow viscous flow in a microchannel with similar and different superhydrophobic walls publication-title: J. Phys. Conf. Ser. – volume: 10 start-page: 197 year: 2008 end-page: 202 ident: bb0015 article-title: Microfluidic self-assembly of tumor spheroids for anticancer during drug discovery publication-title: Biomed. Microdevices – reference: Yang, D. Q.; Liu,Y. Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness. Colloid. Surface A., 2008, 328, 28–33. – volume: 41 start-page: 570 year: 2020 end-page: 577 ident: bb0145 article-title: Effect of surface conduction-induced electromigration on current monitoring method for electroosmotic flow measurement publication-title: Electrophoresis – volume: 20 start-page: 395005 year: 2008 ident: bb0065 article-title: Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing publication-title: J. Phys. Condens. Matter – volume: 424 start-page: 663 year: 2003 end-page: 666 ident: bb0090 article-title: The hydrodynamics of water strider locomotion publication-title: Nature. – volume: 9 start-page: 14428 year: 2019 ident: bb0150 article-title: Electroosmotic flow driven microfluidic device for bacteria isolation using magnetic microbeads publication-title: Sci. Rep. – volume: 31 year: 2019 ident: bb0030 article-title: Directionally controlled open channel microfluidics publication-title: Phys. Fluids – volume: 1170 start-page: 1 year: 2007 end-page: 8 ident: bb0140 article-title: Measurement of electroosmotic flow in capillary and microchip electrophoresis publication-title: J. Chromatogr. A – volume: 11 start-page: 863 year: 2011 end-page: 873 ident: bb0025 article-title: A lab-on-chip for biothreat detection using single-molecule DNA mapping publication-title: Lab Chip – volume: 15 start-page: 3785 year: 2015 end-page: 3792 ident: bb0045 article-title: Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves publication-title: Lab Chip – volume: 5214 start-page: 1144 year: 1995 end-page: 1149 ident: bb0105 article-title: Classical electrostatics in biology and chemistry publication-title: Science – year: 1981 ident: bb0135 article-title: Zeta Potential in Colloid Science: Principles and Applications – year: 2002 ident: bb0120 article-title: Microflows fundamental and simulation – volume: 11 start-page: 1229 year: 2019 end-page: 1236 ident: bb0035 article-title: A hybrid adhesive bonding of PMMA and PCB with an application on microchip electrophoresis publication-title: Anal. Methods – volume: 19 year: 2007 ident: bb0100 article-title: Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction publication-title: Phys. Fluids – volume: 19 year: 2007 ident: 10.1016/j.colcom.2021.100516_bb0100 article-title: Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction publication-title: Phys. Fluids doi: 10.1063/1.2772880 – volume: 6 start-page: 76 year: 2014 ident: 10.1016/j.colcom.2021.100516_bb0095 article-title: Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow publication-title: Nanoscale. doi: 10.1039/C3NR04755E – volume: 15 start-page: 3785 year: 2015 ident: 10.1016/j.colcom.2021.100516_bb0045 article-title: Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves publication-title: Lab Chip doi: 10.1039/C5LC00729A – volume: 29 year: 2017 ident: 10.1016/j.colcom.2021.100516_bb0085 article-title: Near hydrophobic-surface flow measurement by micro-3D PTV for evaluation of drag reduction publication-title: Phys. Fluids doi: 10.1063/1.5001345 – volume: 20 start-page: 395005 year: 2008 ident: 10.1016/j.colcom.2021.100516_bb0065 article-title: Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/39/395005 – volume: 72 start-page: 1088 year: 2000 ident: 10.1016/j.colcom.2021.100516_bb0155 article-title: Electroosmotic flow control of fluids on a capillary electrophoresis microdevice using an applied external voltage publication-title: Anal. Chem. doi: 10.1021/ac9912698 – volume: 11 start-page: 863 year: 2011 ident: 10.1016/j.colcom.2021.100516_bb0025 article-title: A lab-on-chip for biothreat detection using single-molecule DNA mapping publication-title: Lab Chip doi: 10.1039/c0lc00477d – volume: 4 start-page: 224 year: 2008 ident: 10.1016/j.colcom.2021.100516_bb0070 article-title: Progress in superhydrophobic surface development publication-title: Soft Matter doi: 10.1039/B712575P – volume: 5214 start-page: 1144 year: 1995 ident: 10.1016/j.colcom.2021.100516_bb0105 article-title: Classical electrostatics in biology and chemistry publication-title: Science doi: 10.1126/science.7761829 – volume: 46 start-page: 281 year: 2001 ident: 10.1016/j.colcom.2021.100516_bb0075 article-title: The role of electroosmotic flow in transdermal iontophoresis publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(00)00138-1 – volume: 1170 start-page: 1 year: 2007 ident: 10.1016/j.colcom.2021.100516_bb0140 article-title: Measurement of electroosmotic flow in capillary and microchip electrophoresis publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2007.08.083 – volume: 193 start-page: 186 year: 2013 ident: 10.1016/j.colcom.2021.100516_bb0050 article-title: Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications. Sens. Actuators publication-title: A – volume: 31 year: 2019 ident: 10.1016/j.colcom.2021.100516_bb0030 article-title: Directionally controlled open channel microfluidics publication-title: Phys. Fluids doi: 10.1063/1.5118728 – volume: 298 start-page: 580 year: 2002 ident: 10.1016/j.colcom.2021.100516_bb0005 article-title: Microfluidic large-scale integration publication-title: Science doi: 10.1126/science.1076996 – volume: 5 start-page: 51 year: 2009 ident: 10.1016/j.colcom.2021.100516_bb0060 article-title: Some thoughts on superhydrophobic wetting publication-title: Soft Matter doi: 10.1039/B811945G – ident: 10.1016/j.colcom.2021.100516_bb0130 doi: 10.1016/j.colsurfa.2008.06.029 – volume: 242 start-page: 264 year: 2001 ident: 10.1016/j.colcom.2021.100516_bb0110 article-title: Electroosmotic flow in a microcapillary with one solution displacing another solution publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2001.7809 – volume: 1141 year: 2018 ident: 10.1016/j.colcom.2021.100516_bb0080 article-title: Slow viscous flow in a microchannel with similar and different superhydrophobic walls publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1141/1/012134 – volume: 9 start-page: 14428 year: 2019 ident: 10.1016/j.colcom.2021.100516_bb0150 article-title: Electroosmotic flow driven microfluidic device for bacteria isolation using magnetic microbeads publication-title: Sci. Rep. doi: 10.1038/s41598-019-50713-z – volume: 2 start-page: 205 year: 2006 ident: 10.1016/j.colcom.2021.100516_bb0125 article-title: Dynamic aspects of electroosmotic flow publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-005-0063-6 – year: 2002 ident: 10.1016/j.colcom.2021.100516_bb0120 – volume: 10 start-page: 197 year: 2008 ident: 10.1016/j.colcom.2021.100516_bb0015 article-title: Microfluidic self-assembly of tumor spheroids for anticancer during drug discovery publication-title: Biomed. Microdevices doi: 10.1007/s10544-007-9125-8 – volume: 132 start-page: 46 year: 2005 ident: 10.1016/j.colcom.2021.100516_bb0010 article-title: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2014.09.024 – volume: 19 start-page: 2393 year: 2019 ident: 10.1016/j.colcom.2021.100516_bb0020 article-title: Epitaxial graphene sensors combined with 3D printed microfluidic chip for heavy metals detection publication-title: Sensors doi: 10.3390/s19102393 – volume: 11 start-page: 1229 year: 2019 ident: 10.1016/j.colcom.2021.100516_bb0035 article-title: A hybrid adhesive bonding of PMMA and PCB with an application on microchip electrophoresis publication-title: Anal. Methods doi: 10.1039/C8AY02642D – volume: 138 start-page: 1727 year: 2016 ident: 10.1016/j.colcom.2021.100516_bb0055 article-title: Bioinspired interfaces with super-wettability: from materials to chemistry publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12728 – volume: 4 start-page: 6537 year: 2012 ident: 10.1016/j.colcom.2021.100516_bb0040 article-title: Investigation on the Mechanism of Aminosilane-Mediated Bonding of Thermoplastics and Poly(dimethylsiloxane) publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3015923 – year: 1981 ident: 10.1016/j.colcom.2021.100516_bb0135 – volume: 424 start-page: 663 year: 2003 ident: 10.1016/j.colcom.2021.100516_bb0090 article-title: The hydrodynamics of water strider locomotion publication-title: Nature. doi: 10.1038/nature01793 – volume: 41 start-page: 570 year: 2020 ident: 10.1016/j.colcom.2021.100516_bb0145 article-title: Effect of surface conduction-induced electromigration on current monitoring method for electroosmotic flow measurement publication-title: Electrophoresis doi: 10.1002/elps.201900308 |
SSID | ssj0002140238 |
Score | 2.2412288 |
Snippet | The traditional bonding technology severely limits the development of microfluidic chip owing to the complicated techniques, the blockage and deformation of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100516 |
SubjectTerms | Electroosmotic flow Microfluidic chip Super-hydrophilic microchannel Superhydrophobic surface |
Title | Numerical simulation and experimental study of the electroosmotic flow in open microfluidic chip based on super-wettability surface |
URI | https://dx.doi.org/10.1016/j.colcom.2021.100516 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL15EUbE-yh68Ls1jt4nHWizVYg8-sLewmWQx0ialJhTP_nFnsokoiIKnkM3Oskw2OzPZme9j7FwRibHjaUEEKEK66YWIE4xSjOdCCApCpane-XbaHz_Km5mabbBhWwtDaZXN3m_39Hq3blp6jTZ7yyzr3XtorRwfDZxb1wMTJqgvw7qIb3b5-Z_FwwjCqwmtqb8ggbaCrk7zQnVT2gjO16WMAUXE5z9ZqC9WZ7TLdhp3kQ_sjPbYRprvs_dpZc9Z5vw1WzT8W1znCf-K189r5FheGI4-Hm_oboqatge4mRdrnuWcyLP4gpLyzLzKEnwCz9mSk21LOA76WuGAYp2WpcXzfsOWldGQHrDH0dXDcCwaMgUBfuCVAoxyfR0GMUZ8ig5bDH7MibKA8IFU4GIwnIJJUC1a9pVnIAg0XLjSA4AE_EO2mRd5esS4QacKHKMTqR2J8UYcxEr2nTBF14vQbjrMbxUYQYM0ToQX86hNKXuJrNojUntk1d5h4lNqaZE2_ugftO8m-rZiIjQGv0oe_1vyhG3Tna1FPGWb5apKz9ApKeMu2xpcT8ZTuk7unibdehV-AD8U5AA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELaAHsoFURXEuz60R2sTx94sBw48inYL7KUg7S11JrYIWrIrNqsVZ34Sf5CZ2EFUqlqpElc7tqzPo3nEM_Mx9lUTiXEkjSACFKFieyjyAqMUJ2PogYaeNlTvfDXs9m_Uj5EeLbHnthaG0iqD7vc6vdHWYaQT0OxMy7LzU6K1ihI0cHFTD6xCZuWFfVxg3DY7GpzhJX-T8vz79WlfBGoBAUkqawFOx4nppTnGP5qeHhyKdqF9e_RUaYgxNLTgCvSIjOpq6SBNDRzGSgJAAQnuu8w-oPeRkjYYjE5ef-xIDFlkw6BNBxR0wrZkr8krw_ulPBUEKKYUBU1M638yiW_M3Pk6Wwv-KT_2EHxiS7b6zJ6Gc_-wM-az8j4QfnFTFfwtQQBvWtXyiePoVPLArzNpeIKAu_FkwcuKE1sXv6csQDeelwXOwG055WRMC46bzua4oVjYuvYNxB9x5MEZsBvs5l0g3mQr1aSyW4w79OIgcqZQJlIY4ORprlU36ln09ai9zjZLWgAzCK3NiWFjnLU5bHeZhz0j2DMP-zYTr6umvrXHP75P27vJfhPRDK3PX1fu_PfKL-xj__rqMrscDC922SrN-ELIPbZSP8ztPnpEdX7QSCBnv95b5F8Awzkcqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+and+experimental+study+of+the+electroosmotic+flow+in+open+microfluidic+chip+based+on+super-wettability+surface&rft.jtitle=Colloid+and+interface+science+communications&rft.au=Jiang%2C+Shuyue&rft.au=Zhang%2C+Haifeng&rft.au=Chen%2C+Liang&rft.au=Li%2C+Yiping&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=2215-0382&rft.eissn=2215-0382&rft.volume=45&rft_id=info:doi/10.1016%2Fj.colcom.2021.100516&rft.externalDocID=S2215038221001564 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0382&client=summon |