A general method of active friending in different diffusion models in social networks

Active friending is a problem in social networks that is to assist a user to build a relationship to a target user by sending invitations to a set of intermediate users; the goal is to maximize the acceptance probability at the target node taking advantage of the social influence through the network...

Full description

Saved in:
Bibliographic Details
Published inSocial network analysis and mining Vol. 10; no. 1; p. 41
Main Authors Gu, Shuyang, Gao, Chuangen, Yang, Ruiqi, Wu, Weili, Wang, Hua, Xu, Dachuan
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Active friending is a problem in social networks that is to assist a user to build a relationship to a target user by sending invitations to a set of intermediate users; the goal is to maximize the acceptance probability at the target node taking advantage of the social influence through the network formed by the intermediate nodes. In this paper, we convert the original formulated active friending problem of nonsubmodular maximization subject to cardinality constraint into a submodular cost submodular knapsack problem in the IC model, and we show that the two problems are equivalent. We similarly make the conversion on the active friending in the LT model. Then we give a general combinatorial optimization algorithm to solve active friending problems in both the IC model and the LT model with a guaranteed approximation. We analyze the computational complexity of the problem and the algorithm performance. The effectiveness of the generalized method is verified on real data sets.
AbstractList Active friending is a problem in social networks that is to assist a user to build a relationship to a target user by sending invitations to a set of intermediate users; the goal is to maximize the acceptance probability at the target node taking advantage of the social influence through the network formed by the intermediate nodes. In this paper, we convert the original formulated active friending problem of nonsubmodular maximization subject to cardinality constraint into a submodular cost submodular knapsack problem in the IC model, and we show that the two problems are equivalent. We similarly make the conversion on the active friending in the LT model. Then we give a general combinatorial optimization algorithm to solve active friending problems in both the IC model and the LT model with a guaranteed approximation. We analyze the computational complexity of the problem and the algorithm performance. The effectiveness of the generalized method is verified on real data sets.
ArticleNumber 41
Author Gao, Chuangen
Gu, Shuyang
Wang, Hua
Yang, Ruiqi
Wu, Weili
Xu, Dachuan
Author_xml – sequence: 1
  givenname: Shuyang
  orcidid: 0000-0003-4535-2280
  surname: Gu
  fullname: Gu, Shuyang
  email: gushuy@gmail.com
  organization: Department of Computer Information Systems, Texas A&M University-Central Texas
– sequence: 2
  givenname: Chuangen
  surname: Gao
  fullname: Gao, Chuangen
  organization: The School of Computer Science and Technology, Shandong University
– sequence: 3
  givenname: Ruiqi
  surname: Yang
  fullname: Yang, Ruiqi
  organization: Department of Information and Operations Research, Beijing University of Technology
– sequence: 4
  givenname: Weili
  surname: Wu
  fullname: Wu, Weili
  organization: Department of Computer Science, The University of Texas at Dallas
– sequence: 5
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: The School of Computer Science and Technology, Shandong University
– sequence: 6
  givenname: Dachuan
  surname: Xu
  fullname: Xu, Dachuan
  organization: Department of Information and Operations Research, Beijing University of Technology
BookMark eNp9kMtOwzAQRS1UJErpD7CKxDowthPHXlYVLwmJDV1bTjIpLqldbBfE35O2CCQWXc2V5p553HMyct4hIZcUrilAdRMpZ5XMgUEOIEqeyxMyplKovCyEGv3qEs7INMYVAFDgXIEYk8UsW6LDYPpsjenVt5nvMtMk-4FZFyy61rplZl3W2q7DgC7t1TZa77K1b7GPu270jR1GOEyfPrzFC3LamT7i9KdOyOLu9mX-kD893z_OZ095wyuW8qYxjCnZ1W1dSWyVqquyKpBKBY0UdQUloxylkYPsBBQgQYAwrC14wbEUfEKuDnM3wb9vMSa98tvghpWaKapKroqKDi55cDXBxxiw041NJg0fpGBsrynoXY76kKMectT7HLUcUPYP3QS7NuHrOMQPUBzMbonh76oj1Ddkp4Zu
CitedBy_id crossref_primary_10_1007_s10878_020_00639_4
crossref_primary_10_1016_j_tcs_2023_113847
Cites_doi 10.1145/775047.775057
10.1007/s10878-016-9991-1
10.1007/978-3-540-77105-0_31
10.1145/502512.502525
10.1109/ICDM.2010.118
10.1016/0166-218X(84)90003-9
10.1109/GreenCom-CPSCom.2010.28
10.1145/2487575.2487599
10.1145/3148055.3148073
10.1109/TMC.2014.2322373
10.1109/CVPR.2011.5995589
10.1109/CEC.2010.5586144
10.1007/s10878-016-0006-z
10.1145/1557019.1557047
10.1145/1963192.1963217
10.1109/ICDM.2011.132
10.1145/956750.956769
10.1145/2588555.2593670
10.1109/MSN.2014.45
10.1016/S0167-6377(03)00062-2
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria, part of Springer Nature 2020
Springer-Verlag GmbH Austria, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020.
DBID AAYXX
CITATION
0-V
3V.
7XB
88J
8BJ
8FE
8FG
8FK
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FQK
GNUQQ
HCIFZ
JBE
JQ2
K7-
M2R
P5Z
P62
PHGZM
PHGZT
PKEHL
POGQB
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
DOI 10.1007/s13278-020-00653-8
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Social Science Database (Alumni Edition)
International Bibliography of the Social Sciences (IBSS)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
International Bibliography of the Social Sciences
ProQuest Central Student
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Computer Science Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central
ProQuest One Applied & Life Sciences
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList ProQuest Sociology & Social Sciences Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Law
Computer Science
EISSN 1869-5469
ExternalDocumentID 10_1007_s13278_020_00653_8
GroupedDBID -EM
0R~
0VY
203
2VQ
30V
4.4
406
408
409
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAJSJ
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACULB
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
BENPR
BGLVJ
BGNMA
C6C
CCPQU
CSCUP
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GNUQQ
GQ6
GQ8
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
ITM
IWAJR
IZIGR
J-C
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M2R
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RIG
RLLFE
ROL
RSV
S1Z
S27
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z7Z
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABEEZ
ABFSG
ACSTC
AEZWR
AFDZB
AFGXO
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
0-V
3V.
7XB
8BJ
8FE
8FG
8FK
FQK
JBE
JQ2
P62
PKEHL
POGQB
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
ID FETCH-LOGICAL-c372t-cca2298fbdb78ed99b7574e1890c86b705213e8a8b70f604080606a2d4343e563
IEDL.DBID BENPR
ISSN 1869-5450
IngestDate Wed Aug 13 04:51:40 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Tue Jul 01 02:45:46 EDT 2025
Fri Feb 21 02:33:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Submodular cost submodular knapsack maximization
Friending
Social networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-cca2298fbdb78ed99b7574e1890c86b705213e8a8b70f604080606a2d4343e563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4535-2280
PQID 2919539471
PQPubID 2044166
ParticipantIDs proquest_journals_2919539471
crossref_citationtrail_10_1007_s13278_020_00653_8
crossref_primary_10_1007_s13278_020_00653_8
springer_journals_10_1007_s13278_020_00653_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Heidelberg
PublicationTitle Social network analysis and mining
PublicationTitleAbbrev Soc. Netw. Anal. Min
PublicationYear 2020
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 57–66
Vondrák J (2010) Submodularity and curvature: the optimal algorithm (combinatorial optimization and discrete algorithms)
LuZZhangZWuWSolution of bharathi-kempe-salek conjecture for influence maximization on arborescenceJ Comb Optim2017332803808360410210.1007/s10878-016-0006-z
Chen W, Yuan Y, Zhang L (2010) Scalable influence maximization in social networks under the linear threshold model. In: 2010 IEEE international conference on data mining. IEEE, pp 8–97
Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th international conference companion on world wide web. ACM, pp 47–48
KwonJKimSFriend recommendation method using physical and social contextInt J Comput Sci Netw Secur20101011116120
Wu W, Du D-Z, et al. (2018) An approximation algorithm for active friending in online social networks. arXiv preprint arXiv:1811.00643
ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theoremDiscrete Appl Math19847325127473689010.1016/0166-218X(84)90003-9
SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper Res Lett20043214143201710710.1016/S0167-6377(03)00062-2
Iyer RK, Jegelka S, Bilmes JA (2013) Curvature and optimal algorithms for learning and minimizing submodular functions. In: Advances in neural information processing systems, pp 2742–2750
Silva NB, Tsang R, Cavalcanti GD, Tsang J (2010) A graph-based friend recommendation system using genetic algorithm. In: IEEE congress on evolutionary computation. IEEE, pp 1–7
Yuan J, Wu W, Li Y, Du D (2017) Active friending in online social networks. In: Proceedings of the Fourth IEEE/ACM international conference on big data computing, applications and technologies. ACM, pp 139–148
Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 199–208
Iyer RK, Bilmes JA (2013) Submodular optimization with submodular cover and submodular knapsack constraints. In: Advances in neural information processing systems, pp 2436–2444
Chen H, Xu W, Zhai X, Bi Y, Wang A, Du D-Z (2014) How could a boy influence a girl?. In: 2014 10th International conference on mobile ad-hoc and sensor networks. IEEE, pp 279–287
WangZLiaoJCaoQQiHWangZFriendbook: a semantic-based friend recommendation system for social networksIEEE Trans Mob Comput201514353855110.1109/TMC.2014.2322373
Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 61–70
Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. ACM, pp 75–86
Bharathi S, Kempe D, Salek M (2007) Competitive influence maximization in social networks. In: International workshop on web and internet economics. Springer, pp 306–311
WangAWuWCuiLOn bharathi-kempe-salek conjecture for influence maximization on arborescenceJ Comb Optim201631416781684348059210.1007/s10878-016-9991-1
Goyal A, Lu W, Lakshmanan LV (2011) Simpath: an efficient algorithm for influence maximization under the linear threshold model. In 2011 IEEE 11th international conference on data mining. IEEE, pp 211–220
Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 137–146
Yang D-N, Hung H-J, Lee W-C, Chen W (2013) Maximizing acceptance probability for active friending in online social networks. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 713–721
Xie X (2010) Potential friend recommendation in online social network. In: Proceedings of the 2010 IEEE/ACM int’l conference on green computing and communications & int’l conference on cyber, physical and social computing. IEEE Computer Society, pp 831–835
Jegelka S, Bilmes J (2011) Submodularity beyond submodular energies: coupling edges in graph cuts. In: CVPR 2011. IEEE, pp 1897–1904
653_CR6
653_CR7
653_CR8
653_CR9
653_CR2
653_CR3
653_CR4
M Sviridenko (653_CR17) 2004; 32
653_CR1
653_CR12
653_CR11
653_CR10
653_CR16
653_CR15
M Conforti (653_CR5) 1984; 7
Z Lu (653_CR14) 2017; 33
653_CR19
653_CR18
653_CR23
653_CR22
Z Wang (653_CR20) 2015; 14
A Wang (653_CR21) 2016; 31
653_CR25
653_CR24
J Kwon (653_CR13) 2010; 10
References_xml – reference: Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th international conference companion on world wide web. ACM, pp 47–48
– reference: Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 137–146
– reference: Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 61–70
– reference: Bharathi S, Kempe D, Salek M (2007) Competitive influence maximization in social networks. In: International workshop on web and internet economics. Springer, pp 306–311
– reference: Wu W, Du D-Z, et al. (2018) An approximation algorithm for active friending in online social networks. arXiv preprint arXiv:1811.00643
– reference: KwonJKimSFriend recommendation method using physical and social contextInt J Comput Sci Netw Secur20101011116120
– reference: Jegelka S, Bilmes J (2011) Submodularity beyond submodular energies: coupling edges in graph cuts. In: CVPR 2011. IEEE, pp 1897–1904
– reference: LuZZhangZWuWSolution of bharathi-kempe-salek conjecture for influence maximization on arborescenceJ Comb Optim2017332803808360410210.1007/s10878-016-0006-z
– reference: Yuan J, Wu W, Li Y, Du D (2017) Active friending in online social networks. In: Proceedings of the Fourth IEEE/ACM international conference on big data computing, applications and technologies. ACM, pp 139–148
– reference: Chen H, Xu W, Zhai X, Bi Y, Wang A, Du D-Z (2014) How could a boy influence a girl?. In: 2014 10th International conference on mobile ad-hoc and sensor networks. IEEE, pp 279–287
– reference: Silva NB, Tsang R, Cavalcanti GD, Tsang J (2010) A graph-based friend recommendation system using genetic algorithm. In: IEEE congress on evolutionary computation. IEEE, pp 1–7
– reference: Yang D-N, Hung H-J, Lee W-C, Chen W (2013) Maximizing acceptance probability for active friending in online social networks. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 713–721
– reference: Vondrák J (2010) Submodularity and curvature: the optimal algorithm (combinatorial optimization and discrete algorithms)
– reference: Xie X (2010) Potential friend recommendation in online social network. In: Proceedings of the 2010 IEEE/ACM int’l conference on green computing and communications & int’l conference on cyber, physical and social computing. IEEE Computer Society, pp 831–835
– reference: Goyal A, Lu W, Lakshmanan LV (2011) Simpath: an efficient algorithm for influence maximization under the linear threshold model. In 2011 IEEE 11th international conference on data mining. IEEE, pp 211–220
– reference: WangAWuWCuiLOn bharathi-kempe-salek conjecture for influence maximization on arborescenceJ Comb Optim201631416781684348059210.1007/s10878-016-9991-1
– reference: WangZLiaoJCaoQQiHWangZFriendbook: a semantic-based friend recommendation system for social networksIEEE Trans Mob Comput201514353855110.1109/TMC.2014.2322373
– reference: Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 199–208
– reference: ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theoremDiscrete Appl Math19847325127473689010.1016/0166-218X(84)90003-9
– reference: Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. ACM, pp 75–86
– reference: Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 57–66
– reference: Chen W, Yuan Y, Zhang L (2010) Scalable influence maximization in social networks under the linear threshold model. In: 2010 IEEE international conference on data mining. IEEE, pp 8–97
– reference: Iyer RK, Bilmes JA (2013) Submodular optimization with submodular cover and submodular knapsack constraints. In: Advances in neural information processing systems, pp 2436–2444
– reference: SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper Res Lett20043214143201710710.1016/S0167-6377(03)00062-2
– reference: Iyer RK, Jegelka S, Bilmes JA (2013) Curvature and optimal algorithms for learning and minimizing submodular functions. In: Advances in neural information processing systems, pp 2742–2750
– ident: 653_CR15
  doi: 10.1145/775047.775057
– volume: 31
  start-page: 1678
  issue: 4
  year: 2016
  ident: 653_CR21
  publication-title: J Comb Optim
  doi: 10.1007/s10878-016-9991-1
– ident: 653_CR22
– ident: 653_CR1
  doi: 10.1007/978-3-540-77105-0_31
– ident: 653_CR6
  doi: 10.1145/502512.502525
– ident: 653_CR4
  doi: 10.1109/ICDM.2010.118
– volume: 7
  start-page: 251
  issue: 3
  year: 1984
  ident: 653_CR5
  publication-title: Discrete Appl Math
  doi: 10.1016/0166-218X(84)90003-9
– ident: 653_CR10
– ident: 653_CR23
  doi: 10.1109/GreenCom-CPSCom.2010.28
– ident: 653_CR24
  doi: 10.1145/2487575.2487599
– ident: 653_CR9
– ident: 653_CR19
– ident: 653_CR25
  doi: 10.1145/3148055.3148073
– volume: 14
  start-page: 538
  issue: 3
  year: 2015
  ident: 653_CR20
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2014.2322373
– volume: 10
  start-page: 116
  issue: 11
  year: 2010
  ident: 653_CR13
  publication-title: Int J Comput Sci Netw Secur
– ident: 653_CR11
  doi: 10.1109/CVPR.2011.5995589
– ident: 653_CR16
  doi: 10.1109/CEC.2010.5586144
– volume: 33
  start-page: 803
  issue: 2
  year: 2017
  ident: 653_CR14
  publication-title: J Comb Optim
  doi: 10.1007/s10878-016-0006-z
– ident: 653_CR2
  doi: 10.1145/1557019.1557047
– ident: 653_CR7
  doi: 10.1145/1963192.1963217
– ident: 653_CR8
  doi: 10.1109/ICDM.2011.132
– ident: 653_CR12
  doi: 10.1145/956750.956769
– ident: 653_CR18
  doi: 10.1145/2588555.2593670
– ident: 653_CR3
  doi: 10.1109/MSN.2014.45
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 653_CR17
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(03)00062-2
SSID ssj0001033906
Score 2.2037485
Snippet Active friending is a problem in social networks that is to assist a user to build a relationship to a target user by sending invitations to a set of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Algorithms
Applications of Graph Theory and Complex Networks
Cardinality
Combinatorial analysis
Computer Science
Data Mining and Knowledge Discovery
Diffusion models
Economics
Game Theory
Graphs
Humanities
Influence
Knapsack problem
Law
Methodology of the Social Sciences
Optimization
Original Article
Propagation
Social and Behav. Sciences
Social networks
Statistics for Social Sciences
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7c9aAXH6vi6io5eNNCm7R5HBdxWUQ9ubC30jSJCNIV28W_b5I2FkUFb6FJc5jJZGYy880AXEhKlcyMihIjTJSWxFiZ4yoiivIkKe3XxAGF7x_ofJHeLrNlBwqrQ7Z7CEn6m7oHuxHsqsFih4SmGYn4ADYz57vbU7zA0_5lJSbWkfewIk5FZE2EuEPL_LzNV43Um5nfIqNe4cz2YKezFNG0Ze0-bOhqBLuhCwPqhHIEWwFbXI9gcFe8H8Biip7aatKobRCNVgYV_mJDxtU1dvoKPVcodEdp_GjtHs6Qb41Tu9n2OR1VbaJ4fQiL2c3j9Tzq2idEJWG4iSxvMBbcSCUZ10oIyTKW6oSLuORUMgfbJZoX3A4NtcLMY-vNFFg5sKnOKDmCYbWq9DEgu5wzSaRhvEitwSe0zpRiMTdCCVnqMSSBhHnZ1RZ3LS5e8r4qsiN7bsmee7LnfAyXn_-8tpU1_lw9CZzJOymrcyxcEFBY_TqGq8Ctfvr33U7-t_wUtrE7MD6LZQLD5m2tz6wt0shzf_Q-AA9f0pM
  priority: 102
  providerName: Springer Nature
Title A general method of active friending in different diffusion models in social networks
URI https://link.springer.com/article/10.1007/s13278-020-00653-8
https://www.proquest.com/docview/2919539471
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BS8MwFA7qLl5EUXE6Rw7eNNgma_pykjk2RVFEHMxTWZpEBOmm2_6_L21qUXCXEpI0h_eSl5eXfO8j5ExLaXTiDIudcqyXC4drDgwTRkIc51gbe6Dww6O8HffuJskkBNwW4VllbRNLQ21muY-RX3LlL3wU2tKr-SfzrFH-djVQaGySFppgwMNX63r4-PTcRFkigYf6EmIEUjF0F6KAnKnwc4L7BLPcg6tlIhj83p0al_PPLWm5-Yx2yU7wGmm_UvMe2bDFPhn36VuVNJpWPNB05ui0tF_U-fTFflui7wWtSVCWZWnl42O0ZMBZ-NYqak6L6j344oCMR8OXwS0LLAksFylfMlQB5wqcNjoFa5TSaZL2bAwqykHq1KNzhYUpYNFJXLMQ4aFlyo3HlNpEikOyVcwKe0QododUC-1SmPbQr1PWJsakEThllM5tm8S1dLI8pBD3TBYfWZP82Es0Q4lmpUQzaJPzn3_mVQKNtb07tdCzsJgWWaP6NrmoFdE0_z_a8frRTsg297ovH6d0yNbya2VP0cVY6i7ZhNFNl7T6N6_3w26YVVg7kAP8jnn_G1xm0Bw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50PehFFBXXZw560mCb9JEcRBZ1XZ8nF7zVTZOIIN3VXRH_lL_RTNpaFPTmLeRFmXyZTCeZ-QB2VJJoFVtNQystjXJu3Z4TmnKdiDDMXW2IgcLXN0mvH13cxXdT8FHHwuCzylonekWthzn6yA-YxAsf6XTp0eiZImsU3q7WFBolLC7N-5v7ZRsfnp-49d1lrHt6e9yjFasAzXnKJtR9MmNSWKVVKoyWUqVxGplQyCAXiUoxmpUbMRCuaBOHcRE4I3_ANMZgmjjhbt5pmIk4l7ijRPes8ekErtLTeSLRE3XGSVDF6ZTRepxhOluGodxJzKn4fhY2Bu6PO1l_1HUXYL6yUUmnBNUiTJliCfod8lCmqCYl6zQZWjLw2pJYTJaMhyB5LEhNuTLxpVf0xhHPtzPG1tJHT4ry9fl4Gfr_Ir0VaBXDwqwCcd1FqriyqRhEzoqUxsRap4GwUkuVmzaEtXSyvEpYjrwZT1mTahklmjmJZl6imWjD3teYUZmu48_eG7XQs2rrjrMGaG3Yrxeiaf59trW_Z9uG2d7t9VV2dX5zuQ5zDHHgn8VsQGvy8mo2nXEzUVseUQTu_xvCn2mzBck
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4CerFj6k4nZqDN61rmzZNjkOdX3N4cKCn0jSJiNKJ7RD86036YaeoIN5Ck4Y2ecl7eXm_3wPY44QI7ithOYopy4ux0muOCgsLQh0n1k8dAxS-GpKzkXdx699OofjzaPfqSrLANBiWpiTrPgvVrYFv2DXMsK5BRRMfW7QBs57htmvCbO_07nLKz2JjfazPQUaUMEsbDHaJnfm-o8_6qTY6v9yT5uqnvwRR9eFF1Mnj4STjh_HbF07H__zZMiyWtinqFcK0AjMyacFSlfcBldtAC-YrNHPagsYgel2FUQ_dF_zVqEhJjcYKRflWipRhUjYaEj0kqMrHkuWliXHVoTwZT2pqCwc-SorQ9HQNRv2Tm6Mzq0zYYMU4cDNLS4PrMqq44AGVgjEe-IEnHcrsmBIeGKAwljSiuqiI3j6orc9PkSsMvFX6BK9DMxkncgOQbk4DjrkKaORpE5NJ6QsR2FQxwXgs2-BU0xTGJZu5SarxFNY8zGYkQz2SYT6SIW3D_sc7zwWXx6-tO9Xsh-W6TkOXmWtHpjV6Gw6qyayrf-5t82_Nd2Hu-rgfDs6Hl1uw4BpxyENoOtDMXiZyWxtCGd8pZf0dnrP7Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+method+of+active+friending+in+different+diffusion+models+in+social+networks&rft.jtitle=Social+network+analysis+and+mining&rft.au=Gu%2C+Shuyang&rft.au=Gao%2C+Chuangen&rft.au=Yang%2C+Ruiqi&rft.au=Wu%2C+Weili&rft.date=2020-12-01&rft.issn=1869-5450&rft.eissn=1869-5469&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1007%2Fs13278-020-00653-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13278_020_00653_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-5450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-5450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-5450&client=summon